/*
* %CopyrightBegin%
*
* Copyright Ericsson AB 2001-2017. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* %CopyrightEnd%
*/
/*
* hipe_bif0.c
*
* Compiler and linker support.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "sys.h"
#include "error.h"
#include "erl_vm.h"
#include "global.h"
#include "erl_process.h"
#include "bif.h"
#include "big.h"
#include "beam_load.h"
#include "erl_db.h"
#include "hash.h"
#include "erl_bits.h"
#include "erl_binary.h"
#ifdef HIPE
#include <stddef.h> /* offsetof() */
#include "hipe_arch.h"
#include "hipe_stack.h"
#include "hipe_mode_switch.h"
#include "hipe_native_bif.h"
#include "hipe_bif0.h"
#include "hipe_load.h"
/* We need hipe_literals.h for HIPE_SYSTEM_CRC, but it redefines
a few constants. #undef them here to avoid warnings. */
#undef F_TIMO
#undef THE_NON_VALUE
#undef ERL_FUN_SIZE
#include "hipe_literals.h"
#endif
int term_to_Sint32(Eterm term, Sint *sp)
{
Sint val;
if (!term_to_Sint(term, &val))
return 0;
if ((Sint)(Sint32)val != val)
return 0;
*sp = val;
return 1;
}
static Eterm Uint_to_term(Uint x, Process *p)
{
if (IS_USMALL(0, x)) {
return make_small(x);
} else {
Eterm *hp = HAlloc(p, BIG_UINT_HEAP_SIZE);
return uint_to_big(x, hp);
}
}
void *term_to_address(Eterm arg)
{
Uint u;
return term_to_Uint(arg, &u) ? (void*)u : NULL;
}
static Eterm address_to_term(const void *address, Process *p)
{
return Uint_to_term((Uint)address, p);
}
/*
* BIFs for reading and writing memory. Used internally by HiPE.
*/
BIF_RETTYPE hipe_bifs_write_u8_2(BIF_ALIST_2)
{
unsigned char *address;
address = term_to_address(BIF_ARG_1);
if (!address || is_not_small(BIF_ARG_2))
BIF_ERROR(BIF_P, BADARG);
*address = unsigned_val(BIF_ARG_2);
BIF_RET(NIL);
}
BIF_RETTYPE hipe_bifs_write_u32_2(BIF_ALIST_2)
{
Uint32 *address;
Uint value;
address = term_to_address(BIF_ARG_1);
if (!address || !hipe_word32_address_ok(address))
BIF_ERROR(BIF_P, BADARG);
if (!term_to_Uint(BIF_ARG_2, &value))
BIF_ERROR(BIF_P, BADARG);
if ((Uint)(Uint32)value != value)
BIF_ERROR(BIF_P, BADARG);
*address = value;
hipe_flush_icache_word(address);
BIF_RET(NIL);
}
/*
* BIFs for mutable bytearrays.
*/
BIF_RETTYPE hipe_bifs_bytearray_2(BIF_ALIST_2)
{
Sint nelts;
Eterm bin;
if (is_not_small(BIF_ARG_1) ||
(nelts = signed_val(BIF_ARG_1)) < 0 ||
!is_byte(BIF_ARG_2))
BIF_ERROR(BIF_P, BADARG);
bin = new_binary(BIF_P, NULL, nelts);
memset(binary_bytes(bin), unsigned_val(BIF_ARG_2), nelts);
BIF_RET(bin);
}
static inline unsigned char *bytearray_lvalue(Eterm bin, Eterm idx)
{
Sint i;
unsigned char *bytes;
#ifndef DEBUG
ERTS_DECLARE_DUMMY(Uint bitoffs);
ERTS_DECLARE_DUMMY(Uint bitsize);
#else
Uint bitoffs;
Uint bitsize;
#endif
if (is_not_binary(bin) ||
is_not_small(idx) ||
(i = unsigned_val(idx)) >= binary_size(bin))
return NULL;
ERTS_GET_BINARY_BYTES(bin, bytes, bitoffs, bitsize);
ASSERT(bitoffs == 0);
ASSERT(bitsize == 0);
return bytes + i;
}
BIF_RETTYPE hipe_bifs_bytearray_sub_2(BIF_ALIST_2)
{
unsigned char *bytep;
bytep = bytearray_lvalue(BIF_ARG_1, BIF_ARG_2);
if (!bytep)
BIF_ERROR(BIF_P, BADARG);
BIF_RET(make_small(*bytep));
}
BIF_RETTYPE hipe_bifs_bytearray_update_3(BIF_ALIST_3)
{
unsigned char *bytep;
bytep = bytearray_lvalue(BIF_ARG_1, BIF_ARG_2);
if (!bytep || !is_byte(BIF_ARG_3))
BIF_ERROR(BIF_P, BADARG);
*bytep = unsigned_val(BIF_ARG_3);
BIF_RET(BIF_ARG_1);
}
BIF_RETTYPE hipe_bifs_bitarray_2(BIF_ALIST_2)
{
Sint nbits;
Uint nbytes;
Eterm bin;
int bytemask;
if (is_not_small(BIF_ARG_1))
BIF_ERROR(BIF_P, BADARG);
nbits = signed_val(BIF_ARG_1);
if (nbits < 0)
BIF_ERROR(BIF_P, BADARG);
if (BIF_ARG_2 == am_false)
bytemask = 0;
else if (BIF_ARG_2 == am_true)
bytemask = ~0;
else
BIF_ERROR(BIF_P, BADARG);
nbytes = ((Uint)nbits + ((1 << 3) - 1)) >> 3;
bin = new_binary(BIF_P, NULL, nbytes);
memset(binary_bytes(bin), bytemask, nbytes);
BIF_RET(bin);
}
BIF_RETTYPE hipe_bifs_bitarray_update_3(BIF_ALIST_3)
{
unsigned char *bytes, bytemask;
Uint bitnr, bytenr;
int set;
#ifndef DEBUG
ERTS_DECLARE_DUMMY(Uint bitoffs);
ERTS_DECLARE_DUMMY(Uint bitsize);
#else
Uint bitoffs;
Uint bitsize;
#endif
if (is_not_binary(BIF_ARG_1))
BIF_ERROR(BIF_P, BADARG);
if (is_not_small(BIF_ARG_2))
BIF_ERROR(BIF_P, BADARG);
bitnr = unsigned_val(BIF_ARG_2);
bytenr = bitnr >> 3;
if (bytenr >= binary_size(BIF_ARG_1))
BIF_ERROR(BIF_P, BADARG);
if (BIF_ARG_3 == am_false)
set = 0;
else if (BIF_ARG_3 == am_true)
set = 1;
else
BIF_ERROR(BIF_P, BADARG);
ERTS_GET_BINARY_BYTES(BIF_ARG_1, bytes, bitoffs, bitsize);
ASSERT(bitoffs == 0);
ASSERT(bitsize == 0);
bytemask = 1 << (bitnr & ((1 << 3) - 1));
if (set)
bytes[bytenr] |= bytemask;
else
bytes[bytenr] &= ~bytemask;
BIF_RET(BIF_ARG_1);
}
BIF_RETTYPE hipe_bifs_bitarray_sub_2(BIF_ALIST_2)
{
unsigned char *bytes, bytemask;
Uint bitnr, bytenr;
#ifndef DEBUG
ERTS_DECLARE_DUMMY(Uint bitoffs);
ERTS_DECLARE_DUMMY(Uint bitsize);
#else
Uint bitoffs;
Uint bitsize;
#endif
if (is_not_binary(BIF_ARG_1))
BIF_ERROR(BIF_P, BADARG);
if (is_not_small(BIF_ARG_2))
BIF_ERROR(BIF_P, BADARG);
bitnr = unsigned_val(BIF_ARG_2);
bytenr = bitnr >> 3;
if (bytenr >= binary_size(BIF_ARG_1))
BIF_ERROR(BIF_P, BADARG);
ERTS_GET_BINARY_BYTES(BIF_ARG_1, bytes, bitoffs, bitsize);
ASSERT(bitoffs == 0);
ASSERT(bitsize == 0);
bytemask = 1 << (bitnr & ((1 << 3) - 1));
if ((bytes[bytenr] & bytemask) == 0)
BIF_RET(am_false);
else
BIF_RET(am_true);
}
/*
* BIFs for SML-like mutable arrays and reference cells.
