aboutsummaryrefslogblamecommitdiffstats
path: root/lib/compiler/src/beam_validator.erl
blob: c5a3883b2a5722b2c7a5dde381560e63388300ff (plain) (tree)
1
2
3
4
5
6
7
8
9
10
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803

                   
  
                                                        
  




                                                                      
  



                                                                         
  



                        

                                   

                                                                           







































                                                                   
                                                          






































































































                                                                              



                                                              
                
                             


                                                          

                                                             























































































































                                                                                      

                             































































































































                                                                              




                                                            







                                

                          



















































































































































































                                                                                  


                                    












































                                                                           
                                            

                                    










                                                                          































































































                                                                          


                                                             
                                                         
                            





                                 




                                    
                                                             
                            





                                 
































































































                                                                                   

                            

































































































































































































































































































































































































































































































































































































































































































































































































































































































































                                                                                   
%%
%% %CopyrightBegin%
%%
%% Copyright Ericsson AB 2004-2012. All Rights Reserved.
%%
%% The contents of this file are subject to the Erlang Public License,
%% Version 1.1, (the "License"); you may not use this file except in
%% compliance with the License. You should have received a copy of the
%% Erlang Public License along with this software. If not, it can be
%% retrieved online at http://www.erlang.org/.
%%
%% Software distributed under the License is distributed on an "AS IS"
%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
%% the License for the specific language governing rights and limitations
%% under the License.
%%
%% %CopyrightEnd%

-module(beam_validator).

-compile({no_auto_import,[min/2]}).

%% Avoid warning for local function error/1 clashing with autoimported BIF.
-compile({no_auto_import,[error/1]}).
-export([file/1, files/1]).

%% Interface for compiler.
-export([module/2, format_error/1]).

-include("beam_disasm.hrl").

-import(lists, [reverse/1,foldl/3,foreach/2,member/2,dropwhile/2]).

-define(MAXREG, 1024).

%%-define(DEBUG, 1).
-ifdef(DEBUG).
-define(DBG_FORMAT(F, D), (io:format((F), (D)))).
-else.
-define(DBG_FORMAT(F, D), ok).
-endif.

%%%
%%% API functions.
%%%

-spec file(file:filename()) -> 'ok' | {'error', term()}.

file(Name) when is_list(Name) ->
    case case filename:extension(Name) of
	     ".S" -> s_file(Name);
	     ".beam" -> beam_file(Name)
	 end of
	[] -> ok;
	Es -> {error,Es}
    end.

-spec files([file:filename()]) -> 'ok'.

files([F|Fs]) ->
    ?DBG_FORMAT("# Verifying: ~p~n", [F]),
    case file(F) of
	ok -> ok;
	{error,Es} -> 
	    io:format("~tp:~n~ts~n", [F,format_error(Es)])
    end,
    files(Fs);
files([]) -> ok.

%% To be called by the compiler.
module({Mod,Exp,Attr,Fs,Lc}=Code, _Opts)
  when is_atom(Mod), is_list(Exp), is_list(Attr), is_integer(Lc) ->
    case validate(Mod, Fs) of
	[] -> {ok,Code};
	Es0 ->
	    Es = [{?MODULE,E} || E <- Es0],
	    {error,[{atom_to_list(Mod),Es}]}
    end.

-spec format_error(term()) -> iolist().

format_error([]) -> [];
format_error([{{M,F,A},{I,Off,Desc}}|Es]) ->
    [io_lib:format("  ~p:~p/~p+~p:~n    ~p - ~p~n", 
		   [M,F,A,Off,I,Desc])|format_error(Es)];
format_error([Error|Es]) ->
    [format_error(Error)|format_error(Es)];
format_error({{_M,F,A},{I,Off,limit}}) ->
    io_lib:format(
      "function ~p/~p+~p:~n"
      "  An implementation limit was reached.~n"
      "  Try reducing the complexity of this function.~n~n"
      "  Instruction: ~p~n", [F,A,Off,I]);
format_error({{_M,F,A},{undef_labels,Lbls}}) ->
    io_lib:format(
      "function ~p/~p:~n"
      "  Internal consistency check failed - please report this bug.~n"
      "  The following label(s) were referenced but not defined:~n", [F,A]) ++
	"  " ++ [[integer_to_list(L)," "] || L <- Lbls] ++ "\n";
format_error({{_M,F,A},{I,Off,Desc}}) ->
    io_lib:format(
      "function ~p/~p+~p:~n"
      "  Internal consistency check failed - please report this bug.~n"
      "  Instruction: ~p~n"
      "  Error:       ~p:~n", [F,A,Off,I,Desc]);
format_error({Module,Error}) ->
    [Module:format_error(Error)];
format_error(Error) ->
    io_lib:format("~p~n", [Error]).

%%%
%%% Local functions follow.
%%% 

s_file(Name) ->
    {ok,Is} = file:consult(Name),
    {module,Module} = lists:keyfind(module, 1, Is),
    Fs = find_functions(Is),
    validate(Module, Fs).

find_functions(Fs) ->
    find_functions_1(Fs, none, [], []).

find_functions_1([{function,Name,Arity,Entry}|Is], Func, FuncAcc, Acc0) ->
    Acc = add_func(Func, FuncAcc, Acc0),
    find_functions_1(Is, {Name,Arity,Entry}, [], Acc);
find_functions_1([I|Is], Func, FuncAcc, Acc) ->
    find_functions_1(Is, Func, [I|FuncAcc], Acc);
find_functions_1([], Func, FuncAcc, Acc) ->
    reverse(add_func(Func, FuncAcc, Acc)).

add_func(none, _, Acc) -> Acc;
add_func({Name,Arity,Entry}, Is, Acc) ->
    [{function,Name,Arity,Entry,reverse(Is)}|Acc].

beam_file(Name) ->
    try beam_disasm:file(Name) of
	{error,beam_lib,Reason} -> [{beam_lib,Reason}];
	#beam_file{module=Module, code=Code0} ->
	    Code = normalize_disassembled_code(Code0),
	    validate(Module, Code)
    catch _:_ -> [disassembly_failed]
    end.

%%%
%%% The validator follows.
%%%
%%% The purpose of the validator is to find errors in the generated
%%% code that may cause the emulator to crash or behave strangely.
%%% We don't care about type errors in the user's code that will
%%% cause a proper exception at run-time.
%%%

%%% Things currently not checked. XXX
%%%
%%% - Heap allocation for binaries.
%%% - That put_tuple is followed by the correct number of
%%%   put instructions.
%%%

%% validate(Module, [Function]) -> [] | [Error]
%%  A list of functions with their code. The code is in the same
%%  format as used in the compiler and in .S files.

validate(Module, Fs) ->
    Ft = index_bs_start_match(Fs, []),
    validate_0(Module, Fs, Ft).

index_bs_start_match([{function,_,_,Entry,Code0}|Fs], Acc0) ->
    Code = dropwhile(fun({label,L}) when L =:= Entry -> false;
			(_) -> true
		     end, Code0),
    case Code of
	[{label,Entry}|Is] ->
	    Acc = index_bs_start_match_1(Is, Entry, Acc0),
	    index_bs_start_match(Fs, Acc);
	_ ->
	    %% Something serious is wrong. Ignore it for now.
	    %% It will be detected and diagnosed later.
	    index_bs_start_match(Fs, Acc0)
    end;
index_bs_start_match([], Acc) ->
    gb_trees:from_orddict(lists:sort(Acc)).

index_bs_start_match_1([{test,bs_start_match2,_,_,_,_}=I|_], Entry, Acc) ->
    [{Entry,[I]}|Acc];
index_bs_start_match_1([{test,_,{f,F},_},{bs_context_to_binary,_}|Is0], Entry, Acc) ->
    [{label,F}|Is] = dropwhile(fun({label,L}) when L =:= F -> false;
				  (_)  -> true
			       end, Is0),
    index_bs_start_match_1(Is, Entry, Acc);
index_bs_start_match_1(_, _, Acc) -> Acc.

validate_0(_Module, [], _) -> [];
validate_0(Module, [{function,Name,Ar,Entry,Code}|Fs], Ft) ->
    try validate_1(Code, Name, Ar, Entry, Ft) of
	_ -> validate_0(Module, Fs, Ft)
    catch
	Error ->
	    [Error|validate_0(Module, Fs, Ft)];
	  error:Error ->
	    [validate_error(Error, Module, Name, Ar)|validate_0(Module, Fs, Ft)]
    end.

-ifdef(DEBUG).
validate_error(Error, Module, Name, Ar) ->
    exit(validate_error_1(Error, Module, Name, Ar)).
-else.
validate_error(Error, Module, Name, Ar) ->
    validate_error_1(Error, Module, Name, Ar).
-endif.
validate_error_1(Error, Module, Name, Ar) ->
    {{Module,Name,Ar},
     {internal_error,'_',{Error,erlang:get_stacktrace()}}}.

-record(st,				%Emulation state
	{x=init_regs(0, term)        :: gb_tree(),	%x register info.
	 y=init_regs(0, initialized) :: gb_tree(),	%y register info.
	 f=init_fregs(),                %
	 numy=none,			%Number of y registers.
	 h=0,				%Available heap size.
	 hf=0,				%Available heap size for floats.
	 fls=undefined,			%Floating point state.
	 ct=[],				%List of hot catch/try labels
	 bsm=undefined,			%Bit syntax matching state.
	 bits=undefined,	        %Number of bits in bit syntax binary.
	 setelem=false			%Previous instruction was setelement/3.
	}).

-record(vst,				%Validator state
	{current=none              :: #st{} | 'none',	%Current state
	 branched=gb_trees:empty() :: gb_tree(),	%States at jumps
	 labels=gb_sets:empty()    :: gb_set(),		%All defined labels
	 ft=gb_trees:empty()       :: gb_tree()         %Some other functions
	 		% in the module (those that start with bs_start_match2).
	}).

