/*
* %CopyrightBegin%
*
* Copyright Ericsson AB 2018-2018. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* %CopyrightEnd%
*
* ----------------------------------------------------------------------
* Purpose : The NIF (C) part of the socket interface
* ----------------------------------------------------------------------
*
*/
#define STATIC_ERLANG_NIF 1
/* #include <stdio.h> */
/* #include <stdlib.h> */
/* #include <stdarg.h> */
/* #include <string.h> */
/* #include <unistd.h> */
/* #include <errno.h> */
/* #include <netdb.h> */
/* #include <sys/types.h> */
/* #include <sys/wait.h> */
/* #include <sys/socket.h> */
/* #include <netinet/in.h> */
/* #include <arpa/inet.h> */
/* #include <sys/time.h> */
/* #include <fcntl.h> */
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
/* If we HAVE_SCTP_H and Solaris, we need to define the following in
* order to get SCTP working:
*/
#if (defined(HAVE_SCTP_H) && defined(__sun) && defined(__SVR4))
#define SOLARIS10 1
/* WARNING: This is not quite correct, it may also be Solaris 11! */
#define _XPG4_2
#define __EXTENSIONS__
#endif
#include <stdio.h>
#include <stdlib.h>
#include <stddef.h>
#include <ctype.h>
#include <sys/types.h>
#include <errno.h>
#include <netinet/ip.h>
#include <time.h>
#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif
#ifdef HAVE_SYS_UIO_H
#include <sys/uio.h>
#endif
#ifdef HAVE_NET_IF_DL_H
#include <net/if_dl.h>
#endif
#ifdef HAVE_IFADDRS_H
#include <ifaddrs.h>
#endif
#ifdef HAVE_NETPACKET_PACKET_H
#include <netpacket/packet.h>
#endif
#ifdef HAVE_SYS_UN_H
#include <sys/un.h>
#endif
/* SENDFILE STUFF HERE IF WE NEED IT... */
#if defined(__APPLE__) && defined(__MACH__) && !defined(__DARWIN__)
#define __DARWIN__ 1
#endif
#ifdef __WIN32__
#define STRNCASECMP strncasecmp
#define INCL_WINSOCK_API_TYPEDEFS 1
#ifndef WINDOWS_H_INCLUDES_WINSOCK2_H
#include <winsock2.h>
#endif
#include <windows.h>
#include <Ws2tcpip.h> /* NEED VC 6.0 or higher */
/* Visual studio 2008+: NTDDI_VERSION needs to be set for iphlpapi.h
* to define the right structures. It needs to be set to WINXP (or LONGHORN)
* for IPV6 to work and it's set lower by default, so we need to change it.
*/
#ifdef HAVE_SDKDDKVER_H
# include <sdkddkver.h>
# ifdef NTDDI_VERSION
# undef NTDDI_VERSION
# endif
# define NTDDI_VERSION NTDDI_WINXP
#endif
#include <iphlpapi.h>
#undef WANT_NONBLOCKING
#include "sys.h"
#else /* !__WIN32__ */
#include <sys/time.h>
#ifdef NETDB_H_NEEDS_IN_H
#include <netinet/in.h>
#endif
#include <netdb.h>
#include <sys/socket.h>
#include <netinet/in.h>
#ifdef DEF_INADDR_LOOPBACK_IN_RPC_TYPES_H
#include <rpc/types.h>
#endif
#include <netinet/tcp.h>
#include <netinet/udp.h>
#include <arpa/inet.h>
#include <sys/param.h>
#ifdef HAVE_ARPA_NAMESER_H
#include <arpa/nameser.h>
#endif
#ifdef HAVE_SYS_SOCKIO_H
#include <sys/sockio.h>
#endif
#ifdef HAVE_SYS_IOCTL_H
#include <sys/ioctl.h>
#endif
#include <net/if.h>
#ifdef HAVE_SCHED_H
#include <sched.h>
#endif
#ifdef HAVE_SETNS_H
#include <setns.h>
#endif
#define HAVE_UDP
/* SCTP support -- currently for UNIX platforms only: */
#undef HAVE_SCTP
#if defined(HAVE_SCTP_H)
#include <netinet/sctp.h>
/* SCTP Socket API Draft from version 11 on specifies that netinet/sctp.h must
explicitly define HAVE_SCTP in case when SCTP is supported, but Solaris 10
still apparently uses Draft 10, and does not define that symbol, so we have
to define it explicitly:
*/
#ifndef HAVE_SCTP
# define HAVE_SCTP
#endif
/* These changed in draft 11, so SOLARIS10 uses the old MSG_* */
#if ! HAVE_DECL_SCTP_UNORDERED
# define SCTP_UNORDERED MSG_UNORDERED
#endif
#if ! HAVE_DECL_SCTP_ADDR_OVER
# define SCTP_ADDR_OVER MSG_ADDR_OVER
#endif
#if ! HAVE_DECL_SCTP_ABORT
# define SCTP_ABORT MSG_ABORT
#endif
#if ! HAVE_DECL_SCTP_EOF
# define SCTP_EOF MSG_EOF
#endif
/* More Solaris 10 fixes: */
#if ! HAVE_DECL_SCTP_CLOSED && HAVE_DECL_SCTPS_IDLE
# define SCTP_CLOSED SCTPS_IDLE
# undef HAVE_DECL_SCTP_CLOSED
# define HAVE_DECL_SCTP_CLOSED 1
#endif
#if ! HAVE_DECL_SCTP_BOUND && HAVE_DECL_SCTPS_BOUND
# define SCTP_BOUND SCTPS_BOUND
# undef HAVE_DECL_SCTP_BOUND
# define HAVE_DECL_SCTP_BOUND 1
#endif
#if ! HAVE_DECL_SCTP_LISTEN && HAVE_DECL_SCTPS_LISTEN
# define SCTP_LISTEN SCTPS_LISTEN
# undef HAVE_DECL_SCTP_LISTEN
# define HAVE_DECL_SCTP_LISTEN 1
#endif
#if ! HAVE_DECL_SCTP_COOKIE_WAIT && HAVE_DECL_SCTPS_COOKIE_WAIT
# define SCTP_COOKIE_WAIT SCTPS_COOKIE_WAIT
# undef HAVE_DECL_SCTP_COOKIE_WAIT
# define HAVE_DECL_SCTP_COOKIE_WAIT 1
#endif
#if ! HAVE_DECL_SCTP_COOKIE_ECHOED && HAVE_DECL_SCTPS_COOKIE_ECHOED
# define SCTP_COOKIE_ECHOED SCTPS_COOKIE_ECHOED
# undef HAVE_DECL_SCTP_COOKIE_ECHOED
# define HAVE_DECL_SCTP_COOKIE_ECHOED 1
#endif
#if ! HAVE_DECL_SCTP_ESTABLISHED && HAVE_DECL_SCTPS_ESTABLISHED
# define SCTP_ESTABLISHED SCTPS_ESTABLISHED
# undef HAVE_DECL_SCTP_ESTABLISHED
# define HAVE_DECL_SCTP_ESTABLISHED 1
#endif
#if ! HAVE_DECL_SCTP_SHUTDOWN_PENDING && HAVE_DECL_SCTPS_SHUTDOWN_PENDING
# define SCTP_SHUTDOWN_PENDING SCTPS_SHUTDOWN_PENDING
# undef HAVE_DECL_SCTP_SHUTDOWN_PENDING
# define HAVE_DECL_SCTP_SHUTDOWN_PENDING 1
#endif
#if ! HAVE_DECL_SCTP_SHUTDOWN_SENT && HAVE_DECL_SCTPS_SHUTDOWN_SENT
# define SCTP_SHUTDOWN_SENT SCTPS_SHUTDOWN_SENT
# undef HAVE_DECL_SCTP_SHUTDOWN_SENT
# define HAVE_DECL_SCTP_SHUTDOWN_SENT 1
#endif
#if ! HAVE_DECL_SCTP_SHUTDOWN_RECEIVED && HAVE_DECL_SCTPS_SHUTDOWN_RECEIVED
# define SCTP_SHUTDOWN_RECEIVED SCTPS_SHUTDOWN_RECEIVED
# undef HAVE_DECL_SCTP_SHUTDOWN_RECEIVED
# define HAVE_DECL_SCTP_SHUTDOWN_RECEIVED 1
#endif
#if ! HAVE_DECL_SCTP_SHUTDOWN_ACK_SENT && HAVE_DECL_SCTPS_SHUTDOWN_ACK_SENT
# define SCTP_SHUTDOWN_ACK_SENT SCTPS_SHUTDOWN_ACK_SENT
# undef HAVE_DECL_SCTP_SHUTDOWN_ACK_SENT
# define HAVE_DECL_SCTP_SHUTDOWN_ACK_SENT 1
#endif
/* New spelling in lksctp 2.6.22 or maybe even earlier:
* adaption -> adaptation
*/
#if !defined(SCTP_ADAPTATION_LAYER) && defined (SCTP_ADAPTION_LAYER)
# define SCTP_ADAPTATION_LAYER SCTP_ADAPTION_LAYER
# define SCTP_ADAPTATION_INDICATION SCTP_ADAPTION_INDICATION
# define sctp_adaptation_event sctp_adaption_event
# define sctp_setadaptation sctp_setadaption
# define sn_adaptation_event sn_adaption_event
# define sai_adaptation_ind sai_adaption_ind
# define ssb_adaptation_ind ssb_adaption_ind
# define sctp_adaptation_layer_event sctp_adaption_layer_event
#endif
/*
* We *may* need this stuff later when we *fully* implement support for SCTP
*
#if defined(__GNUC__) && defined(HAVE_SCTP_BINDX)
static typeof(sctp_bindx) *esock_sctp_bindx = NULL;
#else
static int (*esock_sctp_bindx)
(int sd, struct sockaddr *addrs, int addrcnt, int flags) = NULL;
#endif
#if defined(__GNUC__) && defined(HAVE_SCTP_PEELOFF)
static typeof(sctp_peeloff) *esock_sctp_peeloff = NULL;
#else
static int (*esock_sctp_peeloff)
(int sd, sctp_assoc_t assoc_id) = NULL;
#endif
#if defined(__GNUC__) && defined(HAVE_SCTP_GETLADDRS)
static typeof(sctp_getladdrs) *esock_sctp_getladdrs = NULL;
#else
static int (*esock_sctp_getladdrs)
(int sd, sctp_assoc_t assoc_id, struct sockaddr **ss) = NULL;
#endif
#if defined(__GNUC__) && defined(HAVE_SCTP_FREELADDRS)
static typeof(sctp_freeladdrs) *esock_sctp_freeladdrs = NULL;
#else
static void (*esock_sctp_freeladdrs)(struct sockaddr *addrs) = NULL;
#endif
#if defined(__GNUC__) && defined(HAVE_SCTP_GETPADDRS)
static typeof(sctp_getpaddrs) *esock_sctp_getpaddrs = NULL;
#else
static int (*esock_sctp_getpaddrs)
(int sd, sctp_assoc_t assoc_id, struct sockaddr **ss) = NULL;
#endif
#if defined(__GNUC__) && defined(HAVE_SCTP_FREEPADDRS)
static typeof(sctp_freepaddrs) *esock_sctp_freepaddrs = NULL;
#else
static void (*esock_sctp_freepaddrs)(struct sockaddr *addrs) = NULL;
#endif
*/
#endif /* #if defined(HAVE_SCTP_H) */
#ifndef WANT_NONBLOCKING
#define WANT_NONBLOCKING
#endif
#include "sys.h"
#endif
#include <erl_nif.h>
#include "socket_dbg.h"
#include "socket_tarray.h"
#include "socket_int.h"
#include "socket_util.h"
/* All platforms fail on malloc errors. */
#define FATAL_MALLOC
/* Debug stuff... */
#define SOCKET_NIF_DEBUG_DEFAULT FALSE
#define SOCKET_DEBUG_DEFAULT FALSE
/* Counters and stuff (Don't know where to sent this stuff anyway) */
#define SOCKET_NIF_IOW_DEFAULT FALSE
/* Socket stuff */
#define INVALID_SOCKET -1
#define INVALID_EVENT -1
#define SOCKET_ERROR -1
#define SOCKET int
#define HANDLE long int
/* ==============================================================================
* The IS_SOCKET_ERROR macro below is used for portability reasons.
* While POSIX specifies that errors from socket-related system calls
* should be indicated with a -1 return value, some users have experienced
* non-Windows OS kernels that return negative values other than -1.
* While one can argue that such kernels are technically broken, comparing
* against values less than 0 covers their out-of-spec return values without
* imposing incorrect semantics on systems that manage to correctly return -1
* for errors, thus increasing Erlang's portability.
*/
#ifdef __WIN32__
#define IS_SOCKET_ERROR(val) ((val) == SOCKET_ERROR)
#else
#define IS_SOCKET_ERROR(val) ((val) < 0)
#endif
/* *** Misc macros and defines *** */
#if defined(TCP_CA_NAME_MAX)
#define SOCKET_OPT_TCP_CONGESTION_NAME_MAX TCP_CA_NAME_MAX
#else
/* This is really excessive, but just in case... */
#define SOCKET_OPT_TCP_CONGESTION_NAME_MAX 256
#endif
/* *** Socket state defs *** */
#define SOCKET_FLAG_OPEN 0x0001
#define SOCKET_FLAG_ACTIVE 0x0004
#define SOCKET_FLAG_LISTEN 0x0008
#define SOCKET_FLAG_CON 0x0010
#define SOCKET_FLAG_ACC 0x0020
#define SOCKET_FLAG_BUSY 0x0040
#define SOCKET_FLAG_CLOSE 0x0080
#define SOCKET_STATE_CLOSED (0)
#define SOCKET_STATE_OPEN (SOCKET_FLAG_OPEN)
#define SOCKET_STATE_CONNECTED (SOCKET_STATE_OPEN | SOCKET_FLAG_ACTIVE)
#define SOCKET_STATE_LISTENING (SOCKET_STATE_OPEN | SOCKET_FLAG_LISTEN)
#define SOCKET_STATE_CONNECTING (SOCKET_STATE_OPEN | SOCKET_FLAG_CON)
#define SOCKET_STATE_ACCEPTING (SOCKET_STATE_LISTENING | SOCKET_FLAG_ACC)
#define SOCKET_STATE_CLOSING (SOCKET_FLAG_CLOSE)
#define IS_OPEN(d) \
(((d)->state & SOCKET_FLAG_OPEN) == SOCKET_FLAG_OPEN)
#define IS_CONNECTED(d) \
(((d)->state & SOCKET_STATE_CONNECTED) == SOCKET_STATE_CONNECTED)
#define IS_CONNECTING(d) \
(((d)->state & SOCKET_FLAG_CON) == SOCKET_FLAG_CON)
/*
#define IS_BUSY(d) \
(((d)->state & SOCKET_FLAG_BUSY) == SOCKET_FLAG_BUSY)
*/
#define SOCKET_SEND_FLAG_CONFIRM 0
#define SOCKET_SEND_FLAG_DONTROUTE 1
#define SOCKET_SEND_FLAG_EOR 2
#define SOCKET_SEND_FLAG_MORE 3
#define SOCKET_SEND_FLAG_NOSIGNAL 4
#define SOCKET_SEND_FLAG_OOB 5
#define SOCKET_SEND_FLAG_LOW SOCKET_SEND_FLAG_CONFIRM
#define SOCKET_SEND_FLAG_HIGH SOCKET_SEND_FLAG_OOB
#define SOCKET_RECV_FLAG_CMSG_CLOEXEC 0
#define SOCKET_RECV_FLAG_ERRQUEUE 1
#define SOCKET_RECV_FLAG_OOB 2
#define SOCKET_RECV_FLAG_PEEK 3
#define SOCKET_RECV_FLAG_TRUNC 4
#define SOCKET_RECV_FLAG_LOW SOCKET_RECV_FLAG_CMSG_CLOEXEC
#define SOCKET_RECV_FLAG_HIGH SOCKET_RECV_FLAG_TRUNC
#define SOCKET_RECV_BUFFER_SIZE_DEFAULT 2048
#define SOCKET_RECV_CTRL_BUFFER_SIZE_DEFAULT 1024
#define SOCKET_SEND_CTRL_BUFFER_SIZE_DEFAULT 1024
#define VT2S(__VT__) (((__VT__) == SOCKET_OPT_VALUE_TYPE_UNSPEC) ? "unspec" : \
(((__VT__) == SOCKET_OPT_VALUE_TYPE_INT) ? "int" : \
((__VT__) == SOCKET_OPT_VALUE_TYPE_BOOL) ? "bool" : \
"undef"))
#define SOCKET_OPT_VALUE_TYPE_UNSPEC 0
#define SOCKET_OPT_VALUE_TYPE_INT 1
#define SOCKET_OPT_VALUE_TYPE_BOOL 2
typedef union {
struct {
// 0 = not open, 1 = open
unsigned int open:1;
// 0 = not conn, 1 = connecting, 2 = connected
unsigned int connect:2;
// unsigned int connecting:1;
// unsigned int connected:1;
// 0 = not listen, 1 = listening, 2 = accepting
unsigned int listen:2;
// unsigned int listening:1;
// unsigned int accepting:1;
/* Room for more... */
} flags;
unsigned int field; // Make it easy to reset all flags...
} SocketState;
/*
#define IS_OPEN(d) ((d)->state.flags.open)
#define IS_CONNECTED(d) ((d)->state.flags.connect == SOCKET_STATE_CONNECTED)
#define IS_CONNECTING(d) ((d)->state.flags.connect == SOCKET_STATE_CONNECTING)
*/
/*----------------------------------------------------------------------------
* Interface constants.
*
* This section must be "identical" to the corresponding socket.hrl
*/
/* domain */
#define SOCKET_DOMAIN_LOCAL 1
#define SOCKET_DOMAIN_INET 2
#define SOCKET_DOMAIN_INET6 3
/* type */
#define SOCKET_TYPE_STREAM 1
#define SOCKET_TYPE_DGRAM 2
#define SOCKET_TYPE_RAW 3
// #define SOCKET_TYPE_RDM 4
#define SOCKET_TYPE_SEQPACKET 5
/* protocol */
#define SOCKET_PROTOCOL_IP 1
#define SOCKET_PROTOCOL_TCP 2
#define SOCKET_PROTOCOL_UDP 3
#define SOCKET_PROTOCOL_SCTP 4
#define SOCKET_PROTOCOL_ICMP 5
#define SOCKET_PROTOCOL_IGMP 6
/* shutdown how */
#define SOCKET_SHUTDOWN_HOW_RD 0
#define SOCKET_SHUTDOWN_HOW_WR 1
#define SOCKET_SHUTDOWN_HOW_RDWR 2
#define SOCKET_OPT_LEVEL_OTP 0
#define SOCKET_OPT_LEVEL_SOCKET 1
#define SOCKET_OPT_LEVEL_IP 2
#define SOCKET_OPT_LEVEL_IPV6 3
#define SOCKET_OPT_LEVEL_TCP 4
#define SOCKET_OPT_LEVEL_UDP 5
#define SOCKET_OPT_LEVEL_SCTP 6
#define SOCKET_OPT_OTP_DEBUG 1
#define SOCKET_OPT_OTP_IOW 2
#define SOCKET_OPT_OTP_CTRL_PROC 3
#define SOCKET_OPT_SOCK_ACCEPTCONN 1
#define SOCKET_OPT_SOCK_BINDTODEVICE 3
#define SOCKET_OPT_SOCK_BROADCAST 4
#define SOCKET_OPT_SOCK_DEBUG 6
#define SOCKET_OPT_SOCK_DOMAIN 7
#define SOCKET_OPT_SOCK_DONTROUTE 8
#define SOCKET_OPT_SOCK_KEEPALIVE 10
#define SOCKET_OPT_SOCK_LINGER 11
#define SOCKET_OPT_SOCK_OOBINLINE 13
#define SOCKET_OPT_SOCK_PEEK_OFF 15
#define SOCKET_OPT_SOCK_PRIORITY 17
#define SOCKET_OPT_SOCK_PROTOCOL 18
#define SOCKET_OPT_SOCK_RCVBUF 19
#define SOCKET_OPT_SOCK_RCVLOWAT 21
#define SOCKET_OPT_SOCK_RCVTIMEO 22
#define SOCKET_OPT_SOCK_REUSEADDR 23
#define SOCKET_OPT_SOCK_REUSEPORT 24
#define SOCKET_OPT_SOCK_SNDBUF 27
#define SOCKET_OPT_SOCK_SNDLOWAT 29
#define SOCKET_OPT_SOCK_SNDTIMEO 30
#define SOCKET_OPT_SOCK_TIMESTAMP 31
#define SOCKET_OPT_SOCK_TYPE 32
#define SOCKET_OPT_IP_ADD_MEMBERSHIP 1
#define SOCKET_OPT_IP_ADD_SOURCE_MEMBERSHIP 2
#define SOCKET_OPT_IP_BLOCK_SOURCE 3
#define SOCKET_OPT_IP_DROP_MEMBERSHIP 5
#define SOCKET_OPT_IP_DROP_SOURCE_MEMBERSHIP 6
#define SOCKET_OPT_IP_FREEBIND 7
#define SOCKET_OPT_IP_HDRINCL 8
#define SOCKET_OPT_IP_MINTTL 9
#define SOCKET_OPT_IP_MSFILTER 10
#define SOCKET_OPT_IP_MTU 11
#define SOCKET_OPT_IP_MTU_DISCOVER 12
#define SOCKET_OPT_IP_MULTICAST_ALL 13
#define SOCKET_OPT_IP_MULTICAST_IF 14
#define SOCKET_OPT_IP_MULTICAST_LOOP 15
#define SOCKET_OPT_IP_MULTICAST_TTL 16
#define SOCKET_OPT_IP_NODEFRAG 17
#define SOCKET_OPT_IP_PKTINFO 19
#define SOCKET_OPT_IP_RECVDSTADDR 20
#define SOCKET_OPT_IP_RECVERR 21
#define SOCKET_OPT_IP_RECVIF 22
#define SOCKET_OPT_IP_RECVOPTS 23
#define SOCKET_OPT_IP_RECVORIGDSTADDR 24
#define SOCKET_OPT_IP_RECVTOS 25
#define SOCKET_OPT_IP_RECVTTL 26
#define SOCKET_OPT_IP_RETOPTS 27
#define SOCKET_OPT_IP_ROUTER_ALERT 28
#define SOCKET_OPT_IP_SENDSRCADDR 29 // Same as IP_RECVDSTADDR?
#define SOCKET_OPT_IP_TOS 30
#define SOCKET_OPT_IP_TRANSPARENT 31
#define SOCKET_OPT_IP_TTL 32
#define SOCKET_OPT_IP_UNBLOCK_SOURCE 33
#define SOCKET_OPT_IPV6_ADDRFORM 1
#define SOCKET_OPT_IPV6_ADD_MEMBERSHIP 2
#define SOCKET_OPT_IPV6_AUTHHDR 3
#define SOCKET_OPT_IPV6_DROP_MEMBERSHIP 6
#define SOCKET_OPT_IPV6_DSTOPTS 7
#define SOCKET_OPT_IPV6_FLOWINFO 11
#define SOCKET_OPT_IPV6_HOPLIMIT 12
#define SOCKET_OPT_IPV6_HOPOPTS 13
#define SOCKET_OPT_IPV6_MTU 17
#define SOCKET_OPT_IPV6_MTU_DISCOVER 18
#define SOCKET_OPT_IPV6_MULTICAST_HOPS 19
#define SOCKET_OPT_IPV6_MULTICAST_IF 20
#define SOCKET_OPT_IPV6_MULTICAST_LOOP 21
#define SOCKET_OPT_IPV6_RECVERR 24
#define SOCKET_OPT_IPV6_RECVPKTINFO 25 // PKTINFO on FreeBSD
#define SOCKET_OPT_IPV6_ROUTER_ALERT 27
#define SOCKET_OPT_IPV6_RTHDR 28
#define SOCKET_OPT_IPV6_UNICAST_HOPS 30
#define SOCKET_OPT_IPV6_V6ONLY 32
#define SOCKET_OPT_TCP_CONGESTION 1
#define SOCKET_OPT_TCP_CORK 2
#define SOCKET_OPT_TCP_MAXSEG 7
#define SOCKET_OPT_TCP_NODELAY 9
#define SOCKET_OPT_UDP_CORK 1
#define SOCKET_OPT_SCTP_ASSOCINFO 2
#define SOCKET_OPT_SCTP_AUTOCLOSE 8
#define SOCKET_OPT_SCTP_DISABLE_FRAGMENTS 12
#define SOCKET_OPT_SCTP_EVENTS 14
#define SOCKET_OPT_SCTP_INITMSG 18
#define SOCKET_OPT_SCTP_MAXSEG 21
#define SOCKET_OPT_SCTP_NODELAY 23
#define SOCKET_OPT_SCTP_RTOINFO 29
/* We should *eventually* use this instead of hard-coding the size (to 1) */
#define ESOCK_RECVMSG_IOVEC_SZ 1
/* =================================================================== *
* *
* Various enif macros *
* *
* =================================================================== */
#define SGDBG( proto ) ESOCK_DBG_PRINTF( data.dbg , proto )
#define SSDBG( __D__ , proto ) ESOCK_DBG_PRINTF( (__D__)->dbg , proto )
/* =================================================================== *
* *
* Basic socket operations *
* *
* =================================================================== */
#ifdef __WIN32__
/* *** Windows macros *** */
#define sock_accept(s, addr, len) \
make_noninheritable_handle(accept((s), (addr), (len)))
#define sock_bind(s, addr, len) bind((s), (addr), (len))
#define sock_close(s) closesocket((s))
#define sock_close_event(e) WSACloseEvent(e)
#define sock_connect(s, addr, len) connect((s), (addr), (len))
#define sock_create_event(s) WSACreateEvent()
#define sock_errno() WSAGetLastError()
#define sock_getopt(s,l,o,v,ln) getsockopt((s),(l),(o),(v),(ln))
#define sock_htons(x) htons((x))
#define sock_htonl(x) htonl((x))
#define sock_listen(s, b) listen((s), (b))
#define sock_name(s, addr, len) getsockname((s), (addr), (len))
#define sock_ntohs(x) ntohs((x))
#define sock_open(domain, type, proto) \
make_noninheritable_handle(socket((domain), (type), (proto)))
#define sock_peer(s, addr, len) getpeername((s), (addr), (len))
#define sock_recv(s,buf,len,flag) recv((s),(buf),(len),(flag))
#define sock_recvfrom(s,buf,blen,flag,addr,alen) \
recvfrom((s),(buf),(blen),(flag),(addr),(alen))
#define sock_send(s,buf,len,flag) send((s),(buf),(len),(flag))
#define sock_sendto(s,buf,blen,flag,addr,alen) \
sendto((s),(buf),(blen),(flag),(addr),(alen))
#define sock_setopt(s,l,o,v,ln) setsockopt((s),(l),(o),(v),(ln))
#define sock_shutdown(s, how) shutdown((s), (how))
#define SET_BLOCKING(s) ioctlsocket(s, FIONBIO, &zero_value)
#define SET_NONBLOCKING(s) ioctlsocket(s, FIONBIO, &one_value)
static unsigned long zero_value = 0;
static unsigned long one_value = 1;
#else /* !__WIN32__ */
#ifdef HAS_ACCEPT4
// We have to figure out what the flags are...
#define sock_accept(s, addr, len) accept4((s), (addr), (len), (SOCK_CLOEXEC))
#else
#define sock_accept(s, addr, len) accept((s), (addr), (len))
#endif
#define sock_bind(s, addr, len) bind((s), (addr), (len))
#define sock_close(s) close((s))
#define sock_close_event(e) /* do nothing */
#define sock_connect(s, addr, len) connect((s), (addr), (len))
#define sock_create_event(s) (s) /* return file descriptor */
#define sock_errno() errno
#define sock_getopt(s,t,n,v,l) getsockopt((s),(t),(n),(v),(l))
#define sock_htons(x) htons((x))
#define sock_htonl(x) htonl((x))
#define sock_listen(s, b) listen((s), (b))
#define sock_name(s, addr, len) getsockname((s), (addr), (len))
#define sock_ntohs(x) ntohs((x))
#define sock_open(domain, type, proto) socket((domain), (type), (proto))
#define sock_peer(s, addr, len) getpeername((s), (addr), (len))
#define sock_recv(s,buf,len,flag) recv((s),(buf),(len),(flag))
#define sock_recvfrom(s,buf,blen,flag,addr,alen) \
recvfrom((s),(buf),(blen),(flag),(addr),(alen))
#define sock_recvmsg(s,msghdr,flag) recvmsg((s),(msghdr),(flag))
#define sock_send(s,buf,len,flag) send((s), (buf), (len), (flag))
#define sock_sendmsg(s,msghdr,flag) sendmsg((s),(msghdr),(flag))
#define sock_sendto(s,buf,blen,flag,addr,alen) \
sendto((s),(buf),(blen),(flag),(addr),(alen))
#define sock_setopt(s,l,o,v,ln) setsockopt((s),(l),(o),(v),(ln))
#define sock_shutdown(s, how) shutdown((s), (how))
#endif /* !__WIN32__ */
#ifdef HAVE_SOCKLEN_T
# define SOCKLEN_T socklen_t
#else
# define SOCKLEN_T size_t
#endif
#ifdef __WIN32__
#define SOCKOPTLEN_T int
#else
#define SOCKOPTLEN_T SOCKLEN_T
#endif
/* We can use the IPv4 def for this since the beginning
* is the same for INET and INET6 */
#define which_address_port(sap) \
((((sap)->in4.sin_family == AF_INET) || \
((sap)->in4.sin_family == AF_INET6)) ? \
((sap)->in4.sin_port) : -1)
typedef struct {
ErlNifPid pid; // PID of the requesting process
ErlNifMonitor mon; // Monitor to the requesting process
ERL_NIF_TERM ref; // The (unique) reference (ID) of the request
} SocketRequestor;
typedef struct socket_request_queue_element {
struct socket_request_queue_element* nextP;
SocketRequestor data;
} SocketRequestQueueElement;
typedef struct {
SocketRequestQueueElement* first;
SocketRequestQueueElement* last;
} SocketRequestQueue;
typedef struct {
/* +++ The actual socket +++ */
SOCKET sock;
HANDLE event;
/* +++ Stuff "about" the socket +++ */
int domain;
int type;
int protocol;
unsigned int state;
SocketAddress remote;
unsigned int addrLen;
/* +++ Controller (owner) process +++ */
ErlNifPid ctrlPid;
ErlNifMonitor ctrlMon;
/* +++ Write stuff +++ */
ErlNifMutex* writeMtx;
SocketRequestor currentWriter;
SocketRequestor* currentWriterP; // NULL or points to currentWriter
SocketRequestQueue writersQ;
BOOLEAN_T isWritable;
uint32_t writePkgCnt;
uint32_t writeByteCnt;
uint32_t writeTries;
uint32_t writeWaits;
uint32_t writeFails;
/* +++ Read stuff +++ */
ErlNifMutex* readMtx;
SocketRequestor currentReader;
SocketRequestor* currentReaderP; // NULL or points to currentReader
SocketRequestQueue readersQ;
BOOLEAN_T isReadable;
ErlNifBinary rbuffer; // DO WE NEED THIS
uint32_t readCapacity; // DO WE NEED THIS
uint32_t readPkgCnt;
uint32_t readByteCnt;
uint32_t readTries;
uint32_t readWaits;
/* +++ Accept stuff +++ */
ErlNifMutex* accMtx;
SocketRequestor currentAcceptor;
SocketRequestor* currentAcceptorP; // NULL or points to currentAcceptor
SocketRequestQueue acceptorsQ;
/* +++ Config & Misc stuff +++ */
size_t rBufSz; // Read buffer size (when data length = 0 is specified)
size_t rCtrlSz; // Read control buffer size
size_t wCtrlSz; // Write control buffer size
BOOLEAN_T iow; // Inform On Wrap
BOOLEAN_T dbg;
/* +++ Close stuff +++ */
ErlNifMutex* closeMtx;
ErlNifPid closerPid;
ErlNifMonitor closerMon;
ERL_NIF_TERM closeRef;
BOOLEAN_T closeLocal;
} SocketDescriptor;
#define SOCKET_OPT_VALUE_UNDEF 0
#define SOCKET_OPT_VALUE_BOOL 1
#define SOCKET_OPT_VALUE_INT 2
#define SOCKET_OPT_VALUE_LINGER 3
#define SOCKET_OPT_VALUE_BIN 4
#define SOCKET_OPT_VALUE_STR 5
typedef struct {
unsigned int tag;
union {
BOOLEAN_T boolVal;
int intVal;
struct linger lingerVal;
ErlNifBinary binVal;
struct {
unsigned int len;
char* str;
} strVal;
} u;
/*
void* optValP; // Points to the actual data (above)
socklen_t optValLen; // The size of the option value
*/
} SocketOptValue;
/* Global stuff (do we really need to "collect"
* these things?)
*/
typedef struct {
/* These are for debugging, testing and the like */
ERL_NIF_TERM version;
ERL_NIF_TERM buildDate;
BOOLEAN_T dbg;
BOOLEAN_T iow;
ErlNifMutex* cntMtx;
uint32_t numSockets;
uint32_t numTypeStreams;
uint32_t numTypeDGrams;
uint32_t numTypeSeqPkgs;
uint32_t numDomainInet;
uint32_t numDomainInet6;
uint32_t numDomainLocal;
uint32_t numProtoIP;
uint32_t numProtoTCP;
uint32_t numProtoUDP;
uint32_t numProtoSCTP;
} SocketData;
/* ----------------------------------------------------------------------
* F o r w a r d s
* ----------------------------------------------------------------------
*/
static ERL_NIF_TERM nif_info(ErlNifEnv* env,
int argc,
const ERL_NIF_TERM argv[]);
/*
This is a *global* debug function (enable or disable for all
operations and all sockets.
static ERL_NIF_TERM nif_debug(ErlNifEnv* env,
int argc,
const ERL_NIF_TERM argv[]);
*/
static ERL_NIF_TERM nif_open(ErlNifEnv* env,
int argc,
const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM nif_bind(ErlNifEnv* env,
int argc,
const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM nif_connect(ErlNifEnv* env,
int argc,
const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM nif_listen(ErlNifEnv* env,
int argc,
const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM nif_accept(ErlNifEnv* env,
int argc,
const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM nif_send(ErlNifEnv* env,
int argc,
const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM nif_sendto(ErlNifEnv* env,
int argc,
const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM nif_sendmsg(ErlNifEnv* env,
int argc,
const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM nif_recv(ErlNifEnv* env,
int argc,
const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM nif_recvfrom(ErlNifEnv* env,
int argc,
const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM nif_recvmsg(ErlNifEnv* env,
int argc,
const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM nif_close(ErlNifEnv* env,
int argc,
const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM nif_shutdown(ErlNifEnv* env,
int argc,
const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM nif_setopt(ErlNifEnv* env,
int argc,
const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM nif_getopt(ErlNifEnv* env,
int argc,
const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM nif_sockname(ErlNifEnv* env,
int argc,
const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM nif_peername(ErlNifEnv* env,
int argc,
const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM nif_finalize_connection(ErlNifEnv* env,
int argc,
const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM nif_finalize_close(ErlNifEnv* env,
int argc,
const ERL_NIF_TERM argv[]);
/*
static ERL_NIF_TERM nif_cancel(ErlNifEnv* env,
int argc,
const ERL_NIF_TERM argv[]);
*/
static ERL_NIF_TERM nopen(ErlNifEnv* env,
int domain,
int type,
int protocol,
char* netns);
static ERL_NIF_TERM nbind(ErlNifEnv* env,
SocketDescriptor* descP,
SocketAddress* sockAddrP,
unsigned int addrLen);
static ERL_NIF_TERM nconnect(ErlNifEnv* env,
SocketDescriptor* descP);
static ERL_NIF_TERM nlisten(ErlNifEnv* env,
SocketDescriptor* descP,
int backlog);
static ERL_NIF_TERM naccept_listening(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM ref);
static ERL_NIF_TERM naccept_accepting(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM ref);
static ERL_NIF_TERM naccept(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM ref);
static ERL_NIF_TERM nsend(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM sendRef,
ErlNifBinary* dataP,
int flags);
static ERL_NIF_TERM nsendto(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM sendRef,
ErlNifBinary* dataP,
int flags,
SocketAddress* toAddrP,
unsigned int toAddrLen);
static ERL_NIF_TERM nsendmsg(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM sendRef,
ERL_NIF_TERM eMsgHdr,
int flags);
static ERL_NIF_TERM nrecv(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM recvRef,
int len,
int flags);
static ERL_NIF_TERM nrecvfrom(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM recvRef,
uint16_t bufSz,
int flags);
static ERL_NIF_TERM nrecvmsg(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM recvRef,
uint16_t bufLen,
uint16_t ctrlLen,
int flags);
static ERL_NIF_TERM nclose(ErlNifEnv* env,
SocketDescriptor* descP);
static ERL_NIF_TERM nshutdown(ErlNifEnv* env,
SocketDescriptor* descP,
int how);
static ERL_NIF_TERM nsetopt(ErlNifEnv* env,
SocketDescriptor* descP,
BOOLEAN_T isEncoded,
BOOLEAN_T isOTP,
int level,
int eOpt,
ERL_NIF_TERM eVal);
static ERL_NIF_TERM nsetopt_otp(ErlNifEnv* env,
SocketDescriptor* descP,
int eOpt,
ERL_NIF_TERM eVal);
static ERL_NIF_TERM nsetopt_otp_debug(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal);
static ERL_NIF_TERM nsetopt_otp_iow(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal);
static ERL_NIF_TERM nsetopt_otp_ctrl_proc(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal);
static ERL_NIF_TERM nsetopt_native(ErlNifEnv* env,
SocketDescriptor* descP,
int level,
int eOpt,
ERL_NIF_TERM eVal);
static ERL_NIF_TERM nsetopt_level(ErlNifEnv* env,
SocketDescriptor* descP,
int level,
int eOpt,
ERL_NIF_TERM eVal);
static ERL_NIF_TERM nsetopt_lvl_socket(ErlNifEnv* env,
SocketDescriptor* descP,
int eOpt,
ERL_NIF_TERM eVal);
/* *** Handling set of socket options for level = socket *** */
#if defined(SO_BINDTODEVICE)
static ERL_NIF_TERM nsetopt_lvl_sock_bindtodevice(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal);
#endif
#if defined(SO_BROADCAST)
static ERL_NIF_TERM nsetopt_lvl_sock_broadcast(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal);
#endif
#if defined(SO_DEBUG)
static ERL_NIF_TERM nsetopt_lvl_sock_debug(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal);
#endif
#if defined(SO_DONTROUTE)
static ERL_NIF_TERM nsetopt_lvl_sock_dontroute(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal);
#endif
#if defined(SO_KEEPALIVE)
static ERL_NIF_TERM nsetopt_lvl_sock_keepalive(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal);
#endif
#if defined(SO_LINGER)
static ERL_NIF_TERM nsetopt_lvl_sock_linger(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal);
#endif
#if defined(SO_OOBINLINE)
static ERL_NIF_TERM nsetopt_lvl_sock_oobinline(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal);
#endif
#if defined(SO_PEEK_OFF)
static ERL_NIF_TERM nsetopt_lvl_sock_peek_off(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal);
#endif
#if defined(SO_PRIORITY)
static ERL_NIF_TERM nsetopt_lvl_sock_priority(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal);
#endif
#if defined(SO_RCVBUF)
static ERL_NIF_TERM nsetopt_lvl_sock_rcvbuf(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal);
#endif
#if defined(SO_RCVLOWAT)
static ERL_NIF_TERM nsetopt_lvl_sock_rcvlowat(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal);
#endif
#if defined(SO_RCVTIMEO)
static ERL_NIF_TERM nsetopt_lvl_sock_rcvtimeo(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal);
#endif
#if defined(SO_REUSEADDR)
static ERL_NIF_TERM nsetopt_lvl_sock_reuseaddr(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal);
#endif
#if defined(SO_REUSEPORT)
static ERL_NIF_TERM nsetopt_lvl_sock_reuseport(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal);
#endif
#if defined(SO_SNDBUF)
static ERL_NIF_TERM nsetopt_lvl_sock_sndbuf(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal);
#endif
#if defined(SO_SNDLOWAT)
static ERL_NIF_TERM nsetopt_lvl_sock_sndlowat(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal);
#endif
#if defined(SO_SNDTIMEO)
static ERL_NIF_TERM nsetopt_lvl_sock_sndtimeo(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal);
#endif
#if defined(SO_TIMESTAMP)
static ERL_NIF_TERM nsetopt_lvl_sock_timestamp(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal);
#endif
static ERL_NIF_TERM nsetopt_lvl_ip(ErlNifEnv* env,
SocketDescriptor* descP,
int eOpt,
ERL_NIF_TERM eVal);
/* *** Handling set of socket options for level = ip *** */
#if defined(IP_ADD_MEMBERSHIP)
static ERL_NIF_TERM nsetopt_lvl_ip_add_membership(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal);
#endif
#if defined(IP_ADD_SOURCE_MEMBERSHIP)
static ERL_NIF_TERM nsetopt_lvl_ip_add_source_membership(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal);
#endif
#if defined(IP_BLOCK_SOURCE)
static ERL_NIF_TERM nsetopt_lvl_ip_block_source(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal);
#endif
#if defined(IP_DROP_MEMBERSHIP)
static ERL_NIF_TERM nsetopt_lvl_ip_drop_membership(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal);
#endif
#if defined(IP_DROP_SOURCE_MEMBERSHIP)
static ERL_NIF_TERM nsetopt_lvl_ip_drop_source_membership(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal);
#endif
#if defined(IP_FREEBIND)
static ERL_NIF_TERM nsetopt_lvl_ip_freebind(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal);
#endif
#if defined(IP_HDRINCL)
static ERL_NIF_TERM nsetopt_lvl_ip_hdrincl(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal);
#endif
#if defined(IP_MINTTL)
static ERL_NIF_TERM nsetopt_lvl_ip_minttl(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal);
#endif
#if defined(IP_MSFILTER)
static ERL_NIF_TERM nsetopt_lvl_ip_msfilter(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal);
static BOOLEAN_T decode_ip_msfilter_mode(ErlNifEnv* env,
ERL_NIF_TERM eVal,
uint32_t* mode);
static ERL_NIF_TERM nsetopt_lvl_ip_msfilter_set(ErlNifEnv* env,
SOCKET sock,
struct ip_msfilter* msfP,
SOCKLEN_T optLen);
#endif
#if defined(IP_MTU_DISCOVER)
static ERL_NIF_TERM nsetopt_lvl_ip_mtu_discover(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal);
#endif
#if defined(IP_MULTICAST_ALL)
static ERL_NIF_TERM nsetopt_lvl_ip_multicast_all(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal);
#endif
#if defined(IP_MULTICAST_IF)
static ERL_NIF_TERM nsetopt_lvl_ip_multicast_if(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal);
#endif
#if defined(IP_MULTICAST_LOOP)
static ERL_NIF_TERM nsetopt_lvl_ip_multicast_loop(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal);
#endif
#if defined(IP_MULTICAST_TTL)
static ERL_NIF_TERM nsetopt_lvl_ip_multicast_ttl(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal);
#endif
#if defined(IP_NODEFRAG)
static ERL_NIF_TERM nsetopt_lvl_ip_nodefrag(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal);
#endif
#if defined(IP_PKTINFO)
static ERL_NIF_TERM nsetopt_lvl_ip_pktinfo(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal);
#endif
#if defined(IP_RECVDSTADDR)
static ERL_NIF_TERM nsetopt_lvl_ip_recvdstaddr(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal);
#endif
#if defined(IP_RECVERR)
static ERL_NIF_TERM nsetopt_lvl_ip_recverr(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal);
#endif
#if defined(IP_RECVIF)
static ERL_NIF_TERM nsetopt_lvl_ip_recvif(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal);
#endif
#if defined(IP_RECVOPTS)
static ERL_NIF_TERM nsetopt_lvl_ip_recvopts(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal);
#endif
#if defined(IP_RECVORIGDSTADDR)
static ERL_NIF_TERM nsetopt_lvl_ip_recvorigdstaddr(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal);
#endif
#if defined(IP_RECVTOS)
static ERL_NIF_TERM nsetopt_lvl_ip_recvtos(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal);
#endif
#if defined(IP_RECVTTL)
static ERL_NIF_TERM nsetopt_lvl_ip_recvttl(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal);
#endif
#if defined(IP_RETOPTS)
static ERL_NIF_TERM nsetopt_lvl_ip_retopts(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal);
#endif
#if defined(IP_ROUTER_ALERT)
static ERL_NIF_TERM nsetopt_lvl_ip_router_alert(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal);
#endif
#if defined(IP_SENDSRCADDR)
static ERL_NIF_TERM nsetopt_lvl_ip_sendsrcaddr(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal);
#endif
#if defined(IP_TOS)
static ERL_NIF_TERM nsetopt_lvl_ip_tos(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal);
#endif
#if defined(IP_TRANSPARENT)
static ERL_NIF_TERM nsetopt_lvl_ip_transparent(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal);
#endif
#if defined(IP_TTL)
static ERL_NIF_TERM nsetopt_lvl_ip_ttl(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal);
#endif
#if defined(IP_UNBLOCK_SOURCE)
static ERL_NIF_TERM nsetopt_lvl_ip_unblock_source(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal);
#endif
#if defined(IP_DROP_MEMBERSHIP) || defined(IP_ADD_MEMBERSHIP)
static
ERL_NIF_TERM nsetopt_lvl_ip_update_membership(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal,
int opt);
#endif
#if defined(IP_ADD_SOURCE_MEMBERSHIP) || defined(IP_DROP_SOURCE_MEMBERSHIP) || defined(IP_BLOCK_SOURCE) || defined(IP_UNBLOCK_SOURCE)
static
ERL_NIF_TERM nsetopt_lvl_ip_update_source(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal,
int opt);
#endif
/* *** Handling set of socket options for level = ipv6 *** */
#if defined(SOL_IPV6)
static ERL_NIF_TERM nsetopt_lvl_ipv6(ErlNifEnv* env,
SocketDescriptor* descP,
int eOpt,
ERL_NIF_TERM eVal);
#if defined(IPV6_ADDRFORM)
static ERL_NIF_TERM nsetopt_lvl_ipv6_addrform(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal);
#endif
#if defined(IPV6_ADD_MEMBERSHIP)
static ERL_NIF_TERM nsetopt_lvl_ipv6_add_membership(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal);
#endif
#if defined(IPV6_AUTHHDR)
static ERL_NIF_TERM nsetopt_lvl_ipv6_authhdr(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal);
#endif
#if defined(IPV6_DROP_MEMBERSHIP)
static ERL_NIF_TERM nsetopt_lvl_ipv6_drop_membership(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal);
#endif
#if defined(IPV6_DSTOPTS)
static ERL_NIF_TERM nsetopt_lvl_ipv6_dstopts(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal);
#endif
#if defined(IPV6_FLOWINFO)
static ERL_NIF_TERM nsetopt_lvl_ipv6_flowinfo(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal);
#endif
#if defined(IPV6_HOPLIMIT)
static ERL_NIF_TERM nsetopt_lvl_ipv6_hoplimit(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal);
#endif
#if defined(IPV6_HOPOPTS)
static ERL_NIF_TERM nsetopt_lvl_ipv6_hopopts(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal);
#endif
#if defined(IPV6_MTU)
static ERL_NIF_TERM nsetopt_lvl_ipv6_mtu(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal);
#endif
#if defined(IPV6_MTU_DISCOVER)
static ERL_NIF_TERM nsetopt_lvl_ipv6_mtu_discover(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal);
#endif
#if defined(IPV6_MULTICAST_HOPS)
static ERL_NIF_TERM nsetopt_lvl_ipv6_multicast_hops(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal);
#endif
#if defined(IPV6_MULTICAST_IF)
static ERL_NIF_TERM nsetopt_lvl_ipv6_multicast_if(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal);
#endif
#if defined(IPV6_MULTICAST_LOOP)
static ERL_NIF_TERM nsetopt_lvl_ipv6_multicast_loop(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal);
#endif
#if defined(IPV6_RECVERR)
static ERL_NIF_TERM nsetopt_lvl_ipv6_recverr(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal);
#endif
#if defined(IPV6_RECVPKTINFO) || defined(IPV6_PKTINFO)
static ERL_NIF_TERM nsetopt_lvl_ipv6_recvpktinfo(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal);
#endif
#if defined(IPV6_ROUTER_ALERT)
static ERL_NIF_TERM nsetopt_lvl_ipv6_router_alert(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal);
#endif
#if defined(IPV6_RTHDR)
static ERL_NIF_TERM nsetopt_lvl_ipv6_rthdr(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal);
#endif
#if defined(IPV6_UNICAST_HOPS)
static ERL_NIF_TERM nsetopt_lvl_ipv6_unicast_hops(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal);
#endif
#if defined(IPV6_V6ONLY)
static ERL_NIF_TERM nsetopt_lvl_ipv6_v6only(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal);