* For now, limited to containing immediate data.
*/
#if 1 /* use bignums as carriers, easier on the gc */
#define make_array_header(sz) make_pos_bignum_header((sz))
#define array_header_arity(h) header_arity((h))
#define make_array(hp) make_big((hp))
#define is_not_array(x) is_not_big((x))
#define array_val(x) big_val((x))
#else /* use tuples as carriers, easier debugging, harder on the gc */
#define make_array_header(sz) make_arityval((sz))
#define array_header_arity(h) arityval((h))
#define make_array(hp) make_tuple((hp))
#define is_not_array(x) is_not_tuple((x))
#define array_val(x) tuple_val((x))
#endif
#define array_length(a) array_header_arity(array_val((a))[0])
BIF_RETTYPE hipe_bifs_array_2(BIF_ALIST_2)
{
Eterm *hp;
Sint nelts, i;
if (is_not_small(BIF_ARG_1) ||
(nelts = signed_val(BIF_ARG_1)) < 0 ||
is_not_immed(BIF_ARG_2))
BIF_ERROR(BIF_P, BADARG);
if (nelts == 0) /* bignums must not be empty */
BIF_RET(make_small(0));
hp = HAlloc(BIF_P, 1+nelts);
hp[0] = make_array_header(nelts);
for (i = 1; i <= nelts; ++i)
hp[i] = BIF_ARG_2;
BIF_RET(make_array(hp));
}
BIF_RETTYPE hipe_bifs_array_length_1(BIF_ALIST_1)
{
if (is_not_array(BIF_ARG_1)) {
if (BIF_ARG_1 == make_small(0)) /* fixnum 0 represents empty arrays */
BIF_RET(make_small(0));
BIF_ERROR(BIF_P, BADARG);
}
BIF_RET(make_small(array_header_arity(array_val(BIF_ARG_1)[0])));
}
BIF_RETTYPE hipe_bifs_array_sub_2(BIF_ALIST_2)
{
Uint i;
if (is_not_small(BIF_ARG_2) ||
is_not_array(BIF_ARG_1) ||
(i = unsigned_val(BIF_ARG_2)) >= array_length(BIF_ARG_1))
BIF_ERROR(BIF_P, BADARG);
BIF_RET(array_val(BIF_ARG_1)[i+1]);
}
BIF_RETTYPE hipe_bifs_array_update_3(BIF_ALIST_3)
{
Uint i;
if (is_not_immed(BIF_ARG_3) ||
is_not_small(BIF_ARG_2) ||
is_not_array(BIF_ARG_1) ||
(i = unsigned_val(BIF_ARG_2)) >= array_length(BIF_ARG_1))
BIF_ERROR(BIF_P, BADARG);
array_val(BIF_ARG_1)[i+1] = BIF_ARG_3;
BIF_RET(BIF_ARG_1);
}
BIF_RETTYPE hipe_bifs_ref_1(BIF_ALIST_1)
{
Eterm *hp;
if (is_not_immed(BIF_ARG_1))
BIF_RET(BADARG);
hp = HAlloc(BIF_P, 1+1);
hp[0] = make_array_header(1);
hp[1] = BIF_ARG_1;
BIF_RET(make_array(hp));
}
BIF_RETTYPE hipe_bifs_ref_get_1(BIF_ALIST_1)
{
if (is_not_array(BIF_ARG_1) ||
array_val(BIF_ARG_1)[0] != make_array_header(1))
BIF_ERROR(BIF_P, BADARG);
BIF_RET(array_val(BIF_ARG_1)[1]);
}
BIF_RETTYPE hipe_bifs_ref_set_2(BIF_ALIST_2)
{
if (is_not_immed(BIF_ARG_2) ||
is_not_array(BIF_ARG_1) ||
array_val(BIF_ARG_1)[0] != make_array_header(1))
BIF_ERROR(BIF_P, BADARG);
array_val(BIF_ARG_1)[1] = BIF_ARG_2;
BIF_RET(BIF_ARG_1);
}
/*
* BIFs for loading code.
*/
static HipeLoaderState *get_loader_state(Eterm term)
{
if (!is_internal_magic_ref(term)) return NULL;
return hipe_get_loader_state(erts_magic_ref2bin(term));
}
/*
* Allocate memory and copy machine code to it.
*/
BIF_RETTYPE hipe_bifs_enter_code_3(BIF_ALIST_3)
{
Uint nrbytes;
void *bytes;
void *address;
Eterm trampolines;
Eterm *hp;
HipeLoaderState *stp;
#ifndef DEBUG
ERTS_DECLARE_DUMMY(Uint bitoffs);
ERTS_DECLARE_DUMMY(Uint bitsize);
#else
Uint bitoffs;
Uint bitsize;
#endif
if (is_not_binary(BIF_ARG_1) ||
(!(stp = get_loader_state(BIF_ARG_3))))
BIF_ERROR(BIF_P, BADARG);
nrbytes = binary_size(BIF_ARG_1);
ERTS_GET_BINARY_BYTES(BIF_ARG_1, bytes, bitoffs, bitsize);
ASSERT(bitoffs == 0);
ASSERT(bitsize == 0);
trampolines = NIL;
address = hipe_alloc_code(nrbytes, BIF_ARG_2, &trampolines, BIF_P);
if (!address) {
Uint nrcallees;
if (is_tuple(BIF_ARG_2))
nrcallees = arityval(tuple_val(BIF_ARG_2)[0]);
else
nrcallees = 0;
// XXX: Is there any reason to not just BIF_ERROR, so that the runtime
// survives?
erts_exit(ERTS_ERROR_EXIT, "%s: failed to allocate %lu bytes and %lu trampolines\r\n",
__func__, (unsigned long)nrbytes, (unsigned long)nrcallees);
}
memcpy(address, bytes, nrbytes);
hipe_flush_icache_range(address, nrbytes);
stp->text_segment = address;
stp->text_segment_size = nrbytes;
hp = HAlloc(BIF_P, 3);
hp[0] = make_arityval(2);
hp[1] = address_to_term(address, BIF_P);
hp[2] = trampolines;
BIF_RET(make_tuple(hp));
}
#define IS_POWER_OF_TWO(Val) (((Val) > 0) && (((Val) & ((Val)-1)) == 0))
/*
* Allocate memory for arbitrary non-Erlang data.
*/
BIF_RETTYPE hipe_bifs_alloc_data_3(BIF_ALIST_3)
{
Uint align;
HipeLoaderState *stp;
void *aligned_block;
if (is_not_small(BIF_ARG_1) || is_not_small(BIF_ARG_2) ||
(!(stp = get_loader_state(BIF_ARG_3))) ||
(align = unsigned_val(BIF_ARG_1), !IS_POWER_OF_TWO(align)))
BIF_ERROR(BIF_P, BADARG);
if (stp->data_segment_size || stp->data_segment)
BIF_ERROR(BIF_P, BADARG);
stp->data_segment_size = unsigned_val(BIF_ARG_2);
if (stp->data_segment_size == 0)
BIF_RET(make_small(0));
stp->data_segment_size += align-1; /* Make room to align the pointer */
stp->data_segment = erts_alloc(ERTS_ALC_T_HIPE_LL, stp->data_segment_size);
/* Align the pointer */
aligned_block = (void*)((UWord)(stp->data_segment + align - 1)
& ~(UWord)(align-1));
BIF_RET(address_to_term(aligned_block, BIF_P));
}
/*
* Statistics on hipe constants: size of HiPE constants, in words.
*/
unsigned int hipe_constants_size = 0;
BIF_RETTYPE hipe_bifs_constants_size_0(BIF_ALIST_0)
{
BIF_RET(make_small(hipe_constants_size));
}
/*
* Merging constant Erlang terms.
