cowboy

A Cowboy quest for a modern web

Loic Hoguin

Nine Nines
Dev:Extend

Erlang User Conference 2011

cowboy

Why Cowboy?

- Because guns are better than arrows
- It's all about the hat

cowboy

History

First commit early March 2011

Mentioned on the Github blog two weeks later
First beta early September 2011

First talk early November 2011

cowboy

Users and contributors

The etorrent project for its acceptor pool and web interface
The sockjs-erlang project for a websocket and HTTP server
Smarkets, Nivertech and other companies

The #erlounge IRC folks

cowboy

Cowboy’s listeners

Cowboy isn’t just an HTTP server
Cowboy allows you to start your own listener
 Essentially a transport and protocol-agnostic acceptor pool

« Anacceptor poolis a pool of processes accepting
connections

You can have as many listeners running side by side as you
want

Even listeners completely unrelated to the HT TP protocol

cowboy

Transport handlers

« Tiny wrappers around transport-related code
 listen, accept, recv, send, setopts...

« Works with any reliable transport
« TCP SSL
« Theorically also the UDP-based ENet

cowboy

Protocol handlers

Contains the protocol implementation
Usually takes the form of a state machine
gen_fsm can of course be used

Only a start_link/4 function is required

cowboy

Acceptor loop

Walit for a connection
Accept the connection

e Start arequest process
 Give the socket to that new process
 Inform the new process everything’s ready

Check for max # of connections
. Wait if this max is reached

Repeat

cowboy

A pool of many acceptors

|Idea taken from Mochiweb
Having more than one acceptor process speeds things up

Erlang processes are cheap
Why not use 100 processes to accept connections?

cowboy

Supervision

All processes started by a listener are supervised
You don’t need to worry about supervision!
We’re working on release upgrades

10

cowboy

Connection pools

There are different kinds of connections
Short-lived request/response should have a small max #

Long-lived idle connections can have a much larger max
Pools allow separating those connection types into two groups
e Ormore

You can add, move or delete connections from pools
By default all connections are added to the pool named 'default’

11

cowboy

Cowboy’s HTTP server

Because all applications have their own HTTP interface

12

cowboy

gen_fsm, lists

Norma
Norma
Norma
Norma

PDIroCess,
PDIOCESS,
PDIOCESS,

PDIOCESS,

Initial design ideas

Ists, with [{active, once}]
pinary, with [{active, once}]
pinary with [{active, false}]

pinary, calling erlang:decode_packet/3 directly

We did want binary from the start but it required more custom

code

13

cowboy

Dispatch rules

|dea taken from Webmachine
Matching hostname and path to HTTP handlers

Partial matching allows binding hostname/path parts to
variables

If we had the rule [<<"users">>, id, <<"pics">>]
« The path /users/42/pics would match
 {id, 42} would be added to the bindings

Entirely optional

cowboy

HTTP handlers

- modul e(ny_handl er).
-export([init/3, handle/2, termnate/?2]).

I nit(_Transport Type, Req, _Opts) ->
{ok, Reqg, undefined state}.

handl e(Req, State) ->
{ok, Reqg2} = cowboy http req:reply(200,
Req) ,
{ok, Reqg2, State}.

termnate(_Req, State) ->
ok.

[1,

<<"Hi

EUC! " >>,

15

cowboy

HTTP request object

Retrieve the method, HTTP version, peer IP and port
Retrieve the requested hostname and path

Retrieve headers, query string values, bindings, cookies
Semantically parse headers

Read the body of the request

Send a simple or a chunked reply

16

cowboy

HTTP handler loops

Useful for long-polling or Event Source
Receive messages from other processes and send back data
Hibernate and timeouts support

17

cowboy

HTTP handlers for long-polling

- modul e(ny_| oop_handl er).
-export([init/3, info/3, termnate/2]).

Init(_Transport Type, Req, Opts) ->
nmy_session_server: hello(),
{1l oop, Reqg, undefined state, 60000, hibernate}.

| nffo({ny_session_server, Mssage}, Req, State) ->
{ok, Reqg2} = cowboy http reqg:reply(200, [], Message,
{ok, Reqg2, State};

i nfo(_Any, Req, State) ->
{l oop, Req, State, hibernate}.

termnate(_Req, State) -> ok = ny_session_server:bye().

Req) ,

18

cowboy

19

Websocket support

Cowboy supports all Websocket protocol versions in use Iin
web browsers

New versions get added as soon as browsers start implementing
them

Cowboy’s websocket interface should be future-proof

Websocket connections are on a different pool than normal
HTTP

cowboy

Websocket handlers

- modul e(ny_ws_handl er).
-export([init/3, websocket init/3, websocket handl e/ 3,
websocket info/3, websocket term nate/3]).

Init(_Transport Type, Req, _Opts) ->
{upgrade, protocol, cowboy http websocket}.

websocket _init(_TransportType, Req, _Opts) ->
Req2 = cowboy http_req: conpact (Req),
{ok, Reqg2, undefined state, 60000, hibernate}.

