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Good Erlang code

-type year() :: 1900..2011.
-type age() :: 0..111.

-spec main() -> no_return().
mai n() ->
Year = 1984,
Age = cal cul ate_age(Year),
| o:format ("~b years ol d~n", [Age]),
mai n() .

-spec cal cul ate _age(year()) -> age().
cal cul ate_age(Year) ->
2011 - Year.




Dialyzer is awesome, isn’t it?

- Dialyzer statically checks function specifications
- Alltype errors will be reported by Dialyzer
- Okay, code isn’'t that good, it's just a dumb example



Good Erlang code receiving external data

-type year() :: 1900..2011.
-type age() :: 0..111.

-spec main() -> no_return().
mai n() ->
receive {year of birth, Year} ->
Age = cal cul ate_age(Year),
lo:format ("~b years ol d~n", [Age])
end,
mai n() .

-spec cal cul ate _age(year()) -> age().
cal cul ate_age(Year) ->
2011 - Year.




We lost Dialyzer

Dialyzer doesn’t help here

Year could be any integer in this code!

e Evenyear 3001

« Oritcould be abinary, a list, a tuple, a pid...

This value wouldn’t match the type we defined



What is external data?

Anything that doesn’t come directly from your process

This includes:
. Process messages

. Shared resources
. Sockets, files

 Return values from NIFs, ports, linked-in drivers

Real-world applications are all about external data!



Why check external data? Just let it crash!

WHAT?!
Are you sure it'll crash?

Maybe it’s going to crash an unrelated process
 Like a central gen_server of your application

Maybe it’s going to be stored in a database or a file
Maybe it's going to be sent directly to connected clients



Really?

- A person registering on your website today can’t be born in 1492!
- Think about it, are you really crashing on this kind of data?
« Also think about XSS, SQL injection, and friends



Always validate external data

- Elther print a nice error message to the user
« HTML forms, for example

« Orcrash as soon as possible
« Don’t crash anywhere! Crash on the system boundaries
« Don'tlet bad data crash your core processes
« Don't let external attacks or user error bring down your app



Data validation without Sheriff

-type year() ::

1900. . 2011.

-spec is valid year(year())

s valid year(Y)

when is_integer(Y), Y >= 1900, Y =< 2011

true;

s valid year(_Y) ->

fal se.

-> bool ean().

->
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All this has happened before...

| feel like I'm repeating myself there



And all this will happen again

| did write the same constraint twice
Dialyzer already checks it for most of the program

Why not use thgear () type directly?



| can’t type

But | can’t use Erlang’s types from runtime code!
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sheriff

Who do you call when you need help?
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| am the law

Sheriff is a runtime type checker

It uses Erlang’s type system for validation

You don’t need to duplicate constraints to validate data anymore!
So just be lazy and validate all external data with a single LoC



Data validation with Sheriff

true = sheriff:check(Y, year()).
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Tuple validation with Sheriff

-type subject () 17 | you |
-type verb() :: like | ignore |
-type object() :: me | you | hi

-type granmmar ()
%0 . ..

sheriff:check({you,
sheriff:check({'I’,

{subject (),

|1 ke, nme},
| ove, you},

he.
hat e.
m

verb(), object()}.

grammar ()).
granmmar ()).

WMo true
%0 f al se
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Recursive type validation with Sheriff

-type rtype() :: {leaf | rtype(),

Who . ..

sheriff:check({leaf, {leaf,

sheriff:check({{fl ower, flower},

sheriff:check(<<"fl ower">>,

leaf}}, rtype()).

rtype()).

| eaf },

%% f al se

|l eaf | rtype()}.

o true

rtype()). %Wofal se
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Parameterized type validation with Sheriff

-type a() :: 0..65535.
-type b(T) :: undefined | T.
-type c() :: b(a()).

Who . ..

sheriff:check(undefined, c()). %otrue
sheriff:check(42, c()). Wotrue
sheriff:check(-1, c()). Wofal se
sheriff:check(1234567890, c()). %nfal se
sheriff:check(defined, c()). Wofal se




sheriff

Record validation with Sheriff
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-record( packet, {

id :: 1] 2| 3,

num = 0 :: non_neg_ i nteger(),

data = <<>> :: binary()
1)
-type packet () #packet{}.
%o . ..
sheri ff:check(#packet{id=1, data= <<0:32>>}, packet()). %Wotrue
sheri ff:check(#packet {i d=undefi ned}, packet()). %Wotrue
sheriff:check({packet, 2, 1, <<>>}, packet()). %Wotrue
sheri ff:check(#packet{id=0, num=7}, packet()). %o fal se
sheriff:check(#http req{}, packet()). %o fal se
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Digging in

Sheriff Is a parse_transform

It first generates validation functions for all the types you defined

It then replaces theheri f f: check/ 2 calls with the proper
validation calls

It's fast and is only a compilation option away
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Don’t fall into lava

There are limitations

Exported types can only work on modules that were compiled using
sheriff parse_transform

 Excluding basic types likent eger () of course

It's only as good as Erlang’s type system

 [tcan’t check element order in lists
 [tcan’t check the content of binaries, only size

« This can probably be fixed later

Dialyzer will print out some warnings if analyzing from source



Sheriff got deputies

Sheriff, today, is only a proof of concept
Code was written by twdev: Extend interns
William Dang

e Hamza Mahmood

They only had one month to learn Erlang and do the project
So there’s probably many bugs!
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To infinity, and beyond!

We’'ll cleanup the codebase

We’ll add PropEr tests

We'll add a few missing features

First release is planned for December 2011
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Wanted

You can help!

Source code is already availablelmps://github.com/extend/sheriff
Try it out

Suggest improvements

File bug reports

 Wait for the code cleanup though


https://github.com/extend/sheriff

Suit up!

We’'ll ping Kostis Sagonas and the red ties at some point
They have experience, they can probably help



Any questions?

Fin
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