* Uses the constants pool and a hash table of all top-level
* terms merged so far. (Sub-terms are not merged.)
*/
struct const_term {
HashBucket bucket;
Eterm val; /* tagged pointer to mem[0] */
Eterm mem[1]; /* variable size */
};
static Hash const_term_table;
static ErlOffHeap const_term_table_off_heap;
static HashValue const_term_hash(void *tmpl)
{
return make_hash2((Eterm)tmpl);
}
static int const_term_cmp(void *tmpl, void *bucket)
{
return !eq((Eterm)tmpl, ((struct const_term*)bucket)->val);
}
static void *const_term_alloc(void *tmpl)
{
Eterm obj;
Uint size;
Uint alloc_size;
Eterm *hp;
struct const_term *p;
obj = (Eterm)tmpl;
ASSERT(is_not_immed(obj));
size = size_object(obj);
alloc_size = size + (offsetof(struct const_term, mem)/sizeof(Eterm));
hipe_constants_size += alloc_size;
p = (struct const_term*)erts_alloc(ERTS_ALC_T_LITERAL, alloc_size * sizeof(Eterm));
/* I have absolutely no idea if having a private 'off_heap'
works or not. _Some_ off_heap object is required for
REFC_BINARY and FUN values, but _where_ it should be is
a complete mystery to me. */
hp = &p->mem[0];
p->val = copy_struct(obj, size, &hp, &const_term_table_off_heap);
erts_set_literal_tag(&p->val, &p->mem[0], size);
return &p->bucket;
}
static void init_const_term_table(void)
{
HashFunctions f;
f.hash = (H_FUN) const_term_hash;
f.cmp = (HCMP_FUN) const_term_cmp;
f.alloc = (HALLOC_FUN) const_term_alloc;
f.free = (HFREE_FUN) NULL;
f.meta_alloc = (HMALLOC_FUN) erts_alloc;
f.meta_free = (HMFREE_FUN) erts_free;
f.meta_print = (HMPRINT_FUN) erts_print;
hash_init(ERTS_ALC_T_HIPE_LL, &const_term_table, "const_term_table", 97, f);
}
BIF_RETTYPE hipe_bifs_merge_term_1(BIF_ALIST_1)
{
static int init_done = 0;
struct const_term *p;
Eterm val;
val = BIF_ARG_1;
if (is_not_immed(val)) {
if (!init_done) {
init_const_term_table();
init_done = 1;
}
p = (struct const_term*)hash_put(&const_term_table, (void*)val);
val = p->val;
}
BIF_RET(val);
}
struct hipe_mfa {
Eterm mod;
Eterm fun;
Uint ari;
};
static int term_to_mfa(Eterm term, struct hipe_mfa *mfa)
{
Eterm mod, fun, a;
Uint ari;
if (is_not_tuple(term))
return 0;
if (tuple_val(term)[0] != make_arityval(3))
return 0;
mod = tuple_val(term)[1];
if (is_not_atom(mod))
return 0;
mfa->mod = mod;
fun = tuple_val(term)[2];
if (is_not_atom(fun))
return 0;
mfa->fun = fun;
a = tuple_val(term)[3];
if (is_not_small(a))
return 0;
ari = unsigned_val(a);
if (ari > 255)
return 0;
mfa->ari = ari;
return 1;
}
#ifdef DEBUG_LINKER
static void print_mfa(Eterm mod, Eterm fun, unsigned int ari)
{
erts_printf("%T:%T/%u", mod, fun, ari);
}
#endif
static ErtsCodeInfo* hipe_find_emu_address(Eterm mod, Eterm name, unsigned int arity)
{
Module *modp;
BeamCodeHeader* code_hdr;
int i, n;
modp = erts_get_module(mod, erts_active_code_ix());
if (modp == NULL || (code_hdr = modp->curr.code_hdr) == NULL)
return NULL;
n = code_hdr->num_functions;
for (i = 0; i < n; ++i) {
ErtsCodeInfo *ci = code_hdr->functions[i];
ASSERT(BeamIsOpCode(ci->op, op_i_func_info_IaaI));
if (ci->mfa.function == name && ci->mfa.arity == arity)
return ci;
}
return NULL;
}
ErtsCodeInfo* hipe_bifs_find_pc_from_mfa(Eterm term)
{
struct hipe_mfa mfa;
if (!term_to_mfa(term, &mfa))
return NULL;
return hipe_find_emu_address(mfa.mod, mfa.fun, mfa.ari);
}
BIF_RETTYPE hipe_bifs_fun_to_address_1(BIF_ALIST_1)
{
ErtsCodeInfo* ci = hipe_bifs_find_pc_from_mfa(BIF_ARG_1);
if (!ci)
BIF_ERROR(BIF_P, BADARG);
BIF_RET(address_to_term(erts_codeinfo_to_code(ci), BIF_P));
}
BIF_RETTYPE hipe_bifs_commit_patch_load_1(BIF_ALIST_1)
{
if (!erts_commit_hipe_patch_load(BIF_ARG_1))
BIF_ERROR(BIF_P, BADARG);
BIF_RET(am_ok);
}
BIF_RETTYPE hipe_bifs_set_native_address_3(BIF_ALIST_3)
{
ErtsCodeInfo *ci;
void *address;
int is_closure;
struct hipe_mfa mfa;
switch (BIF_ARG_3) {
case am_false:
is_closure = 0;
break;
case am_true:
is_closure = 1;
break;
default:
BIF_ERROR(BIF_P, BADARG);
}
address = term_to_address(BIF_ARG_2);
if (!address)
BIF_ERROR(BIF_P, BADARG);
/* The mfa is needed again later, otherwise we could
simply have called hipe_bifs_find_pc_from_mfa(). */
if (!term_to_mfa(BIF_ARG_1, &mfa))
BIF_ERROR(BIF_P, BADARG);
ci = hipe_find_emu_address(mfa.mod, mfa.fun, mfa.ari);
if (ci) {
DBG_TRACE_MFA(mfa.mod,mfa.fun,mfa.ari, "set beam call trap at %p -> %p",
erts_codeinfo_to_code(ci), address);
hipe_set_call_trap(ci, address, is_closure);
BIF_RET(am_true);
}
DBG_TRACE_MFA(mfa.mod,mfa.fun,mfa.ari, "failed set call trap to %p, no beam code found", address);
BIF_RET(am_false);
}
BIF_RETTYPE hipe_bifs_enter_sdesc_2(BIF_ALIST_2)
{
struct hipe_sdesc *sdesc;
HipeLoaderState* stp;
stp = get_loader_state(BIF_ARG_2);
if (!stp)
BIF_ERROR(BIF_P, BADARG);
sdesc = hipe_decode_sdesc(BIF_ARG_1);
if (!sdesc) {
fprintf(stderr, "%s: bad sdesc!\r\n", __FUNCTION__);
BIF_ERROR(BIF_P, BADARG);
}
if (hipe_put_sdesc(sdesc) != sdesc) {
fprintf(stderr, "%s: duplicate entry!\r\n", __FUNCTION__);
BIF_ERROR(BIF_P, BADARG);
}
/*
* Link into list of sdesc's in same module instance
*/
sdesc->next_in_modi = stp->new_hipe_sdesc;
stp->new_hipe_sdesc = sdesc;
BIF_RET(NIL);
}
/*
* Hash table mapping {M,F,A} to nbif address.