-ifdef(DEBUG).
print_st(#st{x=Xs,y=Ys,numy=NumY,h=H,ct=Ct}) ->
    io:format("  #st{x=~p~n"
	      "      y=~p~n"
	      "      numy=~p,h=~p,ct=~w~n",
	      [gb_trees:to_list(Xs),gb_trees:to_list(Ys),NumY,H,Ct]).
-endif.

validate_1(Is, Name, Arity, Entry, Ft) ->
    validate_2(labels(Is), Name, Arity, Entry, Ft).

validate_2({Ls1,[{func_info,{atom,Mod},{atom,Name},Arity}=_F|Is]},
	   Name, Arity, Entry, Ft) ->
    lists:foreach(fun (_L) -> ?DBG_FORMAT("  ~p.~n", [{label,_L}]) end, Ls1),
    ?DBG_FORMAT("  ~p.~n", [_F]),
    validate_3(labels(Is), Name, Arity, Entry, Mod, Ls1, Ft);
validate_2({Ls1,Is}, Name, Arity, _Entry, _Ft) ->
    error({{'_',Name,Arity},{first(Is),length(Ls1),illegal_instruction}}).

validate_3({Ls2,Is}, Name, Arity, Entry, Mod, Ls1, Ft) ->
    lists:foreach(fun (_L) -> ?DBG_FORMAT("  ~p.~n", [{label,_L}]) end, Ls2),
    Offset = 1 + length(Ls1) + 1 + length(Ls2),
    EntryOK = (Entry =:= undefined) orelse lists:member(Entry, Ls2),
    if
	EntryOK ->
	    St = init_state(Arity),
	    Vst0 = #vst{current=St,
			branched=gb_trees_from_list([{L,St} || L <- Ls1]),
			labels=gb_sets:from_list(Ls1++Ls2),
			ft=Ft},
	    MFA = {Mod,Name,Arity},
	    Vst = valfun(Is, MFA, Offset, Vst0),
	    validate_fun_info_branches(Ls1, MFA, Vst);
	true ->
	    error({{Mod,Name,Arity},{first(Is),Offset,no_entry_label}})
    end.

validate_fun_info_branches([L|Ls], MFA, #vst{branched=Branches}=Vst0) ->
    Vst = Vst0#vst{current=gb_trees:get(L, Branches)},
    validate_fun_info_branches_1(0, MFA, Vst),
    validate_fun_info_branches(Ls, MFA, Vst);
validate_fun_info_branches([], _, _) -> ok.

validate_fun_info_branches_1(Arity, {_,_,Arity}, _) -> ok;
validate_fun_info_branches_1(X, {Mod,Name,Arity}=MFA, Vst) ->
    try
	get_term_type({x,X}, Vst)
    catch Error ->
	    I = {func_info,{atom,Mod},{atom,Name},Arity},
	    Offset = 2,
	    error({MFA,{I,Offset,Error}})
    end,
    validate_fun_info_branches_1(X+1, MFA, Vst).

first([X|_]) -> X;
first([]) -> [].

labels(Is) ->
    labels_1(Is, []).

labels_1([{label,L}|Is], R) ->
    labels_1(Is, [L|R]);
labels_1([{line,_}|Is], R) ->
    labels_1(Is, R);
labels_1(Is, R) ->
    {lists:reverse(R),Is}.

init_state(Arity) ->
    Xs = init_regs(Arity, term),
    Ys = init_regs(0, initialized),
    kill_heap_allocation(#st{x=Xs,y=Ys,numy=none,ct=[]}).

kill_heap_allocation(St) ->
    St#st{h=0,hf=0}.

init_regs(0, _) ->
    gb_trees:empty();
init_regs(N, Type) ->
    gb_trees_from_list([{R,Type} || R <- lists:seq(0, N-1)]).

valfun([], MFA, _Offset, #vst{branched=Targets0,labels=Labels0}=Vst) ->
    Targets = gb_trees:keys(Targets0),
    Labels = gb_sets:to_list(Labels0),
    case Targets -- Labels of
	[] -> Vst;
	Undef ->
	    Error = {undef_labels,Undef},
	    error({MFA,Error})
    end;
valfun([I|Is], MFA, Offset, Vst0) ->
    ?DBG_FORMAT("    ~p.\n", [I]),
    valfun(Is, MFA, Offset+1,
	   try
	       Vst = val_dsetel(I, Vst0),
	       valfun_1(I, Vst)
	   catch Error ->
		   error({MFA,{I,Offset,Error}})
	   end).

%% Instructions that are allowed in dead code or when failing,
%% that is while the state is undecided in some way.
valfun_1({label,Lbl}, #vst{current=St0,branched=B,labels=Lbls}=Vst) ->
    St = merge_states(Lbl, St0, B),
    Vst#vst{current=St,branched=gb_trees:enter(Lbl, St, B),
	    labels=gb_sets:add(Lbl, Lbls)};
valfun_1(_I, #vst{current=none}=Vst) ->
    %% Ignore instructions after erlang:error/1,2, which
    %% the original R10B compiler thought would return.
    ?DBG_FORMAT("Ignoring ~p\n", [_I]),
    Vst;
valfun_1({badmatch,Src}, Vst) ->
    assert_term(Src, Vst),
    kill_state(Vst);
valfun_1({case_end,Src}, Vst) ->
    assert_term(Src, Vst),
    kill_state(Vst);
valfun_1(if_end, Vst) ->
    kill_state(Vst);
valfun_1({try_case_end,Src}, Vst) ->
    assert_term(Src, Vst),
    kill_state(Vst);
%% Instructions that can not cause exceptions
valfun_1({bs_context_to_binary,Ctx}, #vst{current=#st{x=Xs}}=Vst) ->
    case Ctx of
	{Tag,X} when Tag =:= x; Tag =:= y ->
	    Type = case gb_trees:lookup(X, Xs) of
		       {value,{match_context,_,_}} -> term;
		       _ -> get_term_type(Ctx, Vst)
		   end,
	    set_type_reg(Type, Ctx, Vst);
	_ ->
	    error({bad_source,Ctx})
    end;
valfun_1(bs_init_writable=I, Vst) ->
    call(I, 1, Vst);
valfun_1({move,{y,_}=Src,{y,_}=Dst}, Vst) ->
    %% The stack trimming optimization may generate a move from an initialized
    %% but unassigned Y register to another Y register.
    case get_term_type_1(Src, Vst) of
	{catchtag,_} -> error({catchtag,Src});
	{trytag,_} -> error({trytag,Src});
	Type -> set_type_reg(Type, Dst, Vst)
    end;
valfun_1({move,Src,Dst}, Vst) ->
    Type = get_move_term_type(Src, Vst),
    set_type_reg(Type, Dst, Vst);
valfun_1({fmove,Src,{fr,_}=Dst}, Vst) ->
    assert_type(float, Src, Vst),
    set_freg(Dst, Vst);
valfun_1({fmove,{fr,_}=Src,Dst}, Vst0) ->
    assert_freg_set(Src, Vst0),
    assert_fls(checked, Vst0),
    Vst = eat_heap_float(Vst0),
    set_type_reg({float,[]}, Dst, Vst);
valfun_1({kill,{y,_}=Reg}, Vst) ->
    set_type_y(initialized, Reg, Vst);
valfun_1({init,{y,_}=Reg}, Vst) ->
    set_type_y(initialized, Reg, Vst);
valfun_1({test_heap,Heap,Live}, Vst) ->
    test_heap(Heap, Live, Vst);
valfun_1({bif,_Op,nofail,Src,Dst}, Vst) ->
    %% The 'nofail' atom only occurs in disassembled code.
    validate_src(Src, Vst),
    set_type_reg(term, Dst, Vst);
valfun_1({bif,Op,{f,_},Src,Dst}=I, Vst) ->
    case is_bif_safe(Op, length(Src)) of
	false ->
	    %% Since the BIF can fail, make sure that any catch state
	    %% is updated.
	    valfun_2(I, Vst);
	true ->
	    %% It can't fail, so we finish handling it here (not updating
	    %% catch state).
	    validate_src(Src, Vst),
	    Type = bif_type(Op, Src, Vst),
	    set_type_reg(Type, Dst, Vst)
    end;
%% Put instructions.
valfun_1({put_list,A,B,Dst}, Vst0) ->
    assert_term(A, Vst0),
    assert_term(B, Vst0),
    Vst = eat_heap(2, Vst0),
    set_type_reg(cons, Dst, Vst);
valfun_1({put_tuple,Sz,Dst}, Vst0) when is_integer(Sz) ->
    Vst = eat_heap(1, Vst0),
    set_type_reg({tuple,Sz}, Dst, Vst);
valfun_1({put,Src}, Vst) ->
    assert_term(Src, Vst),
    eat_heap(1, Vst);
valfun_1({put_string,Sz,_,Dst}, Vst0) when is_integer(Sz) ->
    Vst = eat_heap(2*Sz, Vst0),
    set_type_reg(cons, Dst, Vst);
%% Instructions for optimization of selective receives.
valfun_1({recv_mark,{f,Fail}}, Vst) when is_integer(Fail) ->
    Vst;
valfun_1({recv_set,{f,Fail}}, Vst) when is_integer(Fail) ->
    Vst;
%% Misc.
valfun_1({'%live',Live}, Vst) ->
    verify_live(Live, Vst),
    Vst;
valfun_1(remove_message, Vst) ->
    Vst;
valfun_1({'%',_}, Vst) ->
    Vst;
valfun_1({line,_}, Vst) ->
    Vst;
%% Exception generating calls
valfun_1({call_ext,Live,Func}=I, Vst) ->
    case return_type(Func, Vst) of
	exception ->
	    verify_live(Live, Vst),
	    kill_state(Vst);
	_ ->
	    valfun_2(I, Vst)
    end;
valfun_1(_I, #vst{current=#st{ct=undecided}}) ->
    error(unknown_catch_try_state);
%%
%% Allocate and deallocate, et.al
valfun_1({allocate,Stk,Live}, Vst) ->
    allocate(false, Stk, 0, Live, Vst);
valfun_1({allocate_heap,Stk,Heap,Live}, Vst) ->
    allocate(false, Stk, Heap, Live, Vst);
valfun_1({allocate_zero,Stk,Live}, Vst) ->
    allocate(true, Stk, 0, Live, Vst);
valfun_1({allocate_heap_zero,Stk,Heap,Live}, Vst) ->
    allocate(true, Stk, Heap, Live, Vst);
valfun_1({deallocate,StkSize}, #vst{current=#st{numy=StkSize}}=Vst) ->
    verify_no_ct(Vst),
    deallocate(Vst);
valfun_1({deallocate,_}, #vst{current=#st{numy=NumY}}) ->
    error({allocated,NumY});
valfun_1({trim,N,Remaining}, #vst{current=#st{y=Yregs0,numy=NumY}=St}=Vst) ->
    if
	N =< NumY, N+Remaining =:= NumY ->
	    Yregs1 = [{Y-N,Type} || {Y,Type} <- gb_trees:to_list(Yregs0), Y >= N],
	    Yregs = gb_trees_from_list(Yregs1),
	    Vst#vst{current=St#st{y=Yregs,numy=NumY-N}};
	true ->
	    error({trim,N,Remaining,allocated,NumY})
    end;
%% Catch & try.
valfun_1({'catch',Dst,{f,Fail}}, Vst0) when Fail /= none ->
    Vst = #vst{current=#st{ct=Fails}=St} = 
	set_type_y({catchtag,[Fail]}, Dst, Vst0),
    Vst#vst{current=St#st{ct=[[Fail]|Fails]}};
valfun_1({'try',Dst,{f,Fail}}, Vst0) ->
    Vst = #vst{current=#st{ct=Fails}=St} = 
	set_type_y({trytag,[Fail]}, Dst, Vst0),
    Vst#vst{current=St#st{ct=[[Fail]|Fails]}};
valfun_1({catch_end,Reg}, #vst{current=#st{ct=[Fail|Fails]}=St0}=Vst0) ->
    case get_special_y_type(Reg, Vst0) of
	{catchtag,Fail} ->
	    Vst = #vst{current=St} = 
		set_type_y(initialized_ct, Reg, 
			   Vst0#vst{current=St0#st{ct=Fails}}),
	    Xs = gb_trees_from_list([{0,term}]),
	    Vst#vst{current=St#st{x=Xs,fls=undefined}};
	Type ->
	    error({bad_type,Type})
    end;
valfun_1({try_end,Reg}, #vst{current=#st{ct=[Fail|Fails]}=St}=Vst0) ->
    case get_special_y_type(Reg, Vst0) of
	{trytag,Fail} ->
	    Vst = case Fail of
		      [FailLabel] -> branch_state(FailLabel, Vst0);
		      _ -> Vst0
		  end,
	    set_type_reg(initialized_ct, Reg, 
			 Vst#vst{current=St#st{ct=Fails,fls=undefined}});
	Type ->
	    error({bad_type,Type})
    end;
valfun_1({try_case,Reg}, #vst{current=#st{ct=[Fail|Fails]}=St0}=Vst0) ->
    case get_special_y_type(Reg, Vst0) of
	{trytag,Fail} ->
	    Vst = #vst{current=St} = 
		set_type_y(initialized_ct, Reg, 
			   Vst0#vst{current=St0#st{ct=Fails}}),
	    Xs = gb_trees_from_list([{0,{atom,[]}},{1,term},{2,term}]), %XXX
	    Vst#vst{current=St#st{x=Xs,fls=undefined}};
	Type ->
	    error({bad_type,Type})
    end;
valfun_1(I, Vst) ->
    valfun_2(I, Vst).

