sheriff

Validation using Erlang’s type system

with Sheriff

Loic Hoguin

Dev:Extend

Good Erlang code

-type year() :: 1900..2011.
-type age() :: 0..111.

-spec main() -> no_return().
mai n() ->
Year = 1984,
Age = cal cul ate_age(Year),
| o:format ("~b years ol d~n", [Age]),
mai n() .

-spec cal cul ate _age(year()) -> age().
cal cul ate_age(Year) ->
2011 - Year.

Dialyzer is awesome, isn’t it?

- Dialyzer statically checks function specifications
- Alltype errors will be reported by Dialyzer
- Okay, code isn’'t that good, it's just a dumb example

Good Erlang code receiving external data

-type year() :: 1900..2011.
-type age() :: 0..111.

-spec main() -> no_return().
mai n() ->
receive {year of birth, Year} ->
Age = cal cul ate_age(Year),
lo:format ("~b years ol d~n", [Age])
end,
mai n() .

-spec cal cul ate _age(year()) -> age().
cal cul ate_age(Year) ->
2011 - Year.

We lost Dialyzer

Dialyzer doesn’t help here

Year could be any integer in this code!

e Evenyear 3001

« Oritcould be abinary, a list, a tuple, a pid...

This value wouldn’t match the type we defined

What is external data?

Anything that doesn’t come directly from your process

This includes:
. Process messages

. Shared resources
. Sockets, files

 Return values from NIFs, ports, linked-in drivers

Real-world applications are all about external data!

Why check external data? Just let it crash!

WHAT?!
Are you sure it'll crash?

Maybe it’s going to crash an unrelated process
 Like a central gen_server of your application

Maybe it’s going to be stored in a database or a file
Maybe it's going to be sent directly to connected clients

Really?

- A person registering on your website today can’t be born in 1492!
- Think about it, are you really crashing on this kind of data?
« Also think about XSS, SQL injection, and friends

Always validate external data

- Elther print a nice error message to the user
« HTML forms, for example

« Orcrash as soon as possible
« Don’t crash anywhere! Crash on the system boundaries
« Don'tlet bad data crash your core processes
« Don't let external attacks or user error bring down your app

Data validation without Sheriff

-type year() ::

1900. . 2011.

-spec is valid year(year())

s valid year(Y)

when is_integer(Y), Y >= 1900, Y =< 2011

true;

s valid year(_Y) ->

fal se.

-> bool ean().

->

10

All this has happened before...

| feel like I'm repeating myself there

And all this will happen again

| did write the same constraint twice
Dialyzer already checks it for most of the program

Why not use thgear () type directly?

| can’t type

But | can’t use Erlang’s types from runtime code!

13

sheriff

Who do you call when you need help?

14

15

| am the law

Sheriff is a runtime type checker

It uses Erlang’s type system for validation

You don’t need to duplicate constraints to validate data anymore!
So just be lazy and validate all external data with a single LoC

Data validation with Sheriff

true = sheriff:check(Y, year()).

16

Tuple validation with Sheriff

-type subject () 17 | you |
-type verb() :: like | ignore |
-type object() :: me | you | hi

-type granmmar ()
%0 . ..

sheriff:check({you,
sheriff:check({'I’,

{subject (),

|1 ke, nme},
| ove, you},

he.
hat e.
m

verb(), object()}.

grammar ()).
granmmar ()).

WMo true
%0 f al se

17

Recursive type validation with Sheriff

-type rtype() :: {leaf | rtype(),

Who . ..

sheriff:check({leaf, {leaf,

sheriff:check({{fl ower, flower},

sheriff:check(<<"fl ower">>,

leaf}}, rtype()).

rtype()).

| eaf },

%% f al se

|l eaf | rtype()}.

o true

rtype()). %Wofal se

18

Parameterized type validation with Sheriff

-type a() :: 0..65535.
-type b(T) :: undefined | T.
-type c() :: b(a()).

Who . ..

sheriff:check(undefined, c()). %otrue
sheriff:check(42, c()). Wotrue
sheriff:check(-1, c()). Wofal se
sheriff:check(1234567890, c()). %nfal se
sheriff:check(defined, c()). Wofal se

sheriff

Record validation with Sheriff

20

-record(packet, {

id :: 1] 2| 3,

num = 0 :: non_neg_ i nteger(),

data = <<>> :: binary()
1)
-type packet () #packet{}.
%o . ..
sheri ff:check(#packet{id=1, data= <<0:32>>}, packet()). %Wotrue
sheri ff:check(#packet {i d=undefi ned}, packet()). %Wotrue
sheriff:check({packet, 2, 1, <<>>}, packet()). %Wotrue
sheri ff:check(#packet{id=0, num=7}, packet()). %o fal se
sheriff:check(#http req{}, packet()). %o fal se

21

Digging in

Sheriff Is a parse_transform

It first generates validation functions for all the types you defined

It then replaces theheri f f: check/ 2 calls with the proper
validation calls

It's fast and is only a compilation option away

22

Don’t fall into lava

There are limitations

Exported types can only work on modules that were compiled using
sheriff parse_transform

 Excluding basic types likent eger () of course

It's only as good as Erlang’s type system

 [tcan’t check element order in lists
 [tcan’t check the content of binaries, only size

« This can probably be fixed later

Dialyzer will print out some warnings if analyzing from source

Sheriff got deputies

Sheriff, today, is only a proof of concept
Code was written by twdev: Extend interns
William Dang

e Hamza Mahmood

They only had one month to learn Erlang and do the project
So there’s probably many bugs!

23

To infinity, and beyond!

We’'ll cleanup the codebase

We’ll add PropEr tests

We'll add a few missing features

First release is planned for December 2011

24

Wanted

You can help!

Source code is already availablelmps://github.com/extend/sheriff
Try it out

Suggest improvements

File bug reports

 Wait for the code cleanup though

https://github.com/extend/sheriff

Suit up!

We’'ll ping Kostis Sagonas and the red ties at some point
They have experience, they can probably help

Any questions?

Fin

27