*/
struct nbif {
HashBucket bucket;
Eterm mod;
Eterm fun;
unsigned arity;
const void *address;
};
static struct nbif nbifs[BIF_SIZE] = {
#define BIF_LIST(MOD,FUN,ARY,BIF,CFUN,IX) \
{ {0,0}, MOD, FUN, ARY, &nbif_##CFUN },
#include "erl_bif_list.h"
#undef BIF_LIST
};
#define NBIF_HASH(m,f,a) (atom_val(m) ^ atom_val(f) ^ (a))
static Hash nbif_table;
static HashValue nbif_hash(struct nbif *x)
{
return NBIF_HASH(x->mod, x->fun, x->arity);
}
static int nbif_cmp(struct nbif *x, struct nbif *y)
{
return !(x->mod == y->mod && x->fun == y->fun && x->arity == y->arity);
}
static struct nbif *nbif_alloc(struct nbif *x)
{
return x; /* pre-allocated */
}
static void init_nbif_table(void)
{
HashFunctions f;
int i;
f.hash = (H_FUN) nbif_hash;
f.cmp = (HCMP_FUN) nbif_cmp;
f.alloc = (HALLOC_FUN) nbif_alloc;
f.free = NULL;
f.meta_alloc = (HMALLOC_FUN) erts_alloc;
f.meta_free = (HMFREE_FUN) erts_free;
f.meta_print = (HMPRINT_FUN) erts_print;
hash_init(ERTS_ALC_T_NBIF_TABLE, &nbif_table, "nbif_table", 500, f);
for (i = 0; i < BIF_SIZE; ++i)
hash_put(&nbif_table, &nbifs[i]);
}
static const void *nbif_address(Eterm mod, Eterm fun, unsigned arity)
{
struct nbif tmpl;
struct nbif *nbif;
tmpl.mod = mod;
tmpl.fun = fun;
tmpl.arity = arity;
nbif = hash_get(&nbif_table, &tmpl);
return nbif ? nbif->address : NULL;
}
/*
* hipe_bifs_bif_address(M,F,A) -> address or false
*/
BIF_RETTYPE hipe_bifs_bif_address_3(BIF_ALIST_3)
{
const void *address;
static int init_done = 0;
if (!init_done) {
init_nbif_table();
init_done = 1;
}
if (is_not_atom(BIF_ARG_1) ||
is_not_atom(BIF_ARG_2) ||
is_not_small(BIF_ARG_3) ||
signed_val(BIF_ARG_3) < 0)
BIF_RET(am_false);
address = nbif_address(BIF_ARG_1, BIF_ARG_2, unsigned_val(BIF_ARG_3));
if (address)
BIF_RET(address_to_term(address, BIF_P));
BIF_RET(am_false);
}
/*
* Hash table mapping primops to their addresses.
*/
struct primop {
HashBucket bucket; /* bucket.hvalue == atom_val(name) */
const void *address;
};
static struct primop primops[] = {
#define PRIMOP_LIST(ATOM,ADDRESS) { {0,_unchecked_atom_val(ATOM)}, ADDRESS },
#include "hipe_primops.h"
#undef PRIMOP_LIST
};
static Hash primop_table;
static HashValue primop_hash(void *tmpl)
{
return ((struct primop*)tmpl)->bucket.hvalue; /* pre-initialised */
}
static int primop_cmp(void *tmpl, void *bucket)
{
return 0; /* hvalue matched so nothing further to do */
}
static void *primop_alloc(void *tmpl)
{
return tmpl; /* pre-allocated */
}
static void init_primop_table(void)
{
HashFunctions f;
int i;
static int init_done = 0;
if (init_done)
return;
init_done = 1;
f.hash = (H_FUN) primop_hash;
f.cmp = (HCMP_FUN) primop_cmp;
f.alloc = (HALLOC_FUN) primop_alloc;
f.free = NULL;
f.meta_alloc = (HMALLOC_FUN) erts_alloc;
f.meta_free = (HMFREE_FUN) erts_free;
f.meta_print = (HMPRINT_FUN) erts_print;
hash_init(ERTS_ALC_T_HIPE_LL, &primop_table, "primop_table", 50, f);
for (i = 0; i < sizeof(primops)/sizeof(primops[0]); ++i)
hash_put(&primop_table, &primops[i]);
}
static struct primop *primop_table_get(Eterm name)
{
struct primop tmpl;
init_primop_table();
tmpl.bucket.hvalue = atom_val(name);
return hash_get(&primop_table, &tmpl);
}
/*
* hipe_bifs_primop_address(Atom) -> address or false
*/
BIF_RETTYPE hipe_bifs_primop_address_1(BIF_ALIST_1)
{
const struct primop *primop;
if (is_not_atom(BIF_ARG_1))
BIF_RET(am_false);
primop = primop_table_get(BIF_ARG_1);
if (!primop)
BIF_RET(am_false);
BIF_RET(address_to_term(primop->address, BIF_P));
}
BIF_RETTYPE hipe_bifs_atom_to_word_1(BIF_ALIST_1)
{
if (is_not_atom(BIF_ARG_1))
BIF_ERROR(BIF_P, BADARG);
BIF_RET(Uint_to_term(BIF_ARG_1, BIF_P));
}
BIF_RETTYPE hipe_bifs_term_to_word_1(BIF_ALIST_1)
{
BIF_RET(Uint_to_term(BIF_ARG_1, BIF_P));
}
/* XXX: this is really a primop, not a BIF */
/* Called via standard_bif_interface_1 */
BIF_RETTYPE nbif_impl_hipe_conv_big_to_float(NBIF_ALIST_1)
{
Eterm res;
Eterm *hp;
FloatDef f;
if (is_not_big(BIF_ARG_1))
BIF_ERROR(BIF_P, BADARG);
if (big_to_double(BIF_ARG_1, &f.fd) < 0)
BIF_ERROR(BIF_P, BADARG);
hp = HAlloc(BIF_P, FLOAT_SIZE_OBJECT);
res = make_float(hp);
PUT_DOUBLE(f, hp);
BIF_RET(res);
}
#ifdef NO_FPE_SIGNALS
/*
This is the current solution to make hipe run without FPE.
The native code is the same except that a call to this primop
is made after _every_ float operation to check the result.
The native fcheckerror still done later will detect if an
"emulated" FPE has occured.
We use p->hipe.float_result to avoid passing a 'double' argument,
which has its own calling convention (on amd64 at least).
Simple and slow...
*/
void hipe_emulate_fpe(Process* p)
{
if (!isfinite(p->hipe.float_result)) {
p->fp_exception = 1;
}
}
#endif
void hipe_emasculate_binary(Eterm bin)
{
ProcBin* pb = (ProcBin *) boxed_val(bin);
ASSERT(pb->thing_word == HEADER_PROC_BIN);
ASSERT(pb->flags != 0);
erts_emasculate_writable_binary(pb);
}
/*
* args: Module, {Uniq, Index, BeamAddress}
*/
BIF_RETTYPE hipe_bifs_get_fe_2(BIF_ALIST_2)
{
Eterm mod;
Uint index;
Uint uniq;
void *beam_address;
ErlFunEntry *fe;
Eterm *tp;
if (is_not_atom(BIF_ARG_1))
BIF_ERROR(BIF_P, BADARG);
mod = BIF_ARG_1;
if (is_not_tuple(BIF_ARG_2) ||
(arityval(*tuple_val(BIF_ARG_2)) != 3))
BIF_ERROR(BIF_P, BADARG);
tp = tuple_val(BIF_ARG_2);
if (term_to_Uint(tp[1], &uniq) == 0)
BIF_ERROR(BIF_P, BADARG);
if (term_to_Uint(tp[2], &index) == 0)
BIF_ERROR(BIF_P, BADARG);
beam_address = term_to_address(tp[3]);
if (!beam_address)
BIF_ERROR(BIF_P, BADARG);
fe = erts_get_fun_entry(mod, uniq, index);
if (fe == NULL) {
int i = atom_val(mod);
char atom_buf[256];
atom_buf[0] = '\0';
strncat(atom_buf, (char*)atom_tab(i)->name, atom_tab(i)->len);
printf("no fun entry for %s %ld:%ld\n", atom_buf, (unsigned long)uniq, (unsigned long)index);
BIF_ERROR(BIF_P, BADARG);
}
BIF_RET(address_to_term((void *)fe, BIF_P));
}
/*
* args: FE, Nativecodeaddress
*/
BIF_RETTYPE hipe_bifs_set_native_address_in_fe_2(BIF_ALIST_2)
{
ErlFunEntry *fe;
void *native_address;
fe = (ErlFunEntry *)term_to_address(BIF_ARG_1);
if (!fe)
BIF_ERROR(BIF_P, BADARG);
native_address = term_to_address(BIF_ARG_2);
if (!native_address)
BIF_ERROR(BIF_P, BADARG);
fe->native_address = native_address;
if (erts_refc_dectest(&fe->refc, 0) == 0)
erts_erase_fun_entry(fe);
BIF_RET(am_true);
}
struct hipe_ref_head {
struct hipe_ref_head* next;
struct hipe_ref_head* prev;
};
/*
* An exported function called from or implemented by native code
* - maps MFA to native code entry point
* - all references to it (callers)
* - maps MFA to most recent trampoline [if powerpc or arm]
*/
struct hipe_mfa_info {
HashBucket mod2mfa;
struct {
unsigned long hvalue;
struct hipe_mfa_info *next;
} bucket;
Eterm m; /* atom */
Eterm f; /* atom */
unsigned int a : sizeof(int)*8 - 1;
unsigned int is_stub : 1; /* if beam or not (yet) loaded */
void *remote_address;
void *new_address;
struct hipe_ref_head callers; /* sentinel in list of hipe_ref's */
struct hipe_mfa_info* next_in_mod;
#ifdef DEBUG
Export* dbg_export;
#endif
};
static struct {
unsigned int log2size;
unsigned int mask; /* INV: mask == (1 << log2size)-1 */
unsigned int used;
struct hipe_mfa_info **bucket;
/*
* The mfa info table is normally updated by the loader,
* which runs in non-concurrent mode. Unfortunately runtime
* apply operations (get_na_nofail) update the table if
* they create a new stub for the mfa, which forces locking.
