The Erlanger Playbook

Loic Hoguin
Preview, built on June 19, 2015

The Erlanger Playbook

Copyright © 2015 Loic Hoguin

All rights reserved. No part of this publication shall be reproduced, transmitted
or resold in whole or in part in any form, without the prior written consent of
the author. All trademarks and registered trademarks appearing are the property
of their respective owners.

The Erlanger Playbook ii
Contents
I Code 1

1 Special processes

1.1
1.2
1.3

1.4
1.5

Why implement my own?
Why not a normal process?o
Implementing a special process
1.3.1 proc_lib.
1.3.2 0 SYS o o e
1.3.3 Asynchronous start implementation
1.3.4 Synchronous start implementation
Call
Case study: custom supervisor
1.5.1 Andmore

O 0 9 AN L A W LW WD N

The Erlanger Playbook

Part 1

Code

The Erlanger Playbook 2/9

Chapter 1

Special processes

Special processes are processes started using proc_lib that implement system mes-
sages handling. This includes but is not limited to the standard behaviors.

1.1 Why implement my own?

Behaviors are great. Erlang developers tend to use the gen_server behavior... alot.
gen_fsm and gen_event also have good use cases and all of them cover 99% of your
needs. What’s the remaining 1% then?

Because they are so generic, they also contain a lot of logic for cases that may not ap-
ply to you. This is no problem until this part of your program becomes a bottleneck.
Then, and only then, you should consider writing a custom special process.

For example:

* You have a supervisor of worker processes, and a separate gen_server that keeps
track of these worker processes to limit their number. The work is duplicated.

* You have a gen_server that is only used by local Erlang processes, but they make
a very large number of calls. The generic call mechanism becomes the bottleneck.

When the abstraction is inappropriate, you should ditch the gen_server
and roll your own.

— Joe Armstrong

The Erlanger Playbook 3/9

1.2 Why not a normal process?

Do not ever write a normal process for any purpose other than performing an asyn-
chronous function call, as covered previously.

Use a special process.

A special process will:

* Tell you which process is its parent.
* Die gracefully when its parent dies.
* Produce logs when it unexpectedly dies.

* Allow inspecting or replacing its state.

All of this is more than worth the extra five minutes to implement them properly.

1.3 Implementing a special process

A special process must be implemented using proc_1ib and sys.

1.3.1 proc_lib

A process started using proc_1ib always adds two pieces of information to the pro-
cess dictionary: the initial function call of the process, and its parent and ancestors:

1> Pid = proc_lib:spawn_link (fun() -> receive after infinity -> ok end end).
<0.35.0>
2> process_info (Pid) .
[{current_function, {prim_eval, ' receive’,2}},

{initial_call, {proc_lib,init_p,3}},

{status,waiting},

{message_queue_len, 0},

{messages, []},

{links, [<0.33.0>]},

{dictionary, [{’ $ancestors’, [<0.33.0>]},

{’$initial_call’, {erl_eval,’-expr/5-fun-3-',0}}11},

These two values are used by various debugging and inspecting tools.

A process started using proc_11ib will produce crash report when it crashes, so long
as SASL is enabled:

The Erlanger Playbook 4/9

$ erl -boot start_sasl

1> proc_lib:spawn_link (fun() -> 1 = 2 end).

=CRASH REPORT==== 25-Apr-2015::14:11:51 ===
crasher:

initial call: erl_eval:—-expr/5-fun-3-/0

pid: <0.44.0>

registered_name: []

exception error: no match of right hand side value 2

ancestors: [<0.42.0>]
messages: []

links: [<0.42.0>]
dictionary: []

trap_exit: false

status: running

heap_size: 233

stack_size: 27

reductions: 95

neighbours:

neighbour: [{pid,<0.42.0>},
{registered_name, []},
initial_call, {erlang,apply,2}},
current_function, {io, execute_request,2}},
ancestors, [1},

messages, [1},
links, [<0.27.0>,<0.44.0>1},

trap_exit, false},

status,waiting},

heap_size, 610},

stack_size, 30},

reductions,1128}]
*%x exception exit: {badmatch,2}

{
{
{
{
{
{dictionary, []},
{
{
{
{
{

Notice the initial call and ancestors values in the crash report.