#endif
#if defined(IPV6_ADD_MEMBERSHIP) || defined(IPV6_DROP_MEMBERSHIP)
static ERL_NIF_TERM nsetopt_lvl_ipv6_update_membership(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal,
int opt);
#endif
#endif // defined(SOL_IPV6)
static ERL_NIF_TERM nsetopt_lvl_tcp(ErlNifEnv* env,
SocketDescriptor* descP,
int eOpt,
ERL_NIF_TERM eVal);
#if defined(TCP_CONGESTION)
static ERL_NIF_TERM nsetopt_lvl_tcp_congestion(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal);
#endif
#if defined(TCP_MAXSEG)
static ERL_NIF_TERM nsetopt_lvl_tcp_maxseg(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal);
#endif
#if defined(TCP_NODELAY)
static ERL_NIF_TERM nsetopt_lvl_tcp_nodelay(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal);
#endif
static ERL_NIF_TERM nsetopt_lvl_udp(ErlNifEnv* env,
SocketDescriptor* descP,
int eOpt,
ERL_NIF_TERM eVal);
#if defined(UDP_CORK)
static ERL_NIF_TERM nsetopt_lvl_udp_cork(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal);
#endif
#if defined(HAVE_SCTP)
static ERL_NIF_TERM nsetopt_lvl_sctp(ErlNifEnv* env,
SocketDescriptor* descP,
int eOpt,
ERL_NIF_TERM eVal);
#if defined(SCTP_ASSOCINFO)
static ERL_NIF_TERM nsetopt_lvl_sctp_associnfo(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal);
#endif
#if defined(SCTP_AUTOCLOSE)
static ERL_NIF_TERM nsetopt_lvl_sctp_autoclose(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal);
#endif
#if defined(SCTP_DISABLE_FRAGMENTS)
static ERL_NIF_TERM nsetopt_lvl_sctp_disable_fragments(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal);
#endif
#if defined(SCTP_EVENTS)
static ERL_NIF_TERM nsetopt_lvl_sctp_events(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal);
#endif
#if defined(SCTP_INITMSG)
static ERL_NIF_TERM nsetopt_lvl_sctp_initmsg(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal);
#endif
#if defined(SCTP_MAXSEG)
static ERL_NIF_TERM nsetopt_lvl_sctp_maxseg(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal);
#endif
#if defined(SCTP_NODELAY)
static ERL_NIF_TERM nsetopt_lvl_sctp_nodelay(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal);
#endif
#if defined(SCTP_RTOINFO)
static ERL_NIF_TERM nsetopt_lvl_sctp_rtoinfo(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal);
#endif
#endif // defined(HAVE_SCTP)
static ERL_NIF_TERM ngetopt(ErlNifEnv* env,
SocketDescriptor* descP,
BOOLEAN_T isEncoded,
BOOLEAN_T isOTP,
int level,
ERL_NIF_TERM eOpt);
static ERL_NIF_TERM ngetopt_otp(ErlNifEnv* env,
SocketDescriptor* descP,
int eOpt);
static ERL_NIF_TERM ngetopt_otp_debug(ErlNifEnv* env,
SocketDescriptor* descP);
static ERL_NIF_TERM ngetopt_otp_iow(ErlNifEnv* env,
SocketDescriptor* descP);
static ERL_NIF_TERM ngetopt_native(ErlNifEnv* env,
SocketDescriptor* descP,
int level,
ERL_NIF_TERM eOpt);
static ERL_NIF_TERM ngetopt_native_unspec(ErlNifEnv* env,
SocketDescriptor* descP,
int level,
int opt,
SOCKOPTLEN_T valueSz);
static ERL_NIF_TERM ngetopt_level(ErlNifEnv* env,
SocketDescriptor* descP,
int level,
int eOpt);
static ERL_NIF_TERM ngetopt_lvl_socket(ErlNifEnv* env,
SocketDescriptor* descP,
int eOpt);
#if defined(SO_ACCEPTCONN)
static ERL_NIF_TERM ngetopt_lvl_sock_acceptconn(ErlNifEnv* env,
SocketDescriptor* descP);
#endif
#if defined(SO_BINDTODEVICE)
static ERL_NIF_TERM ngetopt_lvl_sock_bindtodevice(ErlNifEnv* env,
SocketDescriptor* descP);
#endif
#if defined(SO_BROADCAST)
static ERL_NIF_TERM ngetopt_lvl_sock_broadcast(ErlNifEnv* env,
SocketDescriptor* descP);
#endif
#if defined(SO_DEBUG)
static ERL_NIF_TERM ngetopt_lvl_sock_debug(ErlNifEnv* env,
SocketDescriptor* descP);
#endif
#if defined(SO_DOMAIN)
static ERL_NIF_TERM ngetopt_lvl_sock_domain(ErlNifEnv* env,
SocketDescriptor* descP);
#endif
#if defined(SO_DONTROUTE)
static ERL_NIF_TERM ngetopt_lvl_sock_dontroute(ErlNifEnv* env,
SocketDescriptor* descP);
#endif
#if defined(SO_KEEPALIVE)
static ERL_NIF_TERM ngetopt_lvl_sock_keepalive(ErlNifEnv* env,
SocketDescriptor* descP);
#endif
#if defined(SO_LINGER)
static ERL_NIF_TERM ngetopt_lvl_sock_linger(ErlNifEnv* env,
SocketDescriptor* descP);
#endif
#if defined(SO_OOBINLINE)
static ERL_NIF_TERM ngetopt_lvl_sock_oobinline(ErlNifEnv* env,
SocketDescriptor* descP);
#endif
#if defined(SO_PEEK_OFF)
static ERL_NIF_TERM ngetopt_lvl_sock_peek_off(ErlNifEnv* env,
SocketDescriptor* descP);
#endif
#if defined(SO_PRIORITY)
static ERL_NIF_TERM ngetopt_lvl_sock_priority(ErlNifEnv* env,
SocketDescriptor* descP);
#endif
#if defined(SO_PROTOCOL)
static ERL_NIF_TERM ngetopt_lvl_sock_protocol(ErlNifEnv* env,
SocketDescriptor* descP);
#endif
#if defined(SO_RCVBUF)
static ERL_NIF_TERM ngetopt_lvl_sock_rcvbuf(ErlNifEnv* env,
SocketDescriptor* descP);
#endif
#if defined(SO_RCVLOWAT)
static ERL_NIF_TERM ngetopt_lvl_sock_rcvlowat(ErlNifEnv* env,
SocketDescriptor* descP);
#endif
#if defined(SO_RCVTIMEO)
static ERL_NIF_TERM ngetopt_lvl_sock_rcvtimeo(ErlNifEnv* env,
SocketDescriptor* descP);
#endif
#if defined(SO_REUSEADDR)
static ERL_NIF_TERM ngetopt_lvl_sock_reuseaddr(ErlNifEnv* env,
SocketDescriptor* descP);
#endif
#if defined(SO_REUSEPORT)
static ERL_NIF_TERM ngetopt_lvl_sock_reuseport(ErlNifEnv* env,
SocketDescriptor* descP);
#endif
#if defined(SO_SNDBUF)
static ERL_NIF_TERM ngetopt_lvl_sock_sndbuf(ErlNifEnv* env,
SocketDescriptor* descP);
#endif
#if defined(SO_SNDLOWAT)
static ERL_NIF_TERM ngetopt_lvl_sock_sndlowat(ErlNifEnv* env,
SocketDescriptor* descP);
#endif
#if defined(SO_SNDTIMEO)
static ERL_NIF_TERM ngetopt_lvl_sock_sndtimeo(ErlNifEnv* env,
SocketDescriptor* descP);
#endif
#if defined(SO_TIMESTAMP)
static ERL_NIF_TERM ngetopt_lvl_sock_timestamp(ErlNifEnv* env,
SocketDescriptor* descP);
#endif
#if defined(SO_TYPE)
static ERL_NIF_TERM ngetopt_lvl_sock_type(ErlNifEnv* env,
SocketDescriptor* descP);
#endif
static ERL_NIF_TERM ngetopt_lvl_ip(ErlNifEnv* env,
SocketDescriptor* descP,
int eOpt);
#if defined(IP_FREEBIND)
static ERL_NIF_TERM ngetopt_lvl_ip_freebind(ErlNifEnv* env,
SocketDescriptor* descP);
#endif
#if defined(IP_HDRINCL)
static ERL_NIF_TERM ngetopt_lvl_ip_hdrincl(ErlNifEnv* env,
SocketDescriptor* descP);
#endif
#if defined(IP_MINTTL)
static ERL_NIF_TERM ngetopt_lvl_ip_minttl(ErlNifEnv* env,
SocketDescriptor* descP);
#endif
#if defined(IP_MTU)
static ERL_NIF_TERM ngetopt_lvl_ip_mtu(ErlNifEnv* env,
SocketDescriptor* descP);
#endif
#if defined(IP_MTU_DISCOVER)
static ERL_NIF_TERM ngetopt_lvl_ip_mtu_discover(ErlNifEnv* env,
SocketDescriptor* descP);
#endif
#if defined(IP_MULTICAST_ALL)
static ERL_NIF_TERM ngetopt_lvl_ip_multicast_all(ErlNifEnv* env,
SocketDescriptor* descP);
#endif
#if defined(IP_MULTICAST_IF)
static ERL_NIF_TERM ngetopt_lvl_ip_multicast_if(ErlNifEnv* env,
SocketDescriptor* descP);
#endif
#if defined(IP_MULTICAST_LOOP)
static ERL_NIF_TERM ngetopt_lvl_ip_multicast_loop(ErlNifEnv* env,
SocketDescriptor* descP);
#endif
#if defined(IP_MULTICAST_TTL)
static ERL_NIF_TERM ngetopt_lvl_ip_multicast_ttl(ErlNifEnv* env,
SocketDescriptor* descP);
#endif
#if defined(IP_NODEFRAG)
static ERL_NIF_TERM ngetopt_lvl_ip_nodefrag(ErlNifEnv* env,
SocketDescriptor* descP);
#endif
#if defined(IP_PKTINFO)
static ERL_NIF_TERM ngetopt_lvl_ip_pktinfo(ErlNifEnv* env,
SocketDescriptor* descP);
#endif
#if defined(IP_RECVDSTADDRS)
static ERL_NIF_TERM ngetopt_lvl_ip_recvdstaddr(ErlNifEnv* env,
SocketDescriptor* descP);
#endif
#if defined(IP_RECVERR)
static ERL_NIF_TERM ngetopt_lvl_ip_recverr(ErlNifEnv* env,
SocketDescriptor* descP);
#endif
#if defined(IP_RECVIF)
static ERL_NIF_TERM ngetopt_lvl_ip_recvif(ErlNifEnv* env,
SocketDescriptor* descP);
#endif
#if defined(IP_RECVOPTS)
static ERL_NIF_TERM ngetopt_lvl_ip_recvopts(ErlNifEnv* env,
SocketDescriptor* descP);
#endif
#if defined(IP_RECVORIGDSTADDR)
static ERL_NIF_TERM ngetopt_lvl_ip_recvorigdstaddr(ErlNifEnv* env,
SocketDescriptor* descP);
#endif
#if defined(IP_RECVTOS)
static ERL_NIF_TERM ngetopt_lvl_ip_recvtos(ErlNifEnv* env,
SocketDescriptor* descP);
#endif
#if defined(IP_RECVTTL)
static ERL_NIF_TERM ngetopt_lvl_ip_recvttl(ErlNifEnv* env,
SocketDescriptor* descP);
#endif
#if defined(IP_RETOPTS)
static ERL_NIF_TERM ngetopt_lvl_ip_retopts(ErlNifEnv* env,
SocketDescriptor* descP);
#endif
#if defined(IP_ROUTER_ALERT)
static ERL_NIF_TERM ngetopt_lvl_ip_router_alert(ErlNifEnv* env,
SocketDescriptor* descP);
#endif
#if defined(IP_SENDSRCADDR)
static ERL_NIF_TERM ngetopt_lvl_ip_sendsrcaddr(ErlNifEnv* env,
SocketDescriptor* descP);
#endif
#if defined(IP_TOS)
static ERL_NIF_TERM ngetopt_lvl_ip_tos(ErlNifEnv* env,
SocketDescriptor* descP);
#endif
#if defined(IP_TRANSPARENT)
static ERL_NIF_TERM ngetopt_lvl_ip_transparent(ErlNifEnv* env,
SocketDescriptor* descP);
#endif
#if defined(IP_TTL)
static ERL_NIF_TERM ngetopt_lvl_ip_ttl(ErlNifEnv* env,
SocketDescriptor* descP);
#endif
#if defined(SOL_IPV6)
static ERL_NIF_TERM ngetopt_lvl_ipv6(ErlNifEnv* env,
SocketDescriptor* descP,
int eOpt);
#if defined(IPV6_AUTHHDR)
static ERL_NIF_TERM ngetopt_lvl_ipv6_authhdr(ErlNifEnv* env,
SocketDescriptor* descP);
#endif
#if defined(IPV6_DSTOPTS)
static ERL_NIF_TERM ngetopt_lvl_ipv6_dstopts(ErlNifEnv* env,
SocketDescriptor* descP);
#endif
#if defined(IPV6_FLOWINFO)
static ERL_NIF_TERM ngetopt_lvl_ipv6_flowinfo(ErlNifEnv* env,
SocketDescriptor* descP);
#endif
#if defined(IPV6_HOPLIMIT)
static ERL_NIF_TERM ngetopt_lvl_ipv6_hoplimit(ErlNifEnv* env,
SocketDescriptor* descP);
#endif
#if defined(IPV6_HOPOPTS)
static ERL_NIF_TERM ngetopt_lvl_ipv6_hopopts(ErlNifEnv* env,
SocketDescriptor* descP);
#endif
#if defined(IPV6_MTU)
static ERL_NIF_TERM ngetopt_lvl_ipv6_mtu(ErlNifEnv* env,
SocketDescriptor* descP);
#endif
#if defined(IPV6_MTU_DISCOVER)
static ERL_NIF_TERM ngetopt_lvl_ipv6_mtu_discover(ErlNifEnv* env,
SocketDescriptor* descP);
#endif
#if defined(IPV6_MULTICAST_HOPS)
static ERL_NIF_TERM ngetopt_lvl_ipv6_multicast_hops(ErlNifEnv* env,
SocketDescriptor* descP);
#endif
#if defined(IPV6_MULTICAST_IF)
static ERL_NIF_TERM ngetopt_lvl_ipv6_multicast_if(ErlNifEnv* env,
SocketDescriptor* descP);
#endif
#if defined(IPV6_MULTICAST_LOOP)
static ERL_NIF_TERM ngetopt_lvl_ipv6_multicast_loop(ErlNifEnv* env,
SocketDescriptor* descP);
#endif
#if defined(IPV6_RECVERR)
static ERL_NIF_TERM ngetopt_lvl_ipv6_recverr(ErlNifEnv* env,
SocketDescriptor* descP);
#endif
#if defined(IPV6_RECVPKTINFO) || defined(IPV6_PKTINFO)
static ERL_NIF_TERM ngetopt_lvl_ipv6_recvpktinfo(ErlNifEnv* env,
SocketDescriptor* descP);
#endif
#if defined(IPV6_ROUTER_ALERT)
static ERL_NIF_TERM ngetopt_lvl_ipv6_router_alert(ErlNifEnv* env,
SocketDescriptor* descP);
#endif
#if defined(IPV6_RTHDR)
static ERL_NIF_TERM ngetopt_lvl_ipv6_rthdr(ErlNifEnv* env,
SocketDescriptor* descP);
#endif
#if defined(IPV6_UNICAST_HOPS)
static ERL_NIF_TERM ngetopt_lvl_ipv6_unicast_hops(ErlNifEnv* env,
SocketDescriptor* descP);
#endif
#if defined(IPV6_V6ONLY)
static ERL_NIF_TERM ngetopt_lvl_ipv6_v6only(ErlNifEnv* env,
SocketDescriptor* descP);
#endif
#endif // defined(SOL_IPV6)
static ERL_NIF_TERM ngetopt_lvl_tcp(ErlNifEnv* env,
SocketDescriptor* descP,
int eOpt);
#if defined(TCP_CONGESTION)
static ERL_NIF_TERM ngetopt_lvl_tcp_congestion(ErlNifEnv* env,
SocketDescriptor* descP);
#endif
#if defined(TCP_MAXSEG)
static ERL_NIF_TERM ngetopt_lvl_tcp_maxseg(ErlNifEnv* env,
SocketDescriptor* descP);
#endif
#if defined(TCP_NODELAY)
static ERL_NIF_TERM ngetopt_lvl_tcp_nodelay(ErlNifEnv* env,
SocketDescriptor* descP);
#endif
static ERL_NIF_TERM ngetopt_lvl_udp(ErlNifEnv* env,
SocketDescriptor* descP,
int eOpt);
#if defined(UDP_CORK)
static ERL_NIF_TERM ngetopt_lvl_udp_cork(ErlNifEnv* env,
SocketDescriptor* descP);
#endif
#if defined(HAVE_SCTP)
static ERL_NIF_TERM ngetopt_lvl_sctp(ErlNifEnv* env,
SocketDescriptor* descP,
int eOpt);
#if defined(SCTP_ASSOCINFO)
static ERL_NIF_TERM ngetopt_lvl_sctp_associnfo(ErlNifEnv* env,
SocketDescriptor* descP);
#endif
#if defined(SCTP_AUTOCLOSE)
static ERL_NIF_TERM ngetopt_lvl_sctp_autoclose(ErlNifEnv* env,
SocketDescriptor* descP);
#endif
#if defined(SCTP_DISABLE_FRAGMENTS)
static ERL_NIF_TERM ngetopt_lvl_sctp_disable_fragments(ErlNifEnv* env,
SocketDescriptor* descP);
#endif
#if defined(SCTP_MAXSEG)
static ERL_NIF_TERM ngetopt_lvl_sctp_maxseg(ErlNifEnv* env,
SocketDescriptor* descP);
#endif
#if defined(SCTP_INITMSG)
static ERL_NIF_TERM ngetopt_lvl_sctp_initmsg(ErlNifEnv* env,
SocketDescriptor* descP);
#endif
#if defined(SCTP_NODELAY)
static ERL_NIF_TERM ngetopt_lvl_sctp_nodelay(ErlNifEnv* env,
SocketDescriptor* descP);
#endif
#if defined(SCTP_RTOINFO)
static ERL_NIF_TERM ngetopt_lvl_sctp_rtoinfo(ErlNifEnv* env,
SocketDescriptor* descP);
#endif
#endif // defined(HAVE_SCTP)
static ERL_NIF_TERM nsockname(ErlNifEnv* env,
SocketDescriptor* descP);
static ERL_NIF_TERM npeername(ErlNifEnv* env,
SocketDescriptor* descP);
static ERL_NIF_TERM nsetopt_str_opt(ErlNifEnv* env,
SocketDescriptor* descP,
int level,
int opt,
int max,
ERL_NIF_TERM eVal);
static ERL_NIF_TERM nsetopt_bool_opt(ErlNifEnv* env,
SocketDescriptor* descP,
int level,
int opt,
ERL_NIF_TERM eVal);
static ERL_NIF_TERM nsetopt_int_opt(ErlNifEnv* env,
SocketDescriptor* descP,
int level,
int opt,
ERL_NIF_TERM eVal);
static ERL_NIF_TERM nsetopt_timeval_opt(ErlNifEnv* env,
SocketDescriptor* descP,
int level,
int opt,
ERL_NIF_TERM eVal);
static ERL_NIF_TERM ngetopt_str_opt(ErlNifEnv* env,
SocketDescriptor* descP,
int level,
int opt,
int max);
static ERL_NIF_TERM ngetopt_bool_opt(ErlNifEnv* env,
SocketDescriptor* descP,
int level,
int opt);
static ERL_NIF_TERM ngetopt_int_opt(ErlNifEnv* env,
SocketDescriptor* descP,
int level,
int opt);
static ERL_NIF_TERM ngetopt_timeval_opt(ErlNifEnv* env,
SocketDescriptor* descP,
int level,
int opt);
static ERL_NIF_TERM send_check_result(ErlNifEnv* env,
SocketDescriptor* descP,
ssize_t written,
ssize_t dataSize,
int saveErrno,
ERL_NIF_TERM sendRef);
static ERL_NIF_TERM recv_check_result(ErlNifEnv* env,
SocketDescriptor* descP,
int read,
int toRead,
int saveErrno,
ErlNifBinary* bufP,
ERL_NIF_TERM recvRef);
static ERL_NIF_TERM recvfrom_check_result(ErlNifEnv* env,
SocketDescriptor* descP,
int read,
int saveErrno,
ErlNifBinary* bufP,
SocketAddress* fromAddrP,
unsigned int fromAddrLen,
ERL_NIF_TERM recvRef);
static ERL_NIF_TERM recvmsg_check_result(ErlNifEnv* env,
SocketDescriptor* descP,
int read,
int saveErrno,
struct msghdr* msgHdrP,
ErlNifBinary* dataBufP,
ErlNifBinary* ctrlBufP,
ERL_NIF_TERM recvRef);
static ERL_NIF_TERM nfinalize_connection(ErlNifEnv* env,
SocketDescriptor* descP);
static ERL_NIF_TERM nfinalize_close(ErlNifEnv* env,
SocketDescriptor* descP);
extern char* encode_msghdr(ErlNifEnv* env,
SocketDescriptor* descP,
int read,
struct msghdr* msgHdrP,
ErlNifBinary* dataBufP,
ErlNifBinary* ctrlBufP,
ERL_NIF_TERM* eSockAddr);
extern char* encode_cmsghdrs(ErlNifEnv* env,
SocketDescriptor* descP,
ErlNifBinary* cmsgBinP,
struct msghdr* msgHdrP,
ERL_NIF_TERM* eCMsgHdr);
extern char* decode_cmsghdrs(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eCMsgHdr,
char* cmsgHdrBufP,
size_t cmsgHdrBufLen,
size_t* cmsgHdrBufUsed);
extern char* decode_cmsghdr(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eCMsgHdr,
char* bufP,
size_t rem,
size_t* used);
static char* encode_cmsghdr_level(ErlNifEnv* env,
int level,
ERL_NIF_TERM* eLevel);
static char* decode_cmsghdr_level(ErlNifEnv* env,
ERL_NIF_TERM eLevel,
int* level);
static char* encode_cmsghdr_type(ErlNifEnv* env,
int level,
int type,
ERL_NIF_TERM* eType);
static char* decode_cmsghdr_type(ErlNifEnv* env,
int level,
ERL_NIF_TERM eType,
int* type);
static char* encode_cmsghdr_data(ErlNifEnv* env,
ERL_NIF_TERM ctrlBuf,
int level,
int type,
unsigned char* dataP,
size_t dataPos,
size_t dataLen,
ERL_NIF_TERM* eCMsgHdrData);
static char* encode_cmsghdr_data_socket(ErlNifEnv* env,
ERL_NIF_TERM ctrlBuf,
int type,
unsigned char* dataP,
size_t dataPos,
size_t dataLen,
ERL_NIF_TERM* eCMsgHdrData);
static char* encode_cmsghdr_data_ip(ErlNifEnv* env,
ERL_NIF_TERM ctrlBuf,
int type,
unsigned char* dataP,
size_t dataPos,
size_t dataLen,
ERL_NIF_TERM* eCMsgHdrData);
#if defined(SOL_IPV6)
static char* encode_cmsghdr_data_ipv6(ErlNifEnv* env,
ERL_NIF_TERM ctrlBuf,
int type,
unsigned char* dataP,
size_t dataPos,
size_t dataLen,
ERL_NIF_TERM* eCMsgHdrData);
#endif
extern char* encode_msghdr_flags(ErlNifEnv* env,
SocketDescriptor* descP,
int msgFlags,
ERL_NIF_TERM* flags);
static char* decode_cmsghdr_data(ErlNifEnv* env,
SocketDescriptor* descP,
char* bufP,
size_t rem,
int level,
int type,
ERL_NIF_TERM eData,
size_t* used);
static char* decode_cmsghdr_final(SocketDescriptor* descP,
char* bufP,
size_t rem,
int level,
int type,
char* data,
int sz,
size_t* used);
static BOOLEAN_T decode_sock_linger(ErlNifEnv* env,
ERL_NIF_TERM eVal,
struct linger* valP);
#if defined(IP_TOS)
static BOOLEAN_T decode_ip_tos(ErlNifEnv* env,
ERL_NIF_TERM eVal,
int* val);
#endif
#if defined(IP_MTU_DISCOVER)
static char* decode_ip_pmtudisc(ErlNifEnv* env,
ERL_NIF_TERM eVal,
int* val);
#endif
#if defined(IP_MTU_DISCOVER)
static void encode_ip_pmtudisc(ErlNifEnv* env,
int val,
ERL_NIF_TERM* eVal);
#endif
#if defined(IPV6_MTU_DISCOVER)
static char* decode_ipv6_pmtudisc(ErlNifEnv* env,
ERL_NIF_TERM eVal,
int* val);
#endif
#if defined(IPV6_MTU_DISCOVER)
static void encode_ipv6_pmtudisc(ErlNifEnv* env,
int val,
ERL_NIF_TERM* eVal);
#endif
/*
static BOOLEAN_T decode_bool(ErlNifEnv* env,
ERL_NIF_TERM eVal,
BOOLEAN_T* val);
*/
static BOOLEAN_T decode_native_get_opt(ErlNifEnv* env,
ERL_NIF_TERM eVal,
int* opt,
uint16_t* valueType,
int* valueSz);
// static void encode_bool(BOOLEAN_T val, ERL_NIF_TERM* eVal);
static ERL_NIF_TERM encode_ip_tos(ErlNifEnv* env, int val);
static void inform_waiting_procs(ErlNifEnv* env,
SocketDescriptor* descP,
SocketRequestQueue* q,
BOOLEAN_T free,
ERL_NIF_TERM reason);
static int socket_setopt(int sock,
int level,
int opt,
const void* optVal,
const socklen_t optLen);
static BOOLEAN_T verify_is_connected(SocketDescriptor* descP, int* err);
static SocketDescriptor* alloc_descriptor(SOCKET sock, HANDLE event);
static int compare_pids(ErlNifEnv* env,
const ErlNifPid* pid1,
const ErlNifPid* pid2);
static BOOLEAN_T edomain2domain(int edomain, int* domain);
static BOOLEAN_T etype2type(int etype, int* type);
static BOOLEAN_T eproto2proto(ErlNifEnv* env,
const ERL_NIF_TERM eproto,
int* proto);
static BOOLEAN_T ehow2how(unsigned int ehow, int* how);
static BOOLEAN_T esendflags2sendflags(unsigned int esendflags, int* sendflags);
static BOOLEAN_T erecvflags2recvflags(unsigned int erecvflags, int* recvflags);
static BOOLEAN_T elevel2level(BOOLEAN_T isEncoded,
int eLevel,
BOOLEAN_T* isOTP,
int* level);
#ifdef HAVE_SETNS
static BOOLEAN_T emap2netns(ErlNifEnv* env, ERL_NIF_TERM map, char** netns);
static BOOLEAN_T change_network_namespace(char* netns, int* cns, int* err);
static BOOLEAN_T restore_network_namespace(int ns, SOCKET sock, int* err);
#endif
static BOOLEAN_T cnt_inc(uint32_t* cnt, uint32_t inc);
static void cnt_dec(uint32_t* cnt, uint32_t dec);
static void inc_socket(int domain, int type, int protocol);
static void dec_socket(int domain, int type, int protocol);
static BOOLEAN_T acceptor_search4pid(ErlNifEnv* env,
SocketDescriptor* descP,
ErlNifPid* pid);
static ERL_NIF_TERM acceptor_push(ErlNifEnv* env,
SocketDescriptor* descP,
ErlNifPid pid,
ERL_NIF_TERM ref);
static BOOLEAN_T acceptor_pop(ErlNifEnv* env,
SocketDescriptor* descP,
ErlNifPid* pid,
ErlNifMonitor* mon,
ERL_NIF_TERM* ref);
static BOOLEAN_T qsearch4pid(ErlNifEnv* env,
SocketRequestQueue* q,
ErlNifPid* pid);
static void qpush(SocketRequestQueue* q,
SocketRequestQueueElement* e);
static SocketRequestQueueElement* qpop(SocketRequestQueue* q);
static BOOLEAN_T qunqueue(ErlNifEnv* env,
SocketRequestQueue* q,
const ErlNifPid* pid);
/*
#if defined(HAVE_SYS_UN_H) || defined(SO_BINDTODEVICE)
static size_t my_strnlen(const char *s, size_t maxlen);
#endif
*/
static void socket_dtor(ErlNifEnv* env, void* obj);
static void socket_stop(ErlNifEnv* env,
void* obj,
int fd,
int is_direct_call);
static void socket_down(ErlNifEnv* env,
void* obj,
const ErlNifPid* pid,
const ErlNifMonitor* mon);
/*
static char* send_msg_error_closed(ErlNifEnv* env,
ErlNifPid* pid);
*/
/*
static char* send_msg_error(ErlNifEnv* env,
ERL_NIF_TERM reason,
ErlNifPid* pid);
*/
static char* send_msg_nif_abort(ErlNifEnv* env,
ERL_NIF_TERM ref,
ERL_NIF_TERM reason,
ErlNifPid* pid);
static char* send_msg(ErlNifEnv* env,
ERL_NIF_TERM msg,
ErlNifPid* pid);
static BOOLEAN_T extract_debug(ErlNifEnv* env,
ERL_NIF_TERM map);
static BOOLEAN_T extract_iow(ErlNifEnv* env,
ERL_NIF_TERM map);
static int on_load(ErlNifEnv* env, void** priv_data, ERL_NIF_TERM load_info);
#if HAVE_IN6
# if ! defined(HAVE_IN6ADDR_ANY) || ! HAVE_IN6ADDR_ANY
# if HAVE_DECL_IN6ADDR_ANY_INIT
static const struct in6_addr in6addr_any = { { IN6ADDR_ANY_INIT } };
# else
static const struct in6_addr in6addr_any =
{ { { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 } } };
# endif /* HAVE_IN6ADDR_ANY_INIT */
# endif /* ! HAVE_DECL_IN6ADDR_ANY */
# if ! defined(HAVE_IN6ADDR_LOOPBACK) || ! HAVE_IN6ADDR_LOOPBACK
# if HAVE_DECL_IN6ADDR_LOOPBACK_INIT
static const struct in6_addr in6addr_loopback =
{ { IN6ADDR_LOOPBACK_INIT } };
# else
static const struct in6_addr in6addr_loopback =
{ { { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1 } } };
# endif /* HAVE_IN6ADDR_LOOPBACk_INIT */
# endif /* ! HAVE_DECL_IN6ADDR_LOOPBACK */
#endif /* HAVE_IN6 */
/* *** String constants *** */
static char str_adaptation_layer[] = "adaptation_layer";
static char str_address[] = "address";
static char str_association[] = "association";
static char str_assoc_id[] = "assoc_id";
static char str_authentication[] = "authentication";
// static char str_any[] = "any";
static char str_bool[] = "bool";
static char str_close[] = "close";
static char str_closed[] = "closed";
static char str_closing[] = "closing";
static char str_cookie_life[] = "cookie_life";
static char str_data_in[] = "data_in";
static char str_do[] = "do";
static char str_dont[] = "dont";
static char str_exclude[] = "exclude";
static char str_false[] = "false";
static char str_global_counters[] = "global_counters";
static char str_in4_sockaddr[] = "in4_sockaddr";
static char str_in6_sockaddr[] = "in6_sockaddr";
static char str_include[] = "include";
static char str_initial[] = "initial";
static char str_int[] = "int";
static char str_interface[] = "interface";
static char str_iow[] = "iow";
static char str_local_rwnd[] = "local_rwnd";
// static char str_loopback[] = "loopback";
static char str_max[] = "max";
static char str_max_attempts[] = "max_attempts";
static char str_max_init_timeo[] = "max_init_timeo";
static char str_max_instreams[] = "max_instreams";
static char str_max_rxt[] = "max_rxt";
static char str_min[] = "min";
static char str_mode[] = "mode";
static char str_multiaddr[] = "multiaddr";
static char str_nif_abort[] = "nif_abort";
static char str_null[] = "null";
static char str_num_dlocal[] = "num_domain_local";
static char str_num_dinet[] = "num_domain_inet";
static char str_num_dinet6[] = "num_domain_inet6";
static char str_num_outstreams[] = "num_outstreams";
static char str_num_peer_dests[] = "num_peer_dests";
static char str_num_pip[] = "num_proto_ip";
static char str_num_psctp[] = "num_proto_sctp";
static char str_num_ptcp[] = "num_proto_tcp";
static char str_num_pudp[] = "num_proto_udp";
static char str_num_sockets[] = "num_sockets";
static char str_num_tdgrams[] = "num_type_dgram";
static char str_num_tseqpkgs[] = "num_type_seqpacket";
static char str_num_tstreams[] = "num_type_stream";
static char str_partial_delivery[] = "partial_delivery";
static char str_peer_error[] = "peer_error";
static char str_peer_rwnd[] = "peer_rwnd";
static char str_probe[] = "probe";
static char str_select[] = "select";
static char str_sender_dry[] = "sender_dry";
static char str_send_failure[] = "send_failure";
static char str_shutdown[] = "shutdown";
static char str_slist[] = "slist";
static char str_sourceaddr[] = "sourceaddr";
static char str_timeout[] = "timeout";
static char str_true[] = "true";
static char str_want[] = "want";
/* (special) error string constants */
static char str_eisconn[] = "eisconn";
static char str_enotclosing[] = "enotclosing";
static char str_enotconn[] = "enotconn";
static char str_exalloc[] = "exalloc";
static char str_exbadstate[] = "exbadstate";
static char str_exbusy[] = "exbusy";
static char str_exmon[] = "exmonitor"; // failed monitor
static char str_exself[] = "exself"; // failed self
static char str_exsend[] = "exsend"; // failed send
/* *** "Global" Atoms *** */
ERL_NIF_TERM esock_atom_addr;
ERL_NIF_TERM esock_atom_any;
ERL_NIF_TERM esock_atom_credentials;
ERL_NIF_TERM esock_atom_ctrl;
ERL_NIF_TERM esock_atom_ctrunc;
ERL_NIF_TERM esock_atom_data;
ERL_NIF_TERM esock_atom_dgram;
ERL_NIF_TERM esock_atom_debug;
ERL_NIF_TERM esock_atom_eor;
ERL_NIF_TERM esock_atom_error;
ERL_NIF_TERM esock_atom_errqueue;
ERL_NIF_TERM esock_atom_false;
ERL_NIF_TERM esock_atom_family;
ERL_NIF_TERM esock_atom_flags;
ERL_NIF_TERM esock_atom_flowinfo;
ERL_NIF_TERM esock_atom_ifindex;
ERL_NIF_TERM esock_atom_inet;
ERL_NIF_TERM esock_atom_inet6;
ERL_NIF_TERM esock_atom_iov;
ERL_NIF_TERM esock_atom_ip;
ERL_NIF_TERM esock_atom_ipv6;
ERL_NIF_TERM esock_atom_level;
ERL_NIF_TERM esock_atom_local;
ERL_NIF_TERM esock_atom_loopback;
ERL_NIF_TERM esock_atom_lowdelay;
ERL_NIF_TERM esock_atom_mincost;
ERL_NIF_TERM esock_atom_ok;
ERL_NIF_TERM esock_atom_oob;
ERL_NIF_TERM esock_atom_origdstaddr;
ERL_NIF_TERM esock_atom_path;
ERL_NIF_TERM esock_atom_pktinfo;
ERL_NIF_TERM esock_atom_port;
ERL_NIF_TERM esock_atom_protocol;
ERL_NIF_TERM esock_atom_raw;
ERL_NIF_TERM esock_atom_rdm;
ERL_NIF_TERM esock_atom_rights;
ERL_NIF_TERM esock_atom_reliability;
ERL_NIF_TERM esock_atom_scope_id;
ERL_NIF_TERM esock_atom_sctp;
ERL_NIF_TERM esock_atom_sec;
ERL_NIF_TERM esock_atom_seqpacket;
ERL_NIF_TERM esock_atom_socket;
ERL_NIF_TERM esock_atom_spec_dst;
ERL_NIF_TERM esock_atom_stream;
ERL_NIF_TERM esock_atom_tcp;
ERL_NIF_TERM esock_atom_throughput;
ERL_NIF_TERM esock_atom_timestamp;
ERL_NIF_TERM esock_atom_tos;
ERL_NIF_TERM esock_atom_true;
ERL_NIF_TERM esock_atom_trunc;
ERL_NIF_TERM esock_atom_ttl;
ERL_NIF_TERM esock_atom_type;
ERL_NIF_TERM esock_atom_udp;
ERL_NIF_TERM esock_atom_undefined;
ERL_NIF_TERM esock_atom_unknown;
ERL_NIF_TERM esock_atom_usec;
/* *** "Global" error (=reason) atoms *** */
ERL_NIF_TERM esock_atom_eagain;
ERL_NIF_TERM esock_atom_eafnosupport;
ERL_NIF_TERM esock_atom_einval;
/* *** Atoms *** */
static ERL_NIF_TERM atom_adaptation_layer;
static ERL_NIF_TERM atom_address;
static ERL_NIF_TERM atom_association;
static ERL_NIF_TERM atom_assoc_id;
static ERL_NIF_TERM atom_authentication;
static ERL_NIF_TERM atom_bool;
static ERL_NIF_TERM atom_close;
static ERL_NIF_TERM atom_closed;
static ERL_NIF_TERM atom_closing;
static ERL_NIF_TERM atom_cookie_life;
static ERL_NIF_TERM atom_data_in;
static ERL_NIF_TERM atom_do;
static ERL_NIF_TERM atom_dont;
static ERL_NIF_TERM atom_exclude;
static ERL_NIF_TERM atom_false;
static ERL_NIF_TERM atom_global_counters;
static ERL_NIF_TERM atom_in4_sockaddr;
static ERL_NIF_TERM atom_in6_sockaddr;
static ERL_NIF_TERM atom_include;
static ERL_NIF_TERM atom_initial;
static ERL_NIF_TERM atom_int;
static ERL_NIF_TERM atom_interface;
static ERL_NIF_TERM atom_iow;
static ERL_NIF_TERM atom_local_rwnd;
static ERL_NIF_TERM atom_max;
static ERL_NIF_TERM atom_max_attempts;
static ERL_NIF_TERM atom_max_init_timeo;
static ERL_NIF_TERM atom_max_instreams;
static ERL_NIF_TERM atom_max_rxt;
static ERL_NIF_TERM atom_min;
static ERL_NIF_TERM atom_mode;
static ERL_NIF_TERM atom_multiaddr;
static ERL_NIF_TERM atom_nif_abort;
static ERL_NIF_TERM atom_null;
static ERL_NIF_TERM atom_num_dinet;
static ERL_NIF_TERM atom_num_dinet6;
static ERL_NIF_TERM atom_num_dlocal;
static ERL_NIF_TERM atom_num_outstreams;
static ERL_NIF_TERM atom_num_peer_dests;
static ERL_NIF_TERM atom_num_pip;
static ERL_NIF_TERM atom_num_psctp;
static ERL_NIF_TERM atom_num_ptcp;
static ERL_NIF_TERM atom_num_pudp;
static ERL_NIF_TERM atom_num_sockets;
static ERL_NIF_TERM atom_num_tdgrams;
static ERL_NIF_TERM atom_num_tseqpkgs;
static ERL_NIF_TERM atom_num_tstreams;
static ERL_NIF_TERM atom_partial_delivery;
static ERL_NIF_TERM atom_peer_error;
static ERL_NIF_TERM atom_peer_rwnd;
static ERL_NIF_TERM atom_probe;
static ERL_NIF_TERM atom_select;
static ERL_NIF_TERM atom_sender_dry;
static ERL_NIF_TERM atom_send_failure;
static ERL_NIF_TERM atom_shutdown;
static ERL_NIF_TERM atom_slist;
static ERL_NIF_TERM atom_sourceaddr;
static ERL_NIF_TERM atom_timeout;
static ERL_NIF_TERM atom_true;
static ERL_NIF_TERM atom_want;
static ERL_NIF_TERM atom_eisconn;
static ERL_NIF_TERM atom_enotclosing;
static ERL_NIF_TERM atom_enotconn;
static ERL_NIF_TERM atom_exalloc;
static ERL_NIF_TERM atom_exbadstate;
static ERL_NIF_TERM atom_exbusy;
static ERL_NIF_TERM atom_exmon;
static ERL_NIF_TERM atom_exself;
static ERL_NIF_TERM atom_exsend;
/* *** Sockets *** */
static ErlNifResourceType* sockets;
static ErlNifResourceTypeInit socketInit = {
socket_dtor,
socket_stop,
(ErlNifResourceDown*) socket_down
};
// Initiated when the nif is loaded
static SocketData data;
/* ----------------------------------------------------------------------
* N I F F u n c t i o n s
* ----------------------------------------------------------------------
*
* Utility and admin functions:
* ----------------------------
* nif_info/0
* (nif_debug/1)
*
* The "proper" socket functions:
* ------------------------------
* nif_open(Domain, Type, Protocol, Extra)
* nif_bind(Sock, LocalAddr)
* nif_connect(Sock, SockAddr)
* nif_listen(Sock, Backlog)
* nif_accept(LSock, Ref)
* nif_send(Sock, SendRef, Data, Flags)
* nif_sendto(Sock, SendRef, Data, Dest, Flags)
* nif_sendmsg(Sock, SendRef, MsgHdr, Flags)
* nif_recv(Sock, RecvRef, Length, Flags)
* nif_recvfrom(Sock, RecvRef, BufSz, Flags)
* nif_recvmsg(Sock, RecvRef, BufSz, CtrlSz, Flags)
* nif_close(Sock)
* nif_shutdown(Sock, How)
* nif_sockname(Sock)
* nif_peername(Sock)
*
* And some functions to manipulate and retrieve socket options:
* -------------------------------------------------------------
* nif_setopt/5
* nif_getopt/4
*
* And some utility functions:
* -------------------------------------------------------------
*
* And some socket admin functions:
* -------------------------------------------------------------
* nif_cancel(Sock, Ref)
*/
/* ----------------------------------------------------------------------
* nif_info
*
* Description:
* This is currently just a placeholder...
*/
#define MKCT(E, T, C) MKT2((E), (T), MKI((E), (C)))
static
ERL_NIF_TERM nif_info(ErlNifEnv* env,
int argc,
const ERL_NIF_TERM argv[])
{
if (argc != 0) {
return enif_make_badarg(env);
} else {
ERL_NIF_TERM numSockets = MKCT(env, atom_num_sockets, data.numSockets);
ERL_NIF_TERM numTypeDGrams = MKCT(env, atom_num_tdgrams, data.numTypeDGrams);
ERL_NIF_TERM numTypeStreams = MKCT(env, atom_num_tstreams, data.numTypeStreams);
ERL_NIF_TERM numTypeSeqPkgs = MKCT(env, atom_num_tseqpkgs, data.numTypeSeqPkgs);
ERL_NIF_TERM numDomLocal = MKCT(env, atom_num_dlocal, data.numDomainLocal);
ERL_NIF_TERM numDomInet = MKCT(env, atom_num_dinet, data.numDomainInet);
ERL_NIF_TERM numDomInet6 = MKCT(env, atom_num_dinet6, data.numDomainInet6);
ERL_NIF_TERM numProtoIP = MKCT(env, atom_num_pip, data.numProtoIP);
ERL_NIF_TERM numProtoTCP = MKCT(env, atom_num_ptcp, data.numProtoTCP);
ERL_NIF_TERM numProtoUDP = MKCT(env, atom_num_pudp, data.numProtoUDP);
ERL_NIF_TERM numProtoSCTP = MKCT(env, atom_num_psctp, data.numProtoSCTP);
ERL_NIF_TERM gcnt[] = {numSockets,
numTypeDGrams, numTypeStreams, numTypeSeqPkgs,
numDomLocal, numDomInet, numDomInet6,
numProtoIP, numProtoTCP, numProtoUDP, numProtoSCTP};
unsigned int lenGCnt = sizeof(gcnt) / sizeof(ERL_NIF_TERM);
ERL_NIF_TERM lgcnt = MKLA(env, gcnt, lenGCnt);
ERL_NIF_TERM keys[] = {esock_atom_debug, atom_iow, atom_global_counters};
ERL_NIF_TERM vals[] = {BOOL2ATOM(data.dbg), BOOL2ATOM(data.iow), lgcnt};
ERL_NIF_TERM info;
unsigned int numKeys = sizeof(keys) / sizeof(ERL_NIF_TERM);
unsigned int numVals = sizeof(vals) / sizeof(ERL_NIF_TERM);
ESOCK_ASSERT( (numKeys == numVals) );
if (!MKMA(env, keys, vals, numKeys, &info))
return enif_make_badarg(env);
return info;
}
}
/* ----------------------------------------------------------------------
* nif_open
*
* Description:
* Create an endpoint for communication.
*
* Arguments:
* Domain - The domain, for example 'inet'
* Type - Type of socket, for example 'stream'
* Protocol - The protocol, for example 'tcp'
* Extra - A map with "obscure" options.
* Currently the only allowed option is netns (network namespace).
* This is *only* allowed on linux!
*/
static
ERL_NIF_TERM nif_open(ErlNifEnv* env,
int argc,
const ERL_NIF_TERM argv[])
{
int edomain, etype, eproto;
int domain, type, proto;
char* netns;
ERL_NIF_TERM emap;
ERL_NIF_TERM result;
SGDBG( ("SOCKET", "nif_open -> entry with %d args\r\n", argc) );
/* Extract arguments and perform preliminary validation */
if ((argc != 4) ||
!GET_INT(env, argv[0], &edomain) ||
!GET_INT(env, argv[1], &etype) ||
!IS_MAP(env, argv[3])) {
return enif_make_badarg(env);
}
eproto = argv[2];
emap = argv[3];
SGDBG( ("SOCKET", "nif_open -> "
"\r\n edomain: %T"
"\r\n etype: %T"
"\r\n eproto: %T"
"\r\n extra: %T"
"\r\n", argv[0], argv[1], eproto, emap) );
if (!edomain2domain(edomain, &domain)) {
SGDBG( ("SOCKET", "nif_open -> domain: %d\r\n", domain) );
return esock_make_error(env, esock_atom_einval);
}
if (!etype2type(etype, &type)) {
SGDBG( ("SOCKET", "nif_open -> type: %d\r\n", type) );
return esock_make_error(env, esock_atom_einval);
}
if (!eproto2proto(env, eproto, &proto)) {
SGDBG( ("SOCKET", "nif_open -> protocol: %d\r\n", proto) );
return esock_make_error(env, esock_atom_einval);
}
#ifdef HAVE_SETNS
/* We *currently* only support one extra option: netns */
if (!emap2netns(env, emap, &netns)) {
SGDBG( ("SOCKET", "nif_open -> namespace: %s\r\n", netns) );
return enif_make_badarg(env);
}
#else
netns = NULL;
#endif
result = nopen(env, domain, type, proto, netns);
SGDBG( ("SOCKET", "nif_open -> done with result: "
"\r\n %T"
"\r\n", result) );
return result;
}
/* nopen - create an endpoint for communication
*
* Assumes the input has been validated.
*
* Normally we want debugging on (individual) sockets to be controlled
* by the sockets own debug flag. But since we don't even have a socket
* yet, we must use the global debug flag.
*/
static
ERL_NIF_TERM nopen(ErlNifEnv* env,
int domain, int type, int protocol,
char* netns)
{
SocketDescriptor* descP;
ERL_NIF_TERM res;
int save_errno = 0;
SOCKET sock;
HANDLE event;
#ifdef HAVE_SETNS
int current_ns = 0;
#endif
SGDBG( ("SOCKET", "nopen -> entry with"
"\r\n domain: %d"
"\r\n type: %d"
"\r\n protocol: %d"
"\r\n netns: %s"
"\r\n", domain, type, protocol, ((netns == NULL) ? "NULL" : netns)) );
#ifdef HAVE_SETNS
if ((netns != NULL) &&
!change_network_namespace(netns, ¤t_ns, &save_errno))
return esock_make_error_errno(env, save_errno);
#endif
if ((sock = sock_open(domain, type, protocol)) == INVALID_SOCKET)
return esock_make_error_errno(env, sock_errno());
SGDBG( ("SOCKET", "nopen -> open success: %d\r\n", sock) );
#ifdef HAVE_SETNS
if ((netns != NULL) &&
!restore_network_namespace(current_ns, sock, &save_errno))
return esock_make_error_errno(env, save_errno);
if (netns != NULL)
FREE(netns);
#endif
if ((event = sock_create_event(sock)) == INVALID_EVENT) {
save_errno = sock_errno();
while ((sock_close(sock) == INVALID_SOCKET) && (sock_errno() == EINTR));
return esock_make_error_errno(env, save_errno);
}
SGDBG( ("SOCKET", "nopen -> event success: %d\r\n", event) );
SET_NONBLOCKING(sock);
/* Create and initiate the socket "descriptor" */
if ((descP = alloc_descriptor(sock, event)) == NULL) {
sock_close(sock);
// Not sure if this is really the proper error, but...
return enif_make_badarg(env);
}
descP->state = SOCKET_STATE_OPEN;
descP->domain = domain;
descP->type = type;
descP->protocol = protocol;
res = enif_make_resource(env, descP);
enif_release_resource(descP); // We should really store a reference ...
/* Keep track of the creator
* This should not be a problem but just in case
* the *open* function is used with the wrong kind
* of environment...
*/
if (enif_self(env, &descP->ctrlPid) == NULL)
return esock_make_error(env, atom_exself);
if (MONP(env, descP,
&descP->ctrlPid,
&descP->ctrlMon) > 0)
return esock_make_error(env, atom_exmon);
#ifdef __WIN32__
/* <KOLLA
*
* What is the point of this?
* And how do we handle it?
* Since the select message will be delivered to the controlling
* process, which has no idea what to do with this...
*
* TODO!
*
* </KOLLA>
*/
SELECT(env,
event,
(ERL_NIF_SELECT_READ),
descP, NULL, esock_atom_undefined);
#endif
inc_socket(domain, type, protocol);
return esock_make_ok2(env, res);
}
#ifdef HAVE_SETNS
/* We should really have another API, so that we can return errno... */
/* *** change network namespace ***
* Retreive the current namespace and set the new.
* Return result and previous namespace if successfull.
*/
static
BOOLEAN_T change_network_namespace(char* netns, int* cns, int* err)
{
int save_errno;
int current_ns = 0;
int new_ns = 0;
SGDBG( ("SOCKET", "change_network_namespace -> entry with"
"\r\n new ns: %s", netns) );
if (netns != NULL) {
current_ns = open("/proc/self/ns/net", O_RDONLY);
if (current_ns == INVALID_SOCKET) {
*cns = current_ns;
*err = sock_errno();
return FALSE;
}
new_ns = open(netns, O_RDONLY);
if (new_ns == INVALID_SOCKET) {
save_errno = sock_errno();
while (close(current_ns) == INVALID_SOCKET &&
sock_errno() == EINTR);
*cns = -1;
*err = save_errno;
return FALSE;
}
if (setns(new_ns, CLONE_NEWNET) != 0) {
save_errno = sock_errno();
while ((close(new_ns) == INVALID_SOCKET) &&
(sock_errno() == EINTR));
while ((close(current_ns) == INVALID_SOCKET) &&
(sock_errno() == EINTR));
*cns = -1;
*err = save_errno;
return FALSE;
} else {
while ((close(new_ns) == INVALID_SOCKET) &&
(sock_errno() == EINTR));
*cns = current_ns;
*err = 0;
return TRUE;
}
} else {
*cns = INVALID_SOCKET;
*err = 0;
return TRUE;
}
}
/* *** restore network namespace ***
* Restore the previous namespace (see above).
*/
static
BOOLEAN_T restore_network_namespace(int ns, SOCKET sock, int* err)
{
int save_errno;
SGDBG( ("SOCKET", "restore_network_namespace -> entry with"
"\r\n ns: %d", ns) );
if (ns != INVALID_SOCKET) {
if (setns(ns, CLONE_NEWNET) != 0) {
/* XXX Failed to restore network namespace.
* What to do? Tidy up and return an error...
* Note that the thread now might still be in the namespace.
* Can this even happen? Should the emulator be aborted?