* XXX: Redesign apply et al to avoid those updates.
*/
erts_rwmtx_t lock;
} hipe_mfa_info_table;
Hash mod2mfa_tab; /* map from module atom to list of hipe_mfa_info */
static HashValue mod2mfa_hash(struct hipe_mfa_info* mfa)
{
return mfa->mod2mfa.hvalue;
}
static int mod2mfa_cmp(HashBucket* tmpl, struct hipe_mfa_info* mfa)
{
return tmpl->hvalue != mfa->mod2mfa.hvalue;
}
static struct hipe_mfa_info* mod2mfa_alloc(struct hipe_mfa_info* tmpl)
{
return tmpl; /* hash_put always use mfa itself at template */
}
static void mod2mfa_free(struct hipe_mfa_info* mfa)
{
}
static void mod2mfa_tab_init(void)
{
HashFunctions f;
static int init_done = 0;
if (init_done)
return;
init_done = 1;
f.hash = (H_FUN) mod2mfa_hash;
f.cmp = (HCMP_FUN) mod2mfa_cmp;
f.alloc = (HALLOC_FUN) mod2mfa_alloc;
f.free = (HFREE_FUN) mod2mfa_free;
f.meta_alloc = (HMALLOC_FUN) erts_alloc;
f.meta_free = (HMFREE_FUN) erts_free;
f.meta_print = (HMPRINT_FUN) erts_print;
hash_init(ERTS_ALC_T_HIPE_LL, &mod2mfa_tab, "mod2mfa_tab", 50, f);
}
static struct hipe_mfa_info* mod2mfa_get(Module* modp)
{
HashBucket tmpl;
tmpl.hvalue = modp->module;
return hash_get(&mod2mfa_tab, &tmpl);
}
static struct hipe_mfa_info* mod2mfa_put(struct hipe_mfa_info* mfa)
{
mfa->mod2mfa.hvalue = atom_val(mfa->m);
return hash_put(&mod2mfa_tab, mfa);
}
/*
* An external native call site M:F(...)
* to be patched when the callee changes.
*/
struct hipe_ref {
struct hipe_ref_head head; /* list of refs to same calleee */
void *address;
#if defined(__arm__) || defined(__powerpc__) || defined(__ppc__) || defined(__powerpc64__)
void *trampoline;
#endif
unsigned int flags;
struct hipe_ref* next_from_modi; /* list of refs from same module instance */
#if defined(DEBUG)
struct hipe_mfa_info* callee;
Eterm caller_m, caller_f, caller_a;
#endif
};
#define REF_FLAG_IS_LOAD_MFA 1 /* bit 0: 0 == call, 1 == load_mfa */
static inline void hipe_mfa_info_table_init_lock(void)
{
erts_rwmtx_init(&hipe_mfa_info_table.lock, "hipe_mfait_lock", NIL,
ERTS_LOCK_FLAGS_PROPERTY_STATIC | ERTS_LOCK_FLAGS_CATEGORY_GENERIC);
}
static inline void hipe_mfa_info_table_rlock(void)
{
erts_rwmtx_rlock(&hipe_mfa_info_table.lock);
}
static inline void hipe_mfa_info_table_runlock(void)
{
erts_rwmtx_runlock(&hipe_mfa_info_table.lock);
}
static inline void hipe_mfa_info_table_rwlock(void)
{
erts_rwmtx_rwlock(&hipe_mfa_info_table.lock);
}
static inline void hipe_mfa_info_table_rwunlock(void)
{
erts_rwmtx_rwunlock(&hipe_mfa_info_table.lock);
}
static ERTS_INLINE
struct hipe_mfa_info* mod2mfa_get_safe(Module* modp)
{
struct hipe_mfa_info* mfa;
hipe_mfa_info_table_rlock();
mfa = mod2mfa_get(modp);
hipe_mfa_info_table_runlock();
return mfa;
}
#define HIPE_MFA_HASH(M,F,A) (atom_val(M) ^ atom_val(F) ^ (A))
static struct hipe_mfa_info **hipe_mfa_info_table_alloc_bucket(unsigned int size)
{
unsigned long nbytes = size * sizeof(struct hipe_mfa_info*);
struct hipe_mfa_info **bucket = erts_alloc(ERTS_ALC_T_HIPE_LL, nbytes);
sys_memzero(bucket, nbytes);
return bucket;
}
static void hipe_mfa_info_table_grow(void)
{
unsigned int old_size, new_size, new_mask;
struct hipe_mfa_info **old_bucket, **new_bucket;
unsigned int i;
old_size = 1 << hipe_mfa_info_table.log2size;
hipe_mfa_info_table.log2size += 1;
new_size = 1 << hipe_mfa_info_table.log2size;
new_mask = new_size - 1;
hipe_mfa_info_table.mask = new_mask;
old_bucket = hipe_mfa_info_table.bucket;
new_bucket = hipe_mfa_info_table_alloc_bucket(new_size);
hipe_mfa_info_table.bucket = new_bucket;
for (i = 0; i < old_size; ++i) {
struct hipe_mfa_info *b = old_bucket[i];
while (b != NULL) {
struct hipe_mfa_info *next = b->bucket.next;
unsigned int j = b->bucket.hvalue & new_mask;
b->bucket.next = new_bucket[j];
new_bucket[j] = b;
b = next;
}
}
erts_free(ERTS_ALC_T_HIPE_LL, old_bucket);
}
static struct hipe_mfa_info *hipe_mfa_info_table_alloc(Eterm m, Eterm f, unsigned int arity)
{
struct hipe_mfa_info *res;
res = (struct hipe_mfa_info*)erts_alloc(ERTS_ALC_T_HIPE_LL, sizeof(*res));
res->m = m;
res->f = f;
res->a = arity;
res->is_stub = 0;
res->remote_address = NULL;
res->new_address = NULL;
res->callers.next = &res->callers;
res->callers.prev = &res->callers;
res->next_in_mod = NULL;
#ifdef DEBUG
res->dbg_export = NULL;
#endif
return res;
}
void hipe_mfa_info_table_init(void)
{
unsigned int log2size, size;
log2size = 10;
size = 1 << log2size;
hipe_mfa_info_table.log2size = log2size;
hipe_mfa_info_table.mask = size - 1;
hipe_mfa_info_table.used = 0;
hipe_mfa_info_table.bucket = hipe_mfa_info_table_alloc_bucket(size);
hipe_mfa_info_table_init_lock();
mod2mfa_tab_init();
}
static inline struct hipe_mfa_info *hipe_mfa_info_table_get_locked(Eterm m, Eterm f, unsigned int arity)
{
unsigned long h;
unsigned int i;
struct hipe_mfa_info *p;
h = HIPE_MFA_HASH(m, f, arity);
i = h & hipe_mfa_info_table.mask;
p = hipe_mfa_info_table.bucket[i];
for (; p; p = p->bucket.next) {
if (p->bucket.hvalue == h) {