Wo . ..

20

Websocket handlers continued

Who . ..

websocket handl e({text, Data}, Req, State) ->
{reply, {text, Data}, Req, State, hibernate};
websocket handl e(_Franme, Req, State) ->
{ok, Req, State, hibernate}.

websocket _info(Info, Req, State) ->
{ok, Req, State, hibernate}.

websocket term nate(_ Reason, Req, _State) ->
ok.

21

cowboy

REST handlers

Use Webmachine’s decision flow diagram
Not a rewrite, a new implementation

Clean, readable code not requiring the diagram to be
understood

22

cowboy

Cowboy Is clean code

Easy to understand, easy to debug

No process dictionaries or other side effects
No parameterized modules

Use only documented Erlang/OTP features

23

cowboy

Cowboy and OTP

All Cowboy processes are supervised

OTP upgrades work (though improvements are coming)
HTTP handlers are inspired by gen_servers

e« gen_server:client > apicall > server
 http_handler: http client > http request > http handler

24

cowboy

Cowboy’s performance

500 000 concurrent websocket connections and beyond

25

cowboy

Does performance matter?

It depends on your application
It probably doesn’t matter for 99% of the applications
In HT TP, response latency is very important

When handling many concurrent connections, memory usage
matters

26

cowboy

1process per connection

Other Erlang HTTP servers use 2 processes per connection
Cowboy uses only 1

Saves a significant amount of memory

Reduces latency thanks to reduced message passing

27

cowboy

Low memory usage: binary

Big binaries are ref counted

Small binaries are still smaller than lists
Sub-binary optimizations helps reduce copying

28

cowboy 29

Low memory usage: cowboy http_req:compact/1

« Removes everything unwanted from the Req object
« Lowers memory usage for long-running processes
« Works especially well with process hibernation

cowboy

Requests per seconds

Not a good indicator of performance
But a good indicator of a design’s simplicity

If requests/s lowers significantly between two commits, you've
messed up

30

cowboy

The Horse project

Continuous performance testing of the Cowboy project

Will measure latency, CPU usage, memory usage...

Will produce nice graphs to quickly notice drops and fix them
Release expected for Q12012

31

cowboy

Cowboy'’s related projects

Because the core project should stay lightweight

cowboy

Bullet handler

A Socket.10/SockJS alternative

Sets up an always connected streaming interface between JS
and Erlang

Uses Websocket by default, other methods when not available
A single interface both client and server-side
More work is needed on the JS side

33

cowboy

cowboy_static handler

A static file handler by Magnus Klaar

Using the sendfile code originally from Yaws
Will be using the future REST support
Avalilable as a separate project

34

cowboy

Bigwig: Spawnfest great winner

Spawnfest is an annual Erlang programming contest
First edition took place in June 2011

They produced an awesome webtool replacement with many
more features

Got the IRCCloud guys interested in Cowboy

35

cowboy 36

Farwest: a new kind of web development stack

Default administration panel

« Setup your data

e« Setup your views

Write simple rules to route your data to your views
Write simple rules to create forms and save the data
 Edit andreload any client and server-side code live
 Edit and reload the dispatch list live

e« Gitintegration

NoSQL backend, nice development APl and many plugins
Beta expected for Q12012

cowboy

Cowboy’s future

Because they aren’t just figures of the past

37

cowboy

Listener upgrades

We want to update the dispatch list on-the-fly
We want to update most transport or protocol options
Also allow adding or removing acceptors

38

cowboy

Improved dispatcher

APl will be improved

Allow giving to
Hosthame anc

Kens as lists and not just binaries
path hierarchy will be added

Might eventua

ly switch to matchspecs for better performance

39

cowboy

gen_event for request tracking and monitoring

Ad-hoc error and access logging
Allows writing custom event handlers
No cost when no handlers are defined

40

cowboy

Multipart support

File upload support
Convenience function

Save all files to temporary locations

Return the paths along with the additional POST
parameters

Streaming

Stream each parts individually
Stream each parts’ payload

41

cowboy

Aiming for full HTTP/1.1compliance

Support for all HTTP/1.1features

Correct HTTP/1.0 clients handling

Semantic parsing of all header values

Gzip compression enabled by default for replies

42

cowboy

Up-to-date Websocket support

We are actively monitoring the Websocket draft changes
Updated implementation usually supported within 7 days
Interface shouldn’t be changing anymore

cowboy

Links

cowboy: https://github.com/extend/cowboy
bullet: https://github.com/extend/bullet

essen on #erlounge and #erlang on Freenode
@Ilhoguin on Twitter

Loic Hoguin on G+

essen@dev-extend.eu

44

https://github.com/extend/cowboy
https://github.com/extend/bullet

cowboy

Questions?

| won’t shoot you for asking!

45