%% Update branched state if necessary and try next set of instructions.
valfun_2(I, #vst{current=#st{ct=[]}}=Vst) ->
    valfun_3(I, Vst);
valfun_2(I, #vst{current=#st{ct=[[Fail]|_]}}=Vst) when is_integer(Fail) ->
    %% Update branched state
    valfun_3(I, branch_state(Fail, Vst));
valfun_2(_, _) ->
    error(ambigous_catch_try_state).

%% Handle the remaining floating point instructions here.
%% Floating point.
valfun_3({fconv,Src,{fr,_}=Dst}, Vst) ->
    assert_term(Src, Vst),
    set_freg(Dst, Vst);
valfun_3({bif,fadd,_,[_,_]=Src,Dst}, Vst) ->
    float_op(Src, Dst, Vst);
valfun_3({bif,fdiv,_,[_,_]=Src,Dst}, Vst) ->
    float_op(Src, Dst, Vst);
valfun_3({bif,fmul,_,[_,_]=Src,Dst}, Vst) ->
    float_op(Src, Dst, Vst);
valfun_3({bif,fnegate,_,[_]=Src,Dst}, Vst) ->
    float_op(Src, Dst, Vst);
valfun_3({bif,fsub,_,[_,_]=Src,Dst}, Vst) ->
    float_op(Src, Dst, Vst);
valfun_3(fclearerror, Vst) ->
    case get_fls(Vst) of
	undefined -> ok;
	checked -> ok;
	Fls -> error({bad_floating_point_state,Fls})
    end,
    set_fls(cleared, Vst);
valfun_3({fcheckerror,_}, Vst) ->
    assert_fls(cleared, Vst),
    set_fls(checked, Vst);
valfun_3(I, Vst) ->
    %% The instruction is not a float instruction.
    case get_fls(Vst) of
	undefined ->
	    valfun_4(I, Vst);
	checked ->
	    valfun_4(I, Vst);
	Fls ->
	    error({unsafe_instruction,{float_error_state,Fls}})
    end.

%% Instructions that can cause exceptions.
valfun_4({apply,Live}, Vst) ->
    call(apply, Live+2, Vst);
valfun_4({apply_last,Live,_}, Vst) ->
    tail_call(apply, Live+2, Vst);
valfun_4({call_fun,Live}, Vst) ->
    call('fun', Live+1, Vst);
valfun_4({call,Live,Func}, Vst) ->
    call(Func, Live, Vst);
valfun_4({call_ext,Live,Func}, Vst) ->
    %% Exception BIFs has already been taken care of above.
    call(Func, Live, Vst);
valfun_4({call_only,Live,Func}, Vst) ->
    tail_call(Func, Live, Vst);
valfun_4({call_ext_only,Live,Func}, Vst) ->
    tail_call(Func, Live, Vst);
valfun_4({call_last,Live,Func,StkSize}, #vst{current=#st{numy=StkSize}}=Vst) ->
    tail_call(Func, Live, Vst);
valfun_4({call_last,_,_,_}, #vst{current=#st{numy=NumY}}) ->
    error({allocated,NumY});
valfun_4({call_ext_last,Live,Func,StkSize}, 
	 #vst{current=#st{numy=StkSize}}=Vst) ->
    tail_call(Func, Live, Vst);
valfun_4({call_ext_last,_,_,_}, #vst{current=#st{numy=NumY}}) ->
    error({allocated,NumY});
valfun_4({make_fun,_,_,Live}, Vst) ->
    call('fun', Live, Vst);
valfun_4({make_fun2,_,_,_,Live}, Vst) ->
    call(make_fun, Live, Vst);
%% Other BIFs
valfun_4({bif,tuple_size,{f,Fail},[Tuple],Dst}, Vst0) ->
    TupleType0 = get_term_type(Tuple, Vst0),
    Vst1 = branch_state(Fail, Vst0),
    TupleType = upgrade_tuple_type({tuple,[0]}, TupleType0),
    Vst = set_type(TupleType, Tuple, Vst1),
    set_type_reg({integer,[]}, Dst, Vst);
valfun_4({bif,element,{f,Fail},[Pos,Tuple],Dst}, Vst0) ->
    TupleType0 = get_term_type(Tuple, Vst0),
    PosType = get_term_type(Pos, Vst0),
    Vst1 = branch_state(Fail, Vst0),
    TupleType = upgrade_tuple_type({tuple,[get_tuple_size(PosType)]}, TupleType0),
    Vst = set_type(TupleType, Tuple, Vst1),
    set_type_reg(term, Dst, Vst);
valfun_4({raise,{f,_}=Fail,Src,Dst}, Vst) ->
    valfun_4({bif,raise,Fail,Src,Dst}, Vst);
valfun_4({bif,Op,{f,Fail},Src,Dst}, Vst0) ->
    validate_src(Src, Vst0),
    Vst = branch_state(Fail, Vst0),
    Type = bif_type(Op, Src, Vst),
    set_type_reg(Type, Dst, Vst);
valfun_4({gc_bif,Op,{f,Fail},Live,Src,Dst}, #vst{current=St0}=Vst0) ->
    St = kill_heap_allocation(St0),
    Vst1 = Vst0#vst{current=St},
    verify_live(Live, Vst1),
    Vst2 = branch_state(Fail, Vst1),
    Vst = prune_x_regs(Live, Vst2),
    validate_src(Src, Vst),
    Type = bif_type(Op, Src, Vst),
    set_type_reg(Type, Dst, Vst);
valfun_4(return, #vst{current=#st{numy=none}}=Vst) ->
    kill_state(Vst);
valfun_4(return, #vst{current=#st{numy=NumY}}) ->
    error({stack_frame,NumY});
valfun_4({jump,{f,Lbl}}, Vst) ->
    kill_state(branch_state(Lbl, Vst));
valfun_4({loop_rec,{f,Fail},Dst}, Vst0) ->
    Vst = branch_state(Fail, Vst0),
    set_type_reg(term, Dst, Vst);
valfun_4({wait,_}, Vst) ->
    kill_state(Vst);
valfun_4({wait_timeout,_,Src}, Vst) ->
    assert_term(Src, Vst),
    Vst;
valfun_4({loop_rec_end,_}, Vst) ->
    kill_state(Vst);
valfun_4(timeout, #vst{current=St}=Vst) ->
    Vst#vst{current=St#st{x=init_regs(0, term)}};
valfun_4(send, Vst) ->
    call(send, 2, Vst);
valfun_4({set_tuple_element,Src,Tuple,I}, Vst) ->
    assert_term(Src, Vst),
    assert_type({tuple_element,I+1}, Tuple, Vst);
%% Match instructions.
valfun_4({select_val,Src,{f,Fail},{list,Choices}}, Vst) ->
    assert_term(Src, Vst),
    Lbls = [L || {f,L} <- Choices]++[Fail],
    kill_state(foldl(fun(L, S) -> branch_state(L, S) end, Vst, Lbls));
valfun_4({select_tuple_arity,Tuple,{f,Fail},{list,Choices}}, Vst) ->
    assert_type(tuple, Tuple, Vst),
    kill_state(branch_arities(Choices, Tuple, branch_state(Fail, Vst)));
valfun_4({get_list,Src,D1,D2}, Vst0) ->
    assert_type(cons, Src, Vst0),
    Vst = set_type_reg(term, D1, Vst0),
    set_type_reg(term, D2, Vst);
valfun_4({get_tuple_element,Src,I,Dst}, Vst) ->
    assert_type({tuple_element,I+1}, Src, Vst),
    set_type_reg(term, Dst, Vst);