Finally, proc_1ib provides an optional feature: synchronous start of processes us-
ing an acknowledgement function.

1.3.2 sys

A process started using proc_1ib must implement the sys protocol.

This provides you with additional debugging and tracing mechanisms. I have little
use for these as Erlang has much better built-in tracing nowadays.

You will however be very interested in the inspecting power it provides:

* sys:get_status/1 provides a complete peek into the process. This is option-
ally a formatted output if the format callback is exported.

The Erlanger Playbook 5/9

* sys:get_state/1 returns the state of the process itself. In a gen_server for
example, this is the State variable.

* sys:replace_state/2 allows you to replace this state.

All of this of course as the process is running. The getter functions are also safe to
use in production; be careful when replacing the state, though.

A process that implements the sys protocol can also be paused and resumed at will.
This is what enables the hot code upgrade mechanism where modules and their state
are updated in a running node.

1.3.3 Asynchronous start implementation
The steps to implement a special process with asynchronous start are as follow:

1. Start the process with proc_lib:spawn_link/1..4 or proc_lib:spawn
_opt/2..5.

2. Write a receive loop.

3. Exit when the parent process dies. This means that if you trap exit signals you
need to handle the message to exit when the parent does.

4. Handle system messages.

5. Implement the system_continue/3, system_terminate/4 and system
_code_change/4 callbacks.

This results in the following code:

start_link () ->
proc_lib:spawn_link (?MODULE, init, [self()]).

init (Parent) ->
loop (Parent) .

loop (Parent) —->
receive

%% Only required when trap_exit is enabled.

{"EXIT’, Parent, Reason} —>
terminate (State, Reason, NbChildren);

{system, From, Request} —->
sys:handle_system_msg (Request, From, Parent, °?MODULE, [],

{state, Parent});
Msg —>

The Erlanger Playbook 6/9

error_logger:error_msg ("Unexpected message ~p~n", [Msgl),
loop (Parent)
end.

system_continue(_, _, {state, Parent}) ->
loop (Parent) .

system_terminate (Reason, _, _, _) —>
exit (Reason) .

system_code_change (Misc, _, _, _) —>
{ok, Misc}.

1.3.4 Synchronous start implementation

The steps to implement a special process with synchronous start are slightly differ-
ent:

1. Start the process with proc_lib:start_link/1..4.
2. Call proc_lib:init_ack/1 from the newly started process.

3. Continue from 2. in the previous section.

This results in the following code:

start_link () —-—>
proc_lib:start_link (?MODULE, init, [self()]).

init (Parent) ->
ok = proc_lib:init_ack (Parent, {ok, self()}),
loop (Parent) .

loop (Parent) —>
receive
%% Only required when trap_exit is enabled.
{"EXIT’, Parent, Reason} —->
terminate (State, Reason, NbChildren);
{system, From, Request} —->
sys:handle_system_msg (Request, From, Parent, °?MODULE, [],
{state, Parent});
Msg —>
error_logger:error_msg ("Unexpected message ~p~n", [Msg]),
loop (Parent)
end.

system_continue(_, _, {state, Parent}) ->
loop (Parent) .

system_terminate (Reason, _, _, _) —>
exit (Reason) .

The Erlanger Playbook 7/9

system_code_change (Misc, _, _, _) ->
{ok, Misc}.

You should call init_ack when the initialization required for the process to run is
complete. This doesn’t necessarily mean all initialization is done, just that you know
it will run properly.

1.4 Call

The call mechanism is one that is explained in details when you start learning Erlang.
You only see the tip of the iceberg though, as the one built into OTP is much more
complex because it needs to handle all edge cases.