*/
if (sock != INVALID_SOCKET)
save_errno = sock_errno();
while (close(sock) == INVALID_SOCKET &&
sock_errno() == EINTR);
sock = INVALID_SOCKET;
while (close(ns) == INVALID_SOCKET &&
sock_errno() == EINTR);
*err = save_errno;
return FALSE;
} else {
while (close(ns) == INVALID_SOCKET &&
sock_errno() == EINTR);
*err = 0;
return TRUE;
}
}
*err = 0;
return TRUE;
}
#endif
/* ----------------------------------------------------------------------
* nif_bind
*
* Description:
* Bind a name to a socket.
*
* Arguments:
* [0] Socket (ref) - Points to the socket descriptor.
* [1] LocalAddr - Local address is a sockaddr map ( socket:sockaddr() ).
*/
static
ERL_NIF_TERM nif_bind(ErlNifEnv* env,
int argc,
const ERL_NIF_TERM argv[])
{
SocketDescriptor* descP;
ERL_NIF_TERM eSockAddr;
SocketAddress sockAddr;
unsigned int addrLen;
char* xres;
SGDBG( ("SOCKET", "nif_bind -> entry with argc: %d\r\n", argc) );
/* Extract arguments and perform preliminary validation */
if ((argc != 2) ||
!enif_get_resource(env, argv[0], sockets, (void**) &descP)) {
return enif_make_badarg(env);
}
eSockAddr = argv[1];
SSDBG( descP,
("SOCKET", "nif_bind -> args when sock = %d:"
"\r\n Socket: %T"
"\r\n SockAddr: %T"
"\r\n", descP->sock, argv[0], eSockAddr) );
/* Make sure we are ready
* Not sure how this would even happen, but...
*/
/* WHY NOT !IS_OPEN(...) */
if (descP->state != SOCKET_STATE_OPEN)
return esock_make_error(env, atom_exbadstate);
if ((xres = esock_decode_sockaddr(env, eSockAddr, &sockAddr, &addrLen)) != NULL)
return esock_make_error_str(env, xres);
return nbind(env, descP, &sockAddr, addrLen);
}
static
ERL_NIF_TERM nbind(ErlNifEnv* env,
SocketDescriptor* descP,
SocketAddress* sockAddrP,
unsigned int addrLen)
{
int port, ntohs_port;
SSDBG( descP, ("SOCKET", "nbind -> try bind\r\n") );
if (IS_SOCKET_ERROR(sock_bind(descP->sock,
(struct sockaddr*) sockAddrP, addrLen))) {
return esock_make_error_errno(env, sock_errno());
}
SSDBG( descP, ("SOCKET", "nbind -> bound - get port\r\n") );
port = which_address_port(sockAddrP);
SSDBG( descP, ("SOCKET", "nbind -> port: %d\r\n", port) );
if (port == 0) {
SOCKLEN_T len = sizeof(SocketAddress);
sys_memzero((char *) sockAddrP, len);
sock_name(descP->sock, &sockAddrP->sa, &len);
port = which_address_port(sockAddrP);
} else if (port == -1) {
port = 0;
}
ntohs_port = sock_ntohs(port);
SSDBG( descP, ("SOCKET", "nbind -> done with port = %d\r\n", ntohs_port) );
return esock_make_ok2(env, MKI(env, ntohs_port));
}
/* ----------------------------------------------------------------------
* nif_connect
*
* Description:
* Initiate a connection on a socket
*
* Arguments:
* Socket (ref) - Points to the socket descriptor.
* SockAddr - Socket Address of "remote" host.
* This is sockaddr(), which is either
* sockaddr_in4 or sockaddr_in6.
*/
static
ERL_NIF_TERM nif_connect(ErlNifEnv* env,
int argc,
const ERL_NIF_TERM argv[])
{
SocketDescriptor* descP;
ERL_NIF_TERM eSockAddr;
char* xres;
SGDBG( ("SOCKET", "nif_connect -> entry with argc: %d\r\n", argc) );
/* Extract arguments and perform preliminary validation */
if ((argc != 2) ||
!enif_get_resource(env, argv[0], sockets, (void**) &descP)) {
return enif_make_badarg(env);
}
eSockAddr = argv[1];
SSDBG( descP,
("SOCKET", "nif_connect -> args when sock = %d:"
"\r\n Socket: %T"
"\r\n SockAddr: %T"
"\r\n", descP->sock, argv[0], eSockAddr) );
if ((xres = esock_decode_sockaddr(env, eSockAddr,
&descP->remote, &descP->addrLen)) != NULL) {
return esock_make_error_str(env, xres);
}
return nconnect(env, descP);
}
static
ERL_NIF_TERM nconnect(ErlNifEnv* env,
SocketDescriptor* descP)
{
int code;
/* Verify that we are where in the proper state */
if (!IS_OPEN(descP))
return esock_make_error(env, atom_exbadstate);
if (IS_CONNECTED(descP))
return esock_make_error(env, atom_eisconn);
if (IS_CONNECTING(descP))
return esock_make_error(env, esock_atom_einval);
code = sock_connect(descP->sock,
(struct sockaddr*) &descP->remote,
descP->addrLen);
if (IS_SOCKET_ERROR(code) &&
((sock_errno() == ERRNO_BLOCK) || /* Winsock2 */
(sock_errno() == EINPROGRESS))) { /* Unix & OSE!! */
ERL_NIF_TERM ref = MKREF(env);
descP->state = SOCKET_STATE_CONNECTING;
SELECT(env,
descP->sock,
(ERL_NIF_SELECT_WRITE),
descP, NULL, ref);
return esock_make_ok2(env, ref);
} else if (code == 0) { /* ok we are connected */
descP->state = SOCKET_STATE_CONNECTED;
/* Do we need to do somthing for "active" mode?
* Is there even such a thing *here*?
*/
return esock_atom_ok;
} else {
return esock_make_error_errno(env, sock_errno());
}
}
/* ----------------------------------------------------------------------
* nif_finalize_connection
*
* Description:
* Make socket ready for input and output.
*
* Arguments:
* Socket (ref) - Points to the socket descriptor.
*/
static
ERL_NIF_TERM nif_finalize_connection(ErlNifEnv* env,
int argc,
const ERL_NIF_TERM argv[])
{
SocketDescriptor* descP;
/* Extract arguments and perform preliminary validation */
if ((argc != 1) ||
!enif_get_resource(env, argv[0], sockets, (void**) &descP)) {
return enif_make_badarg(env);
}
return nfinalize_connection(env, descP);
}
/* *** nfinalize_connection ***
* Perform the final check to verify a connection.
*/
static
ERL_NIF_TERM nfinalize_connection(ErlNifEnv* env,
SocketDescriptor* descP)
{
int error;
if (descP->state != SOCKET_STATE_CONNECTING)
return esock_make_error(env, atom_enotconn);
if (!verify_is_connected(descP, &error)) {
descP->state = SOCKET_STATE_OPEN; /* restore state */
return esock_make_error_errno(env, error);
}
descP->state = SOCKET_STATE_CONNECTED;
return esock_atom_ok;
}
/* *** verify_is_connected ***
* Check if a connection has been established.
*/
static
BOOLEAN_T verify_is_connected(SocketDescriptor* descP, int* err)
{
/*
* *** This is strange ***
*
* This *should* work on Windows NT too, but doesn't.
* An bug in Winsock 2.0 for Windows NT?
*
* See "Unix Netwok Programming", W.R.Stevens, p 412 for a
* discussion about Unix portability and non blocking connect.
*/
#ifndef SO_ERROR
int sz, code;
sz = sizeof(descP->remote);
sys_memzero((char *) &descP->remote, sz);
code = sock_peer(desc->sock,
(struct sockaddr*) &descP->remote, &sz);
if (IS_SOCKET_ERROR(code)) {
*err = sock_errno();
return FALSE;
}
#else
int error = 0; /* Has to be initiated, we check it */
unsigned int sz = sizeof(error); /* even if we get -1 */
int code = sock_getopt(descP->sock,
SOL_SOCKET, SO_ERROR,
(void *)&error, &sz);
if ((code < 0) || error) {
*err = error;
return FALSE;
}
#endif /* SO_ERROR */
*err = 0;
return TRUE;
}
/* ----------------------------------------------------------------------
* nif_listen
*
* Description:
* Listen for connections on a socket.
*
* Arguments:
* Socket (ref) - Points to the socket descriptor.
* Backlog - The maximum length to which the queue of pending
* connections for socket may grow.
*/
static
ERL_NIF_TERM nif_listen(ErlNifEnv* env,
int argc,
const ERL_NIF_TERM argv[])
{
SocketDescriptor* descP;
int backlog;
SGDBG( ("SOCKET", "nif_listen -> entry with argc: %d\r\n", argc) );
/* Extract arguments and perform preliminary validation */
if ((argc != 2) ||
!enif_get_resource(env, argv[0], sockets, (void**) &descP) ||
!GET_INT(env, argv[1], &backlog)) {
return enif_make_badarg(env);
}
SSDBG( descP,
("SOCKET", "nif_listen -> args when sock = %d:"
"\r\n Socket: %T"
"\r\n backlog: %d"
"\r\n", descP->sock, argv[0], backlog) );
return nlisten(env, descP, backlog);
}
static
ERL_NIF_TERM nlisten(ErlNifEnv* env,
SocketDescriptor* descP,
int backlog)
{
if (descP->state == SOCKET_STATE_CLOSED)
return esock_make_error(env, atom_exbadstate);
if (!IS_OPEN(descP))
return esock_make_error(env, atom_exbadstate);
if (IS_SOCKET_ERROR(sock_listen(descP->sock, backlog)))
return esock_make_error_errno(env, sock_errno());
descP->state = SOCKET_STATE_LISTENING;
return esock_atom_ok;
}
/* ----------------------------------------------------------------------
* nif_accept
*
* Description:
* Accept a connection on a socket.
*
* Arguments:
* Socket (ref) - Points to the socket descriptor.
* Request ref - Unique "id" of this request
* (used for the select, if none is in queue).
*/
static
ERL_NIF_TERM nif_accept(ErlNifEnv* env,
int argc,
const ERL_NIF_TERM argv[])
{
SocketDescriptor* descP;
ERL_NIF_TERM ref;
SGDBG( ("SOCKET", "nif_accept -> entry with argc: %d\r\n", argc) );
/* Extract arguments and perform preliminary validation */
if ((argc != 2) ||
!enif_get_resource(env, argv[0], sockets, (void**) &descP)) {
return enif_make_badarg(env);
}
ref = argv[1];
SSDBG( descP,
("SOCKET", "nif_accept -> args when sock = %d:"
"\r\n Socket: %T"
"\r\n ReqRef: %T"
"\r\n", descP->sock, argv[0], ref) );
return naccept(env, descP, ref);
}
static
ERL_NIF_TERM naccept(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM ref)
{
ERL_NIF_TERM res;
switch (descP->state) {
case SOCKET_STATE_LISTENING:
MLOCK(descP->accMtx);
res = naccept_listening(env, descP, ref);
MUNLOCK(descP->accMtx);
break;
case SOCKET_STATE_ACCEPTING:
MLOCK(descP->accMtx);
res = naccept_accepting(env, descP, ref);
MUNLOCK(descP->accMtx);
break;
default:
res = esock_make_error(env, esock_atom_einval);
break;
}
return res;
}
/* *** naccept_listening ***
* We have no active acceptor and no acceptors in queue.
*/
static
ERL_NIF_TERM naccept_listening(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM ref)
{
SocketAddress remote;
unsigned int n;
SOCKET accSock;
HANDLE accEvent;
int save_errno;
ErlNifPid caller;
SSDBG( descP, ("SOCKET", "naccept_listening -> get caller\r\n") );
if (enif_self(env, &caller) == NULL)
return esock_make_error(env, atom_exself);
n = sizeof(remote);
sys_memzero((char *) &remote, n);
SSDBG( descP, ("SOCKET", "naccept_listening -> try accept\r\n") );
accSock = sock_accept(descP->sock, (struct sockaddr*) &remote, &n);
if (accSock == INVALID_SOCKET) {
save_errno = sock_errno();
SSDBG( descP,
("SOCKET",
"naccept_listening -> accept failed (%d)\r\n", save_errno) );
if (save_errno == ERRNO_BLOCK) {
/* *** Try again later *** */
SSDBG( descP, ("SOCKET", "naccept_listening -> would block\r\n") );
descP->currentAcceptor.pid = caller;
if (MONP(env, descP,
&descP->currentAcceptor.pid,
&descP->currentAcceptor.mon) > 0)
return esock_make_error(env, atom_exmon);
descP->currentAcceptor.ref = ref;
SELECT(env,
descP->sock,
(ERL_NIF_SELECT_READ),
descP, NULL, ref);
/* Shall we really change state?
* The ready event is sent directly to the calling
* process, which simply calls this function again.
* Basically, state accepting means that we have
* an "outstanding" accept.
* Shall we store the pid of the calling process?
* And if someone else calls accept, return with ebusy?
* Can any process call accept or just the controlling
* process?
* We also need a monitor it case the calling process is
* called before we are done!
*
* Change state (to accepting) and store pid of the acceptor
* (current process). Only accept calls from the acceptor
* process (ebusy) and once we have a successful accept,
* change state back to listening. If cancel is called instead
* (only accepted from the acceptor process), we reset
* state to listening and also resets the pid to "null"
* (is there such a value?).
* Need a mutex to secure that we don't test and change the
* pid at the same time.
*/
descP->state = SOCKET_STATE_ACCEPTING;
return esock_make_error(env, esock_atom_eagain);
} else {
SSDBG( descP,
("SOCKET",
"naccept_listening -> errno: %d\r\n", save_errno) );
return esock_make_error_errno(env, save_errno);
}
} else {
SocketDescriptor* accDescP;
ERL_NIF_TERM accRef;
/*
* We got one
*/
SSDBG( descP, ("SOCKET", "naccept_listening -> accept success\r\n") );
if ((accEvent = sock_create_event(accSock)) == INVALID_EVENT) {
save_errno = sock_errno();
while ((sock_close(accSock) == INVALID_SOCKET) &&
(sock_errno() == EINTR));
return esock_make_error_errno(env, save_errno);
}
if ((accDescP = alloc_descriptor(accSock, accEvent)) == NULL) {
sock_close(accSock);
return enif_make_badarg(env);
}
accDescP->domain = descP->domain;
accDescP->type = descP->type;
accDescP->protocol = descP->protocol;
accRef = enif_make_resource(env, accDescP);
enif_release_resource(accDescP); // We should really store a reference ...
accDescP->ctrlPid = caller;
if (MONP(env, accDescP,
&accDescP->ctrlPid,
&accDescP->ctrlMon) > 0) {
sock_close(accSock);
return esock_make_error(env, atom_exmon);
}
accDescP->remote = remote;
SET_NONBLOCKING(accDescP->sock);
#ifdef __WIN32__
/* See 'What is the point of this?' above */
SELECT(env,
descP->sock,
(ERL_NIF_SELECT_READ),
descP, NULL, esock_atom_undefined);
#endif
accDescP->state = SOCKET_STATE_CONNECTED;
return esock_make_ok2(env, accRef);
}
}
/* *** naccept_accepting ***
* We have an active acceptor and possibly acceptors waiting in queue.
* At the moment the queue is *not* implemented.
*/
static
ERL_NIF_TERM naccept_accepting(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM ref)
{
SocketAddress remote;
unsigned int n;
SOCKET accSock;
HANDLE accEvent;
ErlNifPid caller;
int save_errno;
ERL_NIF_TERM result;
SSDBG( descP, ("SOCKET", "naccept_accepting -> get caller\r\n") );
if (enif_self(env, &caller) == NULL)
return esock_make_error(env, atom_exself);
SSDBG( descP, ("SOCKET", "naccept_accepting -> check: "
"are caller current acceptor:"
"\r\n Caller: %T"
"\r\n Current: %T"
"\r\n", caller, descP->currentAcceptor.pid) );
if (!compare_pids(env, &descP->currentAcceptor.pid, &caller)) {
/* This will have to do until we implement the queue.
* When we have the queue, we should simply push this request,
* and instead return with eagain (the caller will then wait
* for the select message).
*/
SSDBG( descP, ("SOCKET", "naccept_accepting -> not (active) acceptor\r\n") );
if (!acceptor_search4pid(env, descP, &caller))
result = acceptor_push(env, descP, caller, ref);
else
result = esock_make_error(env, esock_atom_eagain);
SSDBG( descP,
("SOCKET",
"naccept_accepting -> queue (push) result: %T\r\n", result) );
return result;
}
n = sizeof(descP->remote);
sys_memzero((char *) &remote, n);
SSDBG( descP, ("SOCKET", "naccept_accepting -> try accept\r\n") );
accSock = sock_accept(descP->sock, (struct sockaddr*) &remote, &n);
if (accSock == INVALID_SOCKET) {
save_errno = sock_errno();
SSDBG( descP,
("SOCKET",
"naccept_accepting -> accept failed (%d)\r\n", save_errno) );
if (save_errno == ERRNO_BLOCK) {
/*
* Just try again, no real error, just a ghost trigger from poll,
*/
SSDBG( descP,
("SOCKET",
"naccept_accepting -> would block: try again\r\n") );
SELECT(env,
descP->sock,
(ERL_NIF_SELECT_READ),
descP, NULL, ref);
return esock_make_error(env, esock_atom_eagain);
} else {
SSDBG( descP,
("SOCKET",
"naccept_accepting -> errno: %d\r\n", save_errno) );
return esock_make_error_errno(env, save_errno);
}
} else {
SocketDescriptor* accDescP;
ERL_NIF_TERM accRef;
/*
* We got one
*/
SSDBG( descP, ("SOCKET", "naccept_accepting -> accept success\r\n") );
if ((accEvent = sock_create_event(accSock)) == INVALID_EVENT) {
save_errno = sock_errno();
while ((sock_close(accSock) == INVALID_SOCKET) &&
(sock_errno() == EINTR));
return esock_make_error_errno(env, save_errno);
}
if ((accDescP = alloc_descriptor(accSock, accEvent)) == NULL) {
sock_close(accSock);
return enif_make_badarg(env);
}
accDescP->domain = descP->domain;
accDescP->type = descP->type;
accDescP->protocol = descP->protocol;
accRef = enif_make_resource(env, accDescP);
enif_release_resource(accDescP); // We should really store a reference ...
accDescP->ctrlPid = caller;
if (MONP(env, accDescP,
&accDescP->ctrlPid,
&accDescP->ctrlMon) > 0) {
sock_close(accSock);
return esock_make_error(env, atom_exmon);
}
accDescP->remote = remote;
SET_NONBLOCKING(accDescP->sock);
#ifdef __WIN32__
/* See 'What is the point of this?' above */
SELECT(env,
descP->sock,
(ERL_NIF_SELECT_READ),
descP, NULL, esock_atom_undefined);
#endif
accDescP->state = SOCKET_STATE_CONNECTED;
/* Here we should have the test if we have something in the queue.
* And if so, pop it and copy the (waiting) acceptor, and then
* make a new select with that info).
*/
if (acceptor_pop(env, descP,
&descP->currentAcceptor.pid,
&descP->currentAcceptor.mon,
&descP->currentAcceptor.ref)) {
/* There was another one */
SSDBG( descP, ("SOCKET", "naccept_accepting -> new (active) acceptor: "
"\r\n pid: %T"
"\r\n ref: %T"
"\r\n",
descP->currentAcceptor.pid,
descP->currentAcceptor.ref) );
SELECT(env,
descP->sock,
(ERL_NIF_SELECT_READ),
descP, &descP->currentAcceptor.pid, descP->currentAcceptor.ref);
} else {
descP->currentAcceptorP = NULL;
descP->state = SOCKET_STATE_LISTENING;
}
return esock_make_ok2(env, accRef);
}
}
/* ----------------------------------------------------------------------
* nif_send
*
* Description:
* Send a message on a socket
*
* Arguments:
* Socket (ref) - Points to the socket descriptor.
* SendRef - A unique id for this (send) request.
* Data - The data to send in the form of a IOVec.
* Flags - Send flags.
*/
static
ERL_NIF_TERM nif_send(ErlNifEnv* env,
int argc,
const ERL_NIF_TERM argv[])
{
SocketDescriptor* descP;
ERL_NIF_TERM sendRef;
ErlNifBinary sndData;
unsigned int eflags;
int flags;
ERL_NIF_TERM res;
SGDBG( ("SOCKET", "nif_send -> entry with argc: %d\r\n", argc) );
/* Extract arguments and perform preliminary validation */
if ((argc != 4) ||
!enif_get_resource(env, argv[0], sockets, (void**) &descP) ||
!GET_BIN(env, argv[2], &sndData) ||
!GET_UINT(env, argv[3], &eflags)) {
return enif_make_badarg(env);
}
sendRef = argv[1];
SSDBG( descP,
("SOCKET", "nif_send -> args when sock = %d:"
"\r\n Socket: %T"
"\r\n SendRef: %T"
"\r\n Size of data: %d"
"\r\n eFlags: %d"
"\r\n", descP->sock, argv[0], sendRef, sndData.size, eflags) );
if (!IS_CONNECTED(descP))
return esock_make_error(env, atom_enotconn);
if (!esendflags2sendflags(eflags, &flags))
return enif_make_badarg(env);
MLOCK(descP->writeMtx);
/* We need to handle the case when another process tries
* to write at the same time.
* If the current write could not write its entire package
* this time (resulting in an select). The write of the
* other process must be made to wait until current
* is done!
* Basically, we need a write queue!
*
* A 'writing' field (boolean), which is set if we did
* not manage to write the entire message and reset every
* time we do.
*/
res = nsend(env, descP, sendRef, &sndData, flags);
MUNLOCK(descP->writeMtx);
return res;
}
/* What do we do when another process tries to write
* when the current writer has a select already waiting?
* Queue it? And what about simultaneous read and write?
* Queue up all operations towards the socket?
*
* We (may) need a currentOp field and an ops queue field.
*/
static
ERL_NIF_TERM nsend(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM sendRef,
ErlNifBinary* sndDataP,
int flags)
{
int save_errno;
ssize_t written;
if (!descP->isWritable)
return enif_make_badarg(env);
/* We ignore the wrap for the moment.
* Maybe we should issue a wrap-message to controlling process...
*/
cnt_inc(&descP->writeTries, 1);
written = sock_send(descP->sock, sndDataP->data, sndDataP->size, flags);
if (IS_SOCKET_ERROR(written))
save_errno = sock_errno();
else
save_errno = -1; // The value does not actually matter in this case
return send_check_result(env, descP,
written, sndDataP->size, save_errno, sendRef);
}
/* ----------------------------------------------------------------------
* nif_sendto
*
* Description:
* Send a message on a socket
*
* Arguments:
* Socket (ref) - Points to the socket descriptor.
* SendRef - A unique id for this (send) request.
* Data - The data to send in the form of a IOVec.
* Dest - Destination (socket) address.
* Flags - Send flags.
*/
static
ERL_NIF_TERM nif_sendto(ErlNifEnv* env,
int argc,
const ERL_NIF_TERM argv[])
{
SocketDescriptor* descP;
ERL_NIF_TERM sendRef;
ErlNifBinary sndData;
unsigned int eflags;
int flags;
ERL_NIF_TERM eSockAddr;
SocketAddress remoteAddr;
unsigned int remoteAddrLen;
char* xres;
ERL_NIF_TERM res;
SGDBG( ("SOCKET", "nif_sendto -> entry with argc: %d\r\n", argc) );
/* Extract arguments and perform preliminary validation */
if ((argc != 5) ||
!enif_get_resource(env, argv[0], sockets, (void**) &descP) ||
!GET_BIN(env, argv[2], &sndData) ||
!GET_UINT(env, argv[4], &eflags)) {
return enif_make_badarg(env);
}
sendRef = argv[1];
eSockAddr = argv[3];
SSDBG( descP,
("SOCKET", "nif_sendto -> args when sock = %d:"
"\r\n Socket: %T"
"\r\n sendRef: %T"
"\r\n size of data: %d"
"\r\n eSockAddr: %T"
"\r\n eflags: %d"
"\r\n",
descP->sock, argv[0], sendRef, sndData.size, eSockAddr, eflags) );
/* THIS TEST IS NOT CORRECT!!! */
if (!IS_OPEN(descP))
return esock_make_error(env, esock_atom_einval);
if (!esendflags2sendflags(eflags, &flags))
return esock_make_error(env, esock_atom_einval);
if ((xres = esock_decode_sockaddr(env, eSockAddr,
&remoteAddr,
&remoteAddrLen)) != NULL)
return esock_make_error_str(env, xres);
res = nsendto(env, descP, sendRef, &sndData, flags,
&remoteAddr, remoteAddrLen);
SGDBG( ("SOCKET", "nif_sendto -> done with result: "
"\r\n %T"
"\r\n", res) );
return res;
}
static
ERL_NIF_TERM nsendto(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM sendRef,
ErlNifBinary* dataP,
int flags,
SocketAddress* toAddrP,
unsigned int toAddrLen)
{
int save_errno;
ssize_t written;
if (!descP->isWritable)
return enif_make_badarg(env);
/* We ignore the wrap for the moment.
* Maybe we should issue a wrap-message to controlling process...
*/
cnt_inc(&descP->writeTries, 1);
if (toAddrP != NULL) {
written = sock_sendto(descP->sock,
dataP->data, dataP->size, flags,
&toAddrP->sa, toAddrLen);
} else {
written = sock_sendto(descP->sock,
dataP->data, dataP->size, flags,
NULL, 0);
}
if (IS_SOCKET_ERROR(written))
save_errno = sock_errno();
else
save_errno = -1; // The value does not actually matter in this case
return send_check_result(env, descP, written, dataP->size, save_errno, sendRef);
}
/* ----------------------------------------------------------------------
* nif_sendmsg
*
* Description:
* Send a message on a socket
*
* Arguments:
* Socket (ref) - Points to the socket descriptor.
* SendRef - A unique id for this (send) request.
* MsgHdr - Message Header - data and (maybe) control and dest
* Flags - Send flags.
*/
static
ERL_NIF_TERM nif_sendmsg(ErlNifEnv* env,
int argc,
const ERL_NIF_TERM argv[])
{
ERL_NIF_TERM res, sendRef, eMsgHdr;
SocketDescriptor* descP;
unsigned int eflags;
int flags;
SGDBG( ("SOCKET", "nif_sendmsg -> entry with argc: %d\r\n", argc) );
/* Extract arguments and perform preliminary validation */
if ((argc != 4) ||
!enif_get_resource(env, argv[0], sockets, (void**) &descP) ||
!IS_MAP(env, argv[2]) ||
!GET_UINT(env, argv[3], &eflags)) {
return enif_make_badarg(env);
}
sendRef = argv[1];
eMsgHdr = argv[2];
SSDBG( descP,
("SOCKET", "nif_sendmsg -> args when sock = %d:"
"\r\n Socket: %T"
"\r\n sendRef: %T"
"\r\n eflags: %d"
"\r\n",
descP->sock, argv[0], sendRef, eflags) );
/* THIS TEST IS NOT CORRECT!!! */
if (!IS_OPEN(descP))
return esock_make_error(env, esock_atom_einval);
if (!esendflags2sendflags(eflags, &flags))
return esock_make_error(env, esock_atom_einval);
res = nsendmsg(env, descP, sendRef, eMsgHdr, flags);
SSDBG( descP,
("SOCKET", "nif_sendmsg -> done with result: "
"\r\n %T"
"\r\n", res) );
return res;
}
static
ERL_NIF_TERM nsendmsg(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM sendRef,
ERL_NIF_TERM eMsgHdr,
int flags)
{
ERL_NIF_TERM res, eAddr, eIOV, eCtrl;
SocketAddress addr;
struct msghdr msgHdr;
ErlNifBinary* iovBins;
struct iovec* iov;
unsigned int iovLen;
char* ctrlBuf;
size_t ctrlBufLen, ctrlBufUsed;
int save_errno;
ssize_t written, dataSize;
char* xres;
if (!descP->isWritable)
return enif_make_badarg(env);
/* Depending on if we are *connected* or not, we require
* different things in the msghdr map.
*/
if (IS_CONNECTED(descP)) {
/* We don't need the address */
SSDBG( descP, ("SOCKET", "nsendmsg -> connected: no address\r\n") );
msgHdr.msg_name = NULL;
msgHdr.msg_namelen = 0;
} else {
/* We need the address */
msgHdr.msg_name = (void*) &addr;
msgHdr.msg_namelen = sizeof(addr);
sys_memzero((char *) msgHdr.msg_name, msgHdr.msg_namelen);
if (!GET_MAP_VAL(env, eMsgHdr, esock_atom_addr, &eAddr))
return esock_make_error(env, esock_atom_einval);
SSDBG( descP, ("SOCKET", "nsendmsg -> not connected: "
"\r\n address: %T"
"\r\n", eAddr) );
if ((xres = esock_decode_sockaddr(env, eAddr,
msgHdr.msg_name,
&msgHdr.msg_namelen)) != NULL)
return esock_make_error_str(env, xres);
}
/* Extract the (other) attributes of the msghdr map: iov and maybe ctrl */
/* The *mandatory* iov, which must be a list */
if (!GET_MAP_VAL(env, eMsgHdr, esock_atom_iov, &eIOV))
return esock_make_error(env, esock_atom_einval);
if (!GET_LIST_LEN(env, eIOV, &iovLen) && (iovLen > 0))
return esock_make_error(env, esock_atom_einval);
SSDBG( descP, ("SOCKET", "nsendmsg -> iov length: %d\r\n", iovLen) );
iovBins = MALLOC(iovLen * sizeof(ErlNifBinary));
ESOCK_ASSERT( (iovBins != NULL) );
iov = MALLOC(iovLen * sizeof(struct iovec));
ESOCK_ASSERT( (iov != NULL) );
/* The *opional* ctrl */
if (GET_MAP_VAL(env, eMsgHdr, esock_atom_ctrl, &eCtrl)) {
ctrlBufLen = descP->wCtrlSz;
ctrlBuf = (char*) MALLOC(ctrlBufLen);
ESOCK_ASSERT( (ctrlBuf != NULL) );
} else {
eCtrl = esock_atom_undefined;
ctrlBufLen = 0;
ctrlBuf = NULL;
}
SSDBG( descP, ("SOCKET", "nsendmsg -> optional ctrl: "
"\r\n ctrlBuf: 0x%lX"
"\r\n ctrlBufLen: %d"
"\r\n eCtrl: %T\r\n", ctrlBuf, ctrlBufLen, eCtrl) );
/* Decode the iov and initiate that part of the msghdr */
if ((xres = esock_decode_iov(env, eIOV,
iovBins, iov, iovLen, &dataSize)) != NULL) {
FREE(iovBins);
FREE(iov);
if (ctrlBuf != NULL) FREE(ctrlBuf);
return esock_make_error_str(env, xres);
}
msgHdr.msg_iov = iov;
msgHdr.msg_iovlen = iovLen;
SSDBG( descP, ("SOCKET",
"nsendmsg -> total (iov) data size: %d\r\n", dataSize) );
/* Decode the ctrl and initiate that part of the msghdr.
*/
if (ctrlBuf != NULL) {
if ((xres = decode_cmsghdrs(env, descP,
eCtrl,
ctrlBuf, ctrlBufLen, &ctrlBufUsed)) != NULL) {
FREE(iovBins);
FREE(iov);
if (ctrlBuf != NULL) FREE(ctrlBuf);
return esock_make_error_str(env, xres);
}
}
msgHdr.msg_control = ctrlBuf;
msgHdr.msg_controllen = ctrlBufUsed;
/* The msg-flags field is not used when sending, but zero it just in case */
msgHdr.msg_flags = 0;
/* We ignore the wrap for the moment.
* Maybe we should issue a wrap-message to controlling process...
*/
cnt_inc(&descP->writeTries, 1);
/* And now, finally, try to send the message */
written = sock_sendmsg(descP->sock, &msgHdr, flags);
if (IS_SOCKET_ERROR(written))
save_errno = sock_errno();
else
save_errno = -1; // The value does not actually matter in this case
res = send_check_result(env, descP, written, dataSize, save_errno, sendRef);
FREE(iovBins);
FREE(iov);
if (ctrlBuf != NULL) FREE(ctrlBuf);
return res;
}
/* ----------------------------------------------------------------------
* nif_writev / nif_sendv
*
* Description:
* Send a message (vector) on a socket
*
* Arguments:
* Socket (ref) - Points to the socket descriptor.
* SendRef - A unique id for this (send) request.
* Data - A vector of binaries
* Flags - Send flags.
*/
#ifdef FOBAR
static
ERL_NIF_TERM nwritev(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM sendRef,
ERL_NIF_TERM data)
{
ERL_NIF_TERM tail;
ErlNifIOVec vec;
ErlNifIOVec* iovec = &vec;
SysIOVec* sysiovec;
int save_errno;
int iovcnt, n;
if (!enif_inspect_iovec(env, MAX_VSZ, data, &tail, &iovec))
return enif_make_badarg(env);
if (enif_ioq_size(descP->outQ) > 0) {
/* If the I/O queue contains data we enqueue the iovec
* and then peek the data to write out of the queue.
*/
if (!enif_ioq_enqv(q, iovec, 0))
return -3;
sysiovec = enif_ioq_peek(descP->outQ, &iovcnt);
} else {
/* If the I/O queue is empty we skip the trip through it. */
iovcnt = iovec->iovcnt;
sysiovec = iovec->iov;
}
/* Attempt to write the data */
n = writev(fd, sysiovec, iovcnt);
saved_errno = errno;
if (enif_ioq_size(descP->outQ) == 0) {
/* If the I/O queue was initially empty we enqueue any
remaining data into the queue for writing later. */
if (n >= 0 && !enif_ioq_enqv(descP->outQ, iovec, n))
return -3;
} else {
/* Dequeue any data that was written from the queue. */
if (n > 0 && !enif_ioq_deq(descP->outQ, n, NULL))
return -4;
}
/* return n, which is either number of bytes written or -1 if
some error happened */
errno = saved_errno;
return n;
}
#endif
/* ----------------------------------------------------------------------
* nif_recv
*
* Description:
* Receive a message on a socket.
* Normally used only on a connected socket!
* If we are trying to read > 0 bytes, then that is what we do.
* But if we have specified 0 bytes, then we want to read
* whatever is in the buffers (everything it got).
*
* Arguments:
* Socket (ref) - Points to the socket descriptor.
* RecvRef - A unique id for this (send) request.
* Length - The number of bytes to receive.
* Flags - Receive flags.
*/
static
ERL_NIF_TERM nif_recv(ErlNifEnv* env,
int argc,
const ERL_NIF_TERM argv[])
{
SocketDescriptor* descP;
ERL_NIF_TERM recvRef;
int len;
unsigned int eflags;
int flags;
ERL_NIF_TERM res;
if ((argc != 4) ||
!enif_get_resource(env, argv[0], sockets, (void**) &descP) ||
!GET_INT(env, argv[2], &len) ||
!GET_UINT(env, argv[3], &eflags)) {
return enif_make_badarg(env);
}
recvRef = argv[1];
if (!IS_CONNECTED(descP))
return esock_make_error(env, atom_enotconn);
if (!erecvflags2recvflags(eflags, &flags))
return enif_make_badarg(env);
MLOCK(descP->readMtx);
/* We need to handle the case when another process tries
* to receive at the same time.
* If the current recv could not read its entire package
* this time (resulting in an select). The read of the
* other process must be made to wait until current
* is done!
* Basically, we need a read queue!
*
* A 'reading' field (boolean), which is set if we did
* not manage to read the entire message and reset every
* time we do.
*/
res = nrecv(env, descP, recvRef, len, flags);
MUNLOCK(descP->readMtx);
return res;
}
/* The (read) buffer handling *must* be optimized!
* But for now we make it easy for ourselves by
* allocating a binary (of the specified or default
* size) and then throwing it away...
*/
static
ERL_NIF_TERM nrecv(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM recvRef,
int len,
int flags)
{
ssize_t read;
ErlNifBinary buf;
int save_errno;
int bufSz = (len ? len : descP->rBufSz);
SSDBG( descP, ("SOCKET", "nrecv -> entry with"
"\r\n len: %d (%d)"
"\r\n flags: %d"
"\r\n", len, bufSz, flags) );
if (!descP->isReadable)
return enif_make_badarg(env);
/* Allocate a buffer:
* Either as much as we want to read or (if zero (0)) use the "default"
* size (what has been configured).
*/
if (!ALLOC_BIN(bufSz, &buf))
return esock_make_error(env, atom_exalloc);
/* We ignore the wrap for the moment.
* Maybe we should issue a wrap-message to controlling process...
*/
cnt_inc(&descP->readTries, 1);
// If it fails (read = -1), we need errno...
SSDBG( descP, ("SOCKET", "nrecv -> try read (%d)\r\n", buf.size) );
read = sock_recv(descP->sock, buf.data, buf.size, flags);
if (IS_SOCKET_ERROR(read))
save_errno = sock_errno();
else
save_errno = -1; // The value does not actually matter in this case
SSDBG( descP, ("SOCKET", "nrecv -> read: %d (%d)\r\n", read, save_errno) );
return recv_check_result(env, descP,
read, len,
save_errno,
&buf,
recvRef);
}
/* ----------------------------------------------------------------------
* nif_recvfrom
*
* Description:
* Receive a message on a socket.
* Normally used only on a (un-) connected socket!
* If a buffer size = 0 is specified, then the we will use the default
* buffer size for this socket (whatever has been configured).
*
* Arguments:
* Socket (ref) - Points to the socket descriptor.
* RecvRef - A unique id for this (send) request.
* BufSz - Size of the buffer into which we put the received message.
* Flags - Receive flags.
*
* <KOLLA>
*
* How do we handle if the peek flag is set? We need to basically keep
* track of if we expect any data from the read. Regardless of the
* number of bytes we try to read.
*
* </KOLLA>
*/
static
ERL_NIF_TERM nif_recvfrom(ErlNifEnv* env,
int argc,
const ERL_NIF_TERM argv[])
{
SocketDescriptor* descP;
ERL_NIF_TERM recvRef;
unsigned int bufSz;
unsigned int eflags;
int flags;
ERL_NIF_TERM res;
SGDBG( ("SOCKET", "nif_recvfrom -> entry with argc: %d\r\n", argc) );
/* Extract arguments and perform preliminary validation */
if ((argc != 4) ||
!enif_get_resource(env, argv[0], sockets, (void**) &descP) ||
!GET_UINT(env, argv[2], &bufSz) ||
!GET_UINT(env, argv[3], &eflags)) {
return enif_make_badarg(env);
}
recvRef = argv[1];
SSDBG( descP,
("SOCKET", "nif_recvfrom -> args when sock = %d:"
"\r\n Socket: %T"
"\r\n recvRef: %T"
"\r\n bufSz: %d"
"\r\n eflags: %d"
"\r\n", descP->sock, argv[0], recvRef, bufSz, eflags) );
/* if (IS_OPEN(descP)) */
/* return esock_make_error(env, atom_enotconn); */
if (!erecvflags2recvflags(eflags, &flags))
return enif_make_badarg(env);
MLOCK(descP->readMtx);
/* <KOLLA>
* We need to handle the case when another process tries
* to receive at the same time.
* If the current recv could not read its entire package
* this time (resulting in an select). The read of the
* other process must be made to wait until current
* is done!
* Basically, we need a read queue!
*
* A 'reading' field (boolean), which is set if we did
* not manage to read the entire message and reset every
* time we do.
* </KOLLA>
*/
res = nrecvfrom(env, descP, recvRef, bufSz, flags);
MUNLOCK(descP->readMtx);
return res;
}
/* The (read) buffer handling *must* be optimized!
* But for now we make it easy for ourselves by
* allocating a binary (of the specified or default
* size) and then throwing it away...
*/
static
ERL_NIF_TERM nrecvfrom(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM recvRef,
uint16_t len,
int flags)
{
SocketAddress fromAddr;
unsigned int addrLen;
ssize_t read;
int save_errno;
ErlNifBinary buf;
int bufSz = (len ? len : descP->rBufSz);
SSDBG( descP, ("SOCKET", "nrecvfrom -> entry with"
"\r\n len: %d (%d)"
"\r\n flags: %d"
"\r\n", len, bufSz, flags) );
if (!descP->isReadable)
return enif_make_badarg(env);
/* Allocate a buffer:
* Either as much as we want to read or (if zero (0)) use the "default"
* size (what has been configured).
*/
if (!ALLOC_BIN(bufSz, &buf))
return esock_make_error(env, atom_exalloc);
/* We ignore the wrap for the moment.
* Maybe we should issue a wrap-message to controlling process...
*/
cnt_inc(&descP->readTries, 1);
addrLen = sizeof(fromAddr);
sys_memzero((char*) &fromAddr, addrLen);
read = sock_recvfrom(descP->sock, buf.data, buf.size, flags,
&fromAddr.sa, &addrLen);
if (IS_SOCKET_ERROR(read))
save_errno = sock_errno();
else
save_errno = -1; // The value does not actually matter in this case
return recvfrom_check_result(env, descP,
read,
save_errno,
&buf,
&fromAddr, addrLen,
recvRef);
}
/* ----------------------------------------------------------------------
* nif_recvmsg
*
* Description:
* Receive a message on a socket.
* Normally used only on a (un-) connected socket!
* If a buffer size = 0 is specified, then we will use the default
* buffer size for this socket (whatever has been configured).
* If ctrl (buffer) size = 0 is specified, then the default ctrl
* (buffer) size is used (1024).
*
* Arguments:
* Socket (ref) - Points to the socket descriptor.
* RecvRef - A unique id for this (send) request.
* BufSz - Size of the buffer into which we put the received message.
* CtrlSz - Size of the ctrl (buffer) into which we put the received
* ancillary data.
* Flags - Receive flags.
*
* <KOLLA>
*
* How do we handle if the peek flag is set? We need to basically keep
* track of if we expect any data from the read. Regardless of the
* number of bytes we try to read.
*
* </KOLLA>
*/
static
ERL_NIF_TERM nif_recvmsg(ErlNifEnv* env,
int argc,
const ERL_NIF_TERM argv[])
{
SocketDescriptor* descP;
ERL_NIF_TERM recvRef;
unsigned int bufSz;
unsigned int ctrlSz;
unsigned int eflags;
int flags;
ERL_NIF_TERM res;
SGDBG( ("SOCKET", "nif_recvmsg -> entry with argc: %d\r\n", argc) );
/* Extract arguments and perform preliminary validation */
if ((argc != 5) ||
!enif_get_resource(env, argv[0], sockets, (void**) &descP) ||
!GET_UINT(env, argv[2], &bufSz) ||
!GET_UINT(env, argv[3], &ctrlSz) ||
!GET_UINT(env, argv[4], &eflags)) {
return enif_make_badarg(env);
}
recvRef = argv[1];
SSDBG( descP,
("SOCKET", "nif_recvmsg -> args when sock = %d:"
"\r\n Socket: %T"
"\r\n recvRef: %T"
"\r\n bufSz: %d"
"\r\n ctrlSz: %d"
"\r\n eflags: %d"
"\r\n", descP->sock, argv[0], recvRef, bufSz, ctrlSz, eflags) );
/* if (IS_OPEN(descP)) */
/* return esock_make_error(env, atom_enotconn); */
if (!erecvflags2recvflags(eflags, &flags))
return enif_make_badarg(env);
MLOCK(descP->readMtx);
/* <KOLLA>
*
* We need to handle the case when another process tries
* to receive at the same time.
* If the current recv could not read its entire package
* this time (resulting in an select). The read of the
* other process must be made to wait until current
* is done!
* Basically, we need a read queue!
*
* A 'reading' field (boolean), which is set if we did
* not manage to read the entire message and reset every
* time we do.
*
* </KOLLA>
*/
res = nrecvmsg(env, descP, recvRef, bufSz, ctrlSz, flags);
MUNLOCK(descP->readMtx);
return res;
}
/* The (read) buffer handling *must* be optimized!
* But for now we make it easy for ourselves by
* allocating a binary (of the specified or default
* size) and then throwing it away...
*/
static
ERL_NIF_TERM nrecvmsg(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM recvRef,
uint16_t bufLen,
uint16_t ctrlLen,
int flags)
{
unsigned int addrLen;
ssize_t read;
int save_errno;
int bufSz = (bufLen ? bufLen : descP->rBufSz);
int ctrlSz = (ctrlLen ? ctrlLen : descP->rCtrlSz);
struct msghdr msgHdr;
struct iovec iov[1]; // Shall we always use 1?
ErlNifBinary data[1]; // Shall we always use 1?
ErlNifBinary ctrl;
SocketAddress addr;
SSDBG( descP, ("SOCKET", "nrecvmsg -> entry with"
"\r\n bufSz: %d (%d)"
"\r\n ctrlSz: %d (%d)"
"\r\n flags: %d"
"\r\n", bufSz, bufLen, ctrlSz, ctrlLen, flags) );
if (!descP->isReadable)
return enif_make_badarg(env);
/*
for (i = 0; i < sizeof(buf); i++) {
if (!ALLOC_BIN(bifSz, &buf[i]))
return esock_make_error(env, atom_exalloc);
iov[i].iov_base = buf[i].data;
iov[i].iov_len = buf[i].size;
}
*/
/* Allocate the (msg) data buffer:
*/
if (!ALLOC_BIN(bufSz, &data[0]))
return esock_make_error(env, atom_exalloc);
/* Allocate the ctrl (buffer):
*/
if (!ALLOC_BIN(ctrlSz, &ctrl))
return esock_make_error(env, atom_exalloc);
/* We ignore the wrap for the moment.
* Maybe we should issue a wrap-message to controlling process...
*/
cnt_inc(&descP->readTries, 1);
addrLen = sizeof(addr);
sys_memzero((char*) &addr, addrLen);
sys_memzero((char*) &msgHdr, sizeof(msgHdr));
iov[0].iov_base = data[0].data;
iov[0].iov_len = data[0].size;
msgHdr.msg_name = &addr;
msgHdr.msg_namelen = addrLen;
msgHdr.msg_iov = iov;
msgHdr.msg_iovlen = 1; // Should use a constant or calculate...
msgHdr.msg_control = ctrl.data;
msgHdr.msg_controllen = ctrl.size;
read = sock_recvmsg(descP->sock, &msgHdr, flags);
if (IS_SOCKET_ERROR(read))
save_errno = sock_errno();
else
save_errno = -1; // The value does not actually matter in this case
return recvmsg_check_result(env, descP,
read,
save_errno,
&msgHdr,
data, // Needed for iov encode
&ctrl, // Needed for ctrl header encode
recvRef);
}
/* ----------------------------------------------------------------------
* nif_close
*
* Description:
* Close a (socket) file descriptor.
*
* Arguments:
* Socket (ref) - Points to the socket descriptor.
*/
static
ERL_NIF_TERM nif_close(ErlNifEnv* env,
int argc,
const ERL_NIF_TERM argv[])
{
SocketDescriptor* descP;
if ((argc != 1) ||
!enif_get_resource(env, argv[0], sockets, (void**) &descP)) {
return enif_make_badarg(env);
}
return nclose(env, descP);
}
static
ERL_NIF_TERM nclose(ErlNifEnv* env,
SocketDescriptor* descP)
{
ERL_NIF_TERM reply, reason;
BOOLEAN_T doClose;
int selectRes;
int domain = descP->domain;
int type = descP->type;
int protocol = descP->protocol;
SSDBG( descP, ("SOCKET", "nclose -> [%d] entry\r\n", descP->sock) );
MLOCK(descP->closeMtx);
if (descP->state == SOCKET_STATE_CLOSED) {
reason = atom_closed;
doClose = FALSE;
} else if (descP->state == SOCKET_STATE_CLOSING) {
reason = atom_closing;
doClose = FALSE;
} else {
/* Store the PID of the caller,
* since we need to inform it when we
* (that is, the stop callback function)
* completes.
*/
if (enif_self(env, &descP->closerPid) == NULL) {
MUNLOCK(descP->closeMtx);
return esock_make_error(env, atom_exself);
}
/* Monitor the caller, since we should complete this operation even if
* the caller dies (for whatever reason).
*/
if (MONP(env, descP,
&descP->closerPid,
&descP->closerMon) > 0) {
MUNLOCK(descP->closeMtx);
return esock_make_error(env, atom_exmon);
}
descP->closeLocal = TRUE;
descP->state = SOCKET_STATE_CLOSING;
doClose = TRUE;
}
MUNLOCK(descP->closeMtx);
if (doClose) {
descP->closeRef = MKREF(env);
selectRes = enif_select(env, descP->sock, (ERL_NIF_SELECT_STOP),
descP, NULL, descP->closeRef);
if (selectRes & ERL_NIF_SELECT_STOP_CALLED) {
/* Prep done - inform the caller it can finalize (close) directly */
SSDBG( descP,
("SOCKET", "nclose -> [%d] stop called\r\n", descP->sock) );
dec_socket(domain, type, protocol);
reply = esock_atom_ok;
} else if (selectRes & ERL_NIF_SELECT_STOP_SCHEDULED) {
/* The stop callback function has been *scheduled* which means that we
* have to wait for it to complete. */
SSDBG( descP,
("SOCKET", "nclose -> [%d] stop scheduled\r\n", descP->sock) );
dec_socket(domain, type, protocol); // SHALL WE DO THIS AT finalize?
reply = esock_make_ok2(env, descP->closeRef);
} else {
/* <KOLLA>
*
* WE SHOULD REALLY HAVE A WAY TO CLOBBER THE SOCKET,
* SO WE DON'T LET STUFF LEAK.
* NOW, BECAUSE WE FAILED TO SELECT, WE CANNOT FINISH
* THE CLOSE, WHAT TO DO? ABORT?
*
* </KOLLA>
*/
reason = MKT2(env, atom_select, MKI(env, selectRes));
reply = esock_make_error(env, reason);
}
} else {
reply = esock_make_error(env, reason);
}
SSDBG( descP,
("SOCKET", "nclose -> [%d] done when: "
"\r\n reply: %T"
"\r\n", descP->sock, reply) );
return reply;
}
/* ----------------------------------------------------------------------
* nif_finalize_close
*
* Description:
* Perform the actual socket close!
* Note that this function is executed in a dirty scheduler.
*
* Arguments:
* Socket (ref) - Points to the socket descriptor.
*/
static
ERL_NIF_TERM nif_finalize_close(ErlNifEnv* env,
int argc,
const ERL_NIF_TERM argv[])
{
SocketDescriptor* descP;
/* Extract arguments and perform preliminary validation */
if ((argc != 1) ||
!enif_get_resource(env, argv[0], sockets, (void**) &descP)) {
return enif_make_badarg(env);
}
return nfinalize_close(env, descP);
}
/* *** nfinalize_close ***
* Perform the final step in the socket close.