%% New bit syntax matching instructions.
valfun_4({test,bs_start_match2,{f,Fail},Live,[Ctx,NeedSlots],Ctx}, Vst0) ->
    %% If source and destination registers are the same, match state
    %% is OK as input.
    CtxType = get_move_term_type(Ctx, Vst0),
    verify_live(Live, Vst0),
    Vst1 = prune_x_regs(Live, Vst0),
    BranchVst = case CtxType of
		    {match_context,_,_} ->
			%% The failure branch will never be taken when Ctx
			%% is a match context. Therefore, the type for Ctx
			%% at the failure label must not be match_context
			%% (or we could reject legal code).
			set_type_reg(term, Ctx, Vst1);
		    _ ->
			Vst1
		end,
    Vst = branch_state(Fail, BranchVst),
    set_type_reg(bsm_match_state(NeedSlots), Ctx, Vst);
valfun_4({test,bs_start_match2,{f,Fail},Live,[Src,Slots],Dst}, Vst0) ->
    assert_term(Src, Vst0),
    verify_live(Live, Vst0),
    Vst1 = prune_x_regs(Live, Vst0),
    Vst = branch_state(Fail, Vst1),
    set_type_reg(bsm_match_state(Slots), Dst, Vst);
valfun_4({test,bs_match_string,{f,Fail},[Ctx,_,_]}, Vst) ->
    bsm_validate_context(Ctx, Vst),
    branch_state(Fail, Vst);
valfun_4({test,bs_skip_bits2,{f,Fail},[Ctx,Src,_,_]}, Vst) ->
    bsm_validate_context(Ctx, Vst),
    assert_term(Src, Vst),
    branch_state(Fail, Vst);
valfun_4({test,bs_test_tail2,{f,Fail},[Ctx,_]}, Vst) ->
    bsm_validate_context(Ctx, Vst),
    branch_state(Fail, Vst);
valfun_4({test,bs_test_unit,{f,Fail},[Ctx,_]}, Vst) ->
    bsm_validate_context(Ctx, Vst),
    branch_state(Fail, Vst);
valfun_4({test,bs_skip_utf8,{f,Fail},[Ctx,Live,_]}, Vst) ->
    validate_bs_skip_utf(Fail, Ctx, Live, Vst);
valfun_4({test,bs_skip_utf16,{f,Fail},[Ctx,Live,_]}, Vst) ->
    validate_bs_skip_utf(Fail, Ctx, Live, Vst);
valfun_4({test,bs_skip_utf32,{f,Fail},[Ctx,Live,_]}, Vst) ->
    validate_bs_skip_utf(Fail, Ctx, Live, Vst);
valfun_4({test,bs_get_integer2,{f,Fail},Live,[Ctx,_,_,_],Dst}, Vst) ->
    validate_bs_get(Fail, Ctx, Live, Dst, Vst);
valfun_4({test,bs_get_float2,{f,Fail},Live,[Ctx,_,_,_],Dst}, Vst) ->
    validate_bs_get(Fail, Ctx, Live, Dst, Vst);
valfun_4({test,bs_get_binary2,{f,Fail},Live,[Ctx,_,_,_],Dst}, Vst) ->
    validate_bs_get(Fail, Ctx, Live, Dst, Vst);
valfun_4({test,bs_get_utf8,{f,Fail},Live,[Ctx,_],Dst}, Vst) ->
    validate_bs_get(Fail, Ctx, Live, Dst, Vst);
valfun_4({test,bs_get_utf16,{f,Fail},Live,[Ctx,_],Dst}, Vst) ->
    validate_bs_get(Fail, Ctx, Live, Dst, Vst);
valfun_4({test,bs_get_utf32,{f,Fail},Live,[Ctx,_],Dst}, Vst) ->
    validate_bs_get(Fail, Ctx, Live, Dst, Vst);
valfun_4({bs_save2,Ctx,SavePoint}, Vst) ->
    bsm_save(Ctx, SavePoint, Vst);
valfun_4({bs_restore2,Ctx,SavePoint}, Vst) ->
    bsm_restore(Ctx, SavePoint, Vst);

%% Bit syntax instructions.
valfun_4({bs_start_match,{f,_Fail}=F,Src}, Vst) ->
    valfun_4({test,bs_start_match,F,[Src]}, Vst);
valfun_4({test,bs_start_match,{f,Fail},[Src]}, Vst) ->
    assert_term(Src, Vst),
    bs_start_match(branch_state(Fail, Vst));

valfun_4({bs_save,SavePoint}, Vst) ->
    bs_assert_state(Vst),
    bs_save(SavePoint, Vst);
valfun_4({bs_restore,SavePoint}, Vst) ->
    bs_assert_state(Vst),
    bs_assert_savepoint(SavePoint, Vst),
    Vst;
valfun_4({test,bs_skip_bits,{f,Fail},[Src,_,_]}, Vst) ->
    bs_assert_state(Vst),
    assert_term(Src, Vst),
    branch_state(Fail, Vst);
valfun_4({test,bs_test_tail,{f,Fail},_}, Vst) ->
    bs_assert_state(Vst),
    branch_state(Fail, Vst);
valfun_4({test,_,{f,Fail},[_,_,_,Dst]}, Vst0) ->
    bs_assert_state(Vst0),
    Vst = branch_state(Fail, Vst0),
    set_type_reg({integer,[]}, Dst, Vst);

%% Other test instructions.
valfun_4({test,is_float,{f,Lbl},[Float]}, Vst) ->
    assert_term(Float, Vst),
    set_type({float,[]}, Float, branch_state(Lbl, Vst));
valfun_4({test,is_tuple,{f,Lbl},[Tuple]}, Vst) ->
    Type0 = get_term_type(Tuple, Vst),
    Type = upgrade_tuple_type({tuple,[0]}, Type0),
    set_type(Type, Tuple, branch_state(Lbl, Vst));
valfun_4({test,is_nonempty_list,{f,Lbl},[Cons]}, Vst) ->
    assert_term(Cons, Vst),
    set_type(cons, Cons, branch_state(Lbl, Vst));
valfun_4({test,test_arity,{f,Lbl},[Tuple,Sz]}, Vst) when is_integer(Sz) ->
    assert_type(tuple, Tuple, Vst),
    set_type_reg({tuple,Sz}, Tuple, branch_state(Lbl, Vst));
valfun_4({test,_Op,{f,Lbl},Src}, Vst) ->
    validate_src(Src, Vst),
    branch_state(Lbl, Vst);
valfun_4({bs_add,{f,Fail},[A,B,_],Dst}, Vst) ->
    assert_term(A, Vst),
    assert_term(B, Vst),
    set_type_reg({integer,[]}, Dst, branch_state(Fail, Vst));
valfun_4({bs_utf8_size,{f,Fail},A,Dst}, Vst) ->
    assert_term(A, Vst),
    set_type_reg({integer,[]}, Dst, branch_state(Fail, Vst));
valfun_4({bs_utf16_size,{f,Fail},A,Dst}, Vst) ->
    assert_term(A, Vst),
    set_type_reg({integer,[]}, Dst, branch_state(Fail, Vst));
valfun_4({bs_bits_to_bytes,{f,Fail},Src,Dst}, Vst) ->
    assert_term(Src, Vst),
    set_type_reg({integer,[]}, Dst, branch_state(Fail, Vst));
valfun_4({bs_init2,{f,Fail},Sz,Heap,Live,_,Dst}, Vst0) ->
    verify_live(Live, Vst0),
    if
	is_integer(Sz) ->
	    ok;
	true ->
	    assert_term(Sz, Vst0)
    end,
    Vst1 = heap_alloc(Heap, Vst0),
    Vst2 = branch_state(Fail, Vst1),
    Vst3 = prune_x_regs(Live, Vst2),
    Vst = bs_zero_bits(Vst3),
    set_type_reg(binary, Dst, Vst);
valfun_4({bs_init_bits,{f,Fail},Sz,Heap,Live,_,Dst}, Vst0) ->
    verify_live(Live, Vst0),
    if
	is_integer(Sz) ->
	    ok;
	true ->
	    assert_term(Sz, Vst0)
    end,
    Vst1 = heap_alloc(Heap, Vst0),
    Vst2 = branch_state(Fail, Vst1),
    Vst3 = prune_x_regs(Live, Vst2),
    Vst = bs_zero_bits(Vst3),
    set_type_reg(binary, Dst, Vst);
valfun_4({bs_append,{f,Fail},Bits,Heap,Live,_Unit,Bin,_Flags,Dst}, Vst0) ->
    verify_live(Live, Vst0),
    assert_term(Bits, Vst0),
    assert_term(Bin, Vst0),
    Vst1 = heap_alloc(Heap, Vst0),
    Vst2 = branch_state(Fail, Vst1),
    Vst3 = prune_x_regs(Live, Vst2),
    Vst = bs_zero_bits(Vst3),
    set_type_reg(binary, Dst, Vst);
valfun_4({bs_private_append,{f,Fail},Bits,_Unit,Bin,_Flags,Dst}, Vst0) ->
    assert_term(Bits, Vst0),
    assert_term(Bin, Vst0),
    Vst1 = branch_state(Fail, Vst0),
    Vst = bs_zero_bits(Vst1),
    set_type_reg(binary, Dst, Vst);
valfun_4({bs_put_string,Sz,_}, Vst) when is_integer(Sz) ->
    Vst;
valfun_4({bs_put_binary,{f,Fail},Sz,_,_,Src}=I, Vst0) ->
    assert_term(Sz, Vst0),
    assert_term(Src, Vst0),
    Vst = bs_align_check(I, Vst0),
    branch_state(Fail, Vst);
valfun_4({bs_put_float,{f,Fail},Sz,_,_,Src}=I, Vst0) ->
    assert_term(Sz, Vst0),
    assert_term(Src, Vst0),
    Vst = bs_align_check(I, Vst0),
    branch_state(Fail, Vst);
valfun_4({bs_put_integer,{f,Fail},Sz,_,_,Src}=I, Vst0) ->
    assert_term(Sz, Vst0),
    assert_term(Src, Vst0),
    Vst = bs_align_check(I, Vst0),
    branch_state(Fail, Vst);
valfun_4({bs_put_utf8,{f,Fail},_,Src}=I, Vst0) ->
    assert_term(Src, Vst0),
    Vst = bs_align_check(I, Vst0),
    branch_state(Fail, Vst);
valfun_4({bs_put_utf16,{f,Fail},_,Src}=I, Vst0) ->
    assert_term(Src, Vst0),
    Vst = bs_align_check(I, Vst0),
    branch_state(Fail, Vst);
valfun_4({bs_put_utf32,{f,Fail},_,Src}=I, Vst0) ->
    assert_term(Src, Vst0),
    Vst = bs_align_check(I, Vst0),
    branch_state(Fail, Vst);
%% Old bit syntax construction (before R10B).
valfun_4({bs_init,_,_}, Vst) ->
    bs_zero_bits(Vst);
valfun_4({bs_need_buf,_}, Vst) -> Vst;
valfun_4({bs_final,{f,Fail},Dst}, Vst0) ->
    Vst = branch_state(Fail, Vst0),
    set_type_reg(binary, Dst, Vst);
valfun_4({bs_final2,Src,Dst}, Vst0) ->
    assert_term(Src, Vst0),
    set_type_reg(binary, Dst, Vst0);
valfun_4(_, _) ->
    error(unknown_instruction).