This is the main chunk of the code for performing calls in OTP:

do_call (Process, Label, Request, Timeout) ->
try erlang:monitor (process, Process) of
Mref ->

%% If the monitor/2 call failed to set up a connection to a
%% remote node, we don’t want the ’!’ operator to attempt

%% to set up the connection again. (If the monitor/2 call
%% failed due to an expired timeout, ’!’ too would probably
%% have to wait for the timeout to expire.) Therefore,

%% use erlang:send/3 with the ’'noconnect’ option so that it
%% will fail immediately if there is no connection to the
%% remote node.

catch erlang:send(Process, {Label, {self(), Mref}, Request}, [¢
noconnect]),
receive

{Mref, Reply} —>
erlang:demonitor (Mref, [flush]),
{ok, Reply};

{’DOWN’, Mref, _, _, noconnection} ->
Node = get_node (Process),
exit ({nodedown, Node});

{’DOWN’, Mref, _, _, Reason} —->
exit (Reason)

after Timeout ->
erlang:demonitor (Mref, [flush]),
exit (timeout)

end
catch
error:_ —>
%% Node (C/Java?) is not supporting the monitor.
%% The other possible case —-- this node is not distributed

o
o

—— should have been handled earlier.

Do the best possible with monitor_node/2.

This code may hang indefinitely if the Process

does not exist. It is only used for featureweak remote nodes.
Node = get_node (Process),

o o
o oo

o
o

The Erlanger Playbook 8/9

monitor_node (Node, true),
receive
{nodedown, Node} ->
monitor_node (Node, false),
exit ({nodedown, Node})
after 0 —>
Tag = make_ref (),
Process ! {Label, {self(), Tag}, Request},
wait_resp (Node, Tag, Timeout)
end

You don’t always need to handle these edge cases.

If the process that performs the call never uses a registered name, you don’t need to
resolve its pid.

If the process target of the call is not a C or a Java node, you can remove the code
for handling their edge cases.

If the process target of the call is always a local pid, then the send cannot fail and
you don’t need to handle exceptions.

If your supervisor strategy is to restart the caller when the callee crashes, then you
don’t need to monitor.

All these conditions can end up removing a fair chunk of code that now never needs
to be executed.

This advice bears repeating: don’t do this unless you really need it!

1.5 Case study: custom supervisor

A few years ago a bottleneck was detected in the Ranch application. Ranch is an
acceptor pool; an acceptor is a process dedicated to accepting connections.

In order to limit the number of concurrent connections, a new process was added
that keeps track of this number and prevent acceptors from accepting too fast if it is
too high.

Keeping track of running processes is what a supervisor already does with links. The
new process was doing it with monitors. So every time a connection supervisor died,
two processes would be notified about its death. This is not a big problem unless you
need to accept connections at a very high rate, which we did.

The Erlanger Playbook 9/9

The solution was to implement a custom supervisor that would also maintain a count
of connections.

This enabled us to gain a few more things.

When the connection is accepted, the acceptor process sends it to the supervisor
using only this code:
start_protocol (SupPid, Socket) ->

SupPid ! {?MODULE, start_protocol, self(), Socket},
receive SupPid -> ok end.

This is safe because the supervisor is always local, and because the Ranch supervi-
sion strategy ensures that the caller crashes when the callee crashes.

More savings included not having to pass around parameters all the time, not needing
child specs or strategies inside the connection supervisor and more.

1.5.1 And more

As I wrote this I realized that we could save even more by merging the acceptor and
the supervisor, in turn getting rid of the unique supervisor bottleneck. Indeed, if we
have ten acceptors that are also supervisor, then we don’t have the bottleneck that
we had when there was ten acceptors for one supervisor.

Food for thoughts!

	I Code
	Special processes
	Why implement my own?
	Why not a normal process?
	Implementing a special process
	proc_lib
	sys
	Asynchronous start implementation
	Synchronous start implementation

	Call
	Case study: custom supervisor
	And more

