
cowboy 1

A Cowboy quest for a modern web

Loïc Hoguin

Nine Nines
Dev:Extend

Erlang User Conference 2011

cowboy 2

Why Cowboy?

• Because guns are better than arrows
• It’s all about the hat

cowboy 3

History

• First commit early March 2011
• Mentioned on the Github blog two weeks later
• First beta early September 2011
• First talk early November 2011

cowboy 4

Users and contributors

• The etorrent project for its acceptor pool and web interface
• The sockjs-erlang project for a websocket and HTTP server
• Smarkets, Nivertech and other companies
• The #erlounge IRC folks

cowboy 5

Cowboy’s listeners

• Cowboy isn’t just an HTTP server
• Cowboy allows you to start your own listener

• Essentially a transport and protocol-agnostic acceptor pool
• An acceptor pool is a pool of processes accepting

connections

• You can have as many listeners running side by side as you
want

• Even listeners completely unrelated to the HTTP protocol

cowboy 6

Transport handlers

• Tiny wrappers around transport-related code
• listen, accept, recv, send, setopts…

• Works with any reliable transport
• TCP, SSL
• Theorically also the UDP-based ENet

cowboy 7

Protocol handlers

• Contains the protocol implementation
• Usually takes the form of a state machine
• gen_fsm can of course be used
• Only a start_link/4 function is required

cowboy 8

Acceptor loop

• Wait for a connection
• Accept the connection

• Start a request process
• Give the socket to that new process
• Inform the new process everything’s ready

• Check for max # of connections
• Wait if this max is reached

• Repeat

cowboy 9

A pool of many acceptors

• Idea taken from Mochiweb
• Having more than one acceptor process speeds things up
• Erlang processes are cheap
• Why not use 100 processes to accept connections?

cowboy 10

Supervision

• All processes started by a listener are supervised
• You don’t need to worry about supervision!
• We’re working on release upgrades

cowboy 11

Connection pools

• There are different kinds of connections
• Short-lived request/response should have a small max #
• Long-lived idle connections can have a much larger max
• Pools allow separating those connection types into two groups

• Or more

• You can add, move or delete connections from pools
• By default all connections are added to the pool named ’default’

cowboy 12

Cowboy’s HTTP server

• Because all applications have their own HTTP interface

cowboy 13

Initial design ideas

• gen_fsm, lists
• Normal process, lists, with [{active, once}]
• Normal process, binary, with [{active, once}]
• Normal process, binary with [{active, false}]
• Normal process, binary, calling erlang:decode_packet/3 directly
• We did want binary from the start but it required more custom

code

cowboy 14

Dispatch rules

• Idea taken from Webmachine
• Matching hostname and path to HTTP handlers
• Partial matching allows binding hostname/path parts to

variables
• If we had the rule [<<"users">>, id, <<"pics">>]

• The path /users/42/pics would match
• {id, 42} would be added to the bindings

• Entirely optional

cowboy 15

HTTP handlers

-module(my_handler).
-export([init/3, handle/2, terminate/2]).

init(_TransportType, Req, _Opts) ->
 {ok, Req, undefined_state}.

handle(Req, State) ->
 {ok, Req2} = cowboy_http_req:reply(200, [], <<"Hi EUC!">>,
 Req),
 {ok, Req2, State}.

terminate(_Req, _State) ->
 ok.

cowboy 16

HTTP request object

• Retrieve the method, HTTP version, peer IP and port
• Retrieve the requested hostname and path
• Retrieve headers, query string values, bindings, cookies
• Semantically parse headers
• Read the body of the request
• Send a simple or a chunked reply

cowboy 17

HTTP handler loops

• Useful for long-polling or Event Source
• Receive messages from other processes and send back data
• Hibernate and timeouts support

cowboy 18

HTTP handlers for long-polling

-module(my_loop_handler).
-export([init/3, info/3, terminate/2]).

init(_TransportType, Req, _Opts) ->
 my_session_server:hello(),
 {loop, Req, undefined_state, 60000, hibernate}.

info({my_session_server, Message}, Req, State) ->
 {ok, Req2} = cowboy_http_req:reply(200, [], Message, Req),
 {ok, Req2, State};
info(_Any, Req, State) ->
 {loop, Req, State, hibernate}.

terminate(_Req, _State) -> ok = my_session_server:bye().

cowboy 19

Websocket support

• Cowboy supports all Websocket protocol versions in use in
web browsers

• New versions get added as soon as browsers start implementing
them

• Cowboy’s websocket interface should be future-proof
• Websocket connections are on a different pool than normal

HTTP

cowboy 20

Websocket handlers

-module(my_ws_handler).
-export([init/3, websocket_init/3, websocket_handle/3,
 websocket_info/3, websocket_terminate/3]).

init(_TransportType, Req, _Opts) ->
 {upgrade, protocol, cowboy_http_websocket}.

websocket_init(_TransportType, Req, _Opts) ->
 Req2 = cowboy_http_req:compact(Req),
 {ok, Req2, undefined_state, 60000, hibernate}.

