
sheriff 1

Validation using Erlang’s type system

with Sheriff

Loïc Hoguin

Dev:Extend

sheriff 2

Good Erlang code

-type year() :: 1900..2011.
-type age() :: 0..111.

-spec main() -> no_return().
main() ->
 Year = 1984,
 Age = calculate_age(Year),
 io:format("~b years old~n", [Age]),
 main().

-spec calculate_age(year()) -> age().
calculate_age(Year) ->
 2011 - Year.

sheriff 3

Dialyzer is awesome, isn’t it?

• Dialyzer statically checks function specifications
• All type errors will be reported by Dialyzer
• Okay, code isn’t that good, it’s just a dumb example

sheriff 4

Good Erlang code receiving external data

-type year() :: 1900..2011.
-type age() :: 0..111.

-spec main() -> no_return().
main() ->
 receive {year_of_birth, Year} ->
 Age = calculate_age(Year),
 io:format("~b years old~n", [Age])
 end,
 main().

-spec calculate_age(year()) -> age().
calculate_age(Year) ->
 2011 - Year.

sheriff 5

We lost Dialyzer

• Dialyzer doesn’t help here
• Year could be any integer in this code!

• Even year 3001
• Or it could be a binary, a list, a tuple, a pid…

• This value wouldn’t match the type we defined

sheriff 6

What is external data?

• Anything that doesn’t come directly from your process
• This includes:

• Process messages
• Shared resources
• Sockets, files
• Return values from NIFs, ports, linked-in drivers

• Real-world applications are all about external data!

sheriff 7

Why check external data? Just let it crash!

• WHAT?!
• Are you sure it’ll crash?
• Maybe it’s going to crash an unrelated process

• Like a central gen_server of your application

• Maybe it’s going to be stored in a database or a file
• Maybe it’s going to be sent directly to connected clients

sheriff 8

Really?

• A person registering on your website today can’t be born in 1492!
• Think about it, are you really crashing on this kind of data?
• Also think about XSS, SQL injection, and friends

sheriff 9

Always validate external data

• Either print a nice error message to the user
• HTML forms, for example

• Or crash as soon as possible
• Don’t crash anywhere! Crash on the system boundaries
• Don’t let bad data crash your core processes
• Don’t let external attacks or user error bring down your app

sheriff 10

Data validation without Sheriff

-type year() :: 1900..2011.

-spec is_valid_year(year()) -> boolean().
is_valid_year(Y)
 when is_integer(Y), Y >= 1900, Y =< 2011 ->
 true;
is_valid_year(_Y) ->
 false.

sheriff 11

All this has happened before…

• I feel like I’m repeating myself there

sheriff 12

And all this will happen again

• I did write the same constraint twice
• Dialyzer already checks it for most of the program
• Why not use theyear() type directly?

sheriff 13

I can’t type

• But I can’t use Erlang’s types from runtime code!

sheriff 14

Who do you call when you need help?

sheriff 15

I am the law

• Sheriff is a runtime type checker
• It uses Erlang’s type system for validation
• You don’t need to duplicate constraints to validate data anymore!
• So just be lazy and validate all external data with a single LoC

sheriff 16

Data validation with Sheriff

true = sheriff:check(Y, year()).

sheriff 17

Tuple validation with Sheriff

-type subject() :: ’I’ | you | he.
-type verb() :: like | ignore | hate.
-type object() :: me | you | him.

-type grammar() :: {subject(), verb(), object()}.

%% ...

sheriff:check({you, like, me}, grammar()). %% true
sheriff:check({’I’, love, you}, grammar()). %% false

sheriff 18

Recursive type validation with Sheriff

-type rtype() :: {leaf | rtype(), leaf | rtype()}.

%% ...

sheriff:check({leaf, {leaf, leaf}}, rtype()). %% true
sheriff:check({{flower, flower}, leaf}, rtype()). %% false
sheriff:check(<<"flower">>, rtype()). %% false

sheriff 19

Parameterized type validation with Sheriff

-type a() :: 0..65535.
-type b(T) :: undefined | T.
-type c() :: b(a()).

%% ...

sheriff:check(undefined, c()). %% true
sheriff:check(42, c()). %% true
sheriff:check(-1, c()). %% false
sheriff:check(1234567890, c()). %% false
sheriff:check(defined, c()). %% false

sheriff 20

Record validation with Sheriff

-record(packet, {
 id :: 1 | 2 | 3,
 num = 0 :: non_neg_integer(),
 data = <<>> :: binary()
}).
-type packet() :: #packet{}.

%% ...

sheriff:check(#packet{id=1, data= <<0:32>>}, packet()). %% true
sheriff:check(#packet{id=undefined}, packet()). %% true
sheriff:check({packet, 2, 1, <<>>}, packet()). %% true
sheriff:check(#packet{id=0, num=7}, packet()). %% false
sheriff:check(#http_req{}, packet()). %% false

sheriff 21

Digging in

• Sheriff is a parse_transform
• It first generates validation functions for all the types you defined
• It then replaces thesheriff:check/2 calls with the proper

validation calls
• It’s fast and is only a compilation option away

sheriff 22

Don’t fall into lava

• There are limitations
• Exported types can only work on modules that were compiled using the

sheriff parse_transform
• Excluding basic types likeinteger() of course

• It’s only as good as Erlang’s type system
• It can’t check element order in lists
• It can’t check the content of binaries, only size
• This can probably be fixed later

• Dialyzer will print out some warnings if analyzing from source

sheriff 23

Sheriff got deputies

• Sheriff, today, is only a proof of concept
• Code was written by twoDev:Extend interns

• William Dang
• Hamza Mahmood

• They only had one month to learn Erlang and do the project
• So there’s probably many bugs!

sheriff 24

To infinity, and beyond!

• We’ll cleanup the codebase
• We’ll add PropEr tests
• We’ll add a few missing features
• First release is planned for December 2011

sheriff 25

Wanted

• You can help!
• Source code is already available onhttps://github.com/extend/sheriff
• Try it out
• Suggest improvements
• File bug reports

• Wait for the code cleanup though

https://github.com/extend/sheriff

sheriff 26

Suit up!

• We’ll ping Kostis Sagonas and the red ties at some point
• They have experience, they can probably help

sheriff 27

Fin

• Any questions?