%%
%% Common code for validating bs_get* instructions.
%%
validate_bs_get(Fail, Ctx, Live, Dst, Vst0) ->
    bsm_validate_context(Ctx, Vst0),
    verify_live(Live, Vst0),
    Vst1 = prune_x_regs(Live, Vst0),
    Vst = branch_state(Fail, Vst1),
    set_type_reg(term, Dst, Vst).

%%
%% Common code for validating bs_skip_utf* instructions.
%%
validate_bs_skip_utf(Fail, Ctx, Live, Vst0) ->
    bsm_validate_context(Ctx, Vst0),
    verify_live(Live, Vst0),
    Vst = prune_x_regs(Live, Vst0),
    branch_state(Fail, Vst).

%%
%% Special state handling for setelement/3 and the set_tuple_element/3 instruction.
%% A possibility for garbage collection must not occur between setelement/3 and
%% set_tuple_element/3.
%%
val_dsetel({move,_,_}, Vst) ->
    Vst;
val_dsetel({put_string,0,{string,""},_}, Vst) ->
    %% An empty string is OK since it doesn't build anything.
    Vst;
val_dsetel({call_ext,3,{extfunc,erlang,setelement,3}}, #vst{current=St}=Vst) ->
    Vst#vst{current=St#st{setelem=true}};
val_dsetel({set_tuple_element,_,_,_}, #vst{current=#st{setelem=false}}) ->
    error(illegal_context_for_set_tuple_element);
val_dsetel({set_tuple_element,_,_,_}, #vst{current=#st{setelem=true}}=Vst) ->
    Vst;
val_dsetel({line,_}, Vst) ->
    Vst;
val_dsetel(_, #vst{current=#st{setelem=true}=St}=Vst) ->
    Vst#vst{current=St#st{setelem=false}};
val_dsetel(_, Vst) -> Vst.

kill_state(#vst{current=#st{ct=[[Fail]|_]}}=Vst) when is_integer(Fail) ->
    %% There is an active catch. Make sure that we merge the state into
    %% the catch label before clearing it, so that that we can be sure
    %% that the label gets a state.
    kill_state_1(branch_state(Fail, Vst));
kill_state(Vst) ->
    kill_state_1(Vst).

kill_state_1(Vst) ->
    Vst#vst{current=none}.

%% A "plain" call.
%%  The stackframe must be initialized.
%%  The instruction will return to the instruction following the call.
call(Name, Live, #vst{current=St}=Vst) ->
    verify_live(Live, Vst),
    verify_y_init(Vst),
    case return_type(Name, Vst) of
	Type when Type =/= exception ->
	    %% Type is never 'exception' because it has been handled earlier.
	    Xs = gb_trees_from_list([{0,Type}]),
	    Vst#vst{current=St#st{x=Xs,f=init_fregs(),bsm=undefined}}
    end.

%% Tail call.
%%  The stackframe must have a known size and be initialized.
%%  Does not return to the instruction following the call.
tail_call(Name, Live, Vst) ->
    verify_call_args(Name, Live, Vst),
    verify_y_init(Vst),
    verify_no_ct(Vst),
    kill_state(Vst).

verify_call_args(_, 0, #vst{}) ->
    ok;
verify_call_args({f,Lbl}, Live, Vst) when is_integer(Live)->
    Verify = fun(R) ->
		     case get_move_term_type(R, Vst) of
			 {match_context,_,_} ->
			     verify_call_match_context(Lbl, Vst);
			 _ ->
			     ok
		     end
	     end,
    verify_call_args_1(Live, Verify, Vst);
verify_call_args(_, Live, Vst) when is_integer(Live)->
    Verify = fun(R) -> get_term_type(R, Vst) end,
    verify_call_args_1(Live, Verify, Vst);
verify_call_args(_, Live, _) ->
    error({bad_number_of_live_regs,Live}).

verify_call_args_1(0, _, _) -> ok;
verify_call_args_1(N, Verify, Vst) ->
    X = N - 1,
    Verify({x,X}),
    verify_call_args_1(X, Verify, Vst).

verify_call_match_context(Lbl, #vst{ft=Ft}) ->
    case gb_trees:lookup(Lbl, Ft) of
	none ->
	    error(no_bs_start_match2);
	{value,[{test,bs_start_match2,_,_,[Ctx,_],Ctx}|_]} ->
	    ok;
	{value,[{test,bs_start_match2,_,_,[Bin,_,_],Ctx}|_]} ->
	    error({binary_and_context_regs_different,Bin,Ctx})
    end.

allocate(Zero, Stk, Heap, Live, #vst{current=#st{numy=none}=St}=Vst0) ->
    verify_live(Live, Vst0),
    Vst = prune_x_regs(Live, Vst0),
    Ys = init_regs(Stk, case Zero of 
			    true -> initialized;
			    false -> uninitialized
			end),
    heap_alloc(Heap, Vst#vst{current=St#st{y=Ys,numy=Stk}});
allocate(_, _, _, _, #vst{current=#st{numy=Numy}}) ->
    error({existing_stack_frame,{size,Numy}}).

deallocate(#vst{current=St}=Vst) ->
    Vst#vst{current=St#st{y=init_regs(0, initialized),numy=none,bsm=undefined}}.

test_heap(Heap, Live, Vst0) ->
    verify_live(Live, Vst0),
    Vst = prune_x_regs(Live, Vst0),
    heap_alloc(Heap, Vst).

heap_alloc(Heap, #vst{current=St0}=Vst) ->
    St1 = kill_heap_allocation(St0#st{bsm=undefined}),
    St = heap_alloc_1(Heap, St1),
    Vst#vst{current=St}.

heap_alloc_1({alloc,Alloc}, St) ->
    heap_alloc_2(Alloc, St);
heap_alloc_1(HeapWords, St) when is_integer(HeapWords) ->
    St#st{h=HeapWords}.

heap_alloc_2([{words,HeapWords}|T], St0) ->
    St = St0#st{h=HeapWords},
    heap_alloc_2(T, St);
heap_alloc_2([{floats,Floats}|T], St0) ->
    St = St0#st{hf=Floats},
    heap_alloc_2(T, St);
heap_alloc_2([], St) -> St.
    
prune_x_regs(Live, #vst{current=#st{x=Xs0}=St0}=Vst) when is_integer(Live) ->
    Xs1 = gb_trees:to_list(Xs0),
    Xs = [P || {R,_}=P <- Xs1, R < Live],
    St = St0#st{x=gb_trees:from_orddict(Xs)},
    Vst#vst{current=St}.

%%%
%%% Floating point checking.
%%%
%%% Possible values for the fls field (=floating point error state).
%%%
%%% undefined 	- Undefined (initial state). No float operations allowed.
%%%
%%% cleared	- fclearerror/0 has been executed. Float operations
%%%		  are allowed (such as fadd).
%%%
%%% checked	- fcheckerror/1 has been executed. It is allowed to
%%%               move values out of floating point registers.
%%%
%%% The following instructions may be executed in any state:
%%%
%%%   fconv Src {fr,_}             
%%%   fmove Src {fr,_}		%% Move INTO floating point register.
%%%

float_op(Src, Dst, Vst0) ->
    foreach (fun(S) -> assert_freg_set(S, Vst0) end, Src),
    assert_fls(cleared, Vst0),
    Vst = set_fls(cleared, Vst0),
    set_freg(Dst, Vst).

assert_fls(Fls, Vst) ->
    case get_fls(Vst) of
	Fls -> Vst;
	OtherFls -> error({bad_floating_point_state,OtherFls})
    end.

set_fls(Fls, #vst{current=#st{}=St}=Vst) when is_atom(Fls) ->
    Vst#vst{current=St#st{fls=Fls}}.

get_fls(#vst{current=#st{fls=Fls}}) when is_atom(Fls) -> Fls.

init_fregs() -> 0.

set_freg({fr,Fr}, #vst{current=#st{f=Fregs0}=St}=Vst)
  when is_integer(Fr), 0 =< Fr ->
    limit_check(Fr),
    Bit = 1 bsl Fr,
    if
	Fregs0 band Bit =:= 0 ->
	    Fregs = Fregs0 bor Bit,
	    Vst#vst{current=St#st{f=Fregs}};
	true -> Vst
    end;
set_freg(Fr, _) -> error({bad_target,Fr}).

assert_freg_set({fr,Fr}=Freg, #vst{current=#st{f=Fregs}})
  when is_integer(Fr), 0 =< Fr ->
    if
	Fregs band (1 bsl Fr) =/= 0 ->
	    limit_check(Fr);
	true -> error({uninitialized_reg,Freg})
    end;
assert_freg_set(Fr, _) -> error({bad_source,Fr}).