if (p->m == m && p->f == f && p->a == arity)
return p;
}
else ASSERT(!(p->m == m && p->f == f && p->a == arity));
}
return NULL;
}
static struct hipe_mfa_info *hipe_mfa_info_table_put_rwlocked(Eterm m, Eterm f, unsigned int arity)
{
unsigned long h;
unsigned int i;
struct hipe_mfa_info *p;
struct hipe_mfa_info *first_in_mod;
unsigned int size;
h = HIPE_MFA_HASH(m, f, arity);
i = h & hipe_mfa_info_table.mask;
p = hipe_mfa_info_table.bucket[i];
for (; p; p = p->bucket.next) {
if (p->bucket.hvalue == h) {
if (p->m == m && p->f == f && p->a == arity)
return p;
}
else ASSERT(!(p->m == m && p->f == f && p->a == arity));
}
p = hipe_mfa_info_table_alloc(m, f, arity);
p->bucket.hvalue = h;
p->bucket.next = hipe_mfa_info_table.bucket[i];
hipe_mfa_info_table.bucket[i] = p;
hipe_mfa_info_table.used += 1;
size = 1 << hipe_mfa_info_table.log2size;
if (hipe_mfa_info_table.used > (4*size/5)) /* rehash at 80% */
hipe_mfa_info_table_grow();
first_in_mod = mod2mfa_put(p);
if (p != first_in_mod) {
p->next_in_mod = first_in_mod->next_in_mod;
first_in_mod->next_in_mod = p;
}
else {
p->next_in_mod = NULL;
}
DBG_TRACE_MFA(m,f,arity, "hipe_mfa_info allocated at %p", p);
return p;
}
static void remove_mfa_info(struct hipe_mfa_info* rm)
{
unsigned int i;
struct hipe_mfa_info *p;
struct hipe_mfa_info **prevp;
i = rm->bucket.hvalue & hipe_mfa_info_table.mask;
prevp = &hipe_mfa_info_table.bucket[i];
for (;;) {
p = *prevp;
ASSERT(p);
if (p == rm) {
*prevp = p->bucket.next;
ASSERT(hipe_mfa_info_table.used > 0);
hipe_mfa_info_table.used--;
return;
}
prevp = &p->bucket.next;
}
}
static void hipe_mfa_set_na(Eterm m, Eterm f, unsigned int arity, void *address)
{
struct hipe_mfa_info *p;
hipe_mfa_info_table_rwlock();
p = hipe_mfa_info_table_put_rwlocked(m, f, arity);
DBG_TRACE_MFA(m,f,arity,"set native address in hipe_mfa_info at %p", p);
p->new_address = address;
hipe_mfa_info_table_rwunlock();
}
BIF_RETTYPE hipe_bifs_set_funinfo_native_address_3(BIF_ALIST_3)
{
struct hipe_mfa mfa;
void *address;
switch (BIF_ARG_3) {
case am_true: /* is_exported */
if (!term_to_mfa(BIF_ARG_1, &mfa))
BIF_ERROR(BIF_P, BADARG);
address = term_to_address(BIF_ARG_2);
if (!address)
BIF_ERROR(BIF_P, BADARG);
hipe_mfa_set_na(mfa.mod, mfa.fun, mfa.ari, address);
break;
case am_false:
break; /* ignore local functions */
default:
BIF_ERROR(BIF_P, BADARG);
}
BIF_RET(NIL);
}
/* Ask if we need to block all threads
* while loading/deleting code for this module?
*/
int hipe_need_blocking(Module* modp)
{
struct hipe_mfa_info *p;
/* Need to block if we have at least one native caller to this module
* or native code to make unaccessible.
*/
hipe_mfa_info_table_rlock();
for (p = mod2mfa_get(modp); p; p = p->next_in_mod) {
ASSERT(!p->new_address);
if (p->callers.next != &p->callers || !p->is_stub) {
break;
}
}
hipe_mfa_info_table_runlock();
return (p != NULL);
}
static void *hipe_get_na_try_locked(Eterm m, Eterm f, unsigned int a)
{
struct hipe_mfa_info *p;
p = hipe_mfa_info_table_get_locked(m, f, a);
return p ? p->remote_address : NULL;
}
static void *hipe_get_na_slow_rwlocked(Eterm m, Eterm f, unsigned int a)
{
struct hipe_mfa_info *p = hipe_mfa_info_table_put_rwlocked(m, f, a);
if (!p->remote_address) {
Export* export_entry = erts_export_get_or_make_stub(m, f, a);
void* stubAddress = hipe_make_native_stub(export_entry, a);
if (!stubAddress)
erts_exit(ERTS_ERROR_EXIT, "hipe_make_stub: code allocation failed\r\n");
p->remote_address = stubAddress;
p->is_stub = 1;
#ifdef DEBUG
p->dbg_export = export_entry;
#endif
}
return p->remote_address;
}
static void *hipe_get_na_nofail(Eterm m, Eterm f, unsigned int a)
{
void *address;
hipe_mfa_info_table_rlock();
address = hipe_get_na_try_locked(m, f, a);
hipe_mfa_info_table_runlock();
if (address)
return address;
hipe_mfa_info_table_rwlock();
address = hipe_get_na_slow_rwlocked(m, f, a);
hipe_mfa_info_table_rwunlock();
return address;
}
/* used for apply/3 in hipe_mode_switch */
void *hipe_get_remote_na(Eterm m, Eterm f, unsigned int a)
{
if (is_not_atom(m) || is_not_atom(f) || a > 255)
return NULL;
return hipe_get_na_nofail(m, f, a);
}
/* primop, but called like a BIF for error handling purposes */
/* Called via standard_bif_interface_3 */
BIF_RETTYPE nbif_impl_hipe_find_na_or_make_stub(NBIF_ALIST_3)
{
Uint arity;
void *address;
if (is_not_atom(BIF_ARG_1) || is_not_atom(BIF_ARG_2))
BIF_ERROR(BIF_P, BADARG);
arity = unsigned_val(BIF_ARG_3); /* no error check */
address = hipe_get_na_nofail(BIF_ARG_1, BIF_ARG_2, arity);
BIF_RET((Eterm)address); /* semi-Ok */
}
BIF_RETTYPE hipe_bifs_find_na_or_make_stub_1(BIF_ALIST_1)
{
struct hipe_mfa mfa;
void *address;
if (!term_to_mfa(BIF_ARG_1, &mfa))
BIF_ERROR(BIF_P, BADARG);
address = hipe_get_na_nofail(mfa.mod, mfa.fun, mfa.ari);
BIF_RET(address_to_term(address, BIF_P));
}
/* primop, but called like a BIF for error handling purposes */
/* Called via standard_bif_interface_2 */