%% ...

cowboy 21

Websocket handlers continued

%% ...

websocket_handle({text, Data}, Req, State) ->
 {reply, {text, Data}, Req, State, hibernate};
websocket_handle(_Frame, Req, State) ->
 {ok, Req, State, hibernate}.

websocket_info(_Info, Req, State) ->
 {ok, Req, State, hibernate}.

websocket_terminate(_Reason, _Req, _State) ->
 ok.

cowboy 22

REST handlers

• Use Webmachine’s decision flow diagram
• Not a rewrite, a new implementation
• Clean, readable code not requiring the diagram to be

understood

cowboy 23

Cowboy is clean code

• Easy to understand, easy to debug
• No process dictionaries or other side effects
• No parameterized modules
• Use only documented Erlang/OTP features

cowboy 24

Cowboy and OTP

• All Cowboy processes are supervised
• OTP upgrades work (though improvements are coming)
• HTTP handlers are inspired by gen_servers

• gen_server: client > api call > server
• http_handler: http client > http request > http handler

cowboy 25

Cowboy’s performance

• 500 000 concurrent websocket connections and beyond

cowboy 26

Does performance matter?

• It depends on your application
• It probably doesn’t matter for 99% of the applications
• In HTTP, response latency is very important
• When handling many concurrent connections, memory usage

matters

cowboy 27

1process per connection

• Other Erlang HTTP servers use 2 processes per connection
• Cowboy uses only 1
• Saves a significant amount of memory
• Reduces latency thanks to reduced message passing

cowboy 28

Low memory usage: binary

• Big binaries are ref counted
• Small binaries are still smaller than lists
• Sub-binary optimizations helps reduce copying

cowboy 29

Low memory usage: cowboy_http_req:compact/1

• Removes everything unwanted from the Req object
• Lowers memory usage for long-running processes
• Works especially well with process hibernation

cowboy 30

Requests per seconds

• Not a good indicator of performance
• But a good indicator of a design’s simplicity
• If requests/s lowers significantly between two commits, you’ve

messed up

cowboy 31

The Horse project

• Continuous performance testing of the Cowboy project
• Will measure latency, CPU usage, memory usage…
• Will produce nice graphs to quickly notice drops and fix them
• Release expected for Q12012

cowboy 32

Cowboy’s related projects

• Because the core project should stay lightweight

cowboy 33

Bullet handler

• A Socket.IO/SockJS alternative
• Sets up an always connected streaming interface between JS

and Erlang
• Uses Websocket by default, other methods when not available
• A single interface both client and server-side
• More work is needed on the JS side

cowboy 34

cowboy_static handler

• A static file handler by Magnus Klaar
• Using the sendfile code originally from Yaws
• Will be using the future REST support
• Available as a separate project

cowboy 35

Bigwig: Spawnfest great winner

• Spawnfest is an annual Erlang programming contest
• First edition took place in June 2011
• They produced an awesome webtool replacement with many

more features
• Got the IRCCloud guys interested in Cowboy

cowboy 36

Farwest: a new kind of web development stack

• Default administration panel
• Setup your data
• Setup your views
• Write simple rules to route your data to your views
• Write simple rules to create forms and save the data
• Edit and reload any client and server-side code live
• Edit and reload the dispatch list live
• Git integration

• NoSQL backend, nice development API and many plugins
• Beta expected for Q12012

cowboy 37

Cowboy’s future

• Because they aren’t just figures of the past

cowboy 38

Listener upgrades

• We want to update the dispatch list on-the-fly
• We want to update most transport or protocol options
• Also allow adding or removing acceptors

cowboy 39

Improved dispatcher

• API will be improved
• Allow giving tokens as lists and not just binaries
• Hostname and path hierarchy will be added
• Might eventually switch to matchspecs for better performance

cowboy 40

gen_event for request tracking and monitoring

• Ad-hoc error and access logging
• Allows writing custom event handlers
• No cost when no handlers are defined

cowboy 41

Multipart support

• File upload support
• Convenience function

• Save all files to temporary locations
• Return the paths along with the additional POST

parameters

• Streaming
• Stream each parts individually
• Stream each parts’ payload

cowboy 42

Aiming for full HTTP/1.1compliance

• Support for all HTTP/1.1features
• Correct HTTP/1.0 clients handling
• Semantic parsing of all header values
• Gzip compression enabled by default for replies

cowboy 43

Up-to-date Websocket support

• We are actively monitoring the Websocket draft changes
• Updated implementation usually supported within 7 days
• Interface shouldn’t be changing anymore

cowboy 44

Links

• cowboy: https://github.com/extend/cowboy
• bullet: https://github.com/extend/bullet

• essen on #erlounge and #erlang on Freenode
• @lhoguin on Twitter
• Loïc Hoguin on G+
• essen@dev-extend.eu

https://github.com/extend/cowboy
https://github.com/extend/bullet

cowboy 45

Questions?

• I won’t shoot you for asking!