%%%
%%% Binary matching.
%%%
%%% Possible values for the bsm field (=bit syntax matching state).
%%%
%%% undefined 	- Undefined (initial state). No matching instructions allowed.
%%%		 
%%% (gb set)	- The gb set contains the defined save points.
%%%
%%% The bsm field is reset to 'undefined' by instructions that may cause a
%%% a garbage collection (might move the binary) and/or context switch
%%% (may invalidate the save points).

bs_start_match(#vst{current=#st{bsm=undefined}=St}=Vst) ->
    Vst#vst{current=St#st{bsm=gb_sets:empty()}};
bs_start_match(Vst) ->
    %% Must retain save points here - it is possible to restore back
    %% to a previous binary.
    Vst.

bs_save(Reg, #vst{current=#st{bsm=Saved}=St}=Vst)
  when is_integer(Reg), Reg < ?MAXREG  ->
    Vst#vst{current=St#st{bsm=gb_sets:add(Reg, Saved)}};
bs_save(_, _) -> error(limit).

bs_assert_savepoint(Reg, #vst{current=#st{bsm=Saved}}) ->
    case gb_sets:is_member(Reg, Saved) of
	false -> error({no_save_point,Reg});
	true -> ok
    end.

bs_assert_state(#vst{current=#st{bsm=undefined}}) ->
    error(no_bs_match_state);
bs_assert_state(_) -> ok.


%%%
%%% New binary matching instructions.
%%%

bsm_match_state(Slots) ->
    {match_context,0,Slots}.

bsm_validate_context(Reg, Vst) ->
    bsm_get_context(Reg, Vst),
    ok.

bsm_get_context({x,X}=Reg, #vst{current=#st{x=Xs}}=_Vst) when is_integer(X) ->
    case gb_trees:lookup(X, Xs) of
	{value,{match_context,_,_}=Ctx} -> Ctx;
	_ -> error({no_bsm_context,Reg})
    end;
bsm_get_context(Reg, _) -> error({bad_source,Reg}).
    
bsm_save(Reg, {atom,start}, Vst) ->
    %% Save point refering to where the match started.
    %% It is always valid. But don't forget to validate the context register.
    bsm_get_context(Reg, Vst),
    Vst;
bsm_save(Reg, SavePoint, Vst) ->
    case bsm_get_context(Reg, Vst) of
	{match_context,Bits,Slots} when SavePoint < Slots ->
	    Ctx = {match_context,Bits bor (1 bsl SavePoint),Slots},
	    set_type_reg(Ctx, Reg, Vst);
	_ -> error({illegal_save,SavePoint})
    end.

bsm_restore(Reg, {atom,start}, Vst) ->
    %% (Mostly) automatic save point refering to where the match started.
    %% It is always valid. But don't forget to validate the context register.
    bsm_get_context(Reg, Vst),
    Vst;
bsm_restore(Reg, SavePoint, Vst) ->
    case bsm_get_context(Reg, Vst) of
	{match_context,Bits,Slots} when SavePoint < Slots ->
	    case Bits band (1 bsl SavePoint) of
		0 -> error({illegal_restore,SavePoint,not_set});
		_ -> Vst
	    end;
	_ -> error({illegal_restore,SavePoint,range})
    end.
    

%%%
%%% Validation of alignment in the bit syntax. (Currently, construction only.)
%%%
%%% We make sure that the aligned flag is only set when we can be sure of the
%%% aligment.
%%%

bs_zero_bits(#vst{current=St}=Vst) ->
    Vst#vst{current=St#st{bits=0}}.

bs_align_check({bs_put_utf8,_,Flags,_}, #vst{current=#st{}=St}=Vst) ->
    bs_verify_flags(Flags, St),
    Vst;
bs_align_check({bs_put_utf16,_,Flags,_}, #vst{current=#st{}=St}=Vst) ->
    bs_verify_flags(Flags, St),
    Vst;
bs_align_check({bs_put_utf32,_,Flags,_}, #vst{current=#st{}=St}=Vst) ->
    bs_verify_flags(Flags, St),
    Vst;
bs_align_check({_,_,Sz,U,Flags,_}, #vst{current=#st{bits=Bits}=St}=Vst) ->
    bs_verify_flags(Flags, St),
    bs_update_bits(Bits, Sz, U, St, Vst).

bs_update_bits(undefined, _, _, _, Vst) -> Vst;
bs_update_bits(Bits0, {integer,Sz}, U, St, Vst) ->
    Bits = Bits0 + U*Sz,
    Vst#vst{current=St#st{bits=Bits}};
bs_update_bits(_, {atom,all}, _, _, Vst) ->
    %% A binary will not change the alignment.
    Vst;
bs_update_bits(_, _, U, _, Vst) when U rem 8 =:= 0 ->
    %% Units of 8, 16, and so on will not change the aligment.
    Vst;
bs_update_bits(_, _, _, St, Vst) ->
    %% We can no longer be sure about aligment.
    Vst#vst{current=St#st{bits=undefined}}.

bs_verify_flags({field_flags,Fl}, #st{bits=Bits}) ->
    case bs_is_aligned(Fl) of
	false -> ok;
	true when is_integer(Bits), Bits rem 8 =:= 0 -> ok;
	true -> error({aligned_flag_set,{bits,Bits}})
    end.

bs_is_aligned(Fl) when is_integer(Fl) -> Fl band 1 =:= 1;
bs_is_aligned(Fl) when is_list(Fl) -> member(aligned, Fl).
    
%%%
%%% Keeping track of types.
%%%

set_type(Type, {x,_}=Reg, Vst) -> set_type_reg(Type, Reg, Vst);
set_type(Type, {y,_}=Reg, Vst) -> set_type_y(Type, Reg, Vst);
set_type(_, _, #vst{}=Vst) -> Vst.

set_type_reg(Type, {x,X}, #vst{current=#st{x=Xs}=St}=Vst) 
  when is_integer(X), 0 =< X ->
    limit_check(X),
    Vst#vst{current=St#st{x=gb_trees:enter(X, Type, Xs)}};
set_type_reg(Type, Reg, Vst) ->
    set_type_y(Type, Reg, Vst).

set_type_y(Type, {y,Y}=Reg, #vst{current=#st{y=Ys0,numy=NumY}=St}=Vst) 
  when is_integer(Y), 0 =< Y ->
    limit_check(Y),
    case {Y,NumY} of
	{_,none} ->
	    error({no_stack_frame,Reg});
	{_,_} when Y > NumY ->
	    error({y_reg_out_of_range,Reg,NumY});
	{_,_} ->
	    Ys = if  Type =:= initialized_ct ->
			 gb_trees:enter(Y, initialized, Ys0);
		     true ->
			 case gb_trees:lookup(Y, Ys0) of
			     none -> 
				 gb_trees:insert(Y, Type, Ys0);
			     {value,uinitialized} ->
				 gb_trees:insert(Y, Type, Ys0);
			     {value,{catchtag,_}=Tag} ->
				 error(Tag);
			     {value,{trytag,_}=Tag} ->
				 error(Tag);
			     {value,_} ->
				 gb_trees:update(Y, Type, Ys0)
			 end
		 end,
	    Vst#vst{current=St#st{y=Ys}}
    end;
set_type_y(Type, Reg, #vst{}) -> error({invalid_store,Reg,Type}).

assert_term(Src, Vst) ->
    get_term_type(Src, Vst),
    ok.

%% The possible types.
%%
%% First non-term types:
%%
%% initialized		Only for Y registers. Means that the Y register
%%			has been initialized with some valid term so that
%%			it is safe to pass to the garbage collector.
%%			NOT safe to use in any other way (will not crash the
%%			emulator, but clearly points to a bug in the compiler).
%%
%% {catchtag,[Lbl]}	A special term used within a catch. Must only be used
%%			by the catch instructions; NOT safe to use in other
%%			instructions.
%%
%% {trytag,[Lbl]}	A special term used within a try block. Must only be
%%			used by the catch instructions; NOT safe to use in other
%%			instructions.
%%
%% exception		Can only be used as a type returned by return_type/2
%%			(which gives the type of the value returned by a BIF).
%%			Thus 'exception' is never stored as type descriptor
%%			for a register.
%%
%% {match_context,_,_}	A matching context for bit syntax matching. We do allow
%%			it to moved/to from stack, but otherwise it must only
%%			be accessed by bit syntax matching instructions.
%%
%%
%% Normal terms:
%%
%% term			Any valid Erlang (but not of the special types above).
%%
%% bool			The atom 'true' or the atom 'false'.
%%
%% cons         	Cons cell: [_|_]
%%
%% nil			Empty list: []
%%
%% {tuple,[Sz]}		Tuple. An element has been accessed using
%%              	element/2 or setelement/3 so that it is known that
%%              	the type is a tuple of size at least Sz.
%%
%% {tuple,Sz}		Tuple. A test_arity instruction has been seen
%%           		so that it is known that the size is exactly Sz.
%%
%% {atom,[]}		Atom.
%% {atom,Atom}
%%
%% {integer,[]}		Integer.
%% {integer,Integer}
%%
%% {float,[]}		Float.
%% {float,Float}
%%
%% number		Integer or Float of unknown value
%%

assert_type(WantedType, Term, Vst) ->
    assert_type(WantedType, get_term_type(Term, Vst)),
    Vst.

assert_type(Correct, Correct) -> ok;
assert_type(float, {float,_}) -> ok;
assert_type(tuple, {tuple,_}) -> ok;
assert_type({tuple_element,I}, {tuple,[Sz]})
  when 1 =< I, I =< Sz ->
    ok;
assert_type({tuple_element,I}, {tuple,Sz})
  when is_integer(Sz), 1 =< I, I =< Sz ->
    ok;
assert_type(Needed, Actual) ->
    error({bad_type,{needed,Needed},{actual,Actual}}).


%% upgrade_tuple_type(NewTupleType, OldType) -> TupleType.
%%  upgrade_tuple_type/2 is used when linear code finds out more and
%%  more information about a tuple type, so that the type gets more
%%  specialized. If OldType is not a tuple type, the type information
%%  is inconsistent, and we know that some instructions will never
%%  be executed at run-time.

upgrade_tuple_type({tuple,[Sz]}, {tuple,[OldSz]}=T) when Sz < OldSz ->
    %% The old type has a higher value for the least tuple size.
    T;
upgrade_tuple_type({tuple,[Sz]}, {tuple,OldSz}=T) 
  when is_integer(Sz), is_integer(OldSz), Sz =< OldSz ->
    %% The old size is exact, and the new size is smaller than the old size.
    T;
upgrade_tuple_type({tuple,_}=T, _) ->
    %% The new type information is exact or has a higher value for
    %% the least tuple size.
    %%     Note that inconsistencies are also handled in this
    %% clause, e.g. if the old type was an integer or a tuple accessed
    %% outside its size; inconsistences will generally cause an exception
    %% at run-time but are safe from our point of view.
    T.

get_tuple_size({integer,[]}) -> 0;
get_tuple_size({integer,Sz}) -> Sz;
get_tuple_size(_) -> 0.

validate_src(Ss, Vst) when is_list(Ss) ->
    foreach(fun(S) -> get_term_type(S, Vst) end, Ss).