*/
static
ERL_NIF_TERM nfinalize_close(ErlNifEnv* env,
SocketDescriptor* descP)
{
ERL_NIF_TERM reply;
if (descP->state == SOCKET_STATE_CLOSED)
return esock_atom_ok;
if (descP->state != SOCKET_STATE_CLOSING)
return esock_make_error(env, atom_enotclosing);
/* This nif is executed in a dirty scheduler just so that
* it can "hang" (whith minumum effect on the VM) while the
* kernel writes our buffers. IF we have set the linger option
* for this ({true, integer() > 0}). For this to work we must
* be blocking...
*/
SET_BLOCKING(descP->sock);
if (sock_close(descP->sock) != 0) {
int save_errno = sock_errno();
if (save_errno != ERRNO_BLOCK) {
/* Not all data in the buffers where sent,
* make sure the caller gets this.
*/
reply = esock_make_error(env, atom_timeout);
} else {
reply = esock_make_error_errno(env, save_errno);
}
} else {
reply = esock_atom_ok;
}
sock_close_event(descP->event);
descP->sock = INVALID_SOCKET;
descP->event = INVALID_EVENT;
descP->state = SOCKET_STATE_CLOSED;
return reply;
}
/* ----------------------------------------------------------------------
* nif_shutdown
*
* Description:
* Disable sends and/or receives on a socket.
*
* Arguments:
* [0] Socket (ref) - Points to the socket descriptor.
* [1] How - What will be shutdown.
*/
static
ERL_NIF_TERM nif_shutdown(ErlNifEnv* env,
int argc,
const ERL_NIF_TERM argv[])
{
SocketDescriptor* descP;
unsigned int ehow;
int how;
if ((argc != 2) ||
!enif_get_resource(env, argv[0], sockets, (void**) &descP) ||
!GET_UINT(env, argv[1], &ehow)) {
return enif_make_badarg(env);
}
if (!ehow2how(ehow, &how))
return enif_make_badarg(env);
return nshutdown(env, descP, how);
}
static
ERL_NIF_TERM nshutdown(ErlNifEnv* env,
SocketDescriptor* descP,
int how)
{
ERL_NIF_TERM reply;
if (sock_shutdown(descP->sock, how) == 0) {
switch (how) {
case SHUT_RD:
descP->isReadable = FALSE;
break;
case SHUT_WR:
descP->isWritable = FALSE;
break;
case SHUT_RDWR:
descP->isReadable = FALSE;
descP->isWritable = FALSE;
break;
}
reply = esock_atom_ok;
} else {
reply = esock_make_error_errno(env, sock_errno());
}
return reply;
}
/* ----------------------------------------------------------------------
* nif_setopt
*
* Description:
* Set socket option.
* Its possible to use a "raw" mode (not encoded). That is, we do not
* interpret level, opt and value. They are passed "as is" to the
* setsockopt function call (the value arguments is assumed to be a
* binary, already encoded).
*
* Arguments:
* Socket (ref) - Points to the socket descriptor.
* Encoded - Are the "arguments" encoded or not.
* Level - Level of the socket option.
* Opt - The socket option.
* Value - Value of the socket option (type depend on the option).
*/
static
ERL_NIF_TERM nif_setopt(ErlNifEnv* env,
int argc,
const ERL_NIF_TERM argv[])
{
SocketDescriptor* descP = NULL;
int eLevel, level = -1;
int eOpt;
ERL_NIF_TERM eIsEncoded;
ERL_NIF_TERM eVal;
BOOLEAN_T isEncoded, isOTP;
ERL_NIF_TERM result;
SGDBG( ("SOCKET", "nif_setopt -> entry with argc: %d\r\n", argc) );
/* Extract arguments and perform preliminary validation */
if ((argc != 5) ||
!enif_get_resource(env, argv[0], sockets, (void**) &descP) ||
!GET_INT(env, argv[2], &eLevel) ||
!GET_INT(env, argv[3], &eOpt)) {
SGDBG( ("SOCKET", "nif_setopt -> failed initial arg check\r\n") );
return enif_make_badarg(env);
}
eIsEncoded = argv[1];
eVal = argv[4];
isEncoded = esock_decode_bool(eIsEncoded);
/* SGDBG( ("SOCKET", "nif_setopt -> eIsDecoded (%T) decoded: %d\r\n", */
/* eIsEncoded, isEncoded) ); */
if (!elevel2level(isEncoded, eLevel, &isOTP, &level)) {
SSDBG( descP, ("SOCKET", "nif_seopt -> failed decode level\r\n") );
return esock_make_error(env, esock_atom_einval);
}
SSDBG( descP,
("SOCKET", "nif_setopt -> args when sock = %d:"
"\r\n Socket: %T"
"\r\n Encoded: %d (%T)"
"\r\n Level: %d (%d)"
"\r\n Opt: %d"
"\r\n Value: %T"
"\r\n",
descP->sock, argv[0],
isEncoded, eIsEncoded,
level, eLevel,
eOpt, eVal) );
result = nsetopt(env, descP, isEncoded, isOTP, level, eOpt, eVal);
SSDBG( descP,
("SOCKET", "nif_setopt -> done when"
"\r\n result: %T"
"\r\n", result) );
return result;
}
static
ERL_NIF_TERM nsetopt(ErlNifEnv* env,
SocketDescriptor* descP,
BOOLEAN_T isEncoded,
BOOLEAN_T isOTP,
int level,
int eOpt,
ERL_NIF_TERM eVal)
{
ERL_NIF_TERM result;
if (isOTP) {
/* These are not actual socket options,
* but options for our implementation.
*/
result = nsetopt_otp(env, descP, eOpt, eVal);
} else if (!isEncoded) {
result = nsetopt_native(env, descP, level, eOpt, eVal);
} else {
result = nsetopt_level(env, descP, level, eOpt, eVal);
}
return result;
}
/* nsetopt_otp - Handle OTP (level) options
*/
static
ERL_NIF_TERM nsetopt_otp(ErlNifEnv* env,
SocketDescriptor* descP,
int eOpt,
ERL_NIF_TERM eVal)
{
ERL_NIF_TERM result;
SSDBG( descP,
("SOCKET", "nsetopt_otp -> entry with"
"\r\n eOpt: %d"
"\r\n eVal: %T"
"\r\n", eOpt, eVal) );
switch (eOpt) {
case SOCKET_OPT_OTP_DEBUG:
result = nsetopt_otp_debug(env, descP, eVal);
break;
case SOCKET_OPT_OTP_IOW:
result = nsetopt_otp_iow(env, descP, eVal);
break;
case SOCKET_OPT_OTP_CTRL_PROC:
result = nsetopt_otp_ctrl_proc(env, descP, eVal);
break;
default:
result = esock_make_error(env, esock_atom_einval);
break;
}
return result;
}
/* nsetopt_otp_debug - Handle the OTP (level) debug options
*/
static
ERL_NIF_TERM nsetopt_otp_debug(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal)
{
descP->dbg = esock_decode_bool(eVal);
return esock_atom_ok;
}
/* nsetopt_otp_iow - Handle the OTP (level) iow options
*/
static
ERL_NIF_TERM nsetopt_otp_iow(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal)
{
descP->iow = esock_decode_bool(eVal);
return esock_atom_ok;
}
/* nsetopt_otp_ctrl_proc - Handle the OTP (level) controlling_process options
*/
static
ERL_NIF_TERM nsetopt_otp_ctrl_proc(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal)
{
ErlNifPid newCtrlPid;
ErlNifMonitor newCtrlMon;
int xres;
SSDBG( descP,
("SOCKET", "nsetopt_otp_ctrl_proc -> entry with"
"\r\n eVal: %T"
"\r\n", eVal) );
if (!GET_LPID(env, eVal, &newCtrlPid)) {
esock_warning_msg("Failed get pid of new controlling process\r\n");
return esock_make_error(env, esock_atom_einval);
}
if ((xres = MONP(env, descP, &newCtrlPid, &newCtrlMon)) != 0) {
esock_warning_msg("Failed monitor %d) (new) controlling process\r\n", xres);
return esock_make_error(env, esock_atom_einval);
}
if ((xres = DEMONP(env, descP, &descP->ctrlMon)) != 0) {
esock_warning_msg("Failed demonitor (%d) "
"old controlling process %T (%T)\r\n",
xres, descP->ctrlPid, descP->ctrlMon);
}
descP->ctrlPid = newCtrlPid;
descP->ctrlMon = newCtrlMon;
SSDBG( descP, ("SOCKET", "nsetopt_otp_ctrl_proc -> done\r\n") );
return esock_atom_ok;
}
/* The option has *not* been encoded. Instead it has been provided
* in "native mode" (option is provided as is and value as a binary).
*/
static
ERL_NIF_TERM nsetopt_native(ErlNifEnv* env,
SocketDescriptor* descP,
int level,
int opt,
ERL_NIF_TERM eVal)
{
ErlNifBinary val;
ERL_NIF_TERM result;
SSDBG( descP,
("SOCKET", "nsetopt_native -> entry with"
"\r\n level: %d"
"\r\n opt: %d"
"\r\n eVal: %T"
"\r\n", level, opt, eVal) );
if (GET_BIN(env, eVal, &val)) {
int res = socket_setopt(descP->sock, level, opt,
val.data, val.size);
if (res != 0)
result = esock_make_error_errno(env, sock_errno());
else
result = esock_atom_ok;
} else {
result = esock_make_error(env, esock_atom_einval);
}
SSDBG( descP,
("SOCKET", "nsetopt_native -> done when"
"\r\n result: %T"
"\r\n", result) );
return result;
}
/* nsetopt_level - A "proper" level (option) has been specified
*/
static
ERL_NIF_TERM nsetopt_level(ErlNifEnv* env,
SocketDescriptor* descP,
int level,
int eOpt,
ERL_NIF_TERM eVal)
{
ERL_NIF_TERM result;
SSDBG( descP,
("SOCKET", "nsetopt_level -> entry with"
"\r\n level: %d"
"\r\n", level) );
switch (level) {
case SOL_SOCKET:
result = nsetopt_lvl_socket(env, descP, eOpt, eVal);
break;
#if defined(SOL_IP)
case SOL_IP:
#else
case IPPROTO_IP:
#endif
result = nsetopt_lvl_ip(env, descP, eOpt, eVal);
break;
#if defined(SOL_IPV6)
case SOL_IPV6:
result = nsetopt_lvl_ipv6(env, descP, eOpt, eVal);
break;
#endif
case IPPROTO_TCP:
result = nsetopt_lvl_tcp(env, descP, eOpt, eVal);
break;
case IPPROTO_UDP:
result = nsetopt_lvl_udp(env, descP, eOpt, eVal);
break;
#if defined(HAVE_SCTP)
case IPPROTO_SCTP:
result = nsetopt_lvl_sctp(env, descP, eOpt, eVal);
break;
#endif
default:
SSDBG( descP,
("SOCKET", "nsetopt_level -> unknown level (%d)\r\n", level) );
result = esock_make_error(env, esock_atom_einval);
break;
}
SSDBG( descP,
("SOCKET", "nsetopt_level -> done when"
"\r\n result: %T"
"\r\n", result) );
return result;
}
/* nsetopt_lvl_socket - Level *SOCKET* option
*/
static
ERL_NIF_TERM nsetopt_lvl_socket(ErlNifEnv* env,
SocketDescriptor* descP,
int eOpt,
ERL_NIF_TERM eVal)
{
ERL_NIF_TERM result;
SSDBG( descP,
("SOCKET", "nsetopt_lvl_socket -> entry with"
"\r\n opt: %d"
"\r\n", eOpt) );
switch (eOpt) {
#if defined(SO_BINDTODEVICE)
case SOCKET_OPT_SOCK_BINDTODEVICE:
result = nsetopt_lvl_sock_bindtodevice(env, descP, eVal);
break;
#endif
#if defined(SO_BROADCAST)
case SOCKET_OPT_SOCK_BROADCAST:
result = nsetopt_lvl_sock_broadcast(env, descP, eVal);
break;
#endif
#if defined(SO_DEBUG)
case SOCKET_OPT_SOCK_DEBUG:
result = nsetopt_lvl_sock_debug(env, descP, eVal);
break;
#endif
#if defined(SO_DONTROUTE)
case SOCKET_OPT_SOCK_DONTROUTE:
result = nsetopt_lvl_sock_dontroute(env, descP, eVal);
break;
#endif
#if defined(SO_KEEPALIVE)
case SOCKET_OPT_SOCK_KEEPALIVE:
result = nsetopt_lvl_sock_keepalive(env, descP, eVal);
break;
#endif
#if defined(SO_LINGER)
case SOCKET_OPT_SOCK_LINGER:
result = nsetopt_lvl_sock_linger(env, descP, eVal);
break;
#endif
#if defined(SO_PEEK_OFF)
case SOCKET_OPT_SOCK_PEEK_OFF:
result = nsetopt_lvl_sock_peek_off(env, descP, eVal);
break;
#endif
#if defined(SO_OOBINLINE)
case SOCKET_OPT_SOCK_OOBINLINE:
result = nsetopt_lvl_sock_oobinline(env, descP, eVal);
break;
#endif
#if defined(SO_PRIORITY)
case SOCKET_OPT_SOCK_PRIORITY:
result = nsetopt_lvl_sock_priority(env, descP, eVal);
break;
#endif
#if defined(SO_RCVBUF)
case SOCKET_OPT_SOCK_RCVBUF:
result = nsetopt_lvl_sock_rcvbuf(env, descP, eVal);
break;
#endif
#if defined(SO_RCVLOWAT)
case SOCKET_OPT_SOCK_RCVLOWAT:
result = nsetopt_lvl_sock_rcvlowat(env, descP, eVal);
break;
#endif
#if defined(SO_RCVTIMEO)
case SOCKET_OPT_SOCK_RCVTIMEO:
result = nsetopt_lvl_sock_rcvtimeo(env, descP, eVal);
break;
#endif
#if defined(SO_REUSEADDR)
case SOCKET_OPT_SOCK_REUSEADDR:
result = nsetopt_lvl_sock_reuseaddr(env, descP, eVal);
break;
#endif
#if defined(SO_REUSEPORT)
case SOCKET_OPT_SOCK_REUSEPORT:
result = nsetopt_lvl_sock_reuseport(env, descP, eVal);
break;
#endif
#if defined(SO_SNDBUF)
case SOCKET_OPT_SOCK_SNDBUF:
result = nsetopt_lvl_sock_sndbuf(env, descP, eVal);
break;
#endif
#if defined(SO_SNDLOWAT)
case SOCKET_OPT_SOCK_SNDLOWAT:
result = nsetopt_lvl_sock_sndlowat(env, descP, eVal);
break;
#endif
#if defined(SO_SNDTIMEO)
case SOCKET_OPT_SOCK_SNDTIMEO:
result = nsetopt_lvl_sock_sndtimeo(env, descP, eVal);
break;
#endif
#if defined(SO_TIMESTAMP)
case SOCKET_OPT_SOCK_TIMESTAMP:
result = nsetopt_lvl_sock_timestamp(env, descP, eVal);
break;
#endif
default:
SSDBG( descP,
("SOCKET", "nsetopt_lvl_socket -> unknown opt (%d)\r\n", eOpt) );
result = esock_make_error(env, esock_atom_einval);
break;
}
SSDBG( descP,
("SOCKET", "nsetopt_lvl_socket -> done when"
"\r\n result: %T"
"\r\n", result) );
return result;
}
#if defined(SO_BINDTODEVICE)
static
ERL_NIF_TERM nsetopt_lvl_sock_bindtodevice(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal)
{
return nsetopt_str_opt(env, descP,
SOL_SOCKET, SO_BROADCAST,
IFNAMSIZ, eVal);
}
#endif
#if defined(SO_BROADCAST)
static
ERL_NIF_TERM nsetopt_lvl_sock_broadcast(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal)
{
return nsetopt_bool_opt(env, descP, SOL_SOCKET, SO_BROADCAST, eVal);
}
#endif
#if defined(SO_DEBUG)
static
ERL_NIF_TERM nsetopt_lvl_sock_debug(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal)
{
return nsetopt_int_opt(env, descP, SOL_SOCKET, SO_DEBUG, eVal);
}
#endif
#if defined(SO_DONTROUTE)
static
ERL_NIF_TERM nsetopt_lvl_sock_dontroute(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal)
{
return nsetopt_bool_opt(env, descP, SOL_SOCKET, SO_DONTROUTE, eVal);
}
#endif
#if defined(SO_KEEPALIVE)
static
ERL_NIF_TERM nsetopt_lvl_sock_keepalive(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal)
{
return nsetopt_bool_opt(env, descP, SOL_SOCKET, SO_KEEPALIVE, eVal);
}
#endif
#if defined(SO_LINGER)
static
ERL_NIF_TERM nsetopt_lvl_sock_linger(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal)
{
ERL_NIF_TERM result;
struct linger val;
if (decode_sock_linger(env, eVal, &val)) {
int optLen = sizeof(val);
int res = socket_setopt(descP->sock, SOL_SOCKET, SO_LINGER,
(void*) &val, optLen);
if (res != 0)
result = esock_make_error_errno(env, sock_errno());
else
result = esock_atom_ok;
} else {
result = esock_make_error(env, esock_atom_einval);
}
return result;
}
#endif
#if defined(SO_OOBINLINE)
static
ERL_NIF_TERM nsetopt_lvl_sock_oobinline(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal)
{
return nsetopt_bool_opt(env, descP, SOL_SOCKET, SO_OOBINLINE, eVal);
}
#endif
#if defined(SO_PEEK_OFF)
static
ERL_NIF_TERM nsetopt_lvl_sock_peek_off(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal)
{
return nsetopt_int_opt(env, descP, SOL_SOCKET, SO_PEEK_OFF, eVal);
}
#endif
#if defined(SO_PRIORITY)
static
ERL_NIF_TERM nsetopt_lvl_sock_priority(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal)
{
return nsetopt_int_opt(env, descP, SOL_SOCKET, SO_PRIORITY, eVal);
}
#endif
#if defined(SO_RCVBUF)
static
ERL_NIF_TERM nsetopt_lvl_sock_rcvbuf(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal)
{
return nsetopt_int_opt(env, descP, SOL_SOCKET, SO_RCVBUF, eVal);
}
#endif
#if defined(SO_RCVLOWAT)
static
ERL_NIF_TERM nsetopt_lvl_sock_rcvlowat(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal)
{
return nsetopt_int_opt(env, descP, SOL_SOCKET, SO_RCVLOWAT, eVal);
}
#endif
#if defined(SO_RCVTIMEO)
static
ERL_NIF_TERM nsetopt_lvl_sock_rcvtimeo(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal)
{
return nsetopt_timeval_opt(env, descP, SOL_SOCKET, SO_RCVTIMEO, eVal);
}
#endif
#if defined(SO_REUSEADDR)
static
ERL_NIF_TERM nsetopt_lvl_sock_reuseaddr(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal)
{
return nsetopt_bool_opt(env, descP, SOL_SOCKET, SO_REUSEADDR, eVal);
}
#endif
#if defined(SO_REUSEPORT)
static
ERL_NIF_TERM nsetopt_lvl_sock_reuseport(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal)
{
return nsetopt_bool_opt(env, descP, SOL_SOCKET, SO_REUSEPORT, eVal);
}
#endif
#if defined(SO_SNDBUF)
static
ERL_NIF_TERM nsetopt_lvl_sock_sndbuf(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal)
{
return nsetopt_int_opt(env, descP, SOL_SOCKET, SO_SNDBUF, eVal);
}
#endif
#if defined(SO_SNDLOWAT)
static
ERL_NIF_TERM nsetopt_lvl_sock_sndlowat(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal)
{
return nsetopt_int_opt(env, descP, SOL_SOCKET, SO_SNDLOWAT, eVal);
}
#endif
#if defined(SO_SNDTIMEO)
static
ERL_NIF_TERM nsetopt_lvl_sock_sndtimeo(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal)
{
SSDBG( descP,
("SOCKET", "nsetopt_lvl_sock_sndtimeo -> entry with"
"\r\n eVal: %T"
"\r\n", eVal) );
return nsetopt_timeval_opt(env, descP, SOL_SOCKET, SO_SNDTIMEO, eVal);
}
#endif
#if defined(SO_TIMESTAMP)
static
ERL_NIF_TERM nsetopt_lvl_sock_timestamp(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal)
{
return nsetopt_bool_opt(env, descP, SOL_SOCKET, SO_TIMESTAMP, eVal);
}
#endif
/* nsetopt_lvl_ip - Level *IP* option(s)
*/
static
ERL_NIF_TERM nsetopt_lvl_ip(ErlNifEnv* env,
SocketDescriptor* descP,
int eOpt,
ERL_NIF_TERM eVal)
{
ERL_NIF_TERM result;
SSDBG( descP,
("SOCKET", "nsetopt_lvl_ip -> entry with"
"\r\n opt: %d"
"\r\n", eOpt) );
switch (eOpt) {
#if defined(IP_ADD_MEMBERSHIP)
case SOCKET_OPT_IP_ADD_MEMBERSHIP:
result = nsetopt_lvl_ip_add_membership(env, descP, eVal);
break;
#endif
#if defined(IP_ADD_SOURCE_MEMBERSHIP)
case SOCKET_OPT_IP_ADD_SOURCE_MEMBERSHIP:
result = nsetopt_lvl_ip_add_source_membership(env, descP, eVal);
break;
#endif
#if defined(IP_BLOCK_SOURCE)
case SOCKET_OPT_IP_BLOCK_SOURCE:
result = nsetopt_lvl_ip_block_source(env, descP, eVal);
break;
#endif
#if defined(IP_DROP_MEMBERSHIP)
case SOCKET_OPT_IP_DROP_MEMBERSHIP:
result = nsetopt_lvl_ip_drop_membership(env, descP, eVal);
break;
#endif
#if defined(IP_DROP_SOURCE_MEMBERSHIP)
case SOCKET_OPT_IP_DROP_SOURCE_MEMBERSHIP:
result = nsetopt_lvl_ip_drop_source_membership(env, descP, eVal);
break;
#endif
#if defined(IP_FREEBIND)
case SOCKET_OPT_IP_FREEBIND:
result = nsetopt_lvl_ip_freebind(env, descP, eVal);
break;
#endif
#if defined(IP_HDRINCL)
case SOCKET_OPT_IP_HDRINCL:
result = nsetopt_lvl_ip_hdrincl(env, descP, eVal);
break;
#endif
#if defined(IP_MINTTL)
case SOCKET_OPT_IP_MINTTL:
result = nsetopt_lvl_ip_minttl(env, descP, eVal);
break;
#endif
#if defined(IP_MSFILTER)
case SOCKET_OPT_IP_MSFILTER:
result = nsetopt_lvl_ip_msfilter(env, descP, eVal);
break;
#endif
#if defined(IP_MTU_DISCOVER)
case SOCKET_OPT_IP_MTU_DISCOVER:
result = nsetopt_lvl_ip_mtu_discover(env, descP, eVal);
break;
#endif
#if defined(IP_MULTICAST_ALL)
case SOCKET_OPT_IP_MULTICAST_ALL:
result = nsetopt_lvl_ip_multicast_all(env, descP, eVal);
break;
#endif
#if defined(IP_MULTICAST_IF)
case SOCKET_OPT_IP_MULTICAST_IF:
result = nsetopt_lvl_ip_multicast_if(env, descP, eVal);
break;
#endif
#if defined(IP_MULTICAST_LOOP)
case SOCKET_OPT_IP_MULTICAST_LOOP:
result = nsetopt_lvl_ip_multicast_loop(env, descP, eVal);
break;
#endif
#if defined(IP_MULTICAST_TTL)
case SOCKET_OPT_IP_MULTICAST_TTL:
result = nsetopt_lvl_ip_multicast_ttl(env, descP, eVal);
break;
#endif
#if defined(IP_NODEFRAG)
case SOCKET_OPT_IP_NODEFRAG:
result = nsetopt_lvl_ip_nodefrag(env, descP, eVal);
break;
#endif
#if defined(IP_PKTINFO)
case SOCKET_OPT_IP_PKTINFO:
result = nsetopt_lvl_ip_pktinfo(env, descP, eVal);
break;
#endif
#if defined(IP_RECVDSTADDR)
case SOCKET_OPT_IP_RECVDSTADDR:
result = nsetopt_lvl_ip_recvdstaddr(env, descP, eVal);
break;
#endif
#if defined(IP_RECVERR)
case SOCKET_OPT_IP_RECVERR:
result = nsetopt_lvl_ip_recverr(env, descP, eVal);
break;
#endif
#if defined(IP_RECVIF)
case SOCKET_OPT_IP_RECVIF:
result = nsetopt_lvl_ip_recvif(env, descP, eVal);
break;
#endif
#if defined(IP_RECVOPTS)
case SOCKET_OPT_IP_RECVOPTS:
result = nsetopt_lvl_ip_recvopts(env, descP, eVal);
break;
#endif
#if defined(IP_RECVORIGDSTADDR)
case SOCKET_OPT_IP_RECVORIGDSTADDR:
result = nsetopt_lvl_ip_recvorigdstaddr(env, descP, eVal);
break;
#endif
#if defined(IP_RECVTOS)
case SOCKET_OPT_IP_RECVTOS:
result = nsetopt_lvl_ip_recvtos(env, descP, eVal);
break;
#endif
#if defined(IP_RECVTTL)
case SOCKET_OPT_IP_RECVTTL:
result = nsetopt_lvl_ip_recvttl(env, descP, eVal);
break;
#endif
#if defined(IP_RETOPTS)
case SOCKET_OPT_IP_RETOPTS:
result = nsetopt_lvl_ip_retopts(env, descP, eVal);
break;
#endif
#if defined(IP_ROUTER_ALERT)
case SOCKET_OPT_IP_ROUTER_ALERT:
result = nsetopt_lvl_ip_router_alert(env, descP, eVal);
break;
#endif
#if defined(IP_SENDSRCADDR)
case SOCKET_OPT_IP_SENDSRCADDR:
result = nsetopt_lvl_ip_sendsrcaddr(env, descP, eVal);
break;
#endif
#if defined(IP_TOS)
case SOCKET_OPT_IP_TOS:
result = nsetopt_lvl_ip_tos(env, descP, eVal);
break;
#endif
#if defined(IP_TRANSPARENT)
case SOCKET_OPT_IP_TRANSPARENT:
result = nsetopt_lvl_ip_transparent(env, descP, eVal);
break;
#endif
#if defined(IP_TTL)
case SOCKET_OPT_IP_TTL:
result = nsetopt_lvl_ip_ttl(env, descP, eVal);
break;
#endif
#if defined(IP_UNBLOCK_SOURCE)
case SOCKET_OPT_IP_UNBLOCK_SOURCE:
result = nsetopt_lvl_ip_unblock_source(env, descP, eVal);
break;
#endif
default:
SSDBG( descP, ("SOCKET", "nsetopt_lvl_ip -> unknown opt (%d)\r\n", eOpt) );
result = esock_make_error(env, esock_atom_einval);
break;
}
SSDBG( descP,
("SOCKET", "nsetopt_lvl_ip -> done when"
"\r\n result: %T"
"\r\n", result) );
return result;
}
/* nsetopt_lvl_ip_add_membership - Level IP ADD_MEMBERSHIP option
*
* The value is a map with two attributes: multiaddr and interface.
* The attribute 'multiaddr' is always a 4-tuple (IPv4 address).
* The attribute 'interface' is either the atom 'any' or a 4-tuple
* (IPv4 address).
*/
#if defined(IP_ADD_MEMBERSHIP)
static
ERL_NIF_TERM nsetopt_lvl_ip_add_membership(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal)
{
return nsetopt_lvl_ip_update_membership(env, descP, eVal, IP_ADD_MEMBERSHIP);
}
#endif
/* nsetopt_lvl_ip_add_source_membership - Level IP ADD_SOURCE_MEMBERSHIP option
*
* The value is a map with three attributes: multiaddr, interface and
* sourceaddr.
* The attribute 'multiaddr' is always a 4-tuple (IPv4 address).
* The attribute 'interface' is always a 4-tuple (IPv4 address).
* The attribute 'sourceaddr' is always a 4-tuple (IPv4 address).
* (IPv4 address).
*/
#if defined(IP_ADD_SOURCE_MEMBERSHIP)
static
ERL_NIF_TERM nsetopt_lvl_ip_add_source_membership(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal)
{
return nsetopt_lvl_ip_update_source(env, descP, eVal,
IP_ADD_SOURCE_MEMBERSHIP);
}
#endif
/* nsetopt_lvl_ip_block_source - Level IP BLOCK_SOURCE option
*
* The value is a map with three attributes: multiaddr, interface and
* sourceaddr.
* The attribute 'multiaddr' is always a 4-tuple (IPv4 address).
* The attribute 'interface' is always a 4-tuple (IPv4 address).
* The attribute 'sourceaddr' is always a 4-tuple (IPv4 address).
* (IPv4 address).
*/
#if defined(IP_BLOCK_SOURCE)
static
ERL_NIF_TERM nsetopt_lvl_ip_block_source(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal)
{
return nsetopt_lvl_ip_update_source(env, descP, eVal, IP_BLOCK_SOURCE);
}
#endif
/* nsetopt_lvl_ip_drop_membership - Level IP DROP_MEMBERSHIP option
*
* The value is a map with two attributes: multiaddr and interface.
* The attribute 'multiaddr' is always a 4-tuple (IPv4 address).
* The attribute 'interface' is either the atom 'any' or a 4-tuple
* (IPv4 address).
*
* We should really have a common function with add_membership,
* since the code is virtually identical (except for the option
* value).
*/
#if defined(IP_DROP_MEMBERSHIP)
static
ERL_NIF_TERM nsetopt_lvl_ip_drop_membership(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal)
{
return nsetopt_lvl_ip_update_membership(env, descP, eVal,
IP_DROP_MEMBERSHIP);
}
#endif
/* nsetopt_lvl_ip_drop_source_membership - Level IP DROP_SOURCE_MEMBERSHIP option
*
* The value is a map with three attributes: multiaddr, interface and
* sourceaddr.
* The attribute 'multiaddr' is always a 4-tuple (IPv4 address).
* The attribute 'interface' is always a 4-tuple (IPv4 address).
* The attribute 'sourceaddr' is always a 4-tuple (IPv4 address).
* (IPv4 address).
*/
#if defined(IP_DROP_SOURCE_MEMBERSHIP)
static
ERL_NIF_TERM nsetopt_lvl_ip_drop_source_membership(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal)
{
return nsetopt_lvl_ip_update_source(env, descP, eVal,
IP_DROP_SOURCE_MEMBERSHIP);
}
#endif
/* nsetopt_lvl_ip_freebind - Level IP FREEBIND option
*/
#if defined(IP_FREEBIND)
static
ERL_NIF_TERM nsetopt_lvl_ip_freebind(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal)
{
#if defined(SOL_IP)
int level = SOL_IP;
#else
int level = IPPROTO_IP;
#endif
return nsetopt_bool_opt(env, descP, level, IP_FREEBIND, eVal);
}
#endif
/* nsetopt_lvl_ip_hdrincl - Level IP HDRINCL option
*/
#if defined(IP_HDRINCL)
static
ERL_NIF_TERM nsetopt_lvl_ip_hdrincl(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal)
{
#if defined(SOL_IP)
int level = SOL_IP;
#else
int level = IPPROTO_IP;
#endif
return nsetopt_bool_opt(env, descP, level, IP_HDRINCL, eVal);
}
#endif
/* nsetopt_lvl_ip_minttl - Level IP MINTTL option
*/
#if defined(IP_MINTTL)
static
ERL_NIF_TERM nsetopt_lvl_ip_minttl(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal)
{
#if defined(SOL_IP)
int level = SOL_IP;
#else
int level = IPPROTO_IP;
#endif
return nsetopt_int_opt(env, descP, level, IP_MINTTL, eVal);
}
#endif
/* nsetopt_lvl_ip_msfilter - Level IP MSFILTER option
*
* The value can be *either* the atom 'null' or a map of type ip_msfilter().
*/
#if defined(IP_MSFILTER)
static
ERL_NIF_TERM nsetopt_lvl_ip_msfilter(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal)
{
ERL_NIF_TERM result;
if (COMPARE(eVal, atom_null) == 0) {
return nsetopt_lvl_ip_msfilter_set(env, descP->sock, NULL, 0);
} else {
struct ip_msfilter* msfP;
uint32_t msfSz;
ERL_NIF_TERM eMultiAddr, eInterface, eFMode, eSList, elem, tail;
size_t sz;
unsigned int slistLen, idx;
if (!IS_MAP(env, eVal))
return esock_make_error(env, esock_atom_einval);
// It must have atleast four attributes
if (!enif_get_map_size(env, eVal, &sz) || (sz < 4))
return esock_make_error(env, esock_atom_einval);
if (!GET_MAP_VAL(env, eVal, atom_multiaddr, &eMultiAddr))
return esock_make_error(env, esock_atom_einval);
if (!GET_MAP_VAL(env, eVal, atom_interface, &eInterface))
return esock_make_error(env, esock_atom_einval);
if (!GET_MAP_VAL(env, eVal, atom_mode, &eFMode))
return esock_make_error(env, esock_atom_einval);
if (!GET_MAP_VAL(env, eVal, atom_slist, &eSList))
return esock_make_error(env, esock_atom_einval);
/* We start (decoding) with the slist, since without it we don't
* really know how much (memory) to allocate.
*/
if (!GET_LIST_LEN(env, eSList, &slistLen))
return esock_make_error(env, esock_atom_einval);
msfSz = IP_MSFILTER_SIZE(slistLen);
msfP = MALLOC(msfSz);
if (!esock_decode_ip4_address(env, eMultiAddr, &msfP->imsf_multiaddr)) {
FREE(msfP);
return esock_make_error(env, esock_atom_einval);
}
if (!esock_decode_ip4_address(env, eInterface, &msfP->imsf_interface)) {
FREE(msfP);
return esock_make_error(env, esock_atom_einval);
}
if (!decode_ip_msfilter_mode(env, eFMode, &msfP->imsf_fmode)) {
FREE(msfP);
return esock_make_error(env, esock_atom_einval);
}
/* And finally, extract the source addresses */
msfP->imsf_numsrc = slistLen;
for (idx = 0; idx < slistLen; idx++) {
if (GET_LIST_ELEM(env, eSList, &elem, &tail)) {
if (!esock_decode_ip4_address(env, elem, &msfP->imsf_slist[idx])) {
FREE(msfP);
return esock_make_error(env, esock_atom_einval);
} else {
eSList = tail;
}
}
}
/* And now, finally, set the option */
result = nsetopt_lvl_ip_msfilter_set(env, descP->sock, msfP, msfSz);
FREE(msfP);
return result;
}
}
static
BOOLEAN_T decode_ip_msfilter_mode(ErlNifEnv* env,
ERL_NIF_TERM eVal,
uint32_t* mode)
{
BOOLEAN_T result;
if (COMPARE(eVal, atom_include) == 0) {
*mode = MCAST_INCLUDE;
result = TRUE;
} else if (COMPARE(eVal, atom_exclude) == 0) {
*mode = MCAST_EXCLUDE;
result = TRUE;
} else {
result = FALSE;
}
return result;
}
static
ERL_NIF_TERM nsetopt_lvl_ip_msfilter_set(ErlNifEnv* env,
SOCKET sock,
struct ip_msfilter* msfP,
SOCKLEN_T optLen)
{
ERL_NIF_TERM result;
int res;
#if defined(SOL_IP)
int level = SOL_IP;
#else
int level = IPPROTO_IP;
#endif
res = socket_setopt(sock, level, IP_MSFILTER, (void*) msfP, optLen);
if (res != 0)
result = esock_make_error_errno(env, sock_errno());
else
result = esock_atom_ok;
return result;
}
#endif // IP_MSFILTER
/* nsetopt_lvl_ip_mtu_discover - Level IP MTU_DISCOVER option
*
* The value is an atom of the type ip_pmtudisc().
*/
#if defined(IP_MTU_DISCOVER)
static
ERL_NIF_TERM nsetopt_lvl_ip_mtu_discover(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal)
{
ERL_NIF_TERM result;
int val;
char* xres;
int res;
#if defined(SOL_IP)
int level = SOL_IP;
#else
int level = IPPROTO_IP;
#endif
if ((xres = decode_ip_pmtudisc(env, eVal, &val)) != NULL) {
result = esock_make_error_str(env, xres);
} else {
res = socket_setopt(descP->sock, level, IP_MTU_DISCOVER,
&val, sizeof(val));
if (res != 0)
result = esock_make_error_errno(env, sock_errno());
else
result = esock_atom_ok;
}
return result;
}
#endif
/* nsetopt_lvl_ip_multicast_all - Level IP MULTICAST_ALL option
*/
#if defined(IP_MULTICAST_ALL)
static
ERL_NIF_TERM nsetopt_lvl_ip_multicast_all(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal)
{
#if defined(SOL_IP)
int level = SOL_IP;
#else
int level = IPPROTO_IP;
#endif
return nsetopt_bool_opt(env, descP, level, IP_MULTICAST_ALL, eVal);
}
#endif
/* nsetopt_lvl_ip_multicast_if - Level IP MULTICAST_IF option
*
* The value is either the atom 'any' or a 4-tuple.
*/
#if defined(IP_MULTICAST_IF)
static
ERL_NIF_TERM nsetopt_lvl_ip_multicast_if(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal)
{
ERL_NIF_TERM result;
struct in_addr ifAddr;
char* xres;
int res;
#if defined(SOL_IP)
int level = SOL_IP;
#else
int level = IPPROTO_IP;
#endif
if ((xres = esock_decode_ip4_address(env, eVal, &ifAddr)) != NULL) {
result = esock_make_error_str(env, xres);
} else {
res = socket_setopt(descP->sock, level, IP_MULTICAST_LOOP,
&ifAddr, sizeof(ifAddr));
if (res != 0)
result = esock_make_error_errno(env, sock_errno());
else
result = esock_atom_ok;
}
return result;
}
#endif
/* nsetopt_lvl_ip_multicast_loop - Level IP MULTICAST_LOOP option
*/
#if defined(IP_MULTICAST_LOOP)
static
ERL_NIF_TERM nsetopt_lvl_ip_multicast_loop(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal)
{
#if defined(SOL_IP)
int level = SOL_IP;
#else
int level = IPPROTO_IP;
#endif
return nsetopt_bool_opt(env, descP, level, IP_MULTICAST_LOOP, eVal);
}
#endif
/* nsetopt_lvl_ip_multicast_ttl - Level IP MULTICAST_TTL option
*/
#if defined(IP_MULTICAST_TTL)
static
ERL_NIF_TERM nsetopt_lvl_ip_multicast_ttl(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal)
{
#if defined(SOL_IP)
int level = SOL_IP;
#else
int level = IPPROTO_IP;
#endif
return nsetopt_int_opt(env, descP, level, IP_MULTICAST_TTL, eVal);
}
#endif
/* nsetopt_lvl_ip_nodefrag - Level IP NODEFRAG option
*/
#if defined(IP_NODEFRAG)
static
ERL_NIF_TERM nsetopt_lvl_ip_nodefrag(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal)
{
#if defined(SOL_IP)
int level = SOL_IP;
#else
int level = IPPROTO_IP;
#endif
return nsetopt_bool_opt(env, descP, level, IP_NODEFRAG, eVal);
}
#endif
/* nsetopt_lvl_ip_pktinfo - Level IP PKTINFO option
*/
#if defined(IP_PKTINFO)
static
ERL_NIF_TERM nsetopt_lvl_ip_pktinfo(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal)
{
#if defined(SOL_IP)
int level = SOL_IP;
#else
int level = IPPROTO_IP;
#endif
return nsetopt_bool_opt(env, descP, level, IP_PKTINFO, eVal);
}
#endif
/* nsetopt_lvl_ip_recvdstaddr - Level IP RECVDSTADDR option
*/
#if defined(IP_RECVDSTADDR)
static
ERL_NIF_TERM nsetopt_lvl_ip_recvdstaddr(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal)
{
#if defined(SOL_IP)
int level = SOL_IP;
#else
int level = IPPROTO_IP;
#endif
return nsetopt_bool_opt(env, descP, level, IP_RECVDSTADDR, eVal);
}
#endif
/* nsetopt_lvl_ip_recverr - Level IP RECVERR option
*/
#if defined(IP_RECVERR)
static
ERL_NIF_TERM nsetopt_lvl_ip_recverr(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal)
{
#if defined(SOL_IP)
int level = SOL_IP;
#else
int level = IPPROTO_IP;
#endif
return nsetopt_bool_opt(env, descP, level, IP_RECVERR, eVal);
}
#endif
/* nsetopt_lvl_ip_recvif - Level IP RECVIF option
*/
#if defined(IP_RECVIF)
static
ERL_NIF_TERM nsetopt_lvl_ip_recvif(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal)
{
#if defined(SOL_IP)
int level = SOL_IP;
#else
int level = IPPROTO_IP;
#endif
return nsetopt_bool_opt(env, descP, level, IP_RECVIF, eVal);
}
#endif
/* nsetopt_lvl_ip_recvopts - Level IP RECVOPTS option
*/
#if defined(IP_RECVOPTS)
static
ERL_NIF_TERM nsetopt_lvl_ip_recvopts(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal)
{
#if defined(SOL_IP)
int level = SOL_IP;
#else
int level = IPPROTO_IP;
#endif
return nsetopt_bool_opt(env, descP, level, IP_RECVOPTS, eVal);
}
#endif
/* nsetopt_lvl_ip_recvorigdstaddr - Level IP RECVORIGDSTADDR option
*/
#if defined(IP_RECVORIGDSTADDR)
static
ERL_NIF_TERM nsetopt_lvl_ip_recvorigdstaddr(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal)
{
#if defined(SOL_IP)
int level = SOL_IP;
#else
int level = IPPROTO_IP;
#endif
return nsetopt_bool_opt(env, descP, level, IP_RECVORIGDSTADDR, eVal);
}
#endif
/* nsetopt_lvl_ip_recvtos - Level IP RECVTOS option
*/
#if defined(IP_RECVTOS)
static
ERL_NIF_TERM nsetopt_lvl_ip_recvtos(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal)
{
#if defined(SOL_IP)
int level = SOL_IP;
#else
int level = IPPROTO_IP;
#endif
return nsetopt_bool_opt(env, descP, level, IP_RECVTOS, eVal);
}
#endif
/* nsetopt_lvl_ip_recvttl - Level IP RECVTTL option
*/
#if defined(IP_RECVTTL)
static
ERL_NIF_TERM nsetopt_lvl_ip_recvttl(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal)
{
#if defined(SOL_IP)
int level = SOL_IP;
#else
int level = IPPROTO_IP;
#endif
return nsetopt_bool_opt(env, descP, level, IP_RECVTTL, eVal);
}
#endif
/* nsetopt_lvl_ip_retopts - Level IP RETOPTS option
*/
#if defined(IP_RETOPTS)
static
ERL_NIF_TERM nsetopt_lvl_ip_retopts(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal)
{
#if defined(SOL_IP)
int level = SOL_IP;
#else
int level = IPPROTO_IP;
#endif
return nsetopt_bool_opt(env, descP, level, IP_RETOPTS, eVal);
}
#endif
/* nsetopt_lvl_ip_router_alert - Level IP ROUTER_ALERT option
*/
#if defined(IP_ROUTER_ALERT)
static
ERL_NIF_TERM nsetopt_lvl_ip_router_alert(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal)
{
#if defined(SOL_IP)
int level = SOL_IP;
#else
int level = IPPROTO_IP;
#endif
return nsetopt_int_opt(env, descP, level, IP_ROUTER_ALERT, eVal);
}
#endif
/* nsetopt_lvl_ip_sendsrcaddr - Level IP SENDSRCADDR option
*/
#if defined(IP_SENDSRCADDR)
static
ERL_NIF_TERM nsetopt_lvl_ip_sendsrcaddr(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal)
{
#if defined(SOL_IP)
int level = SOL_IP;
#else
int level = IPPROTO_IP;
#endif
return nsetopt_bool_opt(env, descP, level, IP_SENDSRCADDR, eVal);
}
#endif
/* nsetopt_lvl_ip_tos - Level IP TOS option
*/
#if defined(IP_TOS)
static
ERL_NIF_TERM nsetopt_lvl_ip_tos(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal)
{
#if defined(SOL_IP)
int level = SOL_IP;
#else
int level = IPPROTO_IP;
#endif
ERL_NIF_TERM result;
int val;
if (decode_ip_tos(env, eVal, &val)) {
int res = socket_setopt(descP->sock, level, IP_TOS, &val, sizeof(val));
if (res != 0)
result = esock_make_error_errno(env, sock_errno());
else
result = esock_atom_ok;
} else {
result = esock_make_error(env, esock_atom_einval);
}
return result;
}
#endif
/* nsetopt_lvl_ip_transparent - Level IP TRANSPARENT option
*/
#if defined(IP_TRANSPARENT)
static
ERL_NIF_TERM nsetopt_lvl_ip_transparent(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal)
{
#if defined(SOL_IP)
int level = SOL_IP;
#else
int level = IPPROTO_IP;
#endif
return nsetopt_bool_opt(env, descP, level, IP_TRANSPARENT, eVal);
}
#endif
/* nsetopt_lvl_ip_ttl - Level IP TTL option
*/
#if defined(IP_TTL)
static
ERL_NIF_TERM nsetopt_lvl_ip_ttl(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal)
{
#if defined(SOL_IP)
int level = SOL_IP;
#else
int level = IPPROTO_IP;
#endif
return nsetopt_int_opt(env, descP, level, IP_TTL, eVal);
}
#endif
/* nsetopt_lvl_ip_unblock_source - Level IP UNBLOCK_SOURCE option
*
* The value is a map with three attributes: multiaddr, interface and
* sourceaddr.
* The attribute 'multiaddr' is always a 4-tuple (IPv4 address).
* The attribute 'interface' is always a 4-tuple (IPv4 address).
* The attribute 'sourceaddr' is always a 4-tuple (IPv4 address).
* (IPv4 address).