BIF_RETTYPE nbif_impl_hipe_nonclosure_address(NBIF_ALIST_2)
{
Eterm hdr, m, f;
void *address;
if (!is_boxed(BIF_ARG_1))
goto badfun;
hdr = *boxed_val(BIF_ARG_1);
if (is_export_header(hdr)) {
Export *ep = (Export*)(export_val(BIF_ARG_1)[1]);
unsigned int actual_arity = ep->info.mfa.arity;
if (actual_arity != BIF_ARG_2)
goto badfun;
m = ep->info.mfa.module;
f = ep->info.mfa.function;
} else
goto badfun;
address = hipe_get_na_nofail(m, f, BIF_ARG_2);
BIF_RET((Eterm)address);
badfun:
BIF_P->current = NULL;
BIF_P->fvalue = BIF_ARG_1;
BIF_ERROR(BIF_P, EXC_BADFUN);
}
int hipe_find_mfa_from_ra(const void *ra, Eterm *m, Eterm *f, unsigned int *a)
{
const struct hipe_sdesc* sdesc = hipe_find_sdesc((unsigned long)ra);
if (!sdesc || sdesc->m_aix == atom_val(am_Empty))
return 0;
*m = make_atom(sdesc->m_aix);
*f = make_atom(sdesc->f_aix);
*a = sdesc->a;
return 1;
}
/* add_ref(CalleeMFA, {CallerMFA,Address,'call'|'load_mfa',Trampoline,LoaderState})
*/
BIF_RETTYPE hipe_bifs_add_ref_2(BIF_ALIST_2)
{
struct hipe_mfa callee;
Eterm *tuple;
struct hipe_mfa caller;
void *address;
void *trampoline;
unsigned int flags;
struct hipe_mfa_info *callee_mfa;
struct hipe_ref *ref;
HipeLoaderState* stp;
if (!term_to_mfa(BIF_ARG_1, &callee))
goto badarg;
if (is_not_tuple(BIF_ARG_2))
goto badarg;
tuple = tuple_val(BIF_ARG_2);
if (tuple[0] != make_arityval(5))
goto badarg;
if (!term_to_mfa(tuple[1], &caller))
goto badarg;
address = term_to_address(tuple[2]);
if (!address)
goto badarg;
switch (tuple[3]) {
case am_call:
flags = 0;
break;
case am_load_mfa:
flags = REF_FLAG_IS_LOAD_MFA;
break;
default:
goto badarg;
}
if (is_nil(tuple[4]))
trampoline = NULL;
else {
trampoline = term_to_address(tuple[4]);
if (!trampoline)
goto badarg;
}
stp = get_loader_state(tuple[5]);
if (!stp)
goto badarg;
hipe_mfa_info_table_rwlock();
callee_mfa = hipe_mfa_info_table_put_rwlocked(callee.mod, callee.fun, callee.ari);
ref = erts_alloc(ERTS_ALC_T_HIPE_LL, sizeof(struct hipe_ref));
ref->address = address;
#if defined(__arm__) || defined(__powerpc__) || defined(__ppc__) || defined(__powerpc64__)
ref->trampoline = trampoline;
#endif
ref->flags = flags;
/*
* Link into list of refs to same callee
*/
ASSERT(callee_mfa->callers.next->prev == &callee_mfa->callers);
ASSERT(callee_mfa->callers.prev->next == &callee_mfa->callers);
ref->head.next = callee_mfa->callers.next;
ref->head.prev = &callee_mfa->callers;
ref->head.next->prev = &ref->head;
ref->head.prev->next = &ref->head;
/*
* Link into list of refs from same module instance
*/
ref->next_from_modi = stp->new_hipe_refs;
stp->new_hipe_refs = ref;
#if defined(DEBUG)
ref->callee = callee_mfa;
ref->caller_m = caller.mod;
ref->caller_f = caller.fun;
ref->caller_a = caller.ari;
#endif
hipe_mfa_info_table_rwunlock();
DBG_TRACE_MFA(caller.mod, caller.fun, caller.ari, "add_ref at %p TO %T:%T/%u (from %p)",
ref, callee.mod, callee.fun, callee.ari, ref->address);
DBG_TRACE_MFA(callee.mod, callee.fun, callee.ari, "add_ref at %p FROM %T:%T/%u (from %p)",
ref, caller.mod, caller.fun, caller.ari, ref->address);
BIF_RET(am_ok);
badarg:
BIF_ERROR(BIF_P, BADARG);
}
static void unlink_mfa_from_mod(struct hipe_mfa_info* unlink_me)
{
struct hipe_mfa_info* p;
p = hash_get(&mod2mfa_tab, unlink_me);
ASSERT(p);
if (p == unlink_me) {
hash_erase(&mod2mfa_tab, p);
if (p->next_in_mod)
mod2mfa_put(p->next_in_mod);
}
else {
struct hipe_mfa_info** prevp;
do {
prevp = &p->next_in_mod;
p = *prevp;
ASSERT(p && p->m == unlink_me->m);
} while (p != unlink_me);
*prevp = p->next_in_mod;
}
}
static void purge_mfa(struct hipe_mfa_info* p)
{
ASSERT(p->is_stub);
remove_mfa_info(p);
hipe_free_native_stub(p->remote_address);
erts_free(ERTS_ALC_T_HIPE_LL, p);
}
int hipe_purge_need_blocking(Module* modp)
{
/* SVERK: Verify if this is really necessary */
if (modp->old.hipe_code) {
if (modp->old.hipe_code->first_hipe_ref ||
modp->old.hipe_code->first_hipe_sdesc)
return 1;
}
if (!modp->curr.code_hdr) {
return mod2mfa_get_safe(modp) != NULL;
}
return 0;
}
void hipe_purge_refs(struct hipe_ref* first_ref, Eterm caller_module,
int is_blocking)
{
struct hipe_ref* ref = first_ref;
ERTS_LC_ASSERT(is_blocking == erts_thr_progress_is_blocking());
while (ref) {
struct hipe_ref* free_ref = ref;
DBG_TRACE_MFA(ref->caller_m, ref->caller_f, ref->caller_a, "PURGE ref at %p to %T:%T/%u", ref,
ref->callee->m, ref->callee->f, ref->callee->a);
DBG_TRACE_MFA(ref->callee->m, ref->callee->f, ref->callee->a, "PURGE ref at %p from %T:%T/%u", ref,
ref->caller_m, ref->caller_f, ref->caller_a);
ASSERT(ref->caller_m == caller_module);
/*
* Unlink from other refs to same callee
*/
ASSERT(ref->head.next->prev == &ref->head);
ASSERT(ref->head.prev->next == &ref->head);
ASSERT(ref->head.next != &ref->head);
ASSERT(ref->head.prev != &ref->head);
ref->head.next->prev = ref->head.prev;
ref->head.prev->next = ref->head.next;
/*
* Was this the last ref to that callee?