%% get_move_term_type(Src, ValidatorState) -> Type
%%  Get the type of the source Src. The returned type Type will be
%%  a standard Erlang type (no catch/try tags). Match contexts are OK.

get_move_term_type(Src, Vst) ->
    case get_term_type_1(Src, Vst) of
	initialized -> error({unassigned,Src});
	{catchtag,_} -> error({catchtag,Src});
	{trytag,_} -> error({trytag,Src});
	Type -> Type
    end.

%% get_term_type(Src, ValidatorState) -> Type
%%  Get the type of the source Src. The returned type Type will be
%%  a standard Erlang type (no catch/try tags or match contexts).

get_term_type(Src, Vst) ->
    case get_term_type_1(Src, Vst) of
	initialized -> error({unassigned,Src});
	{catchtag,_} -> error({catchtag,Src});
	{trytag,_} -> error({trytag,Src});
	{match_context,_,_} -> error({match_context,Src});
	Type -> Type
    end.

%% get_special_y_type(Src, ValidatorState) -> Type
%%  Return the type for the Y register without doing any validity checks.

get_special_y_type({y,_}=Reg, Vst) -> get_term_type_1(Reg, Vst);
get_special_y_type(Src, _) -> error({source_not_y_reg,Src}).

get_term_type_1(nil=T, _) -> T;
get_term_type_1({atom,A}=T, _) when is_atom(A) -> T;
get_term_type_1({float,F}=T, _) when is_float(F) -> T;
get_term_type_1({integer,I}=T, _) when is_integer(I) -> T;
get_term_type_1({literal,_}=T, _) -> T;
get_term_type_1({x,X}=Reg, #vst{current=#st{x=Xs}}) when is_integer(X) ->
    case gb_trees:lookup(X, Xs) of
	{value,Type} -> Type;
	none -> error({uninitialized_reg,Reg})
    end;
get_term_type_1({y,Y}=Reg, #vst{current=#st{y=Ys}}) when is_integer(Y) ->
    case gb_trees:lookup(Y, Ys) of
 	none -> error({uninitialized_reg,Reg});
	{value,uninitialized} -> error({uninitialized_reg,Reg});
	{value,Type} -> Type
    end;
get_term_type_1(Src, _) -> error({bad_source,Src}).


branch_arities([], _, #vst{}=Vst) -> Vst;
branch_arities([Sz,{f,L}|T], Tuple, #vst{current=St}=Vst0) 
  when is_integer(Sz) ->
    Vst1 = set_type_reg({tuple,Sz}, Tuple, Vst0),
    Vst = branch_state(L, Vst1),
    branch_arities(T, Tuple, Vst#vst{current=St}).

branch_state(0, #vst{}=Vst) -> Vst;
branch_state(L, #vst{current=St,branched=B}=Vst) ->
    Vst#vst{
      branched=case gb_trees:is_defined(L, B) of
		   false ->
		       gb_trees:insert(L, St, B);
		   true ->
		       MergedSt = merge_states(L, St, B),
		       gb_trees:update(L, MergedSt, B)
	       end}.

%% merge_states/3 is used when there are more than one way to arrive
%% at this point, and the type states for the different paths has
%% to be merged. The type states are downgraded to the least common
%% subset for the subsequent code.

merge_states(L, St, Branched) when L =/= 0 ->
    case gb_trees:lookup(L, Branched) of
	none -> St;
	{value,OtherSt} when St =:= none -> OtherSt;
	{value,OtherSt} -> merge_states_1(St, OtherSt)
    end.

merge_states_1(#st{x=Xs0,y=Ys0,numy=NumY0,h=H0,ct=Ct0,bsm=Bsm0}=St,
	       #st{x=Xs1,y=Ys1,numy=NumY1,h=H1,ct=Ct1,bsm=Bsm1}) ->
    NumY = merge_stk(NumY0, NumY1),
    Xs = merge_regs(Xs0, Xs1),
    Ys = merge_y_regs(Ys0, Ys1),
    Ct = merge_ct(Ct0, Ct1),
    Bsm = merge_bsm(Bsm0, Bsm1),
    St#st{x=Xs,y=Ys,numy=NumY,h=min(H0, H1),ct=Ct,bsm=Bsm}.

merge_stk(S, S) -> S;
merge_stk(_, _) -> undecided.

merge_ct(S, S) -> S;
merge_ct(Ct0, Ct1) -> merge_ct_1(Ct0, Ct1).

merge_ct_1([C0|Ct0], [C1|Ct1]) ->
    [ordsets:from_list(C0++C1)|merge_ct_1(Ct0, Ct1)];
merge_ct_1([], []) -> [];
merge_ct_1(_, _) -> undecided.

merge_regs(Rs0, Rs1) ->
    Rs = merge_regs_1(gb_trees:to_list(Rs0), gb_trees:to_list(Rs1)),
    gb_trees_from_list(Rs).

merge_regs_1([Same|Rs1], [Same|Rs2]) ->
    [Same|merge_regs_1(Rs1, Rs2)];
merge_regs_1([{R1,_}|Rs1], [{R2,_}|_]=Rs2) when R1 < R2 ->
    merge_regs_1(Rs1, Rs2);
merge_regs_1([{R1,_}|_]=Rs1, [{R2,_}|Rs2]) when R1 > R2 ->
    merge_regs_1(Rs1, Rs2);
merge_regs_1([{R,Type1}|Rs1], [{R,Type2}|Rs2]) ->
    [{R,merge_types(Type1, Type2)}|merge_regs_1(Rs1, Rs2)];
merge_regs_1([], []) -> [];
merge_regs_1([], [_|_]) -> [];
merge_regs_1([_|_], []) -> [].

merge_y_regs(Rs0, Rs1) ->
    Rs = merge_y_regs_1(gb_trees:to_list(Rs0), gb_trees:to_list(Rs1)),
    gb_trees_from_list(Rs).

merge_y_regs_1([Same|Rs1], [Same|Rs2]) ->
    [Same|merge_y_regs_1(Rs1, Rs2)];
merge_y_regs_1([{R1,_}|Rs1], [{R2,_}|_]=Rs2) when R1 < R2 ->
    [{R1,uninitialized}|merge_y_regs_1(Rs1, Rs2)];
merge_y_regs_1([{R1,_}|_]=Rs1, [{R2,_}|Rs2]) when R1 > R2 ->
    [{R2,uninitialized}|merge_y_regs_1(Rs1, Rs2)];
merge_y_regs_1([{R,Type1}|Rs1], [{R,Type2}|Rs2]) ->
    [{R,merge_types(Type1, Type2)}|merge_y_regs_1(Rs1, Rs2)];
merge_y_regs_1([], []) -> [];
merge_y_regs_1([], [_|_]=Rs) -> Rs;
merge_y_regs_1([_|_]=Rs, []) -> Rs.

%% merge_types(Type1, Type2) -> Type
%%  Return the most specific type possible.
%%  Note: Type1 must NOT be the same as Type2.
merge_types(uninitialized=I, _) -> I;
merge_types(_, uninitialized=I) -> I;
merge_types(initialized=I, _) -> I;
merge_types(_, initialized=I) -> I;
merge_types({catchtag,T0},{catchtag,T1}) ->
    {catchtag,ordsets:from_list(T0++T1)};
merge_types({trytag,T0},{trytag,T1}) ->
    {trytag,ordsets:from_list(T0++T1)};
merge_types({tuple,A}, {tuple,B}) ->
    {tuple,[min(tuple_sz(A), tuple_sz(B))]};
merge_types({Type,A}, {Type,B}) 
  when Type =:= atom; Type =:= integer; Type =:= float ->
    if A =:= B -> {Type,A};
       true -> {Type,[]}
    end;
merge_types({Type,_}, number) 
  when Type =:= integer; Type =:= float ->
    number;
merge_types(number, {Type,_}) 
  when Type =:= integer; Type =:= float ->
    number;
merge_types(bool, {atom,A}) ->
    merge_bool(A);
merge_types({atom,A}, bool) ->
    merge_bool(A);
merge_types({match_context,B0,Slots},{match_context,B1,Slots}) ->
    {match_context,B0 bor B1,Slots};
merge_types({match_context,_,_}=M, _) ->
    M;
merge_types(_, {match_context,_,_}=M) ->
    M;
merge_types(T1, T2) when T1 =/= T2 ->
    %% Too different. All we know is that the type is a 'term'.
    term.

merge_bsm(undefined, _) -> undefined;
merge_bsm(_, undefined) -> undefined;
merge_bsm(Bsm0, Bsm1) -> gb_sets:intersection(Bsm0, Bsm1).

tuple_sz([Sz]) -> Sz;
tuple_sz(Sz) -> Sz.

merge_bool([]) -> {atom,[]};
merge_bool(true) -> bool;
merge_bool(false) -> bool;
merge_bool(_) -> {atom,[]}.
    
verify_y_init(#vst{current=#st{y=Ys}}) ->
    verify_y_init_1(gb_trees:to_list(Ys)).

verify_y_init_1([]) -> ok;
verify_y_init_1([{Y,uninitialized}|_]) ->
    error({uninitialized_reg,{y,Y}});
verify_y_init_1([{_,_}|Ys]) ->
    verify_y_init_1(Ys).

verify_live(0, #vst{}) -> ok;
verify_live(N, #vst{current=#st{x=Xs}}) ->
    verify_live_1(N, Xs).

verify_live_1(0, _) -> ok;
verify_live_1(N, Xs) when is_integer(N) ->
    X = N-1,
    case gb_trees:is_defined(X, Xs) of
	false -> error({{x,X},not_live});
	true -> verify_live_1(X, Xs)
    end;
verify_live_1(N, _) -> error({bad_number_of_live_regs,N}).

verify_no_ct(#vst{current=#st{numy=none}}) -> ok;
verify_no_ct(#vst{current=#st{numy=undecided}}) ->
    error(unknown_size_of_stackframe);
verify_no_ct(#vst{current=#st{y=Ys}}) ->
    case [Y || Y <- gb_trees:to_list(Ys), verify_no_ct_1(Y)] of
	[] -> ok;
	CT -> error({unfinished_catch_try,CT})
    end.