*/
#if defined(IP_UNBLOCK_SOURCE)
static
ERL_NIF_TERM nsetopt_lvl_ip_unblock_source(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal)
{
return nsetopt_lvl_ip_update_source(env, descP, eVal, IP_UNBLOCK_SOURCE);
}
#endif
#if defined(IP_ADD_MEMBERSHIP) || defined(IP_DROP_MEMBERSHIP)
static
ERL_NIF_TERM nsetopt_lvl_ip_update_membership(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal,
int opt)
{
ERL_NIF_TERM result, eMultiAddr, eInterface;
struct ip_mreq mreq;
char* xres;
int res;
size_t sz;
#if defined(SOL_IP)
int level = SOL_IP;
#else
int level = IPPROTO_IP;
#endif
// It must be a map
if (!IS_MAP(env, eVal))
return enif_make_badarg(env);
// It must have atleast two attributes
if (!enif_get_map_size(env, eVal, &sz) || (sz >= 2))
return enif_make_badarg(env);
if (!GET_MAP_VAL(env, eVal, atom_multiaddr, &eMultiAddr))
return enif_make_badarg(env);
if (!GET_MAP_VAL(env, eVal, atom_interface, &eInterface))
return enif_make_badarg(env);
if ((xres = esock_decode_ip4_address(env,
eMultiAddr,
&mreq.imr_multiaddr)) != NULL)
return esock_make_error_str(env, xres);
if ((xres = esock_decode_ip4_address(env,
eInterface,
&mreq.imr_interface)) != NULL)
return esock_make_error_str(env, xres);
res = socket_setopt(descP->sock, level, opt, &mreq, sizeof(mreq));
if (res != 0)
result = esock_make_error_errno(env, sock_errno());
else
result = esock_atom_ok;
return result;
}
#endif
#if defined(IP_ADD_SOURCE_MEMBERSHIP) || defined(IP_DROP_SOURCE_MEMBERSHIP) || defined(IP_BLOCK_SOURCE) || defined(IP_UNBLOCK_SOURCE)
static
ERL_NIF_TERM nsetopt_lvl_ip_update_source(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal,
int opt)
{
ERL_NIF_TERM result, eMultiAddr, eInterface, eSourceAddr;
struct ip_mreq_source mreq;
char* xres;
int res;
size_t sz;
#if defined(SOL_IP)
int level = SOL_IP;
#else
int level = IPPROTO_IP;
#endif
// It must be a map
if (!IS_MAP(env, eVal))
return enif_make_badarg(env);
// It must have atleast three attributes
if (!enif_get_map_size(env, eVal, &sz) || (sz >= 3))
return enif_make_badarg(env);
if (!GET_MAP_VAL(env, eVal, atom_multiaddr, &eMultiAddr))
return enif_make_badarg(env);
if (!GET_MAP_VAL(env, eVal, atom_interface, &eInterface))
return enif_make_badarg(env);
if (!GET_MAP_VAL(env, eVal, atom_sourceaddr, &eSourceAddr))
return enif_make_badarg(env);
if ((xres = esock_decode_ip4_address(env,
eMultiAddr,
&mreq.imr_multiaddr)) != NULL)
return esock_make_error_str(env, xres);
if ((xres = esock_decode_ip4_address(env,
eInterface,
&mreq.imr_interface)) != NULL)
return esock_make_error_str(env, xres);
if ((xres = esock_decode_ip4_address(env,
eSourceAddr,
&mreq.imr_sourceaddr)) != NULL)
return esock_make_error_str(env, xres);
res = socket_setopt(descP->sock, level, opt, &mreq, sizeof(mreq));
if (res != 0)
result = esock_make_error_errno(env, sock_errno());
else
result = esock_atom_ok;
return result;
}
#endif
/* *** Handling set of socket options for level = ipv6 *** */
/* nsetopt_lvl_ipv6 - Level *IPv6* option(s)
*/
#if defined(SOL_IPV6)
static
ERL_NIF_TERM nsetopt_lvl_ipv6(ErlNifEnv* env,
SocketDescriptor* descP,
int eOpt,
ERL_NIF_TERM eVal)
{
ERL_NIF_TERM result;
SSDBG( descP,
("SOCKET", "nsetopt_lvl_ipv6 -> entry with"
"\r\n opt: %d"
"\r\n", eOpt) );
switch (eOpt) {
#if defined(IPV6_ADDRFORM)
case SOCKET_OPT_IPV6_ADDRFORM:
result = nsetopt_lvl_ipv6_addrform(env, descP, eVal);
break;
#endif
#if defined(IPV6_ADD_MEMBERSHIP)
case SOCKET_OPT_IPV6_ADD_MEMBERSHIP:
result = nsetopt_lvl_ipv6_add_membership(env, descP, eVal);
break;
#endif
#if defined(IPV6_AUTHHDR)
case SOCKET_OPT_IPV6_AUTHHDR:
result = nsetopt_lvl_ipv6_authhdr(env, descP, eVal);
break;
#endif
#if defined(IPV6_DROP_MEMBERSHIP)
case SOCKET_OPT_IPV6_DROP_MEMBERSHIP:
result = nsetopt_lvl_ipv6_drop_membership(env, descP, eVal);
break;
#endif
#if defined(IPV6_DSTOPTS)
case SOCKET_OPT_IPV6_DSTOPTS:
result = nsetopt_lvl_ipv6_dstopts(env, descP, eVal);
break;
#endif
#if defined(IPV6_FLOWINFO)
case SOCKET_OPT_IPV6_FLOWINFO:
result = nsetopt_lvl_ipv6_flowinfo(env, descP, eVal);
break;
#endif
#if defined(IPV6_HOPLIMIT)
case SOCKET_OPT_IPV6_HOPLIMIT:
result = nsetopt_lvl_ipv6_hoplimit(env, descP, eVal);
break;
#endif
#if defined(IPV6_HOPOPTS)
case SOCKET_OPT_IPV6_HOPOPTS:
result = nsetopt_lvl_ipv6_hopopts(env, descP, eVal);
break;
#endif
#if defined(IPV6_MTU)
case SOCKET_OPT_IPV6_MTU:
result = nsetopt_lvl_ipv6_mtu(env, descP, eVal);
break;
#endif
#if defined(IPV6_MTU_DISCOVER)
case SOCKET_OPT_IPV6_MTU_DISCOVER:
result = nsetopt_lvl_ipv6_mtu_discover(env, descP, eVal);
break;
#endif
#if defined(IPV6_MULTICAST_HOPS)
case SOCKET_OPT_IPV6_MULTICAST_HOPS:
result = nsetopt_lvl_ipv6_multicast_hops(env, descP, eVal);
break;
#endif
#if defined(IPV6_MULTICAST_IF)
case SOCKET_OPT_IPV6_MULTICAST_IF:
result = nsetopt_lvl_ipv6_multicast_if(env, descP, eVal);
break;
#endif
#if defined(IPV6_MULTICAST_LOOP)
case SOCKET_OPT_IPV6_MULTICAST_LOOP:
result = nsetopt_lvl_ipv6_multicast_loop(env, descP, eVal);
break;
#endif
#if defined(IPV6_RECVERR)
case SOCKET_OPT_IPV6_RECVERR:
result = nsetopt_lvl_ipv6_recverr(env, descP, eVal);
break;
#endif
#if defined(IPV6_RECVPKTINFO) || defined(IPV6_PKTINFO)
case SOCKET_OPT_IPV6_RECVPKTINFO:
result = nsetopt_lvl_ipv6_recvpktinfo(env, descP, eVal);
break;
#endif
#if defined(IPV6_ROUTER_ALERT)
case SOCKET_OPT_IPV6_ROUTER_ALERT:
result = nsetopt_lvl_ipv6_router_alert(env, descP, eVal);
break;
#endif
#if defined(IPV6_RTHDR)
case SOCKET_OPT_IPV6_RTHDR:
result = nsetopt_lvl_ipv6_rthdr(env, descP, eVal);
break;
#endif
#if defined(IPV6_UNICAST_HOPS)
case SOCKET_OPT_IPV6_UNICAST_HOPS:
result = nsetopt_lvl_ipv6_unicast_hops(env, descP, eVal);
break;
#endif
#if defined(IPV6_V6ONLY)
case SOCKET_OPT_IPV6_V6ONLY:
result = nsetopt_lvl_ipv6_v6only(env, descP, eVal);
break;
#endif
default:
SSDBG( descP,
("SOCKET", "nsetopt_lvl_ipv6 -> unknown opt (%d)\r\n", eOpt) );
result = esock_make_error(env, esock_atom_einval);
break;
}
SSDBG( descP,
("SOCKET", "nsetopt_lvl_ipv6 -> done when"
"\r\n result: %T"
"\r\n", result) );
return result;
}
#if defined(IPV6_ADDRFORM)
static
ERL_NIF_TERM nsetopt_lvl_ipv6_addrform(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal)
{
ERL_NIF_TERM result;
int res, edomain, domain;
SSDBG( descP,
("SOCKET", "nsetopt_lvl_ipv6_addrform -> entry with"
"\r\n eVal: %T"
"\r\n", eVal) );
if (!GET_INT(env, eVal, &edomain))
return esock_make_error(env, esock_atom_einval);
SSDBG( descP,
("SOCKET", "nsetopt_lvl_ipv6_addrform -> decode"
"\r\n edomain: %d"
"\r\n", edomain) );
if (!edomain2domain(edomain, &domain))
return esock_make_error(env, esock_atom_einval);
SSDBG( descP, ("SOCKET", "nsetopt_lvl_ipv6_addrform -> try set opt to %d\r\n",
domain) );
res = socket_setopt(descP->sock,
SOL_IPV6, IPV6_ADDRFORM,
&domain, sizeof(domain));
if (res != 0)
result = esock_make_error_errno(env, sock_errno());
else
result = esock_atom_ok;
return result;
}
#endif
#if defined(IPV6_ADD_MEMBERSHIP)
static
ERL_NIF_TERM nsetopt_lvl_ipv6_add_membership(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal)
{
return nsetopt_lvl_ipv6_update_membership(env, descP, eVal,
IPV6_ADD_MEMBERSHIP);
}
#endif
#if defined(IPV6_AUTHHDR)
static
ERL_NIF_TERM nsetopt_lvl_ipv6_authhdr(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal)
{
return nsetopt_bool_opt(env, descP, SOL_IPV6, IPV6_AUTHHDR, eVal);
}
#endif
#if defined(IPV6_DROP_MEMBERSHIP)
static
ERL_NIF_TERM nsetopt_lvl_ipv6_drop_membership(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal)
{
return nsetopt_lvl_ipv6_update_membership(env, descP, eVal,
IPV6_DROP_MEMBERSHIP);
}
#endif
#if defined(IPV6_DSTOPTS)
static
ERL_NIF_TERM nsetopt_lvl_ipv6_dstopts(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal)
{
return nsetopt_bool_opt(env, descP, SOL_IPV6, IPV6_DSTOPTS, eVal);
}
#endif
#if defined(IPV6_FLOWINFO)
static
ERL_NIF_TERM nsetopt_lvl_ipv6_flowinfo(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal)
{
return nsetopt_bool_opt(env, descP, SOL_IPV6, IPV6_FLOWINFO, eVal);
}
#endif
#if defined(IPV6_HOPLIMIT)
static
ERL_NIF_TERM nsetopt_lvl_ipv6_hoplimit(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal)
{
return nsetopt_bool_opt(env, descP, SOL_IPV6, IPV6_HOPLIMIT, eVal);
}
#endif
#if defined(IPV6_HOPOPTS)
static
ERL_NIF_TERM nsetopt_lvl_ipv6_hopopts(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal)
{
return nsetopt_bool_opt(env, descP, SOL_IPV6, IPV6_HOPOPTS, eVal);
}
#endif
#if defined(IPV6_MTU)
static
ERL_NIF_TERM nsetopt_lvl_ipv6_mtu(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal)
{
return nsetopt_int_opt(env, descP, SOL_IPV6, IPV6_MTU, eVal);
}
#endif
/* nsetopt_lvl_ipv6_mtu_discover - Level IPv6 MTU_DISCOVER option
*
* The value is an atom of the type ipv6_pmtudisc().
*/
#if defined(IPV6_MTU_DISCOVER)
static
ERL_NIF_TERM nsetopt_lvl_ipv6_mtu_discover(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal)
{
ERL_NIF_TERM result;
int val;
char* xres;
int res;
if ((xres = decode_ipv6_pmtudisc(env, eVal, &val)) != NULL) {
result = esock_make_error_str(env, xres);
} else {
res = socket_setopt(descP->sock, SOL_IPV6, IPV6_MTU_DISCOVER,
&val, sizeof(val));
if (res != 0)
result = esock_make_error_errno(env, sock_errno());
else
result = esock_atom_ok;
}
return result;
}
#endif
#if defined(IPV6_MULTICAST_HOPS)
static
ERL_NIF_TERM nsetopt_lvl_ipv6_multicast_hops(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal)
{
return nsetopt_int_opt(env, descP, SOL_IPV6, IPV6_MULTICAST_HOPS, eVal);
}
#endif
#if defined(IPV6_MULTICAST_IF)
static
ERL_NIF_TERM nsetopt_lvl_ipv6_multicast_if(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal)
{
return nsetopt_int_opt(env, descP, SOL_IPV6, IPV6_MULTICAST_IF, eVal);
}
#endif
#if defined(IPV6_MULTICAST_LOOP)
static
ERL_NIF_TERM nsetopt_lvl_ipv6_multicast_loop(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal)
{
return nsetopt_bool_opt(env, descP, SOL_IPV6, IPV6_MULTICAST_LOOP, eVal);
}
#endif
#if defined(IPV6_RECVERR)
static
ERL_NIF_TERM nsetopt_lvl_ipv6_recverr(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal)
{
return nsetopt_bool_opt(env, descP, SOL_IPV6, IPV6_RECVERR, eVal);
}
#endif
#if defined(IPV6_RECVPKTINFO) || defined(IPV6_PKTINFO)
static
ERL_NIF_TERM nsetopt_lvl_ipv6_recvpktinfo(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal)
{
#if defined(IPV6_RECVPKTINFO)
int opt = IPV6_RECVPKTINFO;
#else
int opt = IPV6_PKTINFO;
#endif
return nsetopt_bool_opt(env, descP, SOL_IPV6, opt, eVal);
}
#endif
#if defined(IPV6_ROUTER_ALERT)
static
ERL_NIF_TERM nsetopt_lvl_ipv6_router_alert(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal)
{
return nsetopt_int_opt(env, descP, SOL_IPV6, IPV6_ROUTER_ALERT, eVal);
}
#endif
#if defined(IPV6_RTHDR)
static
ERL_NIF_TERM nsetopt_lvl_ipv6_rthdr(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal)
{
return nsetopt_bool_opt(env, descP, SOL_IPV6, IPV6_RTHDR, eVal);
}
#endif
#if defined(IPV6_UNICAST_HOPS)
static
ERL_NIF_TERM nsetopt_lvl_ipv6_unicast_hops(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal)
{
return nsetopt_int_opt(env, descP, SOL_IPV6, IPV6_UNICAST_HOPS, eVal);
}
#endif
#if defined(IPV6_V6ONLY)
static
ERL_NIF_TERM nsetopt_lvl_ipv6_v6only(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal)
{
return nsetopt_bool_opt(env, descP, SOL_IPV6, IPV6_V6ONLY, eVal);
}
#endif
#if defined(IPV6_ADD_MEMBERSHIP) || defined(IPV6_DROP_MEMBERSHIP)
static
ERL_NIF_TERM nsetopt_lvl_ipv6_update_membership(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal,
int opt)
{
ERL_NIF_TERM result, eMultiAddr, eInterface;
struct ipv6_mreq mreq;
char* xres;
int res;
size_t sz;
int level = IPPROTO_IPV6;
// It must be a map
if (!IS_MAP(env, eVal))
return enif_make_badarg(env);
// It must have atleast two attributes
if (!enif_get_map_size(env, eVal, &sz) || (sz >= 2))
return enif_make_badarg(env);
if (!GET_MAP_VAL(env, eVal, atom_multiaddr, &eMultiAddr))
return enif_make_badarg(env);
if (!GET_MAP_VAL(env, eVal, atom_interface, &eInterface))
return enif_make_badarg(env);
if ((xres = esock_decode_ip6_address(env,
eMultiAddr,
&mreq.ipv6mr_multiaddr)) != NULL)
return esock_make_error_str(env, xres);
if (!GET_UINT(env, eInterface, &mreq.ipv6mr_interface))
return esock_make_error(env, esock_atom_einval);
res = socket_setopt(descP->sock, level, opt, &mreq, sizeof(mreq));
if (res != 0)
result = esock_make_error_errno(env, sock_errno());
else
result = esock_atom_ok;
return result;
}
#endif
#endif // defined(SOL_IPV6)
/* nsetopt_lvl_tcp - Level *TCP* option(s)
*/
static
ERL_NIF_TERM nsetopt_lvl_tcp(ErlNifEnv* env,
SocketDescriptor* descP,
int eOpt,
ERL_NIF_TERM eVal)
{
ERL_NIF_TERM result;
SSDBG( descP,
("SOCKET", "nsetopt_lvl_tcp -> entry with"
"\r\n opt: %d"
"\r\n", eOpt) );
switch (eOpt) {
#if defined(TCP_CONGESTION)
case SOCKET_OPT_TCP_CONGESTION:
result = nsetopt_lvl_tcp_congestion(env, descP, eVal);
break;
#endif
#if defined(TCP_MAXSEG)
case SOCKET_OPT_TCP_MAXSEG:
result = nsetopt_lvl_tcp_maxseg(env, descP, eVal);
break;
#endif
#if defined(TCP_NODELAY)
case SOCKET_OPT_TCP_NODELAY:
result = nsetopt_lvl_tcp_nodelay(env, descP, eVal);
break;
#endif
default:
result = esock_make_error(env, esock_atom_einval);
break;
}
return result;
}
/* nsetopt_lvl_tcp_congestion - Level TCP CONGESTION option
*/
#if defined(TCP_CONGESTION)
static
ERL_NIF_TERM nsetopt_lvl_tcp_congestion(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal)
{
int max = SOCKET_OPT_TCP_CONGESTION_NAME_MAX+1;
return nsetopt_str_opt(env, descP, IPPROTO_TCP, TCP_CONGESTION, max, eVal);
}
#endif
/* nsetopt_lvl_tcp_maxseg - Level TCP MAXSEG option
*/
#if defined(TCP_MAXSEG)
static
ERL_NIF_TERM nsetopt_lvl_tcp_maxseg(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal)
{
return nsetopt_int_opt(env, descP, IPPROTO_TCP, TCP_MAXSEG, eVal);
}
#endif
/* nsetopt_lvl_tcp_nodelay - Level TCP NODELAY option
*/
#if defined(TCP_NODELAY)
static
ERL_NIF_TERM nsetopt_lvl_tcp_nodelay(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal)
{
return nsetopt_bool_opt(env, descP, IPPROTO_TCP, TCP_NODELAY, eVal);
}
#endif
/* nsetopt_lvl_udp - Level *UDP* option(s)
*/
static
ERL_NIF_TERM nsetopt_lvl_udp(ErlNifEnv* env,
SocketDescriptor* descP,
int eOpt,
ERL_NIF_TERM eVal)
{
ERL_NIF_TERM result;
SSDBG( descP,
("SOCKET", "nsetopt_lvl_udp -> entry with"
"\r\n opt: %d"
"\r\n", eOpt) );
switch (eOpt) {
#if defined(UDP_CORK)
case SOCKET_OPT_UDP_CORK:
result = nsetopt_lvl_udp_cork(env, descP, eVal);
break;
#endif
default:
result = esock_make_error(env, esock_atom_einval);
break;
}
return result;
}
/* nsetopt_lvl_udp_cork - Level UDP CORK option
*/
#if defined(UDP_CORK)
static
ERL_NIF_TERM nsetopt_lvl_udp_cork(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal)
{
return nsetopt_bool_opt(env, descP, IPPROTO_UDP, UDP_CORK, eVal);
}
#endif
/* nsetopt_lvl_sctp - Level *SCTP* option(s)
*/
#if defined(HAVE_SCTP)
static
ERL_NIF_TERM nsetopt_lvl_sctp(ErlNifEnv* env,
SocketDescriptor* descP,
int eOpt,
ERL_NIF_TERM eVal)
{
ERL_NIF_TERM result;
SSDBG( descP,
("SOCKET", "nsetopt_lvl_sctp -> entry with"
"\r\n opt: %d"
"\r\n", eOpt) );
switch (eOpt) {
#if defined(SCTP_ASSOCINFO)
case SOCKET_OPT_SCTP_ASSOCINFO:
result = nsetopt_lvl_sctp_associnfo(env, descP, eVal);
break;
#endif
#if defined(SCTP_AUTOCLOSE)
case SOCKET_OPT_SCTP_AUTOCLOSE:
result = nsetopt_lvl_sctp_autoclose(env, descP, eVal);
break;
#endif
#if defined(SCTP_DISABLE_FRAGMENTS)
case SOCKET_OPT_SCTP_DISABLE_FRAGMENTS:
result = nsetopt_lvl_sctp_disable_fragments(env, descP, eVal);
break;
#endif
#if defined(SCTP_EVENTS)
case SOCKET_OPT_SCTP_EVENTS:
result = nsetopt_lvl_sctp_events(env, descP, eVal);
break;
#endif
#if defined(SCTP_INITMSG)
case SOCKET_OPT_SCTP_INITMSG:
result = nsetopt_lvl_sctp_initmsg(env, descP, eVal);
break;
#endif
#if defined(SCTP_MAXSEG)
case SOCKET_OPT_SCTP_MAXSEG:
result = nsetopt_lvl_sctp_maxseg(env, descP, eVal);
break;
#endif
#if defined(SCTP_NODELAY)
case SOCKET_OPT_SCTP_NODELAY:
result = nsetopt_lvl_sctp_nodelay(env, descP, eVal);
break;
#endif
#if defined(SCTP_RTOINFO)
case SOCKET_OPT_SCTP_RTOINFO:
result = nsetopt_lvl_sctp_rtoinfo(env, descP, eVal);
break;
#endif
default:
result = esock_make_error(env, esock_atom_einval);
break;
}
return result;
}
/* nsetopt_lvl_sctp_associnfo - Level SCTP ASSOCINFO option
*/
#if defined(SCTP_ASSOCINFO)
static
ERL_NIF_TERM nsetopt_lvl_sctp_associnfo(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal)
{
ERL_NIF_TERM result;
ERL_NIF_TERM eAssocId, eMaxRxt, eNumPeerDests;
ERL_NIF_TERM ePeerRWND, eLocalRWND, eCookieLife;
struct sctp_assocparams assocParams;
int res;
size_t sz;
unsigned int tmp;
SSDBG( descP,
("SOCKET", "nsetopt_lvl_sctp_associnfo -> entry with"
"\r\n eVal: %T"
"\r\n", eVal) );
// It must be a map
if (!IS_MAP(env, eVal))
return esock_make_error(env, esock_atom_einval);
// It must have atleast ten attributes
if (!enif_get_map_size(env, eVal, &sz) || (sz < 6))
return esock_make_error(env, esock_atom_einval);
SSDBG( descP,
("SOCKET", "nsetopt_lvl_sctp_associnfo -> extract attributes\r\n") );
if (!GET_MAP_VAL(env, eVal, atom_assoc_id, &eAssocId))
return esock_make_error(env, esock_atom_einval);
if (!GET_MAP_VAL(env, eVal, atom_max_rxt, &eMaxRxt))
return esock_make_error(env, esock_atom_einval);
if (!GET_MAP_VAL(env, eVal, atom_num_peer_dests, &eNumPeerDests))
return esock_make_error(env, esock_atom_einval);
if (!GET_MAP_VAL(env, eVal, atom_peer_rwnd, &ePeerRWND))
return esock_make_error(env, esock_atom_einval);
if (!GET_MAP_VAL(env, eVal, atom_local_rwnd, &eLocalRWND))
return esock_make_error(env, esock_atom_einval);
if (!GET_MAP_VAL(env, eVal, atom_cookie_life, &eCookieLife))
return esock_make_error(env, esock_atom_einval);
SSDBG( descP,
("SOCKET", "nsetopt_lvl_sctp_associnfo -> decode attributes\r\n") );
if (!GET_INT(env, eAssocId, &assocParams.sasoc_assoc_id))
return esock_make_error(env, esock_atom_einval);
/*
* We should really make sure this is ok in erlang (to ensure that
* the values (max-rxt and num-peer-dests) fits in 16-bits).
* The value should be a 16-bit unsigned int...
* Both sasoc_asocmaxrxt and sasoc_number_peer_destinations.
*/
if (!GET_UINT(env, eMaxRxt, &tmp))
return esock_make_error(env, esock_atom_einval);
assocParams.sasoc_asocmaxrxt = (uint16_t) tmp;
if (!GET_UINT(env, eNumPeerDests, &tmp))
return esock_make_error(env, esock_atom_einval);
assocParams.sasoc_number_peer_destinations = (uint16_t) tmp;
if (!GET_UINT(env, ePeerRWND, &assocParams.sasoc_peer_rwnd))
return esock_make_error(env, esock_atom_einval);
if (!GET_UINT(env, eLocalRWND, &assocParams.sasoc_local_rwnd))
return esock_make_error(env, esock_atom_einval);
if (!GET_UINT(env, eCookieLife, &assocParams.sasoc_cookie_life))
return esock_make_error(env, esock_atom_einval);
SSDBG( descP,
("SOCKET", "nsetopt_lvl_sctp_associnfo -> set associnfo option\r\n") );
res = socket_setopt(descP->sock, IPPROTO_SCTP, SCTP_ASSOCINFO,
&assocParams, sizeof(assocParams));
if (res != 0)
result = esock_make_error_errno(env, sock_errno());
else
result = esock_atom_ok;
SSDBG( descP,
("SOCKET", "nsetopt_lvl_sctp_associnfo -> done with"
"\r\n result: %T"
"\r\n", result) );
return result;
}
#endif
/* nsetopt_lvl_sctp_autoclose - Level SCTP AUTOCLOSE option
*/
#if defined(SCTP_AUTOCLOSE)
static
ERL_NIF_TERM nsetopt_lvl_sctp_autoclose(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal)
{
return nsetopt_int_opt(env, descP, IPPROTO_SCTP, SCTP_AUTOCLOSE, eVal);
}
#endif
/* nsetopt_lvl_sctp_disable_fragments - Level SCTP DISABLE_FRAGMENTS option
*/
#if defined(SCTP_DISABLE_FRAGMENTS)
static
ERL_NIF_TERM nsetopt_lvl_sctp_disable_fragments(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal)
{
return nsetopt_bool_opt(env, descP, IPPROTO_SCTP, SCTP_DISABLE_FRAGMENTS, eVal);
}
#endif
/* nsetopt_lvl_sctp_events - Level SCTP EVENTS option
*/
#if defined(SCTP_EVENTS)
static
ERL_NIF_TERM nsetopt_lvl_sctp_events(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal)
{
ERL_NIF_TERM result;
ERL_NIF_TERM eDataIn, eAssoc, eAddr, eSndFailure;
ERL_NIF_TERM ePeerError, eShutdown, ePartialDelivery;
ERL_NIF_TERM eAdaptLayer, eAuth, eSndDry;
struct sctp_event_subscribe events;
int res;
size_t sz;
SSDBG( descP,
("SOCKET", "nsetopt_lvl_sctp_events -> entry with"
"\r\n eVal: %T"
"\r\n", eVal) );
// It must be a map
if (!IS_MAP(env, eVal))
return esock_make_error(env, esock_atom_einval);
// It must have atleast ten attributes
if (!enif_get_map_size(env, eVal, &sz) || (sz < 10))
return esock_make_error(env, esock_atom_einval);
SSDBG( descP,
("SOCKET", "nsetopt_lvl_sctp_events -> extract attributes\r\n") );
if (!GET_MAP_VAL(env, eVal, atom_data_in, &eDataIn))
return esock_make_error(env, esock_atom_einval);
if (!GET_MAP_VAL(env, eVal, atom_association, &eAssoc))
return esock_make_error(env, esock_atom_einval);
if (!GET_MAP_VAL(env, eVal, atom_address, &eAddr))
return esock_make_error(env, esock_atom_einval);
if (!GET_MAP_VAL(env, eVal, atom_send_failure, &eSndFailure))
return esock_make_error(env, esock_atom_einval);
if (!GET_MAP_VAL(env, eVal, atom_peer_error, &ePeerError))
return esock_make_error(env, esock_atom_einval);
if (!GET_MAP_VAL(env, eVal, atom_shutdown, &eShutdown))
return esock_make_error(env, esock_atom_einval);
if (!GET_MAP_VAL(env, eVal, atom_partial_delivery, &ePartialDelivery))
return esock_make_error(env, esock_atom_einval);
if (!GET_MAP_VAL(env, eVal, atom_adaptation_layer, &eAdaptLayer))
return esock_make_error(env, esock_atom_einval);
if (!GET_MAP_VAL(env, eVal, atom_authentication, &eAuth))
return esock_make_error(env, esock_atom_einval);
if (!GET_MAP_VAL(env, eVal, atom_sender_dry, &eSndDry))
return esock_make_error(env, esock_atom_einval);
SSDBG( descP,
("SOCKET", "nsetopt_lvl_sctp_events -> decode attributes\r\n") );
events.sctp_data_io_event = esock_decode_bool(eDataIn);
events.sctp_association_event = esock_decode_bool(eAssoc);
events.sctp_address_event = esock_decode_bool(eAddr);
events.sctp_send_failure_event = esock_decode_bool(eSndFailure);
events.sctp_peer_error_event = esock_decode_bool(ePeerError);
events.sctp_shutdown_event = esock_decode_bool(eShutdown);
events.sctp_partial_delivery_event = esock_decode_bool(ePartialDelivery);
events.sctp_adaptation_layer_event = esock_decode_bool(eAdaptLayer);
events.sctp_authentication_event = esock_decode_bool(eAuth);
events.sctp_sender_dry_event = esock_decode_bool(eSndDry);
SSDBG( descP,
("SOCKET", "nsetopt_lvl_sctp_events -> set events option\r\n") );
res = socket_setopt(descP->sock, IPPROTO_SCTP, SCTP_EVENTS,
&events, sizeof(events));
if (res != 0)
result = esock_make_error_errno(env, sock_errno());
else
result = esock_atom_ok;
SSDBG( descP,
("SOCKET", "nsetopt_lvl_sctp_events -> done with"
"\r\n result: %T"
"\r\n", result) );
return result;
}
#endif
/* nsetopt_lvl_sctp_initmsg - Level SCTP INITMSG option
*/
#if defined(SCTP_INITMSG)
static
ERL_NIF_TERM nsetopt_lvl_sctp_initmsg(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal)
{
ERL_NIF_TERM result;
ERL_NIF_TERM eNumOut, eMaxIn, eMaxAttempts, eMaxInitTO;
struct sctp_initmsg initMsg;
int res;
size_t sz;
unsigned int tmp;
SSDBG( descP,
("SOCKET", "nsetopt_lvl_sctp_initmsg -> entry with"
"\r\n eVal: %T"
"\r\n", eVal) );
// It must be a map
if (!IS_MAP(env, eVal))
return esock_make_error(env, esock_atom_einval);
// It must have atleast ten attributes
if (!enif_get_map_size(env, eVal, &sz) || (sz < 4))
return esock_make_error(env, esock_atom_einval);
SSDBG( descP,
("SOCKET", "nsetopt_lvl_sctp_initmsg -> extract attributes\r\n") );
if (!GET_MAP_VAL(env, eVal, atom_num_outstreams, &eNumOut))
return esock_make_error(env, esock_atom_einval);
if (!GET_MAP_VAL(env, eVal, atom_max_instreams, &eMaxIn))
return esock_make_error(env, esock_atom_einval);
if (!GET_MAP_VAL(env, eVal, atom_max_attempts, &eMaxAttempts))
return esock_make_error(env, esock_atom_einval);
if (!GET_MAP_VAL(env, eVal, atom_max_init_timeo, &eMaxInitTO))
return esock_make_error(env, esock_atom_einval);
SSDBG( descP,
("SOCKET", "nsetopt_lvl_sctp_initmsg -> decode attributes\r\n") );
if (!GET_UINT(env, eNumOut, &tmp))
return esock_make_error(env, esock_atom_einval);
initMsg.sinit_num_ostreams = (uint16_t) tmp;
if (!GET_UINT(env, eMaxIn, &tmp))
return esock_make_error(env, esock_atom_einval);
initMsg.sinit_max_instreams = (uint16_t) tmp;
if (!GET_UINT(env, eMaxAttempts, &tmp))
return esock_make_error(env, esock_atom_einval);
initMsg.sinit_max_attempts = (uint16_t) tmp;
if (!GET_UINT(env, eMaxInitTO, &tmp))
return esock_make_error(env, esock_atom_einval);
initMsg.sinit_max_init_timeo = (uint16_t) tmp;
SSDBG( descP,
("SOCKET", "nsetopt_lvl_sctp_initmsg -> set initmsg option\r\n") );
res = socket_setopt(descP->sock, IPPROTO_SCTP, SCTP_INITMSG,
&initMsg, sizeof(initMsg));
if (res != 0)
result = esock_make_error_errno(env, sock_errno());
else
result = esock_atom_ok;
SSDBG( descP,
("SOCKET", "nsetopt_lvl_sctp_initmsg -> done with"
"\r\n result: %T"
"\r\n", result) );
return result;
}
#endif
/* nsetopt_lvl_sctp_maxseg - Level SCTP MAXSEG option
*/
#if defined(SCTP_MAXSEG)
static
ERL_NIF_TERM nsetopt_lvl_sctp_maxseg(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal)
{
return nsetopt_int_opt(env, descP, IPPROTO_SCTP, SCTP_MAXSEG, eVal);
}
#endif
/* nsetopt_lvl_sctp_nodelay - Level SCTP NODELAY option
*/
#if defined(SCTP_NODELAY)
static
ERL_NIF_TERM nsetopt_lvl_sctp_nodelay(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal)
{
return nsetopt_bool_opt(env, descP, IPPROTO_SCTP, SCTP_NODELAY, eVal);
}
#endif
/* nsetopt_lvl_sctp_rtoinfo - Level SCTP RTOINFO option
*/
#if defined(SCTP_RTOINFO)
static
ERL_NIF_TERM nsetopt_lvl_sctp_rtoinfo(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eVal)
{
ERL_NIF_TERM result;
ERL_NIF_TERM eAssocId, eInitial, eMax, eMin;
struct sctp_rtoinfo rtoInfo;
int res;
size_t sz;
SSDBG( descP,
("SOCKET", "nsetopt_lvl_sctp_rtoinfo -> entry with"
"\r\n eVal: %T"
"\r\n", eVal) );
// It must be a map
if (!IS_MAP(env, eVal))
return esock_make_error(env, esock_atom_einval);
// It must have atleast ten attributes
if (!enif_get_map_size(env, eVal, &sz) || (sz < 4))
return esock_make_error(env, esock_atom_einval);
SSDBG( descP,
("SOCKET", "nsetopt_lvl_sctp_rtoinfo -> extract attributes\r\n") );
if (!GET_MAP_VAL(env, eVal, atom_assoc_id, &eAssocId))
return esock_make_error(env, esock_atom_einval);
if (!GET_MAP_VAL(env, eVal, atom_initial, &eInitial))
return esock_make_error(env, esock_atom_einval);
if (!GET_MAP_VAL(env, eVal, atom_max, &eMax))
return esock_make_error(env, esock_atom_einval);
if (!GET_MAP_VAL(env, eVal, atom_min, &eMin))
return esock_make_error(env, esock_atom_einval);
SSDBG( descP,
("SOCKET", "nsetopt_lvl_sctp_rtoinfo -> decode attributes\r\n") );
if (!GET_INT(env, eAssocId, &rtoInfo.srto_assoc_id))
return esock_make_error(env, esock_atom_einval);
if (!GET_UINT(env, eInitial, &rtoInfo.srto_initial))
return esock_make_error(env, esock_atom_einval);
if (!GET_UINT(env, eMax, &rtoInfo.srto_max))
return esock_make_error(env, esock_atom_einval);
if (!GET_UINT(env, eMin, &rtoInfo.srto_min))
return esock_make_error(env, esock_atom_einval);
SSDBG( descP,
("SOCKET", "nsetopt_lvl_sctp_rtoinfo -> set associnfo option\r\n") );
res = socket_setopt(descP->sock, IPPROTO_SCTP, SCTP_RTOINFO,
&rtoInfo, sizeof(rtoInfo));
if (res != 0)
result = esock_make_error_errno(env, sock_errno());
else
result = esock_atom_ok;
SSDBG( descP,
("SOCKET", "nsetopt_lvl_sctp_rtoinfo -> done with"
"\r\n result: %T"
"\r\n", result) );
return result;
}
#endif
#endif // defined(HAVE_SCTP)
/* nsetopt_bool_opt - set an option that has an (integer) bool value
*/
static
ERL_NIF_TERM nsetopt_bool_opt(ErlNifEnv* env,
SocketDescriptor* descP,
int level,
int opt,
ERL_NIF_TERM eVal)
{
ERL_NIF_TERM result;
BOOLEAN_T val;
int ival, res;
val = esock_decode_bool(eVal);
ival = (val) ? 1 : 0;
res = socket_setopt(descP->sock, level, opt, &ival, sizeof(ival));
if (res != 0)
result = esock_make_error_errno(env, sock_errno());
else
result = esock_atom_ok;
return result;
}
/* nsetopt_int_opt - set an option that has an integer value
*/
static
ERL_NIF_TERM nsetopt_int_opt(ErlNifEnv* env,
SocketDescriptor* descP,
int level,
int opt,
ERL_NIF_TERM eVal)
{
ERL_NIF_TERM result;
int val;
if (GET_INT(env, eVal, &val)) {
int res = socket_setopt(descP->sock, level, opt, &val, sizeof(val));
if (res != 0)
result = esock_make_error_errno(env, sock_errno());
else
result = esock_atom_ok;
} else {
result = esock_make_error(env, esock_atom_einval);
}
return result;
}
/* nsetopt_str_opt - set an option that has an string value
*/
static
ERL_NIF_TERM nsetopt_str_opt(ErlNifEnv* env,
SocketDescriptor* descP,
int level,
int opt,
int max,
ERL_NIF_TERM eVal)
{
ERL_NIF_TERM result;
char* val = MALLOC(max);
if (GET_STR(env, eVal, val, max) > 0) {
int optLen = strlen(val);
int res = socket_setopt(descP->sock, level, opt, &val, optLen);
if (res != 0)
result = esock_make_error_errno(env, sock_errno());
else
result = esock_atom_ok;
} else {
result = esock_make_error(env, esock_atom_einval);
}
FREE(val);
return result;
}
/* nsetopt_timeval_opt - set an option that has an (timeval) bool value
*/
static
ERL_NIF_TERM nsetopt_timeval_opt(ErlNifEnv* env,
SocketDescriptor* descP,
int level,
int opt,
ERL_NIF_TERM eVal)
{
ERL_NIF_TERM result;
struct timeval timeVal;
int res;
char* xres;
SSDBG( descP,
("SOCKET", "nsetopt_timeval_opt -> entry with"
"\r\n eVal: %T"
"\r\n", eVal) );
if ((xres = esock_decode_timeval(env, eVal, &timeVal)) != NULL)
return esock_make_error_str(env, xres);
SSDBG( descP,
("SOCKET", "nsetopt_timeval_opt -> set timeval option\r\n") );
res = socket_setopt(descP->sock, level, opt, &timeVal, sizeof(timeVal));
if (res != 0)
result = esock_make_error_errno(env, sock_errno());
else
result = esock_atom_ok;
SSDBG( descP,
("SOCKET", "nsetopt_timeval_opt -> done with"
"\r\n result: %T"
"\r\n", result) );
return result;
}
static
BOOLEAN_T elevel2level(BOOLEAN_T isEncoded,
int eLevel,
BOOLEAN_T* isOTP,
int* level)
{
BOOLEAN_T result;
if (isEncoded) {
switch (eLevel) {
case SOCKET_OPT_LEVEL_OTP:
*isOTP = TRUE;
*level = -1;
result = TRUE;
break;
case SOCKET_OPT_LEVEL_SOCKET:
*isOTP = FALSE;
*level = SOL_SOCKET;
result = TRUE;
break;
case SOCKET_OPT_LEVEL_IP:
*isOTP = FALSE;
#if defined(SOL_IP)
*level = SOL_IP;
#else
*level = IPROTO_IP;
#endif
result = TRUE;
break;
#if defined(SOL_IPV6)
case SOCKET_OPT_LEVEL_IPV6:
*isOTP = FALSE;
*level = SOL_IPV6;
result = TRUE;
break;
#endif
case SOCKET_OPT_LEVEL_TCP:
*isOTP = FALSE;
*level = IPPROTO_TCP;
result = TRUE;
break;
case SOCKET_OPT_LEVEL_UDP:
*isOTP = FALSE;
*level = IPPROTO_UDP;
result = TRUE;
break;
#ifdef HAVE_SCTP
case SOCKET_OPT_LEVEL_SCTP:
*isOTP = FALSE;
*level = IPPROTO_SCTP;
result = TRUE;
break;
#endif
default:
*isOTP = FALSE;
*level = -1;
result = FALSE;
break;
}
} else {
*isOTP = FALSE;
*level = eLevel;
result = TRUE;
}
return result;
}
/* +++ socket_setopt +++
*
* <Per H @ Tail-f>
* The original code here had problems that possibly
* only occur if you abuse it for non-INET sockets, but anyway:
* a) If the getsockopt for SO_PRIORITY or IP_TOS failed, the actual
* requested setsockopt was never even attempted.
* b) If {get,set}sockopt for one of IP_TOS and SO_PRIORITY failed,
* but ditto for the other worked and that was actually the requested
* option, failure was still reported to erlang.
* </Per H @ Tail-f>
*
* <PaN>
* The relations between SO_PRIORITY, TOS and other options
* is not what you (or at least I) would expect...:
* If TOS is set after priority, priority is zeroed.
* If any other option is set after tos, tos might be zeroed.
* Therefore, save tos and priority. If something else is set,
* restore both after setting, if tos is set, restore only
* prio and if prio is set restore none... All to keep the
* user feeling socket options are independent.
* </PaN>
*/
static
int socket_setopt(int sock, int level, int opt,
const void* optVal, const socklen_t optLen)
{
int res;
#if defined(IP_TOS) && defined(SOL_IP) && defined(SO_PRIORITY)
int tmpIValPRIO;
int tmpIValTOS;
int resPRIO;
int resTOS;
SOCKOPTLEN_T tmpArgSzPRIO = sizeof(tmpIValPRIO);
SOCKOPTLEN_T tmpArgSzTOS = sizeof(tmpIValTOS);
resPRIO = sock_getopt(sock, SOL_SOCKET, SO_PRIORITY,
&tmpIValPRIO, &tmpArgSzPRIO);
resTOS = sock_getopt(sock, SOL_IP, IP_TOS,
&tmpIValTOS, &tmpArgSzTOS);
res = sock_setopt(sock, level, opt, optVal, optLen);
if (res == 0) {
/* Ok, now we *maybe* need to "maybe" restore PRIO and TOS...
* maybe, possibly, ...
*/
if (opt != SO_PRIORITY) {
if ((opt != IP_TOS) && (resTOS == 0)) {
resTOS = sock_setopt(sock, SOL_IP, IP_TOS,
(void *) &tmpIValTOS,
tmpArgSzTOS);
res = resTOS;
}
if ((res == 0) && (resPRIO == 0)) {
resPRIO = sock_setopt(sock, SOL_SOCKET, SO_PRIORITY,
&tmpIValPRIO,
tmpArgSzPRIO);
/* Some kernels set a SO_PRIORITY by default
* that you are not permitted to reset,
* silently ignore this error condition.
*/
if ((resPRIO != 0) && (sock_errno() == EPERM)) {
res = 0;
} else {
res = resPRIO;
}
}
}
}
#else
res = sock_setopt(sock, level, opt, optVal, optLen);
#endif
return res;
}
/* ----------------------------------------------------------------------
* nif_getopt
*
* Description:
* Get socket option.
* Its possible to use a "raw" mode (not encoded). That is, we do not
* interpret level and opt. They are passed "as is" to the
* getsockopt function call. The value in this case will "copied" as
* is and provided to the user in the form of a binary.
*
* Arguments:
* Socket (ref) - Points to the socket descriptor.
* IsEncoded - Are the "arguments" encoded or not.
* Level - Level of the socket option.
* Opt - The socket option.
*/
static
ERL_NIF_TERM nif_getopt(ErlNifEnv* env,
int argc,
const ERL_NIF_TERM argv[])
{
SocketDescriptor* descP;
int eLevel, level = -1;
ERL_NIF_TERM eIsEncoded, eOpt;
BOOLEAN_T isEncoded, isOTP;
SGDBG( ("SOCKET", "nif_getopt -> entry with argc: %d\r\n", argc) );
if ((argc != 4) ||
!enif_get_resource(env, argv[0], sockets, (void**) &descP) ||
!GET_INT(env, argv[2], &eLevel)) {
SGDBG( ("SOCKET", "nif_getopt -> failed processing args\r\n") );
return enif_make_badarg(env);
}
eIsEncoded = argv[1];
eOpt = argv[3]; // Is "normally" an int, but if raw mode: {Int, ValueSz}
SSDBG( descP,
("SOCKET", "nif_getopt -> args when sock = %d:"
"\r\n Socket: %T"
"\r\n eIsEncoded: %T"
"\r\n eLevel: %d"
"\r\n eOpt: %T"
"\r\n", descP->sock, argv[0], eIsEncoded, eLevel, eOpt) );
isEncoded = esock_decode_bool(eIsEncoded);
if (!elevel2level(isEncoded, eLevel, &isOTP, &level))
return esock_make_error(env, esock_atom_einval);
return ngetopt(env, descP, isEncoded, isOTP, level, eOpt);
}
static
ERL_NIF_TERM ngetopt(ErlNifEnv* env,
SocketDescriptor* descP,
BOOLEAN_T isEncoded,
BOOLEAN_T isOTP,
int level,
ERL_NIF_TERM eOpt)
{
ERL_NIF_TERM result;
int opt;
SSDBG( descP,
("SOCKET", "ngetopt -> entry with"
"\r\n isEncoded: %s"
"\r\n isOTP: %s"
"\r\n level: %d"
"\r\n eOpt: %T"
"\r\n", B2S(isEncoded), B2S(isOTP), level, eOpt) );
if (isOTP) {
/* These are not actual socket options,
* but options for our implementation.
*/
if (GET_INT(env, eOpt, &opt))
result = ngetopt_otp(env, descP, opt);
else
result = esock_make_error(env, esock_atom_einval);
} else if (!isEncoded) {
result = ngetopt_native(env, descP, level, eOpt);
} else {
if (GET_INT(env, eOpt, &opt))
result = ngetopt_level(env, descP, level, opt);
else
result = esock_make_error(env, esock_atom_einval);
}
SSDBG( descP,
("SOCKET", "ngetopt -> done when"
"\r\n result: %T"
"\r\n", result) );
return result;
}
/* ngetopt_otp - Handle OTP (level) options
*/
static
ERL_NIF_TERM ngetopt_otp(ErlNifEnv* env,
SocketDescriptor* descP,
int eOpt)
{
ERL_NIF_TERM result;
SSDBG( descP,
("SOCKET", "ngetopt_opt -> entry with"
"\r\n eOpt: %d"
"\r\n", eOpt) );
switch (eOpt) {
case SOCKET_OPT_OTP_DEBUG:
result = ngetopt_otp_debug(env, descP);
break;
case SOCKET_OPT_OTP_IOW:
result = ngetopt_otp_iow(env, descP);
break;
default:
result = esock_make_error(env, esock_atom_einval);
break;
}
SSDBG( descP,
("SOCKET", "ngetopt_opt -> done when"
"\r\n result: %T"
"\r\n", result) );
return result;
}
/* ngetopt_otp_debug - Handle the OTP (level) debug options
*/
static
ERL_NIF_TERM ngetopt_otp_debug(ErlNifEnv* env,
SocketDescriptor* descP)
{
ERL_NIF_TERM eVal = esock_encode_bool(descP->dbg);
return esock_make_ok2(env, eVal);
}
/* ngetopt_otp_iow - Handle the OTP (level) iow options
*/
static
ERL_NIF_TERM ngetopt_otp_iow(ErlNifEnv* env,
SocketDescriptor* descP)
{
ERL_NIF_TERM eVal = esock_encode_bool(descP->iow);
return esock_make_ok2(env, eVal);
}
/* The option has *not* been encoded. Instead it has been provided
* in "native mode" (option is provided as is). In this case it will have the
* format: {NativeOpt :: integer(), ValueSize :: non_neg_integer()}
*/
static
ERL_NIF_TERM ngetopt_native(ErlNifEnv* env,
SocketDescriptor* descP,
int level,
ERL_NIF_TERM eOpt)
{
ERL_NIF_TERM result = enif_make_badarg(env);
int opt;
uint16_t valueType;
SOCKOPTLEN_T valueSz;
SSDBG( descP,
("SOCKET", "ngetopt_native -> entry with"
"\r\n level: %d"
"\r\n eOpt: %T"
"\r\n", level, eOpt) );
/* <KOLLA>
* We should really make it possible to specify more common specific types,
* such as integer or boolean (instead of the size)...