*/
if (ref->head.next == ref->head.prev) {
struct hipe_mfa_info* p = ErtsContainerStruct(ref->head.next, struct hipe_mfa_info, callers);
if (p->is_stub) {
if (!is_blocking)
hipe_mfa_info_table_rwlock();
unlink_mfa_from_mod(p);
purge_mfa(p);
if (!is_blocking)
hipe_mfa_info_table_rwunlock();
}
}
ref = ref->next_from_modi;
erts_free(ERTS_ALC_T_HIPE_LL, free_ref);
}
}
void hipe_purge_sdescs(struct hipe_sdesc* first_sdesc, Eterm module,
int is_blocking)
{
struct hipe_sdesc* sdesc = first_sdesc;
ERTS_LC_ASSERT(is_blocking == erts_thr_progress_is_blocking());
ERTS_LC_ASSERT(is_blocking); /*XXX Fix safe sdesc destruction */
while (sdesc) {
struct hipe_sdesc* free_sdesc = sdesc;
DBG_TRACE_MFA(make_atom(sdesc->m_aix), make_atom(sdesc->f_aix), sdesc->a, "PURGE sdesc at %p", (void*)sdesc->bucket.hvalue);
ASSERT(make_atom(sdesc->m_aix) == module);
sdesc = sdesc->next_in_modi;
hipe_destruct_sdesc(free_sdesc);
}
}
void hipe_purge_module(Module* modp, int is_blocking)
{
ASSERT(modp);
ERTS_LC_ASSERT(is_blocking == erts_thr_progress_is_blocking());
DBG_TRACE_MFA(make_atom(modp->module), 0, 0, "hipe_purge_module");
if (modp->old.hipe_code) {
/*
* Remove all hipe_ref's (external calls) from the old module instance
*/
if (modp->old.hipe_code->first_hipe_ref) {
ERTS_LC_ASSERT(is_blocking);
hipe_purge_refs(modp->old.hipe_code->first_hipe_ref,
make_atom(modp->module), is_blocking);
modp->old.hipe_code->first_hipe_ref = NULL;
}
/*
* Remove all hipe_sdesc's for the old module instance
*/
if (modp->old.hipe_code->first_hipe_sdesc) {
ERTS_LC_ASSERT(is_blocking);
hipe_purge_sdescs(modp->old.hipe_code->first_hipe_sdesc,
make_atom(modp->module), is_blocking);
modp->old.hipe_code->first_hipe_sdesc = NULL;
}
hipe_free_module(modp->old.hipe_code);
modp->old.hipe_code = NULL;
}
/*
* Remove unreferred hipe_mfa_info's
* when all module instances are removed (like in init:restart)
*/
if (is_blocking && modp->curr.code_hdr == NULL) {
struct hipe_mfa_info* was_first = mod2mfa_get(modp);
struct hipe_mfa_info* is_first = was_first;
struct hipe_mfa_info** prevp = &is_first;
struct hipe_mfa_info *p;
if (was_first) {
for (p = was_first ; p; p = *prevp) {
if (p->callers.next == &p->callers) {
*prevp = p->next_in_mod;
if (p != was_first)
purge_mfa(p);
}
else
prevp = &p->next_in_mod;
}
if (was_first != is_first) {
hash_erase(&mod2mfa_tab, was_first);
purge_mfa(was_first);
if (is_first)
mod2mfa_put(is_first);
}
}
}
}
/*
* Redirect all existing native calls to this module
*/
void hipe_redirect_to_module(Module* modp)
{
struct hipe_mfa_info *p;
struct hipe_ref_head* refh;
ERTS_LC_ASSERT(erts_thr_progress_is_blocking() ||
erts_is_multi_scheduling_blocked());
for (p = mod2mfa_get(modp); p; p = p->next_in_mod) {
if (p->new_address) {
if (p->is_stub) {
hipe_free_native_stub(p->remote_address);
p->is_stub = 0;
}
DBG_TRACE_MFA(p->m, p->f, p->a, "Commit new_address %p", p->new_address);
p->remote_address = p->new_address;
p->new_address = NULL;
#ifdef DEBUG
p->dbg_export = NULL;
#endif
}
else if (!p->is_stub) {
Export* exp = erts_export_get_or_make_stub(p->m, p->f, p->a);
p->remote_address = hipe_make_native_stub(exp, p->a);
DBG_TRACE_MFA(p->m, p->f, p->a, "Commit stub %p", p->remote_address);
if (!p->remote_address)
erts_exit(ERTS_ERROR_EXIT, "hipe_make_stub: code allocation failed\r\n");
p->is_stub = 1;
#ifdef DEBUG
p->dbg_export = exp;
#endif
}
else {
DBG_TRACE_MFA(p->m, p->f, p->a, "Commit no-op, already stub");
ASSERT(p->remote_address && p->dbg_export);
}
DBG_TRACE_MFA(p->m,p->f,p->a,"START REDIRECT towards hipe_mfa_info at %p", p);
for (refh = p->callers.next; refh != &p->callers; refh = refh->next) {
struct hipe_ref* ref = (struct hipe_ref*) refh;
int res;
DBG_TRACE_MFA(p->m,p->f,p->a, " REDIRECT ref at %p FROM %T:%T/%u (%p -> %p)",
ref, ref->caller_m, ref->caller_f, ref->caller_a,
ref->address, p->remote_address);
DBG_TRACE_MFA(ref->caller_m, ref->caller_f, ref->caller_a,
" REDIRECT ref at %p TO %T:%T/%u (%p -> %p)",
ref, p->m,p->f,p->a, ref->address, p->remote_address);
if (ref->flags & REF_FLAG_IS_LOAD_MFA)
res = hipe_patch_insn(ref->address, (Uint)p->remote_address, am_load_mfa);
else {
#if defined(__arm__) || defined(__powerpc__) || defined(__ppc__) || defined(__powerpc64__)
void* trampoline = ref->trampoline;
#else
void* trampoline = NULL;
#endif
res = hipe_patch_call(ref->address, p->remote_address, trampoline);
}
if (res)
fprintf(stderr, "%s: patch failed", __FUNCTION__);
}
DBG_TRACE_MFA(p->m,p->f,p->a,"DONE REDIRECT towards hipe_mfa_info at %p", p);
}
}
BIF_RETTYPE hipe_bifs_check_crc_1(BIF_ALIST_1)
{
Uint crc;
if (!term_to_Uint(BIF_ARG_1, &crc))
BIF_ERROR(BIF_P, BADARG);
if (crc == HIPE_ERTS_CHECKSUM)
BIF_RET(am_true);
BIF_RET(am_false);
}
BIF_RETTYPE hipe_bifs_system_crc_0(BIF_ALIST_0)
{
Uint crc;
crc = HIPE_SYSTEM_CRC;
BIF_RET(Uint_to_term(crc, BIF_P));
}
BIF_RETTYPE hipe_bifs_get_rts_param_1(BIF_ALIST_1)
{
unsigned int is_defined;
unsigned long value;
if (is_not_small(BIF_ARG_1))
BIF_ERROR(BIF_P, BADARG);
is_defined = 1;
value = 0;
switch (unsigned_val(BIF_ARG_1)) {
RTS_PARAMS_CASES
default:
BIF_ERROR(BIF_P, BADARG);
}
if (!is_defined)
BIF_RET(NIL);
BIF_RET(Uint_to_term(value, BIF_P));
}
void hipe_patch_address(Uint *address, Eterm patchtype, Uint value)
{
switch (patchtype) {
case am_load_fe:
hipe_patch_load_fe(address, value);
return;
default:
fprintf(stderr, "%s: unknown patchtype %#lx\r\n",
__FUNCTION__, patchtype);
return;
}
}
BIF_RETTYPE hipe_bifs_patch_insn_3(BIF_ALIST_3)
{
Uint *address, value;
address = term_to_address(BIF_ARG_1);
if (!address)
BIF_ERROR(BIF_P, BADARG);
if (!term_to_Uint(BIF_ARG_2, &value))
BIF_ERROR(BIF_P, BADARG);
if (hipe_patch_insn(address, value, BIF_ARG_3))
BIF_ERROR(BIF_P, BADARG);
BIF_RET(NIL);
}
BIF_RETTYPE hipe_bifs_patch_call_3(BIF_ALIST_3)
{
Uint *callAddress, *destAddress, *trampAddress;
callAddress = term_to_address(BIF_ARG_1);
if (!callAddress)
BIF_ERROR(BIF_P, BADARG);
destAddress = term_to_address(BIF_ARG_2);
if (!destAddress)
BIF_ERROR(BIF_P, BADARG);
if (is_nil(BIF_ARG_3))
trampAddress = NULL;
else {
trampAddress = term_to_address(BIF_ARG_3);
if (!trampAddress)
BIF_ERROR(BIF_P, BADARG);
}
if (hipe_patch_call(callAddress, destAddress, trampAddress))
BIF_ERROR(BIF_P, BADARG);
BIF_RET(NIL);
}
BIF_RETTYPE hipe_bifs_alloc_loader_state_1(BIF_ALIST_1)
{
Binary *magic;
Eterm *hp;
Eterm res;
if (is_not_atom(BIF_ARG_1))
BIF_ERROR(BIF_P, BADARG);
magic = hipe_alloc_loader_state(BIF_ARG_1);
if (!magic)
BIF_ERROR(BIF_P, BADARG);
hp = HAlloc(BIF_P, ERTS_MAGIC_REF_THING_SIZE);
res = erts_mk_magic_ref(&hp, &MSO(BIF_P), magic);
erts_refc_dec(&magic->intern.refc, 1);
BIF_RET(res);
}