* </KOLLA>
*/
if (decode_native_get_opt(env, eOpt, &opt, &valueType, (int*) &valueSz)) {
SSDBG( descP,
("SOCKET", "ngetopt_native -> decoded opt"
"\r\n valueType: %d (%s)"
"\r\n ValueSize: %d"
"\r\n", valueType, VT2S(valueType), valueSz) );
switch (valueType) {
case SOCKET_OPT_VALUE_TYPE_UNSPEC:
result = ngetopt_native_unspec(env, descP, level, opt, valueSz);
break;
case SOCKET_OPT_VALUE_TYPE_INT:
result = ngetopt_int_opt(env, descP, level, opt);
break;
case SOCKET_OPT_VALUE_TYPE_BOOL:
result = ngetopt_bool_opt(env, descP, level, opt);
break;
default:
result = esock_make_error(env, esock_atom_einval);
break;
}
} else {
result = esock_make_error(env, esock_atom_einval);
}
SSDBG( descP,
("SOCKET", "ngetopt_native -> done when"
"\r\n result: %T"
"\r\n", result) );
return result;
}
static
ERL_NIF_TERM ngetopt_native_unspec(ErlNifEnv* env,
SocketDescriptor* descP,
int level,
int opt,
SOCKOPTLEN_T valueSz)
{
ERL_NIF_TERM result = esock_make_error(env, esock_atom_einval);
int res;
SSDBG( descP,
("SOCKET", "ngetopt_native_unspec -> entry with"
"\r\n level: %d"
"\r\n opt: %d"
"\r\n valueSz: %d"
"\r\n", level, opt, valueSz) );
if (valueSz == 0) {
res = sock_getopt(descP->sock, level, opt, NULL, NULL);
if (res != 0)
result = esock_make_error_errno(env, sock_errno());
else
result = esock_atom_ok;
} else {
SOCKOPTLEN_T vsz = valueSz;
ErlNifBinary val;
SSDBG( descP, ("SOCKET", "ngetopt_native_unspec -> try alloc buffer\r\n") );
if (ALLOC_BIN(vsz, &val)) {
int saveErrno;
res = sock_getopt(descP->sock, level, opt, val.data, &vsz);
if (res != 0) {
saveErrno = sock_errno();
result = esock_make_error_errno(env, saveErrno);
} else {
/* Did we use all of the buffer? */
if (vsz == val.size) {
result = esock_make_ok2(env, MKBIN(env, &val));
} else {
ERL_NIF_TERM tmp;
tmp = MKBIN(env, &val);
tmp = MKSBIN(env, tmp, 0, vsz);
result = esock_make_ok2(env, tmp);
}
}
} else {
result = enif_make_badarg(env);
}
}
SSDBG( descP,
("SOCKET", "ngetopt_native_unspec -> done when"
"\r\n result: %T"
"\r\n", result) );
return result;
}
/* ngetopt_level - A "proper" level (option) has been specified
*/
static
ERL_NIF_TERM ngetopt_level(ErlNifEnv* env,
SocketDescriptor* descP,
int level,
int eOpt)
{
ERL_NIF_TERM result;
SSDBG( descP,
("SOCKET", "ngetopt_level -> entry with"
"\r\n level: %d"
"\r\n eOpt: %d"
"\r\n", level, eOpt) );
switch (level) {
case SOL_SOCKET:
result = ngetopt_lvl_socket(env, descP, eOpt);
break;
#if defined(SOL_IP)
case SOL_IP:
#else
case IPPROTO_IP:
#endif
result = ngetopt_lvl_ip(env, descP, eOpt);
break;
#if defined(SOL_IPV6)
case SOL_IPV6:
result = ngetopt_lvl_ipv6(env, descP, eOpt);
break;
#endif
case IPPROTO_TCP:
result = ngetopt_lvl_tcp(env, descP, eOpt);
break;
case IPPROTO_UDP:
result = ngetopt_lvl_udp(env, descP, eOpt);
break;
#if defined(HAVE_SCTP)
case IPPROTO_SCTP:
result = ngetopt_lvl_sctp(env, descP, eOpt);
break;
#endif
default:
result = esock_make_error(env, esock_atom_einval);
break;
}
SSDBG( descP,
("SOCKET", "ngetopt_level -> done when"
"\r\n result: %T"
"\r\n", result) );
return result;
}
/* ngetopt_lvl_socket - Level *SOCKET* option
*/
static
ERL_NIF_TERM ngetopt_lvl_socket(ErlNifEnv* env,
SocketDescriptor* descP,
int eOpt)
{
ERL_NIF_TERM result;
SSDBG( descP,
("SOCKET", "ngetopt_lvl_socket -> entry with"
"\r\n eOpt: %d"
"\r\n", eOpt) );
switch (eOpt) {
#if defined(SO_ACCEPTCONN)
case SOCKET_OPT_SOCK_ACCEPTCONN:
result = ngetopt_lvl_sock_acceptconn(env, descP);
break;
#endif
#if defined(SO_BINDTODEVICE)
case SOCKET_OPT_SOCK_BINDTODEVICE:
result = ngetopt_lvl_sock_bindtodevice(env, descP);
break;
#endif
#if defined(SO_BROADCAST)
case SOCKET_OPT_SOCK_BROADCAST:
result = ngetopt_lvl_sock_broadcast(env, descP);
break;
#endif
#if defined(SO_DEBUG)
case SOCKET_OPT_SOCK_DEBUG:
result = ngetopt_lvl_sock_debug(env, descP);
break;
#endif
#if defined(SO_DOMAIN)
case SOCKET_OPT_SOCK_DOMAIN:
result = ngetopt_lvl_sock_domain(env, descP);
break;
#endif
#if defined(SO_DONTROUTE)
case SOCKET_OPT_SOCK_DONTROUTE:
result = ngetopt_lvl_sock_dontroute(env, descP);
break;
#endif
#if defined(SO_KEEPALIVE)
case SOCKET_OPT_SOCK_KEEPALIVE:
result = ngetopt_lvl_sock_keepalive(env, descP);
break;
#endif
#if defined(SO_LINGER)
case SOCKET_OPT_SOCK_LINGER:
result = ngetopt_lvl_sock_linger(env, descP);
break;
#endif
#if defined(SO_OOBINLINE)
case SOCKET_OPT_SOCK_OOBINLINE:
result = ngetopt_lvl_sock_oobinline(env, descP);
break;
#endif
#if defined(SO_PEEK_OFF)
case SOCKET_OPT_SOCK_PEEK_OFF:
result = ngetopt_lvl_sock_peek_off(env, descP);
break;
#endif
#if defined(SO_PRIORITY)
case SOCKET_OPT_SOCK_PRIORITY:
result = ngetopt_lvl_sock_priority(env, descP);
break;
#endif
#if defined(SO_PROTOCOL)
case SOCKET_OPT_SOCK_PROTOCOL:
result = ngetopt_lvl_sock_protocol(env, descP);
break;
#endif
#if defined(SO_RCVBUF)
case SOCKET_OPT_SOCK_RCVBUF:
result = ngetopt_lvl_sock_rcvbuf(env, descP);
break;
#endif
#if defined(SO_RCVLOWAT)
case SOCKET_OPT_SOCK_RCVLOWAT:
result = ngetopt_lvl_sock_rcvlowat(env, descP);
break;
#endif
#if defined(SO_RCVTIMEO)
case SOCKET_OPT_SOCK_RCVTIMEO:
result = ngetopt_lvl_sock_rcvtimeo(env, descP);
break;
#endif
#if defined(SO_REUSEADDR)
case SOCKET_OPT_SOCK_REUSEADDR:
result = ngetopt_lvl_sock_reuseaddr(env, descP);
break;
#endif
#if defined(SO_REUSEPORT)
case SOCKET_OPT_SOCK_REUSEPORT:
result = ngetopt_lvl_sock_reuseport(env, descP);
break;
#endif
#if defined(SO_SNDBUF)
case SOCKET_OPT_SOCK_SNDBUF:
result = ngetopt_lvl_sock_sndbuf(env, descP);
break;
#endif
#if defined(SO_SNDLOWAT)
case SOCKET_OPT_SOCK_SNDLOWAT:
result = ngetopt_lvl_sock_sndlowat(env, descP);
break;
#endif
#if defined(SO_SNDTIMEO)
case SOCKET_OPT_SOCK_SNDTIMEO:
result = ngetopt_lvl_sock_sndtimeo(env, descP);
break;
#endif
#if defined(SO_TIMESTAMP)
case SOCKET_OPT_SOCK_TIMESTAMP:
result = ngetopt_lvl_sock_timestamp(env, descP);
break;
#endif
#if defined(SO_TYPE)
case SOCKET_OPT_SOCK_TYPE:
result = ngetopt_lvl_sock_type(env, descP);
break;
#endif
default:
result = esock_make_error(env, esock_atom_einval);
break;
}
SSDBG( descP,
("SOCKET", "ngetopt_lvl_socket -> done when"
"\r\n result: %T"
"\r\n", result) );
return result;
}
#if defined(SO_ACCEPTCONN)
static
ERL_NIF_TERM ngetopt_lvl_sock_acceptconn(ErlNifEnv* env,
SocketDescriptor* descP)
{
return ngetopt_bool_opt(env, descP, SOL_SOCKET, SO_ACCEPTCONN);
}
#endif
#if defined(SO_BINDTODEVICE)
static
ERL_NIF_TERM ngetopt_lvl_sock_bindtodevice(ErlNifEnv* env,
SocketDescriptor* descP)
{
SSDBG( descP,
("SOCKET", "ngetopt_lvl_sock_bindtodevice -> entry with\r\n") );
return ngetopt_str_opt(env, descP, SOL_SOCKET, SO_BROADCAST, IFNAMSIZ+1);
}
#endif
#if defined(SO_BROADCAST)
static
ERL_NIF_TERM ngetopt_lvl_sock_broadcast(ErlNifEnv* env,
SocketDescriptor* descP)
{
return ngetopt_bool_opt(env, descP, SOL_SOCKET, SO_BROADCAST);
}
#endif
#if defined(SO_DEBUG)
static
ERL_NIF_TERM ngetopt_lvl_sock_debug(ErlNifEnv* env,
SocketDescriptor* descP)
{
return ngetopt_int_opt(env, descP, SOL_SOCKET, SO_DEBUG);
}
#endif
#if defined(SO_DOMAIN)
static
ERL_NIF_TERM ngetopt_lvl_sock_domain(ErlNifEnv* env,
SocketDescriptor* descP)
{
ERL_NIF_TERM result;
int val;
SOCKOPTLEN_T valSz = sizeof(val);
int res;
res = sock_getopt(descP->sock, SOL_SOCKET, SO_DOMAIN,
&val, &valSz);
if (res != 0) {
result = esock_make_error_errno(env, sock_errno());
} else {
switch (val) {
case AF_INET:
result = esock_make_ok2(env, esock_atom_inet);
break;
#if defined(HAVE_IN6) && defined(AF_INET6)
case AF_INET6:
result = esock_make_ok2(env, esock_atom_inet6);
break;
#endif
#ifdef HAVE_SYS_UN_H
case AF_UNIX:
result = esock_make_ok2(env, esock_atom_local);
break;
#endif
default:
result = esock_make_error(env,
MKT2(env,
esock_atom_unknown,
MKI(env, val)));
break;
}
}
return result;
}
#endif
#if defined(SO_DONTROUTE)
static
ERL_NIF_TERM ngetopt_lvl_sock_dontroute(ErlNifEnv* env,
SocketDescriptor* descP)
{
return ngetopt_bool_opt(env, descP, SOL_SOCKET, SO_DONTROUTE);
}
#endif
#if defined(SO_KEEPALIVE)
static
ERL_NIF_TERM ngetopt_lvl_sock_keepalive(ErlNifEnv* env,
SocketDescriptor* descP)
{
return ngetopt_bool_opt(env, descP, SOL_SOCKET, SO_KEEPALIVE);
}
#endif
#if defined(SO_LINGER)
static
ERL_NIF_TERM ngetopt_lvl_sock_linger(ErlNifEnv* env,
SocketDescriptor* descP)
{
ERL_NIF_TERM result;
struct linger val;
SOCKOPTLEN_T valSz = sizeof(val);
int res;
sys_memzero((void *) &val, sizeof(val));
res = sock_getopt(descP->sock, SOL_SOCKET, SO_LINGER,
&val, &valSz);
if (res != 0) {
result = esock_make_error_errno(env, sock_errno());
} else {
ERL_NIF_TERM lOnOff = ((val.l_onoff) ? atom_true : atom_false);
ERL_NIF_TERM lSecs = MKI(env, val.l_linger);
ERL_NIF_TERM linger = MKT2(env, lOnOff, lSecs);
result = esock_make_ok2(env, linger);
}
return result;
}
#endif
#if defined(SO_OOBINLINE)
static
ERL_NIF_TERM ngetopt_lvl_sock_oobinline(ErlNifEnv* env,
SocketDescriptor* descP)
{
return ngetopt_bool_opt(env, descP, SOL_SOCKET, SO_OOBINLINE);
}
#endif
#if defined(SO_PEEK_OFF)
static
ERL_NIF_TERM ngetopt_lvl_sock_peek_off(ErlNifEnv* env,
SocketDescriptor* descP)
{
return ngetopt_int_opt(env, descP, SOL_SOCKET, SO_PEEK_OFF);
}
#endif
#if defined(SO_PRIORITY)
static
ERL_NIF_TERM ngetopt_lvl_sock_priority(ErlNifEnv* env,
SocketDescriptor* descP)
{
return ngetopt_int_opt(env, descP, SOL_SOCKET, SO_PRIORITY);
}
#endif
#if defined(SO_PROTOCOL)
static
ERL_NIF_TERM ngetopt_lvl_sock_protocol(ErlNifEnv* env,
SocketDescriptor* descP)
{
ERL_NIF_TERM result;
int val;
SOCKOPTLEN_T valSz = sizeof(val);
int res;
res = sock_getopt(descP->sock, SOL_SOCKET, SO_PROTOCOL,
&val, &valSz);
if (res != 0) {
result = esock_make_error_errno(env, sock_errno());
} else {
switch (val) {
case IPPROTO_IP:
result = esock_make_ok2(env, esock_atom_ip);
break;
case IPPROTO_TCP:
result = esock_make_ok2(env, esock_atom_tcp);
break;
case IPPROTO_UDP:
result = esock_make_ok2(env, esock_atom_udp);
break;
#if defined(HAVE_SCTP)
case IPPROTO_SCTP:
result = esock_make_ok2(env, esock_atom_sctp);
break;
#endif
default:
result = esock_make_error(env,
MKT2(env, esock_atom_unknown, MKI(env, val)));
break;
}
}
return result;
}
#endif
#if defined(SO_RCVBUF)
static
ERL_NIF_TERM ngetopt_lvl_sock_rcvbuf(ErlNifEnv* env,
SocketDescriptor* descP)
{
return ngetopt_int_opt(env, descP, SOL_SOCKET, SO_RCVBUF);
}
#endif
#if defined(SO_RCVLOWAT)
static
ERL_NIF_TERM ngetopt_lvl_sock_rcvlowat(ErlNifEnv* env,
SocketDescriptor* descP)
{
return ngetopt_int_opt(env, descP, SOL_SOCKET, SO_RCVLOWAT);
}
#endif
#if defined(SO_RCVTIMEO)
static
ERL_NIF_TERM ngetopt_lvl_sock_rcvtimeo(ErlNifEnv* env,
SocketDescriptor* descP)
{
return ngetopt_timeval_opt(env, descP, SOL_SOCKET, SO_RCVTIMEO);
}
#endif
#if defined(SO_REUSEADDR)
static
ERL_NIF_TERM ngetopt_lvl_sock_reuseaddr(ErlNifEnv* env,
SocketDescriptor* descP)
{
return ngetopt_bool_opt(env, descP, SOL_SOCKET, SO_REUSEADDR);
}
#endif
#if defined(SO_REUSEPORT)
static
ERL_NIF_TERM ngetopt_lvl_sock_reuseport(ErlNifEnv* env,
SocketDescriptor* descP)
{
return ngetopt_bool_opt(env, descP, SOL_SOCKET, SO_REUSEPORT);
}
#endif
#if defined(SO_SNDBUF)
static
ERL_NIF_TERM ngetopt_lvl_sock_sndbuf(ErlNifEnv* env,
SocketDescriptor* descP)
{
return ngetopt_int_opt(env, descP, SOL_SOCKET, SO_SNDBUF);
}
#endif
#if defined(SO_SNDLOWAT)
static
ERL_NIF_TERM ngetopt_lvl_sock_sndlowat(ErlNifEnv* env,
SocketDescriptor* descP)
{
return ngetopt_int_opt(env, descP, SOL_SOCKET, SO_SNDLOWAT);
}
#endif
#if defined(SO_SNDTIMEO)
static
ERL_NIF_TERM ngetopt_lvl_sock_sndtimeo(ErlNifEnv* env,
SocketDescriptor* descP)
{
return ngetopt_timeval_opt(env, descP, SOL_SOCKET, SO_SNDTIMEO);
}
#endif
#if defined(SO_TIMESTAMP)
static
ERL_NIF_TERM ngetopt_lvl_sock_timestamp(ErlNifEnv* env,
SocketDescriptor* descP)
{
return ngetopt_bool_opt(env, descP, SOL_SOCKET, SO_TIMESTAMP);
}
#endif
#if defined(SO_TYPE)
static
ERL_NIF_TERM ngetopt_lvl_sock_type(ErlNifEnv* env,
SocketDescriptor* descP)
{
ERL_NIF_TERM result;
int val;
SOCKOPTLEN_T valSz = sizeof(val);
int res;
res = sock_getopt(descP->sock, SOL_SOCKET, SO_TYPE, &val, &valSz);
if (res != 0) {
result = esock_make_error_errno(env, sock_errno());
} else {
switch (val) {
case SOCK_STREAM:
result = esock_make_ok2(env, esock_atom_stream);
break;
case SOCK_DGRAM:
result = esock_make_ok2(env, esock_atom_dgram);
break;
#ifdef HAVE_SCTP
case SOCK_SEQPACKET:
result = esock_make_ok2(env, esock_atom_seqpacket);
break;
#endif
case SOCK_RAW:
result = esock_make_ok2(env, esock_atom_raw);
break;
case SOCK_RDM:
result = esock_make_ok2(env, esock_atom_rdm);
break;
default:
result = esock_make_error(env,
MKT2(env, esock_atom_unknown, MKI(env, val)));
break;
}
}
return result;
}
#endif
/* ngetopt_lvl_ip - Level *IP* option(s)
*/
static
ERL_NIF_TERM ngetopt_lvl_ip(ErlNifEnv* env,
SocketDescriptor* descP,
int eOpt)
{
ERL_NIF_TERM result;
SSDBG( descP,
("SOCKET", "ngetopt_lvl_ip -> entry with"
"\r\n eOpt: %d"
"\r\n", eOpt) );
switch (eOpt) {
#if defined(IP_FREEBIND)
case SOCKET_OPT_IP_FREEBIND:
result = ngetopt_lvl_ip_freebind(env, descP);
break;
#endif
#if defined(IP_HDRINCL)
case SOCKET_OPT_IP_HDRINCL:
result = ngetopt_lvl_ip_hdrincl(env, descP);
break;
#endif
#if defined(IP_MINTTL)
case SOCKET_OPT_IP_MINTTL:
result = ngetopt_lvl_ip_minttl(env, descP);
break;
#endif
#if defined(IP_MTU)
case SOCKET_OPT_IP_MTU:
result = ngetopt_lvl_ip_mtu(env, descP);
break;
#endif
#if defined(IP_MTU_DISCOVER)
case SOCKET_OPT_IP_MTU_DISCOVER:
result = ngetopt_lvl_ip_mtu_discover(env, descP);
break;
#endif
#if defined(IP_MULTICAST_ALL)
case SOCKET_OPT_IP_MULTICAST_ALL:
result = ngetopt_lvl_ip_multicast_all(env, descP);
break;
#endif
#if defined(IP_MULTICAST_IF)
case SOCKET_OPT_IP_MULTICAST_IF:
result = ngetopt_lvl_ip_multicast_if(env, descP);
break;
#endif
#if defined(IP_MULTICAST_LOOP)
case SOCKET_OPT_IP_MULTICAST_LOOP:
result = ngetopt_lvl_ip_multicast_loop(env, descP);
break;
#endif
#if defined(IP_MULTICAST_TTL)
case SOCKET_OPT_IP_MULTICAST_TTL:
result = ngetopt_lvl_ip_multicast_ttl(env, descP);
break;
#endif
#if defined(IP_NODEFRAG)
case SOCKET_OPT_IP_NODEFRAG:
result = ngetopt_lvl_ip_nodefrag(env, descP);
break;
#endif
#if defined(IP_PKTINFO)
case SOCKET_OPT_IP_PKTINFO:
result = ngetopt_lvl_ip_pktinfo(env, descP);
break;
#endif
#if defined(IP_RECVDSTADDR)
case SOCKET_OPT_IP_RECVDSTADDR:
result = ngetopt_lvl_ip_recvdstaddr(env, descP);
break;
#endif
#if defined(IP_RECVERR)
case SOCKET_OPT_IP_RECVERR:
result = ngetopt_lvl_ip_recverr(env, descP);
break;
#endif
#if defined(IP_RECVIF)
case SOCKET_OPT_IP_RECVIF:
result = ngetopt_lvl_ip_recvif(env, descP);
break;
#endif
#if defined(IP_RECVOPTS)
case SOCKET_OPT_IP_RECVOPTS:
result = ngetopt_lvl_ip_recvopts(env, descP);
break;
#endif
#if defined(IP_RECVORIGDSTADDR)
case SOCKET_OPT_IP_RECVORIGDSTADDR:
result = ngetopt_lvl_ip_recvorigdstaddr(env, descP);
break;
#endif
#if defined(IP_RECVTOS)
case SOCKET_OPT_IP_RECVTOS:
result = ngetopt_lvl_ip_recvtos(env, descP);
break;
#endif
#if defined(IP_RECVTTL)
case SOCKET_OPT_IP_RECVTTL:
result = ngetopt_lvl_ip_recvttl(env, descP);
break;
#endif
#if defined(IP_RETOPTS)
case SOCKET_OPT_IP_RETOPTS:
result = ngetopt_lvl_ip_retopts(env, descP);
break;
#endif
#if defined(IP_ROUTER_ALERT)
case SOCKET_OPT_IP_ROUTER_ALERT:
result = ngetopt_lvl_ip_router_alert(env, descP);
break;
#endif
#if defined(IP_SENDSRCADDR)
case SOCKET_OPT_IP_SENDSRCADDR:
result = ngetopt_lvl_ip_sendsrcaddr(env, descP);
break;
#endif
#if defined(IP_TOS)
case SOCKET_OPT_IP_TOS:
result = ngetopt_lvl_ip_tos(env, descP);
break;
#endif
#if defined(IP_TRANSPARENT)
case SOCKET_OPT_IP_TRANSPARENT:
result = ngetopt_lvl_ip_transparent(env, descP);
break;
#endif
#if defined(IP_TTL)
case SOCKET_OPT_IP_TTL:
result = ngetopt_lvl_ip_ttl(env, descP);
break;
#endif
default:
SSDBG( descP, ("SOCKET", "ngetopt_lvl_ip -> unknown opt %d\r\n", eOpt) );
result = esock_make_error(env, esock_atom_einval);
break;
}
SSDBG( descP,
("SOCKET", "ngetopt_lvl_ip -> done when"
"\r\n result: %T"
"\r\n", result) );
return result;
}
/* ngetopt_lvl_ip_minttl - Level IP MINTTL option
*/
#if defined(IP_MINTTL)
static
ERL_NIF_TERM ngetopt_lvl_ip_minttl(ErlNifEnv* env,
SocketDescriptor* descP)
{
#if defined(SOL_IP)
int level = SOL_IP;
#else
int level = IPPROTO_IP;
#endif
return ngetopt_int_opt(env, descP, level, IP_MINTTL);
}
#endif
/* ngetopt_lvl_ip_freebind - Level IP FREEBIND option
*/
#if defined(IP_FREEBIND)
static
ERL_NIF_TERM ngetopt_lvl_ip_freebind(ErlNifEnv* env,
SocketDescriptor* descP)
{
#if defined(SOL_IP)
int level = SOL_IP;
#else
int level = IPPROTO_IP;
#endif
return ngetopt_bool_opt(env, descP, level, IP_FREEBIND);
}
#endif
/* ngetopt_lvl_ip_hdrincl - Level IP HDRINCL option
*/
#if defined(IP_HDRINCL)
static
ERL_NIF_TERM ngetopt_lvl_ip_hdrincl(ErlNifEnv* env,
SocketDescriptor* descP)
{
#if defined(SOL_IP)
int level = SOL_IP;
#else
int level = IPPROTO_IP;
#endif
return ngetopt_bool_opt(env, descP, level, IP_HDRINCL);
}
#endif
/* ngetopt_lvl_ip_mtu - Level IP MTU option
*/
#if defined(IP_MTU)
static
ERL_NIF_TERM ngetopt_lvl_ip_mtu(ErlNifEnv* env,
SocketDescriptor* descP)
{
#if defined(SOL_IP)
int level = SOL_IP;
#else
int level = IPPROTO_IP;
#endif
return ngetopt_int_opt(env, descP, level, IP_MTU);
}
#endif
/* ngetopt_lvl_ip_mtu_discover - Level IP MTU_DISCOVER option
*/
#if defined(IP_MTU_DISCOVER)
static
ERL_NIF_TERM ngetopt_lvl_ip_mtu_discover(ErlNifEnv* env,
SocketDescriptor* descP)
{
ERL_NIF_TERM result;
ERL_NIF_TERM eMtuDisc;
int mtuDisc;
SOCKOPTLEN_T mtuDiscSz = sizeof(mtuDisc);
int res;
#if defined(SOL_IP)
int level = SOL_IP;
#else
int level = IPPROTO_IP;
#endif
res = sock_getopt(descP->sock, level, IP_MTU_DISCOVER,
&mtuDisc, &mtuDiscSz);
if (res != 0) {
result = esock_make_error_errno(env, sock_errno());
} else {
encode_ip_pmtudisc(env, mtuDisc, &eMtuDisc);
result = esock_make_ok2(env, eMtuDisc);
}
return result;
}
#endif
/* ngetopt_lvl_ip_multicast_all - Level IP MULTICAST_ALL option
*/
#if defined(IP_MULTICAST_ALL)
static
ERL_NIF_TERM ngetopt_lvl_ip_multicast_all(ErlNifEnv* env,
SocketDescriptor* descP)
{
#if defined(SOL_IP)
int level = SOL_IP;
#else
int level = IPPROTO_IP;
#endif
return ngetopt_bool_opt(env, descP, level, IP_MULTICAST_ALL);
}
#endif
/* ngetopt_lvl_ip_multicast_if - Level IP MULTICAST_IF option
*/
#if defined(IP_MULTICAST_IF)
static
ERL_NIF_TERM ngetopt_lvl_ip_multicast_if(ErlNifEnv* env,
SocketDescriptor* descP)
{
ERL_NIF_TERM result;
ERL_NIF_TERM eAddr;
struct in_addr ifAddr;
SOCKOPTLEN_T ifAddrSz = sizeof(ifAddr);
char* xres;
int res;
#if defined(SOL_IP)
int level = SOL_IP;
#else
int level = IPPROTO_IP;
#endif
res = sock_getopt(descP->sock, level, IP_MULTICAST_IF, &ifAddr, &ifAddrSz);
if (res != 0) {
result = esock_make_error_errno(env, sock_errno());
} else {
if ((xres = esock_encode_ip4_address(env, &ifAddr, &eAddr)) != NULL) {
result = esock_make_error_str(env, xres);
} else {
result = esock_make_ok2(env, eAddr);
}
}
return result;
}
#endif
/* ngetopt_lvl_ip_multicast_loop - Level IP MULTICAST_LOOP option
*/
#if defined(IP_MULTICAST_LOOP)
static
ERL_NIF_TERM ngetopt_lvl_ip_multicast_loop(ErlNifEnv* env,
SocketDescriptor* descP)
{
#if defined(SOL_IP)
int level = SOL_IP;
#else
int level = IPPROTO_IP;
#endif
return ngetopt_bool_opt(env, descP, level, IP_MULTICAST_LOOP);
}
#endif
/* ngetopt_lvl_ip_multicast_ttl - Level IP MULTICAST_TTL option
*/
#if defined(IP_MULTICAST_TTL)
static
ERL_NIF_TERM ngetopt_lvl_ip_multicast_ttl(ErlNifEnv* env,
SocketDescriptor* descP)
{
#if defined(SOL_IP)
int level = SOL_IP;
#else
int level = IPPROTO_IP;
#endif
return ngetopt_int_opt(env, descP, level, IP_MULTICAST_TTL);
}
#endif
/* ngetopt_lvl_ip_nodefrag - Level IP NODEFRAG option
*/
#if defined(IP_NODEFRAG)
static
ERL_NIF_TERM ngetopt_lvl_ip_nodefrag(ErlNifEnv* env,
SocketDescriptor* descP)
{
#if defined(SOL_IP)
int level = SOL_IP;
#else
int level = IPPROTO_IP;
#endif
return ngetopt_bool_opt(env, descP, level, IP_NODEFRAG);
}
#endif
/* ngetopt_lvl_ip_pktinfo - Level IP PKTINFO option
*/
#if defined(IP_PKTINFO)
static
ERL_NIF_TERM ngetopt_lvl_ip_pktinfo(ErlNifEnv* env,
SocketDescriptor* descP)
{
#if defined(SOL_IP)
int level = SOL_IP;
#else
int level = IPPROTO_IP;
#endif
return ngetopt_bool_opt(env, descP, level, IP_PKTINFO);
}
#endif
/* ngetopt_lvl_ip_recvtos - Level IP RECVTOS option
*/
#if defined(IP_RECVTOS)
static
ERL_NIF_TERM ngetopt_lvl_ip_recvtos(ErlNifEnv* env,
SocketDescriptor* descP)
{
#if defined(SOL_IP)
int level = SOL_IP;
#else
int level = IPPROTO_IP;
#endif
return ngetopt_bool_opt(env, descP, level, IP_RECVTOS);
}
#endif
/* ngetopt_lvl_ip_recvdstaddr - Level IP RECVDSTADDR option
*/
#if defined(IP_RECVDSTADDR)
static
ERL_NIF_TERM ngetopt_lvl_ip_recvdstaddr(ErlNifEnv* env,
SocketDescriptor* descP)
{
#if defined(SOL_IP)
int level = SOL_IP;
#else
int level = IPPROTO_IP;
#endif
return ngetopt_bool_opt(env, descP, level, IP_RECVDSTADDR);
}
#endif
/* ngetopt_lvl_ip_recverr - Level IP RECVERR option
*/
#if defined(IP_RECVERR)
static
ERL_NIF_TERM ngetopt_lvl_ip_recverr(ErlNifEnv* env,
SocketDescriptor* descP)
{
#if defined(SOL_IP)
int level = SOL_IP;
#else
int level = IPPROTO_IP;
#endif
return ngetopt_bool_opt(env, descP, level, IP_RECVERR);
}
#endif
/* ngetopt_lvl_ip_recvif - Level IP RECVIF option
*/
#if defined(IP_RECVIF)
static
ERL_NIF_TERM ngetopt_lvl_ip_recvif(ErlNifEnv* env,
SocketDescriptor* descP)
{
#if defined(SOL_IP)
int level = SOL_IP;
#else
int level = IPPROTO_IP;
#endif
return ngetopt_bool_opt(env, descP, level, IP_RECVIF);
}
#endif
/* ngetopt_lvl_ip_recvopt - Level IP RECVOPTS option
*/
#if defined(IP_RECVOPTS)
static
ERL_NIF_TERM ngetopt_lvl_ip_recvopts(ErlNifEnv* env,
SocketDescriptor* descP)
{
#if defined(SOL_IP)
int level = SOL_IP;
#else
int level = IPPROTO_IP;
#endif
return ngetopt_bool_opt(env, descP, level, IP_RECVOPTS);
}
#endif
/* ngetopt_lvl_ip_recvorigdstaddr - Level IP RECVORIGDSTADDR option
*/
#if defined(IP_RECVORIGDSTADDR)
static
ERL_NIF_TERM ngetopt_lvl_ip_recvorigdstaddr(ErlNifEnv* env,
SocketDescriptor* descP)
{
#if defined(SOL_IP)
int level = SOL_IP;
#else
int level = IPPROTO_IP;
#endif
return ngetopt_bool_opt(env, descP, level, IP_RECVORIGDSTADDR);
}
#endif
/* ngetopt_lvl_ip_recvttl - Level IP RECVTTL option
*/
#if defined(IP_RECVTTL)
static
ERL_NIF_TERM ngetopt_lvl_ip_recvttl(ErlNifEnv* env,
SocketDescriptor* descP)
{
#if defined(SOL_IP)
int level = SOL_IP;
#else
int level = IPPROTO_IP;
#endif
return ngetopt_bool_opt(env, descP, level, IP_RECVTTL);
}
#endif
/* ngetopt_lvl_ip_retopts - Level IP RETOPTS option
*/
#if defined(IP_RETOPTS)
static
ERL_NIF_TERM ngetopt_lvl_ip_retopts(ErlNifEnv* env,
SocketDescriptor* descP)
{
#if defined(SOL_IP)
int level = SOL_IP;
#else
int level = IPPROTO_IP;
#endif
return ngetopt_bool_opt(env, descP, level, IP_RETOPTS);
}
#endif
/* ngetopt_lvl_ip_router_alert - Level IP ROUTER_ALERT option
*/
#if defined(IP_ROUTER_ALERT)
static
ERL_NIF_TERM ngetopt_lvl_ip_router_alert(ErlNifEnv* env,
SocketDescriptor* descP)
{
#if defined(SOL_IP)
int level = SOL_IP;
#else
int level = IPPROTO_IP;
#endif
return ngetopt_int_opt(env, descP, level, IP_ROUTER_ALERT);
}
#endif
/* ngetopt_lvl_ip_sendsrcaddr - Level IP SENDSRCADDR option
*/
#if defined(IP_SENDSRCADDR)
static
ERL_NIF_TERM ngetopt_lvl_ip_sendsrcaddr(ErlNifEnv* env,
SocketDescriptor* descP)
{
#if defined(SOL_IP)
int level = SOL_IP;
#else
int level = IPPROTO_IP;
#endif
return ngetopt_bool_opt(env, descP, level, IP_SENDSRCADDR);
}
#endif
/* ngetopt_lvl_ip_tos - Level IP TOS option
*/
#if defined(IP_TOS)
static
ERL_NIF_TERM ngetopt_lvl_ip_tos(ErlNifEnv* env,
SocketDescriptor* descP)
{
#if defined(SOL_IP)
int level = SOL_IP;
#else
int level = IPPROTO_IP;
#endif
ERL_NIF_TERM result;
int val;
SOCKOPTLEN_T valSz = sizeof(val);
int res;
res = sock_getopt(descP->sock, level, IP_TOS, &val, &valSz);
if (res != 0) {
result = esock_make_error_errno(env, sock_errno());
} else {
result = encode_ip_tos(env, val);
}
return result;
}
#endif
/* ngetopt_lvl_ip_transparent - Level IP TRANSPARENT option
*/
#if defined(IP_TRANSPARENT)
static
ERL_NIF_TERM ngetopt_lvl_ip_transparent(ErlNifEnv* env,
SocketDescriptor* descP)
{
#if defined(SOL_IP)
int level = SOL_IP;
#else
int level = IPPROTO_IP;
#endif
return ngetopt_bool_opt(env, descP, level, IP_TRANSPARENT);
}
#endif
/* ngetopt_lvl_ip_ttl - Level IP TTL option
*/
#if defined(IP_TTL)
static
ERL_NIF_TERM ngetopt_lvl_ip_ttl(ErlNifEnv* env,
SocketDescriptor* descP)
{
#if defined(SOL_IP)
int level = SOL_IP;
#else
int level = IPPROTO_IP;
#endif
return ngetopt_int_opt(env, descP, level, IP_TTL);
}
#endif
/* ngetopt_lvl_ipv6 - Level *IPv6* option(s)
*/
#if defined(SOL_IPV6)
static
ERL_NIF_TERM ngetopt_lvl_ipv6(ErlNifEnv* env,
SocketDescriptor* descP,
int eOpt)
{
ERL_NIF_TERM result;
SSDBG( descP,
("SOCKET", "ngetopt_lvl_ipv6 -> entry with"
"\r\n eOpt: %d"
"\r\n", eOpt) );
switch (eOpt) {
#if defined(IPV6_AUTHHDR)
case SOCKET_OPT_IPV6_AUTHHDR:
result = ngetopt_lvl_ipv6_authhdr(env, descP);
break;
#endif
#if defined(IPV6_DSTOPTS)
case SOCKET_OPT_IPV6_DSTOPTS:
result = ngetopt_lvl_ipv6_dstopts(env, descP);
break;
#endif
#if defined(IPV6_FLOWINFO)
case SOCKET_OPT_IPV6_FLOWINFO:
result = ngetopt_lvl_ipv6_flowinfo(env, descP);
break;
#endif
#if defined(IPV6_HOPLIMIT)
case SOCKET_OPT_IPV6_HOPLIMIT:
result = ngetopt_lvl_ipv6_hoplimit(env, descP);
break;
#endif
#if defined(IPV6_HOPOPTS)
case SOCKET_OPT_IPV6_HOPOPTS:
result = ngetopt_lvl_ipv6_hopopts(env, descP);
break;
#endif
#if defined(IPV6_MTU)
case SOCKET_OPT_IPV6_MTU:
result = ngetopt_lvl_ipv6_mtu(env, descP);
break;
#endif
#if defined(IPV6_MTU_DISCOVER)
case SOCKET_OPT_IPV6_MTU_DISCOVER:
result = ngetopt_lvl_ipv6_mtu_discover(env, descP);
break;
#endif
#if defined(IPV6_MULTICAST_HOPS)
case SOCKET_OPT_IPV6_MULTICAST_HOPS:
result = ngetopt_lvl_ipv6_multicast_hops(env, descP);
break;
#endif
#if defined(IPV6_MULTICAST_IF)
case SOCKET_OPT_IPV6_MULTICAST_IF:
result = ngetopt_lvl_ipv6_multicast_if(env, descP);
break;
#endif
#if defined(IPV6_MULTICAST_LOOP)
case SOCKET_OPT_IPV6_MULTICAST_LOOP:
result = ngetopt_lvl_ipv6_multicast_loop(env, descP);
break;
#endif
#if defined(IPV6_RECVERR)
case SOCKET_OPT_IPV6_RECVERR:
result = ngetopt_lvl_ipv6_recverr(env, descP);
break;
#endif
#if defined(IPV6_RECVPKTINFO) || defined(IPV6_PKTINFO)
case SOCKET_OPT_IPV6_RECVPKTINFO:
result = ngetopt_lvl_ipv6_recvpktinfo(env, descP);
break;
#endif
#if defined(IPV6_ROUTER_ALERT)
case SOCKET_OPT_IPV6_ROUTER_ALERT:
result = ngetopt_lvl_ipv6_router_alert(env, descP);
break;
#endif
#if defined(IPV6_RTHDR)
case SOCKET_OPT_IPV6_RTHDR:
result = ngetopt_lvl_ipv6_rthdr(env, descP);
break;
#endif
#if defined(IPV6_UNICAST_HOPS)
case SOCKET_OPT_IPV6_UNICAST_HOPS:
result = ngetopt_lvl_ipv6_unicast_hops(env, descP);
break;
#endif
#if defined(IPV6_V6ONLY)
case SOCKET_OPT_IPV6_V6ONLY:
result = ngetopt_lvl_ipv6_v6only(env, descP);
break;
#endif
default:
result = esock_make_error(env, esock_atom_einval);
break;
}
SSDBG( descP,
("SOCKET", "ngetopt_lvl_ipv6 -> done when"
"\r\n result: %T"
"\r\n", result) );
return result;
}
#if defined(IPV6_AUTHHDR)
static
ERL_NIF_TERM ngetopt_lvl_ipv6_authhdr(ErlNifEnv* env,
SocketDescriptor* descP)
{
return ngetopt_bool_opt(env, descP, SOL_IPV6, IPV6_AUTHHDR);
}
#endif
#if defined(IPV6_DSTOPTS)
static
ERL_NIF_TERM ngetopt_lvl_ipv6_dstopts(ErlNifEnv* env,
SocketDescriptor* descP)
{
return ngetopt_bool_opt(env, descP, SOL_IPV6, IPV6_DSTOPTS);
}
#endif
#if defined(IPV6_FLOWINFO)
static
ERL_NIF_TERM ngetopt_lvl_ipv6_flowinfo(ErlNifEnv* env,
SocketDescriptor* descP)
{
return ngetopt_bool_opt(env, descP, SOL_IPV6, IPV6_FLOWINFO);
}
#endif
#if defined(IPV6_HOPLIMIT)
static
ERL_NIF_TERM ngetopt_lvl_ipv6_hoplimit(ErlNifEnv* env,
SocketDescriptor* descP)
{
return ngetopt_bool_opt(env, descP, SOL_IPV6, IPV6_HOPLIMIT);
}
#endif
#if defined(IPV6_HOPOPTS)
static
ERL_NIF_TERM ngetopt_lvl_ipv6_hopopts(ErlNifEnv* env,
SocketDescriptor* descP)
{
return ngetopt_bool_opt(env, descP, SOL_IPV6, IPV6_HOPOPTS);
}
#endif
#if defined(IPV6_MTU)
static
ERL_NIF_TERM ngetopt_lvl_ipv6_mtu(ErlNifEnv* env,
SocketDescriptor* descP)
{
return ngetopt_int_opt(env, descP, SOL_IPV6, IPV6_MTU);
}
#endif
/* ngetopt_lvl_ipv6_mtu_discover - Level IPv6 MTU_DISCOVER option
*/
#if defined(IPV6_MTU_DISCOVER)
static
ERL_NIF_TERM ngetopt_lvl_ipv6_mtu_discover(ErlNifEnv* env,
SocketDescriptor* descP)
{
ERL_NIF_TERM result;
ERL_NIF_TERM eMtuDisc;
int mtuDisc;
SOCKOPTLEN_T mtuDiscSz = sizeof(mtuDisc);
int res;
res = sock_getopt(descP->sock, SOL_IPV6, IPV6_MTU_DISCOVER,
&mtuDisc, &mtuDiscSz);
if (res != 0) {
result = esock_make_error_errno(env, sock_errno());
} else {
encode_ipv6_pmtudisc(env, mtuDisc, &eMtuDisc);
result = esock_make_ok2(env, eMtuDisc);
}
return result;
}
#endif
#if defined(IPV6_MULTICAST_HOPS)
static
ERL_NIF_TERM ngetopt_lvl_ipv6_multicast_hops(ErlNifEnv* env,
SocketDescriptor* descP)
{
return ngetopt_int_opt(env, descP, SOL_IPV6, IPV6_MULTICAST_HOPS);
}
#endif
#if defined(IPV6_MULTICAST_IF)
static
ERL_NIF_TERM ngetopt_lvl_ipv6_multicast_if(ErlNifEnv* env,
SocketDescriptor* descP)
{
return ngetopt_int_opt(env, descP, SOL_IPV6, IPV6_MULTICAST_IF);
}
#endif
#if defined(IPV6_MULTICAST_LOOP)
static
ERL_NIF_TERM ngetopt_lvl_ipv6_multicast_loop(ErlNifEnv* env,
SocketDescriptor* descP)
{
return ngetopt_bool_opt(env, descP, SOL_IPV6, IPV6_MULTICAST_LOOP);
}
#endif
#if defined(IPV6_RECVERR)
static
ERL_NIF_TERM ngetopt_lvl_ipv6_recverr(ErlNifEnv* env,
SocketDescriptor* descP)
{
return ngetopt_bool_opt(env, descP, SOL_IPV6, IPV6_RECVERR);
}
#endif
#if defined(IPV6_RECVPKTINFO) || defined(IPV6_PKTINFO)
static
ERL_NIF_TERM ngetopt_lvl_ipv6_recvpktinfo(ErlNifEnv* env,
SocketDescriptor* descP)
{
#if defined(IPV6_RECVPKTINFO)
int opt = IPV6_RECVPKTINFO;
#else
int opt = IPV6_PKTINFO;
#endif
return ngetopt_bool_opt(env, descP, SOL_IPV6, opt);
}
#endif
#if defined(IPV6_ROUTER_ALERT)
static
ERL_NIF_TERM ngetopt_lvl_ipv6_router_alert(ErlNifEnv* env,
SocketDescriptor* descP)
{
return ngetopt_int_opt(env, descP, SOL_IPV6, IPV6_ROUTER_ALERT);
}
#endif
#if defined(IPV6_RTHDR)
static
ERL_NIF_TERM ngetopt_lvl_ipv6_rthdr(ErlNifEnv* env,
SocketDescriptor* descP)
{
return ngetopt_bool_opt(env, descP, SOL_IPV6, IPV6_RTHDR);
}
#endif
#if defined(IPV6_UNICAST_HOPS)
static
ERL_NIF_TERM ngetopt_lvl_ipv6_unicast_hops(ErlNifEnv* env,
SocketDescriptor* descP)
{
return ngetopt_int_opt(env, descP, SOL_IPV6, IPV6_UNICAST_HOPS);
}
#endif
#if defined(IPV6_V6ONLY)
static
ERL_NIF_TERM ngetopt_lvl_ipv6_v6only(ErlNifEnv* env,
SocketDescriptor* descP)
{
return ngetopt_bool_opt(env, descP, SOL_IPV6, IPV6_V6ONLY);
}
#endif
#endif // defined(SOL_IPV6)
/* ngetopt_lvl_tcp - Level *TCP* option(s)
*/
static
ERL_NIF_TERM ngetopt_lvl_tcp(ErlNifEnv* env,
SocketDescriptor* descP,
int eOpt)
{
ERL_NIF_TERM result;
switch (eOpt) {
#if defined(TCP_CONGESTION)
case SOCKET_OPT_TCP_CONGESTION:
result = ngetopt_lvl_tcp_congestion(env, descP);
break;
#endif
#if defined(TCP_MAXSEG)
case SOCKET_OPT_TCP_MAXSEG:
result = ngetopt_lvl_tcp_maxseg(env, descP);
break;
#endif
#if defined(TCP_NODELAY)
case SOCKET_OPT_TCP_NODELAY:
result = ngetopt_lvl_tcp_nodelay(env, descP);
break;
#endif
default:
result = esock_make_error(env, esock_atom_einval);
break;
}
return result;
}
/* ngetopt_lvl_tcp_congestion - Level TCP CONGESTION option
*/
#if defined(TCP_CONGESTION)
static
ERL_NIF_TERM ngetopt_lvl_tcp_congestion(ErlNifEnv* env,
SocketDescriptor* descP)
{
int max = SOCKET_OPT_TCP_CONGESTION_NAME_MAX+1;
return ngetopt_str_opt(env, descP, IPPROTO_TCP, TCP_CONGESTION, max);
}
#endif
/* ngetopt_lvl_tcp_maxseg - Level TCP MAXSEG option
*/
#if defined(TCP_MAXSEG)
static
ERL_NIF_TERM ngetopt_lvl_tcp_maxseg(ErlNifEnv* env,
SocketDescriptor* descP)
{
return ngetopt_int_opt(env, descP, IPPROTO_TCP, TCP_MAXSEG);
}
#endif
/* ngetopt_lvl_tcp_nodelay - Level TCP NODELAY option
*/
#if defined(TCP_NODELAY)
static
ERL_NIF_TERM ngetopt_lvl_tcp_nodelay(ErlNifEnv* env,
SocketDescriptor* descP)
{
return ngetopt_bool_opt(env, descP, IPPROTO_TCP, TCP_NODELAY);
}
#endif
/* ngetopt_lvl_udp - Level *UDP* option(s)
*/
static
ERL_NIF_TERM ngetopt_lvl_udp(ErlNifEnv* env,
SocketDescriptor* descP,
int eOpt)
{
ERL_NIF_TERM result;
switch (eOpt) {
#if defined(UDP_CORK)
case SOCKET_OPT_UDP_CORK:
result = ngetopt_lvl_udp_cork(env, descP);
break;
#endif
default:
result = esock_make_error(env, esock_atom_einval);
break;
}
return result;
}
/* ngetopt_lvl_udp_cork - Level UDP CORK option
*/
#if defined(UDP_CORK)
static
ERL_NIF_TERM ngetopt_lvl_udp_cork(ErlNifEnv* env,
SocketDescriptor* descP)
{
return ngetopt_bool_opt(env, descP, IPPROTO_UDP, UDP_CORK);
}
#endif
/* ngetopt_lvl_sctp - Level *SCTP* option(s)
*/
#if defined(HAVE_SCTP)
static
ERL_NIF_TERM ngetopt_lvl_sctp(ErlNifEnv* env,
SocketDescriptor* descP,
int eOpt)
{
ERL_NIF_TERM result;
SSDBG( descP,
("SOCKET", "ngetopt_lvl_sctp -> entry with"
"\r\n opt: %d"
"\r\n", eOpt) );
switch (eOpt) {
#if defined(SCTP_ASSOCINFO)
case SOCKET_OPT_SCTP_ASSOCINFO:
result = ngetopt_lvl_sctp_associnfo(env, descP);
break;
#endif
#if defined(SCTP_AUTOCLOSE)
case SOCKET_OPT_SCTP_AUTOCLOSE:
result = ngetopt_lvl_sctp_autoclose(env, descP);
break;
#endif
#if defined(SCTP_DISABLE_FRAGMENTS)
case SOCKET_OPT_SCTP_DISABLE_FRAGMENTS:
result = ngetopt_lvl_sctp_disable_fragments(env, descP);
break;
#endif
#if defined(SCTP_INITMSG)
case SOCKET_OPT_SCTP_INITMSG:
result = ngetopt_lvl_sctp_initmsg(env, descP);
break;
#endif
#if defined(SCTP_MAXSEG)
case SOCKET_OPT_SCTP_MAXSEG:
result = ngetopt_lvl_sctp_maxseg(env, descP);
break;
#endif
#if defined(SCTP_NODELAY)
case SOCKET_OPT_SCTP_NODELAY:
result = ngetopt_lvl_sctp_nodelay(env, descP);
break;
#endif
#if defined(SCTP_RTOINFO)
case SOCKET_OPT_SCTP_RTOINFO:
result = ngetopt_lvl_sctp_rtoinfo(env, descP);
break;
#endif
default:
result = esock_make_error(env, esock_atom_einval);
break;
}
SSDBG( descP,
("SOCKET", "ngetopt_lvl_sctp -> done when"
"\r\n result: %T"
"\r\n", result) );
return result;
}
/* ngetopt_lvl_sctp_associnfo - Level SCTP ASSOCINFO option
*
* <KOLLA>
*
* We should really specify which association this relates to,
* as it is now we get assoc-id = 0. If this socket is an
* association (and not an endpoint) then it will have an
* assoc id. But since the sctp support at present is "limited",
* we leave it for now.
* What do we do if this is an endpoint? Invalid op?
*
* </KOLLA>
*/
#if defined(SCTP_ASSOCINFO)
static
ERL_NIF_TERM ngetopt_lvl_sctp_associnfo(ErlNifEnv* env,
SocketDescriptor* descP)
{
ERL_NIF_TERM result;
struct sctp_assocparams val;
SOCKOPTLEN_T valSz = sizeof(val);
int res;
SSDBG( descP, ("SOCKET", "ngetopt_lvl_sctp_associnfo -> entry\r\n") );
sys_memzero((char*) &val, valSz);
res = sock_getopt(descP->sock, IPPROTO_SCTP, SCTP_ASSOCINFO, &val, &valSz);
if (res != 0) {
result = esock_make_error_errno(env, sock_errno());
} else {
ERL_NIF_TERM eAssocParams;
ERL_NIF_TERM keys[] = {atom_assoc_id, atom_max_rxt, atom_num_peer_dests,
atom_peer_rwnd, atom_local_rwnd, atom_cookie_life};
ERL_NIF_TERM vals[] = {MKUI(env, val.sasoc_assoc_id),
MKUI(env, val.sasoc_asocmaxrxt),
MKUI(env, val.sasoc_number_peer_destinations),
MKUI(env, val.sasoc_peer_rwnd),
MKUI(env, val.sasoc_local_rwnd),
MKUI(env, val.sasoc_cookie_life)};
unsigned int numKeys = sizeof(keys) / sizeof(ERL_NIF_TERM);
unsigned int numVals = sizeof(vals) / sizeof(ERL_NIF_TERM);
ESOCK_ASSERT( (numKeys == numVals) );
if (!MKMA(env, keys, vals, numKeys, &eAssocParams))
return esock_make_error(env, esock_atom_einval);;
result = esock_make_ok2(env, eAssocParams);
}
SSDBG( descP,
("SOCKET", "ngetopt_lvl_sctp_associnfo -> done with"
"\r\n res: %d"
"\r\n result: %T"
"\r\n", res, result) );
return result;
}
#endif
/* ngetopt_lvl_sctp_autoclose - Level SCTP AUTOCLOSE option
*/
#if defined(SCTP_AUTOCLOSE)
static
ERL_NIF_TERM ngetopt_lvl_sctp_autoclose(ErlNifEnv* env,
SocketDescriptor* descP)
{
return ngetopt_int_opt(env, descP, IPPROTO_SCTP, SCTP_AUTOCLOSE);
}
#endif
/* ngetopt_lvl_sctp_disable_fragments - Level SCTP DISABLE:FRAGMENTS option
*/
#if defined(SCTP_DISABLE_FRAGMENTS)
static
ERL_NIF_TERM ngetopt_lvl_sctp_disable_fragments(ErlNifEnv* env,
SocketDescriptor* descP)
{
return ngetopt_bool_opt(env, descP, IPPROTO_SCTP, SCTP_DISABLE_FRAGMENTS);
}
#endif
/* ngetopt_lvl_sctp_initmsg - Level SCTP INITMSG option
*
*/
#if defined(SCTP_INITMSG)
static
ERL_NIF_TERM ngetopt_lvl_sctp_initmsg(ErlNifEnv* env,
SocketDescriptor* descP)
{
ERL_NIF_TERM result;
struct sctp_initmsg val;
SOCKOPTLEN_T valSz = sizeof(val);
int res;
SSDBG( descP, ("SOCKET", "ngetopt_lvl_sctp_initmsg -> entry\r\n") );
sys_memzero((char*) &val, valSz);
res = sock_getopt(descP->sock, IPPROTO_SCTP, SCTP_INITMSG, &val, &valSz);
if (res != 0) {
result = esock_make_error_errno(env, sock_errno());
} else {
ERL_NIF_TERM eInitMsg;
ERL_NIF_TERM keys[] = {atom_num_outstreams, atom_max_instreams,
atom_max_attempts, atom_max_init_timeo};
ERL_NIF_TERM vals[] = {MKUI(env, val.sinit_num_ostreams),
MKUI(env, val.sinit_max_instreams),
MKUI(env, val.sinit_max_attempts),
MKUI(env, val.sinit_max_init_timeo)};
unsigned int numKeys = sizeof(keys) / sizeof(ERL_NIF_TERM);
unsigned int numVals = sizeof(vals) / sizeof(ERL_NIF_TERM);
ESOCK_ASSERT( (numKeys == numVals) );
if (!MKMA(env, keys, vals, numKeys, &eInitMsg))
return esock_make_error(env, esock_atom_einval);;
result = esock_make_ok2(env, eInitMsg);
}
SSDBG( descP,
("SOCKET", "ngetopt_lvl_sctp_initmsg -> done with"
"\r\n res: %d"
"\r\n result: %T"
"\r\n", res, result) );
return result;
}
#endif
/* ngetopt_lvl_sctp_maxseg - Level SCTP MAXSEG option
*/
#if defined(SCTP_MAXSEG)
static
ERL_NIF_TERM ngetopt_lvl_sctp_maxseg(ErlNifEnv* env,
SocketDescriptor* descP)
{
return ngetopt_int_opt(env, descP, IPPROTO_SCTP, SCTP_MAXSEG);
}
#endif
/* ngetopt_lvl_sctp_nodelay - Level SCTP NODELAY option
*/
#if defined(SCTP_NODELAY)
static
ERL_NIF_TERM ngetopt_lvl_sctp_nodelay(ErlNifEnv* env,
SocketDescriptor* descP)
{
return ngetopt_bool_opt(env, descP, IPPROTO_SCTP, SCTP_NODELAY);
}
#endif
/* ngetopt_lvl_sctp_associnfo - Level SCTP ASSOCINFO option
*
* <KOLLA>
*
* We should really specify which association this relates to,
* as it is now we get assoc-id = 0. If this socket is an
* association (and not an endpoint) then it will have an
* assoc id (we can assume). But since the sctp support at
* present is "limited", we leave it for now.
* What do we do if this is an endpoint? Invalid op?
*
* </KOLLA>
*/
#if defined(SCTP_RTOINFO)
static
ERL_NIF_TERM ngetopt_lvl_sctp_rtoinfo(ErlNifEnv* env,
SocketDescriptor* descP)
{
ERL_NIF_TERM result;
struct sctp_rtoinfo val;
SOCKOPTLEN_T valSz = sizeof(val);
int res;
SSDBG( descP, ("SOCKET", "ngetopt_lvl_sctp_rtoinfo -> entry\r\n") );
sys_memzero((char*) &val, valSz);
res = sock_getopt(descP->sock, IPPROTO_SCTP, SCTP_RTOINFO, &val, &valSz);
if (res != 0) {
result = esock_make_error_errno(env, sock_errno());
} else {
ERL_NIF_TERM eRTOInfo;
ERL_NIF_TERM keys[] = {atom_assoc_id, atom_initial, atom_max, atom_min};
ERL_NIF_TERM vals[] = {MKUI(env, val.srto_assoc_id),
MKUI(env, val.srto_initial),
MKUI(env, val.srto_max),
MKUI(env, val.srto_min)};
unsigned int numKeys = sizeof(keys) / sizeof(ERL_NIF_TERM);
unsigned int numVals = sizeof(vals) / sizeof(ERL_NIF_TERM);
ESOCK_ASSERT( (numKeys == numVals) );
if (!MKMA(env, keys, vals, numKeys, &eRTOInfo))
return esock_make_error(env, esock_atom_einval);;
result = esock_make_ok2(env, eRTOInfo);
}
SSDBG( descP,
("SOCKET", "ngetopt_lvl_sctp_rtoinfo -> done with"
"\r\n res: %d"
"\r\n result: %T"
"\r\n", res, result) );
return result;
}
#endif
#endif // defined(HAVE_SCTP)
/* ngetopt_bool_opt - get an (integer) bool option
*/
static
ERL_NIF_TERM ngetopt_bool_opt(ErlNifEnv* env,
SocketDescriptor* descP,
int level,
int opt)
{
ERL_NIF_TERM result;
int val;
SOCKOPTLEN_T valSz = sizeof(val);
int res;
/*
SSDBG( descP, ("SOCKET", "ngetopt_bool_opt -> entry with"
"\r\n: level: %d"
"\r\n: opt: %d"
"\r\n", level, opt) );
*/
res = sock_getopt(descP->sock, level, opt, &val, &valSz);
if (res != 0) {
result = esock_make_error_errno(env, sock_errno());
} else {
ERL_NIF_TERM bval = ((val) ? atom_true : atom_false);
result = esock_make_ok2(env, bval);
}
/*
SSDBG( descP, ("SOCKET", "ngetopt_bool_opt -> done when"
"\r\n: res: %d"
"\r\n: result: %T"
"\r\n", res, result) );
*/
return result;
}
/* ngetopt_int_opt - get an integer option
*/
static
ERL_NIF_TERM ngetopt_int_opt(ErlNifEnv* env,
SocketDescriptor* descP,
int level,
int opt)
{
ERL_NIF_TERM result;
int val;
SOCKOPTLEN_T valSz = sizeof(val);
int res;
res = sock_getopt(descP->sock, level, opt, &val, &valSz);
if (res != 0) {
result = esock_make_error_errno(env, sock_errno());
} else {
result = esock_make_ok2(env, MKI(env, val));
}
return result;
}
/* ngetopt_timeval_opt - get an timeval option
*/
static
ERL_NIF_TERM ngetopt_timeval_opt(ErlNifEnv* env,
SocketDescriptor* descP,
int level,
int opt)
{
ERL_NIF_TERM result;
struct timeval val;
SOCKOPTLEN_T valSz = sizeof(val);
int res;
SSDBG( descP,
("SOCKET", "ngetopt_timeval_opt -> entry with"
"\r\n level: %d"
"\r\n opt: %d"
"\r\n", level, opt) );
sys_memzero((char*) &val, valSz);
res = sock_getopt(descP->sock, level, opt, &val, &valSz);
if (res != 0) {
result = esock_make_error_errno(env, sock_errno());
} else {
ERL_NIF_TERM eTimeVal;
char* xres;
if ((xres = esock_encode_timeval(env, &val, &eTimeVal)) != NULL)
result = esock_make_error_str(env, xres);
else
result = esock_make_ok2(env, eTimeVal);
}
SSDBG( descP,
("SOCKET", "ngetopt_timeval_opt -> done when"
"\r\n result: %T"
"\r\n", result) );
return result;
}
/* ngetopt_str_opt - get an string option
*
* We provide the max size of the string. This is the
* size of the buffer we allocate for the value.
* The actual size of the (read) value will be communicated
* in the optSz variable.
*/
static
ERL_NIF_TERM ngetopt_str_opt(ErlNifEnv* env,
SocketDescriptor* descP,
int level,
int opt,
int max)
{
ERL_NIF_TERM result;
char* val = MALLOC(max);
SOCKOPTLEN_T valSz = max;
int res;
SSDBG( descP,
("SOCKET", "ngetopt_str_opt -> entry with"
"\r\n level: %d"
"\r\n opt: %d"
"\r\n max: %d"
"\r\n", level, opt, max) );
res = sock_getopt(descP->sock, level, opt, val, &valSz);
if (res != 0) {
result = esock_make_error_errno(env, sock_errno());
} else {
ERL_NIF_TERM sval = MKSL(env, val, valSz);
result = esock_make_ok2(env, sval);
}
SSDBG( descP,
("SOCKET", "ngetopt_str_opt -> done when"
"\r\n result: %T"
"\r\n", result) );
FREE(val);
return result;
}
/* ----------------------------------------------------------------------
* nif_sockname - get socket name
*
* Description:
* Returns the current address to which the socket is bound.
*
* Arguments:
* Socket (ref) - Points to the socket descriptor.
*/
static
ERL_NIF_TERM nif_sockname(ErlNifEnv* env,
int argc,
const ERL_NIF_TERM argv[])
{
SocketDescriptor* descP;
ERL_NIF_TERM res;
SGDBG( ("SOCKET", "nif_sockname -> entry with argc: %d\r\n", argc) );
/* Extract arguments and perform preliminary validation */
if ((argc != 1) ||
!enif_get_resource(env, argv[0], sockets, (void**) &descP)) {
return enif_make_badarg(env);
}
SSDBG( descP,
("SOCKET", "nif_sockname -> args when sock = %d:"
"\r\n Socket: %T"
"\r\n", descP->sock, argv[0]) );
res = nsockname(env, descP);
SSDBG( descP, ("SOCKET", "nif_sockname -> done with res = %T\r\n", res) );
return res;
}
static
ERL_NIF_TERM nsockname(ErlNifEnv* env,
SocketDescriptor* descP)
{
SocketAddress sa;
SocketAddress* saP = &sa;
unsigned int sz = sizeof(SocketAddress);
sys_memzero((char*) saP, sz);
if (IS_SOCKET_ERROR(sock_name(descP->sock, (struct sockaddr*) saP, &sz))) {
return esock_make_error_errno(env, sock_errno());
} else {
ERL_NIF_TERM esa;
char* xres;
if ((xres = esock_encode_sockaddr(env, saP, sz, &esa)) != NULL)
return esock_make_error_str(env, xres);
else
return esock_make_ok2(env, esa);
}
}
/* ----------------------------------------------------------------------
* nif_peername - get name of the connected peer socket
*
* Description:
* Returns the address of the peer connected to the socket.
*
* Arguments:
* Socket (ref) - Points to the socket descriptor.
*/
static
ERL_NIF_TERM nif_peername(ErlNifEnv* env,
int argc,
const ERL_NIF_TERM argv[])
{
SocketDescriptor* descP;
ERL_NIF_TERM res;
SGDBG( ("SOCKET", "nif_peername -> entry with argc: %d\r\n", argc) );
/* Extract arguments and perform preliminary validation */
if ((argc != 1) ||
!enif_get_resource(env, argv[0], sockets, (void**) &descP)) {
return enif_make_badarg(env);
}
SSDBG( descP,
("SOCKET", "nif_peername -> args when sock = %d:"
"\r\n Socket: %T"
"\r\n", descP->sock, argv[0]) );
res = npeername(env, descP);
SSDBG( descP, ("SOCKET", "nif_peername -> done with res = %T\r\n", res) );
return res;
}
static
ERL_NIF_TERM npeername(ErlNifEnv* env,
SocketDescriptor* descP)
{
SocketAddress sa;
SocketAddress* saP = &sa;
unsigned int sz = sizeof(SocketAddress);
sys_memzero((char*) saP, sz);
if (IS_SOCKET_ERROR(sock_peer(descP->sock, (struct sockaddr*) saP, &sz))) {
return esock_make_error_errno(env, sock_errno());
} else {
ERL_NIF_TERM esa;
char* xres;
if ((xres = esock_encode_sockaddr(env, saP, sz, &esa)) != NULL)
return esock_make_error_str(env, xres);
else
return esock_make_ok2(env, esa);
}
}
/* ----------------------------------------------------------------------
* U t i l i t y F u n c t i o n s
* ----------------------------------------------------------------------
*/
static
ERL_NIF_TERM send_check_result(ErlNifEnv* env,
SocketDescriptor* descP,
ssize_t written,
ssize_t dataSize,
int saveErrno,
ERL_NIF_TERM sendRef)
{
SSDBG( descP,
("SOCKET", "send_check_result -> entry with"
"\r\n written: %d"
"\r\n dataSize: %d"
"\r\n saveErrno: %d"
"\r\n", written, dataSize, saveErrno) );
if (written >= dataSize) {
cnt_inc(&descP->writePkgCnt, 1);
cnt_inc(&descP->writeByteCnt, written);
SSDBG( descP,
("SOCKET", "send_check_result -> "
"everything written (%d,%d) - done\r\n", dataSize, written) );
return esock_atom_ok;
} else if (written < 0) {
/* Ouch, check what kind of failure */
if ((saveErrno != EAGAIN) && (saveErrno != EINTR)) {
cnt_inc(&descP->writeFails, 1);
SSDBG( descP,
("SOCKET", "send_check_result -> error: %d\r\n", saveErrno) );
return esock_make_error_errno(env, saveErrno);
} else {
/* Ok, try again later */
SSDBG( descP, ("SOCKET", "send_check_result -> try again\r\n") );
/* <KOLLA>
* SHOULD RESULT IN {error, eagain}!!!!
* </KOLLA>
*/
written = 0;
}
}
/* We failed to write the *entire* packet (anything less then size
* of the packet, which is 0 <= written < sizeof packet),
* so schedule the rest for later.
*/
cnt_inc(&descP->writeWaits, 1);
SELECT(env, descP->sock, (ERL_NIF_SELECT_WRITE),
descP, NULL, sendRef);
SSDBG( descP,
("SOCKET", "send_check_result -> not entire package written\r\n") );
return esock_make_ok2(env, MKI(env, written));
}
static
ERL_NIF_TERM recv_check_result(ErlNifEnv* env,
SocketDescriptor* descP,
int read,
int toRead,
int saveErrno,
ErlNifBinary* bufP,
ERL_NIF_TERM recvRef)
{
ERL_NIF_TERM data;
SSDBG( descP,
("SOCKET", "recv_check_result -> entry with"
"\r\n read: %d"
"\r\n toRead: %d"
"\r\n saveErrno: %d"
"\r\n recvRef: %T"
"\r\n", read, toRead, saveErrno, recvRef) );
/* <KOLLA>
*
* We need to handle read = 0 for other type(s) (DGRAM) when
* its actually valid to read 0 bytes.
*
* </KOLLA>
*/
if ((read == 0) && (descP->type == SOCK_STREAM)) {
/*
* When a stream socket peer has performed an orderly shutdown, the return
* value will be 0 (the traditional "end-of-file" return).
*
* *We* do never actually try to read 0 bytes from a stream socket!
*/
return esock_make_error(env, atom_closed);
}
/* There is a special case: If the provided 'to read' value is
* zero (0). That means that we reads as much as we can, using
* the default read buffer size.
*/
if (bufP->size == read) {
/* +++ We filled the buffer +++ */
SSDBG( descP,
("SOCKET",
"recv_check_result -> [%d] filled the buffer\r\n", toRead) );
if (toRead == 0) {
/* +++ Give us everything you have got => needs to continue +++ */
/* How do we do this?
* Either:
* 1) Send up each chunk of data for each of the read
* and let the erlang code assemble it: {ok, false, Bin}
* (when complete it should return {ok, true, Bin}).
* We need to read atleast one more time to be sure if its
* done...
* 2) Or put it in a buffer here, and then let the erlang code
* know that it should call again (special return value)
* (continuous binary realloc "here").
*
* => We choose alt 1 for now.
*/
data = MKBIN(env, bufP);
SSDBG( descP,
("SOCKET",
"recv_check_result -> [%d] "
"we are done for now - read more\r\n", toRead) );
return esock_make_ok3(env, atom_false, data);
} else {
/* +++ We got exactly as much as we requested +++ */
/* <KOLLA>
* WE NEED TO INFORM ANY WAITING READERS
* </KOLLA>
*/
data = MKBIN(env, bufP);
SSDBG( descP,
("SOCKET",
"recv_check_result -> [%d] "
"we got exactly what we could fit\r\n", toRead) );
return esock_make_ok3(env, atom_true, data);
}
} else if (read < 0) {
/* +++ Error handling +++ */
if (saveErrno == ECONNRESET) {
/* +++ Oups - closed +++ */
SSDBG( descP, ("SOCKET",
"recv_check_result -> [%d] closed\r\n", toRead) );
/* <KOLLA>
*
* IF THE CURRENT PROCESS IS *NOT* THE CONTROLLING
* PROCESS, WE NEED TO INFORM IT!!!
*
* ALL WAITING PROCESSES MUST ALSO GET THE ERROR!!
* HANDLED BY THE STOP (CALLBACK) FUNCTION?
*
* SINCE THIS IS A REMOTE CLOSE, WE DON'T NEED TO WAIT
* FOR OUTPUT TO BE WRITTEN (NO ONE WILL READ), JUST
* ABORT THE SOCKET REGARDLESS OF LINGER???
*
* </KOLLA>
*/
descP->closeLocal = FALSE;
descP->state = SOCKET_STATE_CLOSING;
SELECT(env,
descP->sock,
(ERL_NIF_SELECT_STOP),
descP, NULL, recvRef);
return esock_make_error(env, atom_closed);
} else if ((saveErrno == ERRNO_BLOCK) ||
(saveErrno == EAGAIN)) {
SSDBG( descP, ("SOCKET",
"recv_check_result -> [%d] eagain\r\n", toRead) );
SELECT(env, descP->sock, (ERL_NIF_SELECT_READ),
descP, NULL, recvRef);
return esock_make_error(env, esock_atom_eagain);
} else {
SSDBG( descP, ("SOCKET", "recv_check_result -> [%d] errno: %d\r\n",
toRead, saveErrno) );
return esock_make_error_errno(env, saveErrno);
}
} else {
/* +++ We did not fill the buffer +++ */
SSDBG( descP,
("SOCKET",
"recv_check_result -> [%d] "
"did not fill the buffer (%d of %d)\r\n",
toRead, read, bufP->size) );
if (toRead == 0) {
/* +++ We got a chunk of data but +++
* +++ since we did not fill the +++
* +++ buffer, we must split it +++
* +++ into a sub-binary. +++
*/
SSDBG( descP, ("SOCKET",
"recv_check_result -> [%d] split buffer\r\n", toRead) );
data = MKBIN(env, bufP);
data = MKSBIN(env, data, 0, read);
SSDBG( descP, ("SOCKET", "recv_check_result -> [%d] done\r\n", toRead) );
return esock_make_ok3(env, atom_true, data);
} else {
/* +++ We got only a part of what was expected +++
* +++ => receive more later. +++ */
SSDBG( descP, ("SOCKET", "recv_check_result -> [%d] "
"only part of message - expect more\r\n", toRead) );
return esock_make_ok3(env, atom_false, MKBIN(env, bufP));
}
}
}
/* The recvfrom function delivers one (1) message. If our buffer
* is to small, the message will be truncated. So, regardless
* if we filled the buffer or not, we have got what we are going
* to get regarding this message.
*/
static
ERL_NIF_TERM recvfrom_check_result(ErlNifEnv* env,
SocketDescriptor* descP,
int read,
int saveErrno,
ErlNifBinary* bufP,
SocketAddress* fromAddrP,
unsigned int fromAddrLen,
ERL_NIF_TERM recvRef)
{
ERL_NIF_TERM data;
SSDBG( descP,
("SOCKET", "recvfrom_check_result -> entry with"
"\r\n read: %d"
"\r\n saveErrno: %d"
"\r\n recvRef: %T"
"\r\n", read, saveErrno, recvRef) );
/* There is a special case: If the provided 'to read' value is
* zero (0). That means that we reads as much as we can, using
* the default read buffer size.
*/
if (read < 0) {
/* +++ Error handling +++ */
if (saveErrno == ECONNRESET) {
/* +++ Oups - closed +++ */
SSDBG( descP, ("SOCKET", "recvfrom_check_result -> closed\r\n") );
/* <KOLLA>
* IF THE CURRENT PROCESS IS *NOT* THE CONTROLLING
* PROCESS, WE NEED TO INFORM IT!!!
*
* ALL WAITING PROCESSES MUST ALSO GET THE ERROR!!
*
* </KOLLA>
*/
descP->closeLocal = FALSE;
descP->state = SOCKET_STATE_CLOSING;
SELECT(env,
descP->sock,
(ERL_NIF_SELECT_STOP),
descP, NULL, recvRef);
return esock_make_error(env, atom_closed);
} else if ((saveErrno == ERRNO_BLOCK) ||
(saveErrno == EAGAIN)) {
SSDBG( descP, ("SOCKET", "recvfrom_check_result -> eagain\r\n") );
SELECT(env, descP->sock, (ERL_NIF_SELECT_READ),
descP, NULL, recvRef);
return esock_make_error(env, esock_atom_eagain);
} else {
SSDBG( descP,
("SOCKET",
"recvfrom_check_result -> errno: %d\r\n", saveErrno) );
return esock_make_error_errno(env, saveErrno);
}
} else {
/* +++ We sucessfully got a message - time to encode the address +++ */
ERL_NIF_TERM eSockAddr;
esock_encode_sockaddr(env,
fromAddrP, fromAddrLen,
&eSockAddr);
if (read == bufP->size) {
data = MKBIN(env, bufP);
} else {
/* +++ We got a chunk of data but +++
* +++ since we did not fill the +++
* +++ buffer, we must split it +++
* +++ into a sub-binary. +++
*/
data = MKBIN(env, bufP);
data = MKSBIN(env, data, 0, read);
}
return esock_make_ok2(env, MKT2(env, eSockAddr, data));
}
}
/* The recvmsg function delivers one (1) message. If our buffer
* is to small, the message will be truncated. So, regardless
* if we filled the buffer or not, we have got what we are going
* to get regarding this message.
*/
static
ERL_NIF_TERM recvmsg_check_result(ErlNifEnv* env,
SocketDescriptor* descP,
int read,
int saveErrno,
struct msghdr* msgHdrP,
ErlNifBinary* dataBufP,
ErlNifBinary* ctrlBufP,
ERL_NIF_TERM recvRef)
{
SSDBG( descP,
("SOCKET", "recvmsg_check_result -> entry with"
"\r\n read: %d"
"\r\n saveErrno: %d"
"\r\n recvRef: %T"
"\r\n", read, saveErrno, recvRef) );
/* <KOLLA>
*
* We need to handle read = 0 for other type(s) (DGRAM) when
* its actually valid to read 0 bytes.
*
* </KOLLA>
*/
if ((read == 0) && (descP->type == SOCK_STREAM)) {
/*
* When a stream socket peer has performed an orderly shutdown, the return
* value will be 0 (the traditional "end-of-file" return).
*
* *We* do never actually try to read 0 bytes from a stream socket!
*/
return esock_make_error(env, atom_closed);
}
/* There is a special case: If the provided 'to read' value is
* zero (0). That means that we reads as much as we can, using
* the default read buffer size.
*/
if (read < 0) {
/* +++ Error handling +++ */
if (saveErrno == ECONNRESET) {
/* +++ Oups - closed +++ */
SSDBG( descP, ("SOCKET", "recvmsg_check_result -> closed\r\n") );
/* <KOLLA>
* IF THE CURRENT PROCESS IS *NOT* THE CONTROLLING
* PROCESS, WE NEED TO INFORM IT!!!
*
* ALL WAITING PROCESSES MUST ALSO GET THE ERROR!!
*
* </KOLLA>
*/
descP->closeLocal = FALSE;
descP->state = SOCKET_STATE_CLOSING;
SELECT(env,
descP->sock,
(ERL_NIF_SELECT_STOP),
descP, NULL, recvRef);
return esock_make_error(env, atom_closed);
} else if ((saveErrno == ERRNO_BLOCK) ||
(saveErrno == EAGAIN)) {
SSDBG( descP, ("SOCKET", "recvmsg_check_result -> eagain\r\n") );
SELECT(env, descP->sock, (ERL_NIF_SELECT_READ),
descP, NULL, recvRef);
return esock_make_error(env, esock_atom_eagain);
} else {
SSDBG( descP,
("SOCKET",
"recvmsg_check_result -> errno: %d\r\n", saveErrno) );
return esock_make_error_errno(env, saveErrno);
}
} else {
/* +++ We sucessfully got a message - time to encode it +++ */
ERL_NIF_TERM eMsgHdr;
char* xres;
/*
* <KOLLA>
*
* The return value of recvmsg is the *total* number of bytes
* that where successfully read. This data has been put into
* the *IO vector*.
*
* </KOLLA>
*/
if ((xres = encode_msghdr(env, descP,
read, msgHdrP, dataBufP, ctrlBufP,
&eMsgHdr)) != NULL) {
SSDBG( descP,
("SOCKET",
"recvmsg_check_result -> "
"(msghdr) encode failed: %s\r\n", xres) );
return esock_make_error_str(env, xres);
} else {
SSDBG( descP,
("SOCKET",
"recvmsg_check_result -> "
"(msghdr) encode ok: %T\r\n", eMsgHdr) );
return esock_make_ok2(env, eMsgHdr);
}
}
}
/* +++ encode_msghdr +++
*
* Encode a msghdr (recvmsg). In erlang its represented as
* a map, which has a specific set of attributes:
*
* addr (source address) - sockaddr()
* iov - [binary()]
* ctrl - [cmsghdr()]
* flags - msghdr_flags()
*/
extern
char* encode_msghdr(ErlNifEnv* env,
SocketDescriptor* descP,
int read,
struct msghdr* msgHdrP,
ErlNifBinary* dataBufP,
ErlNifBinary* ctrlBufP,
ERL_NIF_TERM* eSockAddr)
{
char* xres;
ERL_NIF_TERM addr, iov, ctrl, flags;
SSDBG( descP,
("SOCKET", "encode_msghdr -> entry with"
"\r\n read: %d"
"\r\n", read) );
/* The address is not used if we are connected,
* so check (length = 0) before we try to encodel
*/
if (msgHdrP->msg_namelen != 0) {
if ((xres = esock_encode_sockaddr(env,
(SocketAddress*) msgHdrP->msg_name,
msgHdrP->msg_namelen,
&addr)) != NULL)
return xres;
} else {
addr = esock_atom_undefined;
}
SSDBG( descP, ("SOCKET", "encode_msghdr -> try encode iov\r\n") );
if ((xres = esock_encode_iov(env,
read,
msgHdrP->msg_iov,
msgHdrP->msg_iovlen,
dataBufP,
&iov)) != NULL)
return xres;
SSDBG( descP, ("SOCKET", "encode_msghdr -> try encode cmsghdrs\r\n") );
if ((xres = encode_cmsghdrs(env, descP, ctrlBufP, msgHdrP, &ctrl)) != NULL)
return xres;
SSDBG( descP, ("SOCKET", "encode_msghdr -> try encode flags\r\n") );
if ((xres = encode_msghdr_flags(env, descP, msgHdrP->msg_flags, &flags)) != NULL)
return xres;
SSDBG( descP,
("SOCKET", "encode_msghdr -> components encoded:"
"\r\n addr: %T"
"\r\n iov: %T"
"\r\n ctrl: %T"
"\r\n flags: %T"
"\r\n", addr, iov, ctrl, flags) );
{
ERL_NIF_TERM keys[] = {esock_atom_addr,
esock_atom_iov,
esock_atom_ctrl,
esock_atom_flags};
ERL_NIF_TERM vals[] = {addr, iov, ctrl, flags};
unsigned int numKeys = sizeof(keys) / sizeof(ERL_NIF_TERM);
unsigned int numVals = sizeof(vals) / sizeof(ERL_NIF_TERM);
ERL_NIF_TERM tmp;
ESOCK_ASSERT( (numKeys == numVals) );
SSDBG( descP, ("SOCKET", "encode_msghdr -> create msghdr map\r\n") );
if (!MKMA(env, keys, vals, numKeys, &tmp))
return ESOCK_STR_EINVAL;
SSDBG( descP, ("SOCKET", "encode_msghdr -> msghdr: "
"\r\n %T"
"\r\n", tmp) );
*eSockAddr = tmp;
}
SSDBG( descP, ("SOCKET", "encode_msghdr -> done\r\n") );
return NULL;
}
/* +++ encode_cmsghdrs +++
*
* Encode a list of cmsghdr(). There can be 0 or more cmsghdr "blocks".
*
* Our "problem" is that we have no idea how many control messages
* we have.
*
* The cmsgHdrP arguments points to the start of the control data buffer,
* an actual binary. Its the only way to create sub-binaries. So, what we
* need to continue processing this is to turn that into an binary erlang
* term (which can then in turn be turned into sub-binaries).
*
* We need the cmsgBufP (even though cmsgHdrP points to it) to be able
* to create sub-binaries (one for each cmsg hdr).
*
* The TArray (term array) is created with the size of 128, which should
* be enough. But if its not, then it will be automatically realloc'ed during
* add. Once we are done adding hdr's to it, we convert the tarray to a list.
*/
extern
char* encode_cmsghdrs(ErlNifEnv* env,
SocketDescriptor* descP,
ErlNifBinary* cmsgBinP,
struct msghdr* msgHdrP,
ERL_NIF_TERM* eCMsgHdr)
{
ERL_NIF_TERM ctrlBuf = MKBIN(env, cmsgBinP); // The *entire* binary
SocketTArray cmsghdrs = TARRAY_CREATE(128);
struct cmsghdr* firstP = CMSG_FIRSTHDR(msgHdrP);
struct cmsghdr* currentP;
SSDBG( descP, ("SOCKET", "encode_cmsghdrs -> entry\r\n") );
for (currentP = firstP;
currentP != NULL;
currentP = CMSG_NXTHDR(msgHdrP, currentP)) {
SSDBG( descP,
("SOCKET", "encode_cmsghdrs -> process cmsg header when"
"\r\n TArray Size: %d"
"\r\n", TARRAY_SZ(cmsghdrs)) );
/* MUST check this since on Linux the returned "cmsg" may actually
* go too far!
*/
if (((CHARP(currentP) + currentP->cmsg_len) - CHARP(firstP)) >
msgHdrP->msg_controllen) {
/* Ouch, fatal error - give up
* We assume we cannot trust any data if this is wrong.
*/
TARRAY_DELETE(cmsghdrs);
return ESOCK_STR_EINVAL;
} else {
ERL_NIF_TERM level, type, data;
unsigned char* dataP = (unsigned char*) CMSG_DATA(currentP);
size_t dataPos = dataP - cmsgBinP->data;
size_t dataLen = currentP->cmsg_len - (CHARP(currentP)-CHARP(dataP));
SSDBG( descP,
("SOCKET", "encode_cmsghdrs -> cmsg header data: "
"\r\n dataPos: %d"
"\r\n dataLen: %d"
"\r\n", dataPos, dataLen) );
/* We can't give up just because its an unknown protocol,
* so if its a protocol we don't know, we return its integer
* value and leave it to the user.
*/
if (encode_cmsghdr_level(env, currentP->cmsg_level, &level) != NULL)
level = MKI(env, currentP->cmsg_level);
if (encode_cmsghdr_type(env,
currentP->cmsg_level, currentP->cmsg_type,
&type) != NULL)
type = MKI(env, currentP->cmsg_type);
if (encode_cmsghdr_data(env, ctrlBuf,
currentP->cmsg_level,
currentP->cmsg_type,
dataP, dataPos, dataLen,
&data) != NULL)
data = MKSBIN(env, ctrlBuf, dataPos, dataLen);
SSDBG( descP,
("SOCKET", "encode_cmsghdrs -> "
"\r\n level: %T"
"\r\n type: %T"
"\r\n data: %T"
"\r\n", level, type, data) );
/* And finally create the 'cmsghdr' map -
* and if successfull add it to the tarray.
*/
{
ERL_NIF_TERM keys[] = {esock_atom_level,
esock_atom_type,
esock_atom_data};
ERL_NIF_TERM vals[] = {level, type, data};
unsigned int numKeys = sizeof(keys) / sizeof(ERL_NIF_TERM);
unsigned int numVals = sizeof(vals) / sizeof(ERL_NIF_TERM);
ERL_NIF_TERM cmsgHdr;
/* Guard agains cut-and-paste errors */
ESOCK_ASSERT( (numKeys == numVals) );
if (!MKMA(env, keys, vals, numKeys, &cmsgHdr)) {
TARRAY_DELETE(cmsghdrs);
return ESOCK_STR_EINVAL;
}
/* And finally add it to the list... */
TARRAY_ADD(cmsghdrs, cmsgHdr);
}
}
}
SSDBG( descP,
("SOCKET", "encode_cmsghdrs -> cmsg headers processed when"
"\r\n TArray Size: %d"
"\r\n", TARRAY_SZ(cmsghdrs)) );
/* The tarray is populated - convert it to a list */
TARRAY_TOLIST(cmsghdrs, env, eCMsgHdr);
return NULL;
}
/* +++ decode_cmsghdrs +++
*
* Decode a list of cmsghdr(). There can be 0 or more cmsghdr "blocks".
*
* Each element can either be a (erlang) map that needs to be decoded,
* or a (erlang) binary that just needs to be appended to the control
* buffer.
*
* Our "problem" is that we have no idea much memory we actually need.
*
*/
extern
char* decode_cmsghdrs(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eCMsgHdr,
char* cmsgHdrBufP,
size_t cmsgHdrBufLen,
size_t* cmsgHdrBufUsed)
{
ERL_NIF_TERM elem, tail, list;
char* bufP;
size_t rem, used, totUsed = 0;
unsigned int len;
int i;
char* xres;
SSDBG( descP, ("SOCKET", "decode_cmsghdrs -> entry with"
"\r\n cmsgHdrBufP: 0x%lX"
"\r\n cmsgHdrBufLen: %d"
"\r\n", cmsgHdrBufP, cmsgHdrBufLen) );
if (IS_LIST(env, eCMsgHdr) && GET_LIST_LEN(env, eCMsgHdr, &len)) {
SSDBG( descP, ("SOCKET", "decode_cmsghdrs -> list length: %d\r\n", len) );
for (i = 0, list = eCMsgHdr, rem = cmsgHdrBufLen, bufP = cmsgHdrBufP;
i < len; i++) {
SSDBG( descP, ("SOCKET", "decode_cmsghdrs -> process elem %d:"
"\r\n (buffer) rem: %u"
"\r\n (buffer) totUsed: %u"
"\r\n", i, rem, totUsed) );
/* Extract the (current) head of the (cmsg hdr) list */
if (!GET_LIST_ELEM(env, list, &elem, &tail))
return ESOCK_STR_EINVAL;
used = 0; // Just in case...
if ((xres = decode_cmsghdr(env, descP, elem, bufP, rem, &used)) != NULL)
return xres;
bufP = CHARP( ULONG(bufP) + used );
rem = SZT( rem - used );
list = tail;
totUsed += used;
}
SSDBG( descP, ("SOCKET",
"decode_cmsghdrs -> all %d ctrl headers processed\r\n",
len) );
xres = NULL;
} else {
xres = ESOCK_STR_EINVAL;
}
*cmsgHdrBufUsed = totUsed;
SSDBG( descP, ("SOCKET", "decode_cmsghdrs -> done with %s when"
"\r\n totUsed = %u\r\n",
((xres != NULL) ? xres : "NULL"), totUsed) );
return xres;
}
/* +++ decode_cmsghdr +++
*
* Decode one cmsghdr(). Put the "result" into the buffer and advance the
* pointer (of the buffer) afterwards. Also update 'rem' accordingly.
* But before the actual decode, make sure that there is enough room in
* the buffer for the cmsg header (sizeof(*hdr) < rem).
*
* The eCMsgHdr should be a map with three fields:
*
* level :: cmsghdr_level() (socket | protocol() | integer())
* type :: cmsghdr_type() (atom() | integer())
* What values are valid depend on the level
* data :: cmsghdr_data() (term() | binary())
* The type of the data depends on
* level and type, but can be a binary,
* which means that the data is already coded.
*/
extern
char* decode_cmsghdr(ErlNifEnv* env,
SocketDescriptor* descP,
ERL_NIF_TERM eCMsgHdr,
char* bufP,
size_t rem,
size_t* used)
{
SSDBG( descP, ("SOCKET", "decode_cmsghdr -> entry with"
"\r\n eCMsgHdr: %T"
"\r\n", eCMsgHdr) );
if (IS_MAP(env, eCMsgHdr)) {
ERL_NIF_TERM eLevel, eType, eData;
int level, type;
char* xres;
/* First extract all three attributes (as terms) */
if (!GET_MAP_VAL(env, eCMsgHdr, esock_atom_level, &eLevel))
return ESOCK_STR_EINVAL;
SSDBG( descP, ("SOCKET", "decode_cmsghdr -> eLevel: %T"
"\r\n", eLevel) );
if (!GET_MAP_VAL(env, eCMsgHdr, esock_atom_type, &eType))
return ESOCK_STR_EINVAL;
SSDBG( descP, ("SOCKET", "decode_cmsghdr -> eType: %T"
"\r\n", eType) );
if (!GET_MAP_VAL(env, eCMsgHdr, esock_atom_data, &eData))
return ESOCK_STR_EINVAL;
SSDBG( descP, ("SOCKET", "decode_cmsghdr -> eData: %T"
"\r\n", eData) );
/* Second, decode level */
if ((xres = decode_cmsghdr_level(env, eLevel, &level)) != NULL)
return xres;
SSDBG( descP, ("SOCKET", "decode_cmsghdr -> level: %d\r\n", level) );
/* third, decode type */
if ((xres = decode_cmsghdr_type(env, level, eType, &type)) != NULL)
return xres;
SSDBG( descP, ("SOCKET", "decode_cmsghdr -> type: %d\r\n", type) );
/* And finally data
* If its a binary, we are done. Otherwise, we need to check
* level and type to know what kind of data to expect.
*/
return decode_cmsghdr_data(env, descP, bufP, rem, level, type, eData, used);
} else {
*used = 0;
return ESOCK_STR_EINVAL;
}
return NULL;
}
/* *** decode_cmsghdr_data ***
*
* For all combinations of level and type we accept a binary as data,
* so we begin by testing for that. If its not a binary, then we check
* level (ip) and type (tos or ttl), in which case the data *must* be
* an integer and ip_tos() respectively.
*/
static
char* decode_cmsghdr_data(ErlNifEnv* env,
SocketDescriptor* descP,
char* bufP,
size_t rem,
int level,
int type,
ERL_NIF_TERM eData,
size_t* used)
{
char* xres;
SSDBG( descP, ("SOCKET", "decode_cmsghdr_data -> entry with"
"\r\n eData: %T"
"\r\n", eData) );
if (IS_BIN(env, eData)) {
ErlNifBinary bin;
if (GET_BIN(env, eData, &bin)) {
SSDBG( descP, ("SOCKET", "decode_cmsghdr_data -> "
"do final decode with binary\r\n") );
return decode_cmsghdr_final(descP, bufP, rem, level, type,
(char*) bin.data, bin.size,
used);
} else {
*used = 0;
xres = ESOCK_STR_EINVAL;
}
} else {
/* Its *not* a binary so we need to look at what level and type
* we have and treat them individually.
*/
switch (level) {
#if defined(SOL_IP)
case SOL_IP:
#else
case IPPROTO_IP:
#endif
switch (type) {
#if defined(IP_TOS)
case IP_TOS:
{
int data;
if (decode_ip_tos(env, eData, &data)) {
SSDBG( descP, ("SOCKET", "decode_cmsghdr_data -> "
"do final decode with tos\r\n") );
return decode_cmsghdr_final(descP, bufP, rem, level, type,
(char*) &data,
sizeof(data),
used);
} else {
*used = 0;
xres = ESOCK_STR_EINVAL;
}
}
break;
#endif
#if defined(IP_TTL)
case IP_TTL:
{
int data;
if (GET_INT(env, eData, &data)) {
SSDBG( descP, ("SOCKET", "decode_cmsghdr_data -> "
"do final decode with ttl\r\n") );
return decode_cmsghdr_final(descP, bufP, rem, level, type,
(char*) &data,
sizeof(data),
used);
} else {
*used = 0;
xres = ESOCK_STR_EINVAL;
}
}
break;
#endif
}
break;
default:
*used = 0;
xres = ESOCK_STR_EINVAL;
break;
}
}
return xres;
}
/* *** decode_cmsghdr_final ***
*
* This does the final create of the cmsghdr (including the data copy).
*/
static
char* decode_cmsghdr_final(SocketDescriptor* descP,
char* bufP,
size_t rem,
int level,
int type,
char* data,
int sz,
size_t* used)
{
int len = CMSG_LEN(sz);
int space = CMSG_SPACE(sz);
SSDBG( descP, ("SOCKET", "decode_cmsghdr_data -> entry when"
"\r\n level: %d"
"\r\n type: %d"
"\r\n sz: %d => %d, %d"
"\r\n", level, type, sz, len, space) );
if (rem >= space) {
struct cmsghdr* cmsgP = (struct cmsghdr*) bufP;
/* The header */
cmsgP->cmsg_len = len;
cmsgP->cmsg_level = level;
cmsgP->cmsg_type = type;
sys_memcpy(CMSG_DATA(cmsgP), data, sz);
*used = space;
} else {
*used = 0;
return ESOCK_STR_EINVAL;
}
SSDBG( descP, ("SOCKET", "decode_cmsghdr_final -> done\r\n") );
return NULL;
}
/* +++ encode_cmsghdr_level +++
*
* Encode the level part of the cmsghdr().
*
*/
static
char* encode_cmsghdr_level(ErlNifEnv* env,
int level,
ERL_NIF_TERM* eLevel)
{
char* xres;
switch (level) {
case SOL_SOCKET:
*eLevel = esock_atom_socket;
xres = NULL;
break;
#if defined(SOL_IP)
case SOL_IP:
#else
case IPPROTO_IP:
#endif
*eLevel = esock_atom_ip;
xres = NULL;
break;
#if defined(SOL_IPV6)
case SOL_IPV6:
*eLevel = esock_atom_ip;
xres = NULL;
break;
#endif
case IPPROTO_UDP:
*eLevel = esock_atom_udp;
xres = NULL;
break;
default:
*eLevel = MKI(env, level);
xres = NULL;
break;
}
return xres;
}
/* +++ decode_cmsghdr_level +++
*
* Decode the level part of the cmsghdr().
*
*/
static
char* decode_cmsghdr_level(ErlNifEnv* env,
ERL_NIF_TERM eLevel,
int* level)
{
char* xres = NULL;
if (IS_ATOM(env, eLevel)) {
if (COMPARE(eLevel, esock_atom_socket) == 0) {
*level = SOL_SOCKET;
xres = NULL;
} else if (COMPARE(eLevel, esock_atom_ip) == 0) {
#if defined(SOL_IP)
*level = SOL_IP;
#else
*level = IPPROTO_IP;
#endif
xres = NULL;
#if defined(SOL_IPV6)
} else if (COMPARE(eLevel, esock_atom_ipv6) == 0) {
*level = SOL_IPV6;
xres = NULL;
#endif
} else if (COMPARE(eLevel, esock_atom_udp) == 0) {
*level = IPPROTO_UDP;
xres = NULL;
} else {
*level = -1;
xres = ESOCK_STR_EINVAL;
}
} else if (IS_NUM(env, eLevel)) {
if (!GET_INT(env, eLevel, level))
xres = ESOCK_STR_EINVAL;
} else {
*level = -1;
xres = ESOCK_STR_EINVAL;
}
return xres;
}
/* +++ encode_cmsghdr_type +++
*
* Encode the type part of the cmsghdr().
*
*/
static
char* encode_cmsghdr_type(ErlNifEnv* env,
int level,
int type,
ERL_NIF_TERM* eType)
{
char* xres = NULL;
switch (level) {
case SOL_SOCKET:
switch (type) {
#if defined(SO_TIMESTAMP)
case SO_TIMESTAMP:
*eType = esock_atom_timestamp;
break;
#endif
#if defined(SCM_RIGHTS)
case SCM_RIGHTS:
*eType = esock_atom_rights;
break;
#endif
#if defined(SCM_CREDENTIALS)
case SCM_CREDENTIALS:
*eType = esock_atom_credentials;
break;
#endif
default:
xres = ESOCK_STR_EINVAL;
break;
}
break;
#if defined(SOL_IP)
case SOL_IP:
#else
case IPPROTO_IP:
#endif
switch (type) {
#if defined(IP_TOS)
case IP_TOS:
*eType = esock_atom_tos;
break;
#endif
#if defined(IP_TTL)
case IP_TTL:
*eType = esock_atom_ttl;
break;
#endif
#if defined(IP_PKTINFO)
case IP_PKTINFO:
*eType = esock_atom_pktinfo;
break;
#endif
#if defined(IP_ORIGDSTADDR)
case IP_ORIGDSTADDR:
*eType = esock_atom_origdstaddr;
break;
#endif
default:
xres = ESOCK_STR_EINVAL;
break;
}
break;
#if defined(SOL_IPV6)
case SOL_IPV6:
switch (type) {
#if defined(IPV6_PKTINFO)
case IPV6_PKTINFO:
*eType = esock_atom_pktinfo;
break;
#endif
default:
xres = ESOCK_STR_EINVAL;
break;
}
break;
#endif
case IPPROTO_TCP:
switch (type) {
default:
xres = ESOCK_STR_EINVAL;
break;
}
break;
case IPPROTO_UDP:
switch (type) {
default:
xres = ESOCK_STR_EINVAL;
break;
}
break;
#if defined(HAVE_SCTP)
case IPPROTO_SCTP:
switch (type) {
default:
xres = ESOCK_STR_EINVAL;
break;
}
break;
#endif
default:
xres = ESOCK_STR_EINVAL;
break;
}
return xres;
}
/* +++ decode_cmsghdr_type +++
*
* Decode the type part of the cmsghdr().
*
*/
static
char* decode_cmsghdr_type(ErlNifEnv* env,
int level,
ERL_NIF_TERM eType,
int* type)
{
char* xres = NULL;
switch (level) {
case SOL_SOCKET:
if (IS_NUM(env, eType)) {
if (!GET_INT(env, eType, type)) {
*type = -1;
xres = ESOCK_STR_EINVAL;
}
} else {
*type = -1;
xres = ESOCK_STR_EINVAL;
}
break;
#if defined(SOL_IP)
case SOL_IP:
#else
case IPPROTO_IP:
#endif
if (IS_ATOM(env, eType)) {
if (COMPARE(eType, esock_atom_tos) == 0) {
#if defined(IP_TOS)
*type = IP_TOS;
#else
xres = ESOCK_STR_EINVAL;
#endif
} else if (COMPARE(eType, esock_atom_ttl) == 0) {
#if defined(IP_TTL)
*type = IP_TTL;
#else
xres = ESOCK_STR_EINVAL;
#endif
} else {
xres = ESOCK_STR_EINVAL;
}
} else if (IS_NUM(env, eType)) {
if (!GET_INT(env, eType, type)) {
*type = -1;
xres = ESOCK_STR_EINVAL;
}
} else {
*type = -1;
xres = ESOCK_STR_EINVAL;
}
break;
#if defined(SOL_IPV6)
case SOL_IPV6:
if (IS_NUM(env, eType)) {
if (!GET_INT(env, eType, type)) {
*type = -1;
xres = ESOCK_STR_EINVAL;
}
} else {
*type = -1;
xres = ESOCK_STR_EINVAL;
}
break;
#endif
case IPPROTO_UDP:
if (IS_NUM(env, eType)) {
if (!GET_INT(env, eType, type)) {
*type = -1;
xres = ESOCK_STR_EINVAL;
}
} else {
*type = -1;
xres = ESOCK_STR_EINVAL;
}
break;
default:
*type = -1;
xres = ESOCK_STR_EINVAL;
break;
}
return xres;
}
/* +++ encode_cmsghdr_data +++
*
* Encode the data part of the cmsghdr().
*
*/
static
char* encode_cmsghdr_data(ErlNifEnv* env,
ERL_NIF_TERM ctrlBuf,
int level,
int type,
unsigned char* dataP,
size_t dataPos,
size_t dataLen,
ERL_NIF_TERM* eCMsgHdrData)
{
char* xres;
switch (level) {
#if defined(SOL_SOCKET)
case SOL_SOCKET:
xres = encode_cmsghdr_data_socket(env, ctrlBuf, type,
dataP, dataPos, dataLen,
eCMsgHdrData);
break;
#endif
#if defined(SOL_IP)
case SOL_IP:
#else
case IPPROTO_IP:
#endif
xres = encode_cmsghdr_data_ip(env, ctrlBuf, type,
dataP, dataPos, dataLen,
eCMsgHdrData);
break;
#if defined(SOL_IPV6)
case SOL_IPV6:
xres = encode_cmsghdr_data_ipv6(env, ctrlBuf, type,
dataP, dataPos, dataLen,
eCMsgHdrData);
break;
#endif
/*
case IPPROTO_TCP:
xres = encode_cmsghdr_data_tcp(env, type, dataP, eCMsgHdrData);
break;
*/
/*
case IPPROTO_UDP:
xres = encode_cmsghdr_data_udp(env, type, dataP, eCMsgHdrData);
break;
*/
/*
#if defined(HAVE_SCTP)
case IPPROTO_SCTP:
xres = encode_cmsghdr_data_sctp(env, type, dataP, eCMsgHdrData);
break;
#endif
*/
default:
*eCMsgHdrData = MKSBIN(env, ctrlBuf, dataPos, dataLen);
xres = NULL;
break;
}
return xres;
}
/* +++ encode_cmsghdr_data_socket +++
*
* Encode the data part when "protocol" = socket of the cmsghdr().
*
*/
static
char* encode_cmsghdr_data_socket(ErlNifEnv* env,
ERL_NIF_TERM ctrlBuf,
int type,
unsigned char* dataP,
size_t dataPos,
size_t dataLen,
ERL_NIF_TERM* eCMsgHdrData)
{
// char* xres;
switch (type) {
#if defined(SO_TIMESTAMP)
case SO_TIMESTAMP:
{
struct timeval* timeP = (struct timeval*) dataP;
if (esock_encode_timeval(env, timeP, eCMsgHdrData) != NULL)
*eCMsgHdrData = MKSBIN(env, ctrlBuf, dataPos, dataLen);
}
break;
#endif
default:
*eCMsgHdrData = MKSBIN(env, ctrlBuf, dataPos, dataLen);
break;
}
return NULL;
}
/* +++ encode_cmsghdr_data_ip +++
*
* Encode the data part when protocol = IP of the cmsghdr().
*
*/
static
char* encode_cmsghdr_data_ip(ErlNifEnv* env,
ERL_NIF_TERM ctrlBuf,
int type,
unsigned char* dataP,
size_t dataPos,
size_t dataLen,
ERL_NIF_TERM* eCMsgHdrData)
{
char* xres;
switch (type) {
#if defined(IP_TOS)
case IP_TOS:
{
unsigned char tos = *dataP;
switch (IPTOS_TOS(tos)) {
case IPTOS_LOWDELAY:
*eCMsgHdrData = esock_atom_lowdelay;
break;
case IPTOS_THROUGHPUT:
*eCMsgHdrData = esock_atom_throughput;
break;
case IPTOS_RELIABILITY:
*eCMsgHdrData = esock_atom_reliability;
break;
case IPTOS_MINCOST:
*eCMsgHdrData = esock_atom_mincost;
break;
default:
*eCMsgHdrData = MKUI(env, tos);
break;
}
}
break;
#endif
#if defined(IP_TTL)
case IP_TTL:
{
int ttl = *((int*) dataP);
*eCMsgHdrData = MKI(env, ttl);
}
break;
#endif
#if defined(IP_PKTINFO)
case IP_PKTINFO:
{
struct in_pktinfo* pktInfoP = (struct in_pktinfo*) dataP;
ERL_NIF_TERM ifIndex = MKUI(env, pktInfoP->ipi_ifindex);
ERL_NIF_TERM specDst, addr;
if ((xres = esock_encode_ip4_address(env,
&pktInfoP->ipi_spec_dst,
&specDst)) != NULL) {
*eCMsgHdrData = esock_atom_undefined;
return xres;
}
if ((xres = esock_encode_ip4_address(env,
&pktInfoP->ipi_addr,
&addr)) != NULL) {
*eCMsgHdrData = esock_atom_undefined;
return xres;
}
{
ERL_NIF_TERM keys[] = {esock_atom_ifindex,
esock_atom_spec_dst,
esock_atom_addr};
ERL_NIF_TERM vals[] = {ifIndex, specDst, addr};
unsigned int numKeys = sizeof(keys) / sizeof(ERL_NIF_TERM);
unsigned int numVals = sizeof(vals) / sizeof(ERL_NIF_TERM);
ESOCK_ASSERT( (numKeys == numVals) );
if (!MKMA(env, keys, vals, numKeys, eCMsgHdrData)) {
*eCMsgHdrData = esock_atom_undefined;
return ESOCK_STR_EINVAL;
}
}
}
break;
#endif
#if defined(IP_ORIGDSTADDR)
case IP_ORIGDSTADDR:
if ((xres = esock_encode_sockaddr_in4(env,
(struct sockaddr_in*) dataP,
dataLen,
eCMsgHdrData)) != NULL) {
*eCMsgHdrData = esock_atom_undefined;
return xres;
}
break;
#endif
default:
*eCMsgHdrData = MKSBIN(env, ctrlBuf, dataPos, dataLen);
break;
}
return NULL;
}
/* +++ encode_cmsghdr_data_ipv6 +++
*
* Encode the data part when protocol = IPv6 of the cmsghdr().
*
*/
#if defined(SOL_IPV6)
static
char* encode_cmsghdr_data_ipv6(ErlNifEnv* env,
ERL_NIF_TERM ctrlBuf,
int type,
unsigned char* dataP,
size_t dataPos,
size_t dataLen,
ERL_NIF_TERM* eCMsgHdrData)
{
char* xres;
switch (type) {
#if defined(IPV6_PKTINFO)
case IPV6_PKTINFO:
{
struct in6_pktinfo* pktInfoP = (struct in6_pktinfo*) dataP;
ERL_NIF_TERM ifIndex = MKI(env, pktInfoP->ipi6_ifindex);
ERL_NIF_TERM addr;
if ((xres = esock_encode_ip6_address(env,
&pktInfoP->ipi6_addr,
&addr)) != NULL) {
*eCMsgHdrData = esock_atom_undefined;
return xres;
}
{
ERL_NIF_TERM keys[] = {esock_atom_addr, esock_atom_ifindex};
ERL_NIF_TERM vals[] = {addr, ifIndex};
unsigned int numKeys = sizeof(keys) / sizeof(ERL_NIF_TERM);
unsigned int numVals = sizeof(vals) / sizeof(ERL_NIF_TERM);
ESOCK_ASSERT( (numKeys == numVals) );
if (!MKMA(env, keys, vals, numKeys, eCMsgHdrData)) {
*eCMsgHdrData = esock_atom_undefined;
return ESOCK_STR_EINVAL;
}
}
}
break;
#endif
default:
*eCMsgHdrData = MKSBIN(env, ctrlBuf, dataPos, dataLen);
break;
}
return NULL;
}
#endif
/* +++ encode_msghdr_flags +++
*
* Encode a list of msghdr_flag().
*
* The following flags are handled: eor | trunc | ctrunc | oob | errqueue.
*/
extern
char* encode_msghdr_flags(ErlNifEnv* env,
SocketDescriptor* descP,
int msgFlags,
ERL_NIF_TERM* flags)
{
SSDBG( descP,
("SOCKET", "encode_cmsghdrs_flags -> entry with"
"\r\n msgFlags: %d (0x%lX)"
"\r\n", msgFlags, msgFlags) );
if (msgFlags == 0) {
*flags = MKEL(env);
return NULL;
} else {
SocketTArray ta = TARRAY_CREATE(10); // Just to be on the safe side
if ((msgFlags & MSG_EOR) == MSG_EOR)
TARRAY_ADD(ta, esock_atom_eor);
if ((msgFlags & MSG_TRUNC) == MSG_TRUNC)
TARRAY_ADD(ta, esock_atom_trunc);
if ((msgFlags & MSG_CTRUNC) == MSG_CTRUNC)
TARRAY_ADD(ta, esock_atom_ctrunc);
if ((msgFlags & MSG_OOB) == MSG_OOB)
TARRAY_ADD(ta, esock_atom_oob);
if ((msgFlags & MSG_ERRQUEUE) == MSG_ERRQUEUE)
TARRAY_ADD(ta, esock_atom_errqueue);
SSDBG( descP,
("SOCKET", "esock_encode_cmsghdrs -> flags processed when"
"\r\n TArray size: %d"
"\r\n", TARRAY_SZ(ta)) );
TARRAY_TOLIST(ta, env, flags);
return NULL;
}
}
/* +++ decode the linger value +++
* The (socket) linger option is provided as a two tuple:
*
* {OnOff :: boolean(), Time :: integer()}
*
*/
static
BOOLEAN_T decode_sock_linger(ErlNifEnv* env, ERL_NIF_TERM eVal, struct linger* valP)
{
const ERL_NIF_TERM* lt; // The array of the elements of the tuple
int sz; // The size of the tuple - should be 2
BOOLEAN_T onOff;
int secs;
if (!GET_TUPLE(env, eVal, &sz, <))
return FALSE;
if (sz != 2)
return FALSE;
/* So fas so good - now check the two elements of the tuple. */
onOff = esock_decode_bool(lt[0]);
if (!GET_INT(env, lt[1], &secs))
return FALSE;
valP->l_onoff = (onOff) ? 1 : 0;
valP->l_linger = secs;
return TRUE;
}
/* +++ decode the ip socket option TOS +++
* The (ip) option can be provide in two ways:
*
* atom() | integer()
*
* When its an atom it can have the values:
*
* lowdelay | throughput | reliability | mincost
*
*/
#if defined(IP_TOS)
static
BOOLEAN_T decode_ip_tos(ErlNifEnv* env, ERL_NIF_TERM eVal, int* val)
{
BOOLEAN_T result = FALSE;
if (IS_ATOM(env, eVal)) {
if (COMPARE(eVal, esock_atom_lowdelay) == 0) {
*val = IPTOS_LOWDELAY;
result = TRUE;
} else if (COMPARE(eVal, esock_atom_throughput) == 0) {
*val = IPTOS_THROUGHPUT;
result = TRUE;
} else if (COMPARE(eVal, esock_atom_reliability) == 0) {
*val = IPTOS_RELIABILITY;
result = TRUE;
} else if (COMPARE(eVal, esock_atom_mincost) == 0) {
*val = IPTOS_MINCOST;
result = TRUE;
} else {
*val = -1;
result = FALSE;
}
} else if (IS_NUM(env, eVal)) {
if (GET_INT(env, eVal, val)) {
result = TRUE;
} else {
*val = -1;
result = FALSE;
}
} else {
*val = -1;
result = FALSE;
}
return result;
}
#endif
/* +++ decode the ip socket option MTU_DISCOVER +++
* The (ip) option can be provide in two ways:
*
* atom() | integer()
*
* When its an atom it can have the values:
*
* want | dont | do | probe
*
*/
#if defined(IP_MTU_DISCOVER)
static
char* decode_ip_pmtudisc(ErlNifEnv* env, ERL_NIF_TERM eVal, int* val)
{
char* res = NULL;
if (IS_ATOM(env, eVal)) {
if (COMPARE(eVal, atom_want) == 0) {
*val = IP_PMTUDISC_WANT;
} else if (COMPARE(eVal, atom_dont) == 0) {
*val = IP_PMTUDISC_DONT;
} else if (COMPARE(eVal, atom_do) == 0) {
*val = IP_PMTUDISC_DO;
} else if (COMPARE(eVal, atom_probe) == 0) {
*val = IP_PMTUDISC_PROBE;
} else {
*val = -1;
res = ESOCK_STR_EINVAL;
}
} else if (IS_NUM(env, eVal)) {
if (!GET_INT(env, eVal, val)) {
*val = -1;
res = ESOCK_STR_EINVAL;
}
} else {
*val = -1;
res = ESOCK_STR_EINVAL;
}
return res;
}
#endif
/* +++ decode the ipv6 socket option MTU_DISCOVER +++
* The (ip) option can be provide in two ways:
*
* atom() | integer()
*
* When its an atom it can have the values:
*
* want | dont | do | probe
*
*/
#if defined(IPV6_MTU_DISCOVER)
static
char* decode_ipv6_pmtudisc(ErlNifEnv* env, ERL_NIF_TERM eVal, int* val)
{
char* res = NULL;
if (IS_ATOM(env, eVal)) {
if (COMPARE(eVal, atom_want) == 0) {
*val = IPV6_PMTUDISC_WANT;
} else if (COMPARE(eVal, atom_dont) == 0) {
*val = IPV6_PMTUDISC_DONT;
} else if (COMPARE(eVal, atom_do) == 0) {
*val = IPV6_PMTUDISC_DO;
} else if (COMPARE(eVal, atom_probe) == 0) {
*val = IPV6_PMTUDISC_PROBE;
} else {
*val = -1;
res = ESOCK_STR_EINVAL;
}
} else if (IS_NUM(env, eVal)) {
if (!GET_INT(env, eVal, val)) {
*val = -1;
res = ESOCK_STR_EINVAL;
}
} else {
*val = -1;
res = ESOCK_STR_EINVAL;
}
return res;
}
#endif
/* +++ encode the ip socket option MTU_DISCOVER +++
* The (ip) option can be provide in two ways:
*
* atom() | integer()
*
* If its one of the "known" values, it will be an atom:
*
* want | dont | do | probe
*
*/
#if defined(IP_MTU_DISCOVER)
static
void encode_ip_pmtudisc(ErlNifEnv* env, int val, ERL_NIF_TERM* eVal)
{
switch (val) {
case IP_PMTUDISC_WANT:
*eVal = atom_want;
break;
case IP_PMTUDISC_DONT:
*eVal = atom_dont;
break;
case IP_PMTUDISC_DO:
*eVal = atom_do;
break;
case IP_PMTUDISC_PROBE:
*eVal = atom_probe;
break;
default:
*eVal = MKI(env, val);
break;
}
return;
}
#endif
/* +++ encode the ipv6 socket option MTU_DISCOVER +++
* The (ipv6) option can be provide in two ways:
*
* atom() | integer()
*
* If its one of the "known" values, it will be an atom:
*
* want | dont | do | probe
*
*/
#if defined(IPV6_MTU_DISCOVER)
static
void encode_ipv6_pmtudisc(ErlNifEnv* env, int val, ERL_NIF_TERM* eVal)
{
switch (val) {
case IPV6_PMTUDISC_WANT:
*eVal = atom_want;
break;
case IPV6_PMTUDISC_DONT:
*eVal = atom_dont;
break;
case IPV6_PMTUDISC_DO:
*eVal = atom_do;
break;
case IPV6_PMTUDISC_PROBE:
*eVal = atom_probe;
break;
default:
*eVal = MKI(env, val);
break;
}
return;
}
#endif
/* +++ decocde the native getopt option +++
* The option is in this case provide in the form of a two tuple:
*
* {NativeOpt, ValueSize}
*
* NativeOpt :: integer()
* ValueSize :: int | bool | non_neg_integer()
*
*/
static
BOOLEAN_T decode_native_get_opt(ErlNifEnv* env, ERL_NIF_TERM eVal,
int* opt, uint16_t* valueType, int* valueSz)
{
const ERL_NIF_TERM* nativeOptT;
int nativeOptTSz;
/* First, get the tuple and verify its size (2) */
if (!GET_TUPLE(env, eVal, &nativeOptTSz, &nativeOptT))
return FALSE;
if (nativeOptTSz != 2)
return FALSE;
/* So far so good.
* First element is an integer.
* Second element is an atom or an integer.
* The only "types" that we support at the moment are:
*
* bool - Which is actually a integer
* (but will be *returned* as a boolean())
* int - Just short for integer
*/
if (!GET_INT(env, nativeOptT[0], opt))
return FALSE;
if (IS_ATOM(env, nativeOptT[1])) {
if (COMPARE(nativeOptT[1], atom_int) == 0) {
SGDBG( ("SOCKET", "decode_native_get_opt -> int\r\n") );
*valueType = SOCKET_OPT_VALUE_TYPE_INT;
*valueSz = sizeof(int); // Just to be sure
} else if (COMPARE(nativeOptT[1], atom_bool) == 0) {
SGDBG( ("SOCKET", "decode_native_get_opt -> bool\r\n") );
*valueType = SOCKET_OPT_VALUE_TYPE_BOOL;
*valueSz = sizeof(int); // Just to be sure
} else {
return FALSE;
}
} else if (IS_NUM(env, nativeOptT[1])) {
if (GET_INT(env, nativeOptT[1], valueSz)) {
SGDBG( ("SOCKET", "decode_native_get_opt -> unspec\r\n") );
*valueType = SOCKET_OPT_VALUE_TYPE_UNSPEC;
} else {
return FALSE;
}
} else {
return FALSE;
}
SGDBG( ("SOCKET", "decode_native_get_opt -> done\r\n") );
return TRUE;
}
/* +++ encode the ip socket option tos +++
* The (ip) option can be provide as:
*
* lowdelay | throughput | reliability | mincost | integer()
*
*/
static
ERL_NIF_TERM encode_ip_tos(ErlNifEnv* env, int val)
{
ERL_NIF_TERM result;
switch (IPTOS_TOS(val)) {
case IPTOS_LOWDELAY:
result = esock_make_ok2(env, esock_atom_lowdelay);
break;
case IPTOS_THROUGHPUT:
result = esock_make_ok2(env, esock_atom_throughput);
break;
case IPTOS_RELIABILITY:
result = esock_make_ok2(env, esock_atom_reliability);
break;
case IPTOS_MINCOST:
result = esock_make_ok2(env, esock_atom_mincost);
break;
default:
result = esock_make_ok2(env, MKI(env, val));
break;
}
return result;
}
/* *** alloc_descriptor ***
* Allocate and perform basic initialization of a socket descriptor.
*
*/
static
SocketDescriptor* alloc_descriptor(SOCKET sock, HANDLE event)
{
SocketDescriptor* descP;
if ((descP = enif_alloc_resource(sockets, sizeof(SocketDescriptor))) != NULL) {
char buf[64]; /* Buffer used for building the mutex name */
sprintf(buf, "socket[w,%d]", sock);
descP->writeMtx = MCREATE(buf);
descP->currentWriterP = NULL; // currentWriter not used
descP->writersQ.first = NULL;
descP->writersQ.last = NULL;
descP->isWritable = TRUE;
descP->writePkgCnt = 0;
descP->writeByteCnt = 0;
descP->writeTries = 0;
descP->writeWaits = 0;
descP->writeFails = 0;
sprintf(buf, "socket[r,%d]", sock);
descP->readMtx = MCREATE(buf);
descP->currentReaderP = NULL; // currentReader not used
descP->readersQ.first = NULL;
descP->readersQ.last = NULL;
descP->isReadable = TRUE;
descP->readPkgCnt = 0;
descP->readByteCnt = 0;
descP->readTries = 0;
descP->readWaits = 0;
sprintf(buf, "socket[acc,%d]", sock);
descP->accMtx = MCREATE(buf);
descP->currentAcceptorP = NULL; // currentAcceptor not used
descP->acceptorsQ.first = NULL;
descP->acceptorsQ.last = NULL;
sprintf(buf, "socket[close,%d]", sock);
descP->closeMtx = MCREATE(buf);
descP->rBufSz = SOCKET_RECV_BUFFER_SIZE_DEFAULT;
descP->rCtrlSz = SOCKET_RECV_CTRL_BUFFER_SIZE_DEFAULT;
descP->wCtrlSz = SOCKET_SEND_CTRL_BUFFER_SIZE_DEFAULT;
descP->iow = FALSE;
descP->dbg = SOCKET_DEBUG_DEFAULT;
descP->sock = sock;
descP->event = event;
}
return descP;
}
/* decrement counters for when a socket is closed */
static
void dec_socket(int domain, int type, int protocol)
{
MLOCK(data.cntMtx);
cnt_dec(&data.numSockets, 1);
if (domain == AF_INET)
cnt_dec(&data.numDomainInet, 1);
#if defined(HAVE_IN6) && defined(AF_INET6)
else if (domain == AF_INET6)
cnt_dec(&data.numDomainInet6, 1);
#endif
#if defined(HAVE_SYS_UN_H)
else if (domain == AF_UNIX)
cnt_dec(&data.numDomainInet6, 1);
#endif
if (type == SOCK_STREAM)
cnt_dec(&data.numTypeStreams, 1);
else if (type == SOCK_DGRAM)
cnt_dec(&data.numTypeDGrams, 1);
#ifdef HAVE_SCTP
else if (type == SOCK_SEQPACKET)
cnt_dec(&data.numTypeSeqPkgs, 1);
#endif
if (protocol == IPPROTO_IP)
cnt_dec(&data.numProtoIP, 1);
else if (protocol == IPPROTO_TCP)
cnt_dec(&data.numProtoTCP, 1);
else if (protocol == IPPROTO_UDP)
cnt_dec(&data.numProtoUDP, 1);
#if defined(HAVE_SCTP)
else if (protocol == IPPROTO_SCTP)
cnt_dec(&data.numProtoSCTP, 1);
#endif
MUNLOCK(data.cntMtx);
}
/* increment counters for when a socket is opened */
static
void inc_socket(int domain, int type, int protocol)
{
MLOCK(data.cntMtx);
cnt_inc(&data.numSockets, 1);
if (domain == AF_INET)
cnt_inc(&data.numDomainInet, 1);
#if defined(HAVE_IN6) && defined(AF_INET6)
else if (domain == AF_INET6)
cnt_inc(&data.numDomainInet6, 1);
#endif
#if defined(HAVE_SYS_UN_H)
else if (domain == AF_UNIX)
cnt_inc(&data.numDomainInet6, 1);
#endif
if (type == SOCK_STREAM)
cnt_inc(&data.numTypeStreams, 1);
else if (type == SOCK_DGRAM)
cnt_inc(&data.numTypeDGrams, 1);
#ifdef HAVE_SCTP
else if (type == SOCK_SEQPACKET)
cnt_inc(&data.numTypeSeqPkgs, 1);
#endif
if (protocol == IPPROTO_IP)
cnt_inc(&data.numProtoIP, 1);
else if (protocol == IPPROTO_TCP)
cnt_inc(&data.numProtoTCP, 1);
else if (protocol == IPPROTO_UDP)
cnt_inc(&data.numProtoUDP, 1);
#if defined(HAVE_SCTP)
else if (protocol == IPPROTO_SCTP)
cnt_inc(&data.numProtoSCTP, 1);
#endif
MUNLOCK(data.cntMtx);
}
/* compare_pids - Test if two pids are equal
*
*/
static
int compare_pids(ErlNifEnv* env,
const ErlNifPid* pid1,
const ErlNifPid* pid2)
{
ERL_NIF_TERM p1 = enif_make_pid(env, pid1);
ERL_NIF_TERM p2 = enif_make_pid(env, pid2);
return enif_is_identical(p1, p2);
}
/* ----------------------------------------------------------------------
* D e c o d e / E n c o d e F u n c t i o n s
* ----------------------------------------------------------------------
*/
/* edomain2domain - convert internal (erlang) domain to (proper) domain
*
* Note that only a subset is supported.
*/
static
BOOLEAN_T edomain2domain(int edomain, int* domain)
{
switch (edomain) {
case SOCKET_DOMAIN_INET:
*domain = AF_INET;
break;
#if defined(HAVE_IN6) && defined(AF_INET6)
case SOCKET_DOMAIN_INET6:
*domain = AF_INET6;
break;
#endif
#ifdef HAVE_SYS_UN_H
case SOCKET_DOMAIN_LOCAL:
*domain = AF_UNIX;
break;
#endif
default:
*domain = -1;
return FALSE;
}
return TRUE;
}
/* etype2type - convert internal (erlang) type to (proper) type
*
* Note that only a subset is supported.
*/
static
BOOLEAN_T etype2type(int etype, int* type)
{
switch (etype) {
case SOCKET_TYPE_STREAM:
*type = SOCK_STREAM;
break;
case SOCKET_TYPE_DGRAM:
*type = SOCK_DGRAM;
break;
case SOCKET_TYPE_RAW:
*type = SOCK_RAW;
break;
#ifdef HAVE_SCTP
case SOCKET_TYPE_SEQPACKET:
*type = SOCK_SEQPACKET;
break;
#endif
default:
*type = -1;
return FALSE;
}
return TRUE;
}
/* eproto2proto - convert internal (erlang) protocol to (proper) protocol
*
* Note that only a subset is supported.
*/
static
BOOLEAN_T eproto2proto(ErlNifEnv* env,
ERL_NIF_TERM eproto,
int* proto)
{
if (IS_NUM(env, eproto)) {
int ep;
if (!GET_INT(env, eproto, &ep)) {
*proto = -1;
return FALSE;
}
switch (ep) {
case SOCKET_PROTOCOL_IP:
*proto = IPPROTO_IP;
break;
case SOCKET_PROTOCOL_TCP:
*proto = IPPROTO_TCP;
break;
case SOCKET_PROTOCOL_UDP:
*proto = IPPROTO_UDP;
break;
#if defined(HAVE_SCTP)
case SOCKET_PROTOCOL_SCTP:
*proto = IPPROTO_SCTP;
break;
#endif
case SOCKET_PROTOCOL_ICMP:
*proto = IPPROTO_ICMP;
break;
case SOCKET_PROTOCOL_IGMP:
*proto = IPPROTO_IGMP;
break;
default:
*proto = -2;
return FALSE;
}
} else {
const ERL_NIF_TERM* a;
int sz;
if (!GET_TUPLE(env, eproto, &sz, &a)) {
*proto = -3;
return FALSE;
}
if (sz != 2) {
*proto = -4;
return FALSE;
}
if (COMPARE(a[0], esock_atom_raw) != 0) {
*proto = -5;
return FALSE;
}
if (!GET_INT(env, a[1], proto)) {
*proto = -6;
return FALSE;
}
}
return TRUE;
}
#ifdef HAVE_SETNS
/* emap2netns - extract the netns field from the extra map
*
* Note that currently we only support one extra option, the netns.
*/
static
BOOLEAN_T emap2netns(ErlNifEnv* env, ERL_NIF_TERM map, char** netns)
{
size_t sz;
ERL_NIF_TERM key;
ERL_NIF_TERM value;
unsigned int len;
char* buf;
int written;
/* Note that its acceptable that the extra map is empty */
if (!enif_get_map_size(env, map, &sz) ||
(sz != 1)) {
*netns = NULL;
return TRUE;
}
/* The currently only supported extra option is: netns */
key = enif_make_atom(env, "netns");
if (!GET_MAP_VAL(env, map, key, &value)) {
*netns = NULL; // Just in case...
return FALSE;
}
/* So far so good. The value should be a string, check. */
if (!enif_is_list(env, value)) {
*netns = NULL; // Just in case...
return FALSE;
}
if (!enif_get_list_length(env, value, &len)) {
*netns = NULL; // Just in case...
return FALSE;
}
if ((buf = MALLOC(len+1)) == NULL) {
*netns = NULL; // Just in case...
return FALSE;
}
written = enif_get_string(env, value, buf, len+1, ERL_NIF_LATIN1);
if (written == (len+1)) {
*netns = buf;
return TRUE;
} else {
*netns = NULL; // Just in case...
return FALSE;
}
}
#endif
/* esendflags2sendflags - convert internal (erlang) send flags to (proper)
* send flags.
*/
static
BOOLEAN_T esendflags2sendflags(unsigned int eflags, int* flags)
{
unsigned int ef;
int tmp = 0;
for (ef = SOCKET_SEND_FLAG_LOW; ef <= SOCKET_SEND_FLAG_HIGH; ef++) {
switch (ef) {
case SOCKET_SEND_FLAG_CONFIRM:
if ((1 << SOCKET_SEND_FLAG_CONFIRM) & eflags)
tmp |= MSG_CONFIRM;
break;
case SOCKET_SEND_FLAG_DONTROUTE:
if ((1 << SOCKET_SEND_FLAG_DONTROUTE) & eflags)
tmp |= MSG_DONTROUTE;
break;
case SOCKET_SEND_FLAG_EOR:
if ((1 << SOCKET_SEND_FLAG_EOR) & eflags)
tmp |= MSG_EOR;
break;
case SOCKET_SEND_FLAG_MORE:
if ((1 << SOCKET_SEND_FLAG_MORE) & eflags)
tmp |= MSG_MORE;
break;
case SOCKET_SEND_FLAG_NOSIGNAL:
if ((1 << SOCKET_SEND_FLAG_NOSIGNAL) & eflags)
tmp |= MSG_NOSIGNAL;
break;
case SOCKET_SEND_FLAG_OOB:
if ((1 << SOCKET_SEND_FLAG_OOB) & eflags)
tmp |= MSG_OOB;
break;
default:
return FALSE;
}
}
*flags = tmp;
return TRUE;
}
/* erecvflags2recvflags - convert internal (erlang) send flags to (proper)
* send flags.
*/
static
BOOLEAN_T erecvflags2recvflags(unsigned int eflags, int* flags)
{
unsigned int ef;
int tmp = 0;
SGDBG( ("SOCKET", "erecvflags2recvflags -> entry with"
"\r\n eflags: %d"
"\r\n", eflags) );
for (ef = SOCKET_RECV_FLAG_LOW; ef <= SOCKET_RECV_FLAG_HIGH; ef++) {
SGDBG( ("SOCKET", "erecvflags2recvflags -> iteration"
"\r\n ef: %d"
"\r\n tmp: %d"
"\r\n", ef, tmp) );
switch (ef) {
case SOCKET_RECV_FLAG_CMSG_CLOEXEC:
if ((1 << SOCKET_RECV_FLAG_CMSG_CLOEXEC) & eflags)
tmp |= MSG_CMSG_CLOEXEC;
break;
case SOCKET_RECV_FLAG_ERRQUEUE:
if ((1 << SOCKET_RECV_FLAG_ERRQUEUE) & eflags)
tmp |= MSG_ERRQUEUE;
break;
case SOCKET_RECV_FLAG_OOB:
if ((1 << SOCKET_RECV_FLAG_OOB) & eflags)
tmp |= MSG_OOB;
break;
/*
* <KOLLA>
*
* We need to handle this, because it may effect the read algorithm
*
* </KOLLA>
*/
case SOCKET_RECV_FLAG_PEEK:
if ((1 << SOCKET_RECV_FLAG_PEEK) & eflags)
tmp |= MSG_PEEK;
break;
case SOCKET_RECV_FLAG_TRUNC:
if ((1 << SOCKET_RECV_FLAG_TRUNC) & eflags)
tmp |= MSG_TRUNC;
break;
default:
return FALSE;
}
}
*flags = tmp;
return TRUE;
}
/* eproto2proto - convert internal (erlang) protocol to (proper) protocol
*
* Note that only a subset is supported.
*/
static
BOOLEAN_T ehow2how(unsigned int ehow, int* how)
{
switch (ehow) {
case SOCKET_SHUTDOWN_HOW_RD:
*how = SHUT_RD;
break;
case SOCKET_SHUTDOWN_HOW_WR:
*how = SHUT_WR;
break;
case SOCKET_SHUTDOWN_HOW_RDWR:
*how = SHUT_RDWR;
break;
default:
return FALSE;
}
return TRUE;
}
#if defined(HAVE_SYS_UN_H) || defined(SO_BINDTODEVICE)
/* strnlen doesn't exist everywhere */
/*
static
size_t my_strnlen(const char *s, size_t maxlen)
{
size_t i = 0;
while (i < maxlen && s[i] != '\0')
i++;
return i;
}
*/
#endif
/* Send an error closed message to the specified process:
*
* This message is for processes that are waiting in the
* erlang API functions for a select message.
*/
/*
static
char* send_msg_error_closed(ErlNifEnv* env,
ErlNifPid* pid)
{
return send_msg_error(env, atom_closed, pid);
}
*/
/* Send an error message to the specified process:
* A message in the form:
*
* {error, Reason}
*
* This message is for processes that are waiting in the
* erlang API functions for a select message.
*/
/*
static
char* send_msg_error(ErlNifEnv* env,
ERL_NIF_TERM reason,
ErlNifPid* pid)
{
ERL_NIF_TERM msg = enif_make_tuple2(env, atom_error, reason);
return send_msg(env, msg, pid);
}
*/
/* Send an (nif-) abort message to the specified process:
* A message in the form:
*
* {nif_abort, Ref, Reason}
*
* This message is for processes that are waiting in the
* erlang API functions for a select message.
*/
static
char* send_msg_nif_abort(ErlNifEnv* env,
ERL_NIF_TERM ref,
ERL_NIF_TERM reason,
ErlNifPid* pid)
{
ERL_NIF_TERM msg = MKT3(env, atom_nif_abort, ref, reason);
return send_msg(env, msg, pid);
}
/* Send a message to the specified process.
*/
static
char* send_msg(ErlNifEnv* env,
ERL_NIF_TERM msg,
ErlNifPid* pid)
{
if (!enif_send(env, pid, NULL, msg))
return str_exsend;
else
return NULL;
}
/* ----------------------------------------------------------------------
* R e q u e s t Q u e u e F u n c t i o n s
* ----------------------------------------------------------------------
*/
/* *** acceptor search for pid ***
*
* Search for a pid in the acceptor queue.
*/
static
BOOLEAN_T acceptor_search4pid(ErlNifEnv* env,
SocketDescriptor* descP,
ErlNifPid* pid)
{
return qsearch4pid(env, &descP->acceptorsQ, pid);
}
/* *** acceptor push ***
*
* Push an acceptor onto the acceptor queue.
* This happens when we already have atleast one current acceptor.
*/
static
ERL_NIF_TERM acceptor_push(ErlNifEnv* env,
SocketDescriptor* descP,
ErlNifPid pid,
ERL_NIF_TERM ref)
{
SocketRequestQueueElement* e = MALLOC(sizeof(SocketRequestQueueElement));
SocketRequestor* reqP = &e->data;
reqP->pid = pid;
reqP->ref = ref;
if (MONP(env, descP, &pid, &reqP->mon) > 0) {
FREE(reqP);
return esock_make_error(env, atom_exmon);
}
qpush(&descP->acceptorsQ, e);
// THIS IS OK => MAKES THE CALLER WAIT FOR ITS TURN
return esock_make_error(env, esock_atom_eagain);
}
/* *** acceptor pop ***
*
* Pop an acceptor from the acceptor queue.
*/
static
BOOLEAN_T acceptor_pop(ErlNifEnv* env,
SocketDescriptor* descP,
ErlNifPid* pid,
ErlNifMonitor* mon,
ERL_NIF_TERM* ref)
{
SocketRequestQueueElement* e = qpop(&descP->acceptorsQ);
if (e != NULL) {
*pid = e->data.pid;
*mon = e->data.mon;
*ref = e->data.ref;
FREE(e);
return TRUE;
} else {
/* (acceptors) Queue was empty */
// *pid = NULL; we have no null value for pids
// *mon = NULL; we have no null value for monitors
*ref = esock_atom_undefined; // Just in case
return FALSE;
}
}
static
BOOLEAN_T qsearch4pid(ErlNifEnv* env,
SocketRequestQueue* q,
ErlNifPid* pid)
{
SocketRequestQueueElement* tmp = q->first;
while (tmp != NULL) {
if (compare_pids(env, &tmp->data.pid, pid))
return TRUE;
else
tmp = tmp->nextP;
}
return FALSE;
}
static
void qpush(SocketRequestQueue* q,
SocketRequestQueueElement* e)
{
if (q->first != NULL) {
q->last->nextP = e;
q->last = e;
e->nextP = NULL;
} else {
q->first = e;
q->last = e;
e->nextP = NULL;
}
}
static
SocketRequestQueueElement* qpop(SocketRequestQueue* q)
{
SocketRequestQueueElement* e = q->first;
if (e != NULL) {
/* Atleast one element in the queue */
if (e == q->last) {
/* Only one element in the queue */
q->first = q->last = NULL;
} else {
/* More than one element in the queue */
q->first = e->nextP;
}
}
return e;
}
static
BOOLEAN_T qunqueue(ErlNifEnv* env,
SocketRequestQueue* q,
const ErlNifPid* pid)
{
SocketRequestQueueElement* e = q->first;
SocketRequestQueueElement* p = NULL;
/* Check if it was one of the waiting acceptor processes */
while (e != NULL) {
if (compare_pids(env, &e->data.pid, pid)) {
/* We have a match */
if (p != NULL) {
/* Not the first, but could be the last */
if (q->last == e) {
q->last = p;
p->nextP = NULL;
} else {
p->nextP = e->nextP;
}
} else {
/* The first and could also be the last */
if (q->last == e) {
q->last = NULL;
q->first = NULL;
} else {
q->first = e->nextP;
}
}
FREE(e);
return TRUE;
}
/* Try next */
p = e;
e = e->nextP;
}
return FALSE;
}
/* ----------------------------------------------------------------------
* C o u n t e r F u n c t i o n s
* ----------------------------------------------------------------------
*/
static
BOOLEAN_T cnt_inc(uint32_t* cnt, uint32_t inc)
{
BOOLEAN_T wrap;
uint32_t max = 0xFFFFFFFF;
uint32_t current = *cnt;
if ((max - inc) >= current) {
*cnt += inc;
wrap = FALSE;
} else {
*cnt = inc - (max - current) - 1;
wrap = TRUE;
}
return (wrap);
}
static
void cnt_dec(uint32_t* cnt, uint32_t dec)
{
uint32_t current = *cnt;
if (dec > current)
*cnt = 0; // The counter cannot be < 0 so this is the best we can do...
else
*cnt -= dec;
return;
}
/* ----------------------------------------------------------------------
* C a l l b a c k F u n c t i o n s
* ----------------------------------------------------------------------
*/
/* =========================================================================
* socket_dtor - Callback function for resource destructor
*
*/
static
void socket_dtor(ErlNifEnv* env, void* obj)
{
SocketDescriptor* descP = (SocketDescriptor*) obj;
MDESTROY(descP->writeMtx);
MDESTROY(descP->readMtx);
MDESTROY(descP->accMtx);
MDESTROY(descP->closeMtx);
}
/* =========================================================================
* socket_stop - Callback function for resource stop
*
* When the socket is stopped, we need to inform:
*
* * the controlling process
* * the current writer and any waiting writers
* * the current reader and any waiting readers
* * the current acceptor and any waiting acceptor
*
* Also, make sure no process gets the message twice
* (in case it is, for instance, both controlling process
* and a writer).
*
* <KOLLA>
*
* We do not handle linger-issues yet! So anything in the out
* buffers will be left for the OS to solve...
* Do we need a special "close"-thread? Dirty scheduler?
*
* What happens if we are "stopped" for another reason then 'close'?
* For instance, down?
*
* </KOLLA>
*/
static
void socket_stop(ErlNifEnv* env, void* obj, int fd, int is_direct_call)
{
SocketDescriptor* descP = (SocketDescriptor*) obj;
SSDBG( descP,
("SOCKET", "socket_stop -> entry when"
"\r\n sock: %d (%d)"
"\r\n Is Direct Call: %s"
"\r\n", descP->sock, fd, B2S(is_direct_call)) );
MLOCK(descP->writeMtx);
MLOCK(descP->readMtx);
MLOCK(descP->accMtx);
MLOCK(descP->closeMtx);
descP->state = SOCKET_STATE_CLOSING; // Just in case...???
descP->isReadable = FALSE;
descP->isWritable = FALSE;
/* We should check that we actually have a monitor.
* This *should* be done with a "NULL" monitor value,
* which there currently is none...
*/
DEMONP(env, descP, &descP->ctrlMon);
if (descP->currentWriterP != NULL) {
/* We have a (current) writer and *may* therefor also have
* writers waiting.
*/
ESOCK_ASSERT( (NULL == send_msg_nif_abort(env,
descP->currentWriter.ref,
atom_closed,
&descP->currentWriter.pid)) );
/* And also deal with the waiting writers (in the same way) */
inform_waiting_procs(env, descP, &descP->writersQ, TRUE, atom_closed);
}
if (descP->currentReaderP != NULL) {
/* We have a (current) reader and *may* therefor also have
* readers waiting.
*/
ESOCK_ASSERT( (NULL == send_msg_nif_abort(env,
descP->currentReader.ref,
atom_closed,
&descP->currentReader.pid)) );
/* And also deal with the waiting readers (in the same way) */
inform_waiting_procs(env, descP, &descP->readersQ, TRUE, atom_closed);
}
if (descP->currentAcceptorP != NULL) {
/* We have a (current) acceptor and *may* therefor also have
* acceptors waiting.
*/
ESOCK_ASSERT( (NULL == send_msg_nif_abort(env,
descP->currentAcceptor.ref,
atom_closed,
&descP->currentAcceptor.pid)) );
/* And also deal with the waiting acceptors (in the same way) */
inform_waiting_procs(env, descP, &descP->acceptorsQ, TRUE, atom_closed);
}
if (descP->sock != INVALID_SOCKET) {
/*
* <KOLLA>
*
* WE NEED TO CHECK IF THIS OPERATION IS TRIGGERED
* LOCALLY (VIA A CALL TO CLOSE) OR REMOTELLY
* (VIA I.E. ECONSRESET).
*
* </KOLLA>
*/
if (descP->closeLocal) {
/* +++ send close message to the waiting process +++
*
* {close, CloseRef}
*
* <KOLLA>
*
* WHAT HAPPENS IF THE RECEIVER HAS DIED IN THE MEANTIME????
*
* </KOLLA>
*/
send_msg(env, MKT2(env, atom_close, descP->closeRef), &descP->closerPid);
DEMONP(env, descP, &descP->closerMon);
} else {
/*
* <KOLLA>
*
* ABORT?
*
* </KOLLA>
*/
}
}
MUNLOCK(descP->closeMtx);
MUNLOCK(descP->accMtx);
MUNLOCK(descP->readMtx);
MUNLOCK(descP->writeMtx);
SSDBG( descP,
("SOCKET", "socket_stop -> done (%d, %d)\r\n", descP->sock, fd) );
}
/* This function traverse the queue and sends the specified
* nif_abort message with the specified reason to each member,
* and if the 'free' argument is TRUE, the queue will be emptied.
*/
static
void inform_waiting_procs(ErlNifEnv* env,
SocketDescriptor* descP,
SocketRequestQueue* q,
BOOLEAN_T free,
ERL_NIF_TERM reason)
{
SocketRequestQueueElement* currentP = q->first;
SocketRequestQueueElement* nextP;
while (currentP != NULL) {
/* <KOLLA>
*
* Should we inform anyone if we fail to demonitor?
* NOT SURE WHAT THAT WOULD REPRESENT AND IT IS NOT
* IMPORTANT IN *THIS* CASE, BUT ITS A FUNDAMENTAL OP...
*
* </KOLLA>
*/
SSDBG( descP,
("SOCKET", "inform_waiting_procs -> abort %T (%T)\r\n",
currentP->data.ref, currentP->data.pid) );
ESOCK_ASSERT( (NULL == send_msg_nif_abort(env,
currentP->data.ref,
reason,
¤tP->data.pid)) );
DEMONP(env, descP, ¤tP->data.mon);
nextP = currentP->nextP;
if (free) FREE(currentP);
currentP = nextP;
}
if (free) {
q->first = NULL;
q->last = NULL;
}
}
/* =========================================================================
* socket_down - Callback function for resource down (monitored processes)
*
*/
static
void socket_down(ErlNifEnv* env,
void* obj,
const ErlNifPid* pid,
const ErlNifMonitor* mon)
{
SocketDescriptor* descP = (SocketDescriptor*) obj;
SSDBG( descP, ("SOCKET", "socket_down -> entry with"
"\r\n sock: %d"
"\r\n pid: %T"
"\r\n", descP->sock, *pid) );
/* Eventually we should go through the other queues also,
* the process can be one of them...
*
* Currently only the accteptors actuallu use the queues.
*/
if (descP->currentAcceptorP != NULL) {
/*
* We have acceptor(s) (atleast one)
*
* Check first if its the current acceptor,
* and if not check the queue.
*/
if (compare_pids(env, &descP->currentAcceptor.pid, pid)) {
SSDBG( descP, ("SOCKET",
"socket_down -> "
"current acceptor - try pop the queue\r\n") );
if (acceptor_pop(env, descP,
&descP->currentAcceptor.pid,
&descP->currentAcceptor.mon,
&descP->currentAcceptor.ref)) {
int res;
/* There was another one, so we will still be in accepting state */
SSDBG( descP, ("SOCKET", "socket_down -> new (active) acceptor: "
"\r\n pid: %T"
"\r\n ref: %T"
"\r\n",
descP->currentAcceptor.pid,
descP->currentAcceptor.ref) );
if ((res = enif_select(env,
descP->sock,
(ERL_NIF_SELECT_READ),
descP,
&descP->currentAcceptor.pid,
descP->currentAcceptor.ref) < 0)) {
esock_warning_msg("Failed select (%d) for new acceptor "
"after current (%T) died\r\n",
res, *pid);
}
} else {
SSDBG( descP, ("SOCKET", "socket_down -> no active acceptor\r\n") );
descP->currentAcceptorP = NULL;
descP->state = SOCKET_STATE_LISTENING;
}
} else {
/* Maybe unqueue one of the waiting acceptors */
SSDBG( descP, ("SOCKET",
"socket_down -> "
"not current acceptor - maybe a waiting acceptor\r\n") );
qunqueue(env, &descP->acceptorsQ, pid);
}
}
SSDBG( descP, ("SOCKET", "socket_down -> done\r\n") );
}
/* ----------------------------------------------------------------------
* L o a d / u n l o a d / u p g r a d e F u n c t i o n s
* ----------------------------------------------------------------------
*/
static
ErlNifFunc socket_funcs[] =
{
// Some utility functions
{"nif_info", 0, nif_info, 0},
// {"nif_debug", 1, nif_debug_, 0},
// The proper "socket" interface
// nif_open/1 is used when we already have a file descriptor
// {"nif_open", 1, nif_open, 0},
{"nif_open", 4, nif_open, 0},
{"nif_bind", 2, nif_bind, 0},
{"nif_connect", 2, nif_connect, 0},
{"nif_listen", 2, nif_listen, 0},
{"nif_accept", 2, nif_accept, 0},
{"nif_send", 4, nif_send, 0},
{"nif_sendto", 5, nif_sendto, 0},
{"nif_sendmsg", 4, nif_sendmsg, 0},
{"nif_recv", 4, nif_recv, 0},
{"nif_recvfrom", 4, nif_recvfrom, 0},
{"nif_recvmsg", 5, nif_recvmsg, 0},
{"nif_close", 1, nif_close, 0},
{"nif_shutdown", 2, nif_shutdown, 0},
{"nif_setopt", 5, nif_setopt, 0},
{"nif_getopt", 4, nif_getopt, 0},
{"nif_sockname", 1, nif_sockname, 0},
{"nif_peername", 1, nif_peername, 0},
/* Misc utility functions */
/* "Extra" functions to "complete" the socket interface.
* For instance, the function nif_finalize_connection
* is called after the connect *select* has "completed".
*/
{"nif_finalize_connection", 1, nif_finalize_connection, 0},
// {"nif_cancel", 2, nif_cancel, 0},
{"nif_finalize_close", 1, nif_finalize_close, ERL_NIF_DIRTY_JOB_IO_BOUND}
};
static
BOOLEAN_T extract_debug(ErlNifEnv* env,
ERL_NIF_TERM map)
{
/*
* We need to do this here since the "proper" atom has not been
* created when this function is called.
*/
ERL_NIF_TERM debug = MKA(env, "debug");
return esock_extract_bool_from_map(env, map, debug, SOCKET_NIF_DEBUG_DEFAULT);
}
static
BOOLEAN_T extract_iow(ErlNifEnv* env,
ERL_NIF_TERM map)
{
/*
* We need to do this here since the "proper" atom has not been
* created when this function is called.
*/
ERL_NIF_TERM iow = MKA(env, "iow");
return esock_extract_bool_from_map(env, map, iow, SOCKET_NIF_IOW_DEFAULT);
}
/* =======================================================================
* load_info - A map of misc info (e.g global debug)
*/
static
int on_load(ErlNifEnv* env, void** priv_data, ERL_NIF_TERM load_info)
{
data.dbg = extract_debug(env, load_info);
data.iow = extract_iow(env, load_info);
/* +++ Global Counters +++ */
data.cntMtx = MCREATE("socket[gcnt]");
data.numSockets = 0;
data.numTypeDGrams = 0;
data.numTypeStreams = 0;
data.numTypeSeqPkgs = 0;
data.numDomainLocal = 0;
data.numDomainInet = 0;
data.numDomainInet6 = 0;
data.numProtoIP = 0;
data.numProtoTCP = 0;
data.numProtoUDP = 0;
data.numProtoSCTP = 0;
/* +++ Misc atoms +++ */
atom_adaptation_layer = MKA(env, str_adaptation_layer);
atom_address = MKA(env, str_address);
atom_association = MKA(env, str_association);
atom_assoc_id = MKA(env, str_assoc_id);
atom_authentication = MKA(env, str_authentication);
atom_bool = MKA(env, str_bool);
atom_close = MKA(env, str_close);
atom_closed = MKA(env, str_closed);
atom_closing = MKA(env, str_closing);
atom_cookie_life = MKA(env, str_cookie_life);
atom_data_in = MKA(env, str_data_in);
atom_do = MKA(env, str_do);
atom_dont = MKA(env, str_dont);
atom_exclude = MKA(env, str_exclude);
atom_false = MKA(env, str_false);
atom_global_counters = MKA(env, str_global_counters);
atom_in4_sockaddr = MKA(env, str_in4_sockaddr);
atom_in6_sockaddr = MKA(env, str_in6_sockaddr);
atom_include = MKA(env, str_include);
atom_initial = MKA(env, str_initial);
atom_int = MKA(env, str_int);
atom_interface = MKA(env, str_interface);
atom_iow = MKA(env, str_iow);
atom_local_rwnd = MKA(env, str_local_rwnd);
atom_max = MKA(env, str_max);
atom_max_attempts = MKA(env, str_max_attempts);
atom_max_init_timeo = MKA(env, str_max_init_timeo);
atom_max_instreams = MKA(env, str_max_instreams);
atom_max_rxt = MKA(env, str_max_rxt);
atom_min = MKA(env, str_min);
atom_mode = MKA(env, str_mode);
atom_multiaddr = MKA(env, str_multiaddr);
atom_nif_abort = MKA(env, str_nif_abort);
atom_null = MKA(env, str_null);
atom_num_dinet = MKA(env, str_num_dinet);
atom_num_dinet6 = MKA(env, str_num_dinet6);
atom_num_dlocal = MKA(env, str_num_dlocal);
atom_num_outstreams = MKA(env, str_num_outstreams);
atom_num_peer_dests = MKA(env, str_num_peer_dests);
atom_num_pip = MKA(env, str_num_pip);
atom_num_psctp = MKA(env, str_num_psctp);
atom_num_ptcp = MKA(env, str_num_ptcp);
atom_num_pudp = MKA(env, str_num_pudp);
atom_num_sockets = MKA(env, str_num_sockets);
atom_num_tdgrams = MKA(env, str_num_tdgrams);
atom_num_tseqpkgs = MKA(env, str_num_tseqpkgs);
atom_num_tstreams = MKA(env, str_num_tstreams);
atom_partial_delivery = MKA(env, str_partial_delivery);
atom_peer_rwnd = MKA(env, str_peer_rwnd);
atom_peer_error = MKA(env, str_peer_error);
atom_probe = MKA(env, str_probe);
atom_select = MKA(env, str_select);
atom_sender_dry = MKA(env, str_sender_dry);
atom_send_failure = MKA(env, str_send_failure);
atom_shutdown = MKA(env, str_shutdown);
atom_slist = MKA(env, str_slist);
atom_sourceaddr = MKA(env, str_sourceaddr);
atom_timeout = MKA(env, str_timeout);
atom_true = MKA(env, str_true);
atom_want = MKA(env, str_want);
/* Global atom(s) */
esock_atom_addr = MKA(env, "addr");
esock_atom_any = MKA(env, "any");
esock_atom_credentials = MKA(env, "credentials");
esock_atom_ctrl = MKA(env, "ctrl");
esock_atom_ctrunc = MKA(env, "ctrunc");
esock_atom_data = MKA(env, "data");
esock_atom_debug = MKA(env, "debug");
esock_atom_dgram = MKA(env, "dgram");
esock_atom_eor = MKA(env, "eor");
esock_atom_error = MKA(env, "error");
esock_atom_errqueue = MKA(env, "errqueue");
esock_atom_false = MKA(env, "false");
esock_atom_family = MKA(env, "family");
esock_atom_flags = MKA(env, "flags");
esock_atom_flowinfo = MKA(env, "flowinfo");
esock_atom_ifindex = MKA(env, "ifindex");
esock_atom_inet = MKA(env, "inet");
esock_atom_inet6 = MKA(env, "inet6");
esock_atom_iov = MKA(env, "iov");
esock_atom_ip = MKA(env, "ip");
esock_atom_ipv6 = MKA(env, "ipv6");
esock_atom_level = MKA(env, "level");
esock_atom_local = MKA(env, "local");
esock_atom_loopback = MKA(env, "loopback");
esock_atom_lowdelay = MKA(env, "lowdelay");
esock_atom_mincost = MKA(env, "mincost");
esock_atom_ok = MKA(env, "ok");
esock_atom_oob = MKA(env, "oob");
esock_atom_origdstaddr = MKA(env, "origdstaddr");
esock_atom_path = MKA(env, "path");
esock_atom_pktinfo = MKA(env, "pktinfo");
esock_atom_port = MKA(env, "port");
esock_atom_protocol = MKA(env, "protocol");
esock_atom_raw = MKA(env, "raw");
esock_atom_rdm = MKA(env, "rdm");
esock_atom_reliability = MKA(env, "reliability");
esock_atom_rights = MKA(env, "rights");
esock_atom_scope_id = MKA(env, "scope_id");
esock_atom_sctp = MKA(env, "sctp");
esock_atom_sec = MKA(env, "sec");
esock_atom_seqpacket = MKA(env, "seqpacket");
esock_atom_socket = MKA(env, "socket");
esock_atom_spec_dst = MKA(env, "spec_dst");
esock_atom_stream = MKA(env, "stream");
esock_atom_tcp = MKA(env, "tcp");
esock_atom_throughput = MKA(env, "throughput");
esock_atom_timestamp = MKA(env, "timestamp");
esock_atom_tos = MKA(env, "tos");
esock_atom_true = MKA(env, "true");
esock_atom_trunc = MKA(env, "trunc");
esock_atom_ttl = MKA(env, "ttl");
esock_atom_type = MKA(env, "type");
esock_atom_udp = MKA(env, "udp");
esock_atom_undefined = MKA(env, "undefined");
esock_atom_unknown = MKA(env, "unknown");
esock_atom_usec = MKA(env, "usec");
/* Global error codes */
esock_atom_eafnosupport = MKA(env, ESOCK_STR_EAFNOSUPPORT);
esock_atom_eagain = MKA(env, ESOCK_STR_EAGAIN);
esock_atom_einval = MKA(env, ESOCK_STR_EINVAL);
/* Error codes */
atom_eisconn = MKA(env, str_eisconn);
atom_enotclosing = MKA(env, str_enotclosing);
atom_enotconn = MKA(env, str_enotconn);
atom_exalloc = MKA(env, str_exalloc);
atom_exbadstate = MKA(env, str_exbadstate);
atom_exbusy = MKA(env, str_exbusy);
atom_exmon = MKA(env, str_exmon);
atom_exself = MKA(env, str_exself);
atom_exsend = MKA(env, str_exsend);
// For storing "global" things...
// data.env = enif_alloc_env(); // We should really check
// data.version = MKA(env, ERTS_VERSION);
// data.buildDate = MKA(env, ERTS_BUILD_DATE);
sockets = enif_open_resource_type_x(env,
"sockets",
&socketInit,
ERL_NIF_RT_CREATE,
NULL);
return !sockets;
}
ERL_NIF_INIT(socket, socket_funcs, on_load, NULL, NULL, NULL)