verify_no_ct_1({_, {catchtag, _}}) -> true;
verify_no_ct_1({_, {trytag, _}}) -> true;
verify_no_ct_1({_, _}) -> false.

eat_heap(N, #vst{current=#st{h=Heap0}=St}=Vst) ->
    case Heap0-N of
	Neg when Neg < 0 ->
	    error({heap_overflow,{left,Heap0},{wanted,N}});
	Heap ->
	    Vst#vst{current=St#st{h=Heap}}
    end.

eat_heap_float(#vst{current=#st{hf=HeapFloats0}=St}=Vst) ->
    case HeapFloats0-1 of
	Neg when Neg < 0 ->
	    error({heap_overflow,{left,{HeapFloats0,floats}},{wanted,{1,floats}}});
	HeapFloats ->
	    Vst#vst{current=St#st{hf=HeapFloats}}
    end.

bif_type('-', Src, Vst) ->
    arith_type(Src, Vst);
bif_type('+', Src, Vst) ->
    arith_type(Src, Vst);
bif_type('*', Src, Vst) ->
    arith_type(Src, Vst);
bif_type(abs, [Num], Vst) ->
    case get_term_type(Num, Vst) of
	{float,_}=T -> T;
	{integer,_}=T -> T;
	_ -> number
    end;
bif_type(float, _, _) -> {float,[]};
bif_type('/', _, _) -> {float,[]};
%% Integer operations.
bif_type('div', [_,_], _) -> {integer,[]};
bif_type('rem', [_,_], _) -> {integer,[]};
bif_type(length, [_], _) -> {integer,[]};
bif_type(size, [_], _) -> {integer,[]};
bif_type(trunc, [_], _) -> {integer,[]};
bif_type(round, [_], _) -> {integer,[]};
bif_type('band', [_,_], _) -> {integer,[]};
bif_type('bor', [_,_], _) -> {integer,[]};
bif_type('bxor', [_,_], _) -> {integer,[]};
bif_type('bnot', [_], _) -> {integer,[]};
bif_type('bsl', [_,_], _) -> {integer,[]};
bif_type('bsr', [_,_], _) -> {integer,[]};
%% Booleans.
bif_type('==', [_,_], _) -> bool;
bif_type('/=', [_,_], _) -> bool;
bif_type('=<', [_,_], _) -> bool;
bif_type('<', [_,_], _) -> bool;
bif_type('>=', [_,_], _) -> bool;
bif_type('>', [_,_], _) -> bool;
bif_type('=:=', [_,_], _) -> bool;
bif_type('=/=', [_,_], _) -> bool;
bif_type('not', [_], _) -> bool;
bif_type('and', [_,_], _) -> bool;
bif_type('or', [_,_], _) -> bool;
bif_type('xor', [_,_], _) -> bool;
bif_type(is_atom, [_], _) -> bool;
bif_type(is_boolean, [_], _) -> bool;
bif_type(is_binary, [_], _) -> bool;
bif_type(is_float, [_], _) -> bool;
bif_type(is_function, [_], _) -> bool;
bif_type(is_integer, [_], _) -> bool;
bif_type(is_list, [_], _) -> bool;
bif_type(is_number, [_], _) -> bool;
bif_type(is_pid, [_], _) -> bool;
bif_type(is_port, [_], _) -> bool;
bif_type(is_reference, [_], _) -> bool;
bif_type(is_tuple, [_], _) -> bool;
%% Misc.
bif_type(node, [], _) -> {atom,[]};
bif_type(node, [_], _) -> {atom,[]};
bif_type(hd, [_], _) -> term;
bif_type(tl, [_], _) -> term;
bif_type(get, [_], _) -> term;
bif_type(raise, [_,_], _) -> exception;
bif_type(Bif, _, _) when is_atom(Bif) -> term.

is_bif_safe('/=', 2) -> true;
is_bif_safe('<', 2) -> true;
is_bif_safe('=/=', 2) -> true;
is_bif_safe('=:=', 2) -> true;
is_bif_safe('=<', 2) -> true;
is_bif_safe('==', 2) -> true;
is_bif_safe('>', 2) -> true;
is_bif_safe('>=', 2) -> true;
is_bif_safe(is_atom, 1) -> true;
is_bif_safe(is_boolean, 1) -> true;
is_bif_safe(is_binary, 1) -> true;
is_bif_safe(is_float, 1) -> true;
is_bif_safe(is_function, 1) -> true;
is_bif_safe(is_integer, 1) -> true;
is_bif_safe(is_list, 1) -> true;
is_bif_safe(is_number, 1) -> true;
is_bif_safe(is_pid, 1) -> true;
is_bif_safe(is_port, 1) -> true;
is_bif_safe(is_reference, 1) -> true;
is_bif_safe(is_tuple, 1) -> true;
is_bif_safe(get, 1) -> true;
is_bif_safe(self, 0) -> true;
is_bif_safe(node, 0) -> true;
is_bif_safe(_, _) -> false.

arith_type([A,B], Vst) ->
    case {get_term_type(A, Vst),get_term_type(B, Vst)} of
	{{float,_},_} -> {float,[]};
	{_,{float,_}} -> {float,[]};
	{_,_} -> number
    end;
arith_type(_, _) -> number.

return_type({extfunc,M,F,A}, Vst) -> return_type_1(M, F, A, Vst);
return_type(_, _) -> term.

return_type_1(erlang, setelement, 3, Vst) ->
    Tuple = {x,1},
    TupleType =
	case get_term_type(Tuple, Vst) of
	    {tuple,_}=TT -> TT;
	    _ -> {tuple,[0]}
	end,
    case get_term_type({x,0}, Vst) of
	{integer,[]} -> TupleType;
	{integer,I} -> upgrade_tuple_type({tuple,[I]}, TupleType);
	_ -> TupleType
    end;
return_type_1(erlang, F, A, _) ->
    return_type_erl(F, A);
return_type_1(math, F, A, _) ->
    return_type_math(F, A);
return_type_1(M, F, A, _) when is_atom(M), is_atom(F), is_integer(A), A >= 0 ->
    term.

return_type_erl(exit, 1) -> exception;
return_type_erl(throw, 1) -> exception;
return_type_erl(fault, 1) -> exception;
return_type_erl(fault, 2) -> exception;
return_type_erl(error, 1) -> exception;
return_type_erl(error, 2) -> exception;
return_type_erl(F, A) when is_atom(F), is_integer(A), A >= 0 -> term.

return_type_math(cos, 1) -> {float,[]};
return_type_math(cosh, 1) -> {float,[]};
return_type_math(sin, 1) -> {float,[]};
return_type_math(sinh, 1) -> {float,[]};
return_type_math(tan, 1) -> {float,[]};
return_type_math(tanh, 1) -> {float,[]};
return_type_math(acos, 1) -> {float,[]};
return_type_math(acosh, 1) -> {float,[]};
return_type_math(asin, 1) -> {float,[]};
return_type_math(asinh, 1) -> {float,[]};
return_type_math(atan, 1) -> {float,[]};
return_type_math(atanh, 1) -> {float,[]};
return_type_math(erf, 1) -> {float,[]};
return_type_math(erfc, 1) -> {float,[]};
return_type_math(exp, 1) -> {float,[]};
return_type_math(log, 1) -> {float,[]};
return_type_math(log10, 1) -> {float,[]};
return_type_math(sqrt, 1) -> {float,[]};
return_type_math(atan2, 2) -> {float,[]};
return_type_math(pow, 2) -> {float,[]};
return_type_math(pi, 0) -> {float,[]};
return_type_math(F, A) when is_atom(F), is_integer(A), A >= 0 -> term.

limit_check(Num) when is_integer(Num), Num >= ?MAXREG ->
    error(limit);
limit_check(_) -> ok.

min(A, B) when is_integer(A), is_integer(B), A < B -> A;
min(A, B) when is_integer(A), is_integer(B) -> B.

gb_trees_from_list(L) -> gb_trees:from_orddict(lists:sort(L)).

-ifdef(DEBUG).
error(Error) -> exit(Error).
-else.
error(Error) -> throw(Error).
-endif.


%%%
%%% Rewrite disassembled code to the same format as we used internally
%%% to not have to worry later.
%%%

normalize_disassembled_code(Fs) ->
    Index = ndc_index(Fs, []),
    ndc(Fs, Index, []).

ndc_index([{function,Name,Arity,Entry,_Code}|Fs], Acc) ->
    ndc_index(Fs, [{{Name,Arity},Entry}|Acc]);
ndc_index([], Acc) ->
    gb_trees:from_orddict(lists:sort(Acc)).

ndc([{function,Name,Arity,Entry,Code0}|Fs], D, Acc) ->
    Code = ndc_1(Code0, D, []),
    ndc(Fs, D, [{function,Name,Arity,Entry,Code}|Acc]);
ndc([], _, Acc) -> reverse(Acc).
    
ndc_1([{call=Op,A,{_,F,A}}|Is], D, Acc) ->
    ndc_1(Is, D, [{Op,A,{f,gb_trees:get({F,A}, D)}}|Acc]);
ndc_1([{call_only=Op,A,{_,F,A}}|Is], D, Acc) ->
    ndc_1(Is, D, [{Op,A,{f,gb_trees:get({F,A}, D)}}|Acc]);
ndc_1([{call_last=Op,A,{_,F,A},Sz}|Is], D, Acc) ->
    ndc_1(Is, D, [{Op,A,{f,gb_trees:get({F,A}, D)},Sz}|Acc]);
ndc_1([{arithbif,Op,F,Src,Dst}|Is], D, Acc) ->
    ndc_1(Is, D, [{bif,Op,F,Src,Dst}|Acc]);
ndc_1([{arithfbif,Op,F,Src,Dst}|Is], D, Acc) ->
    ndc_1(Is, D, [{bif,Op,F,Src,Dst}|Acc]);
ndc_1([{test,bs_start_match2=Op,F,[A1,Live,A3,Dst]}|Is], D, Acc) ->
    ndc_1(Is, D, [{test,Op,F,Live,[A1,A3],Dst}|Acc]);
ndc_1([{test,bs_get_binary2=Op,F,[A1,Live,A3,A4,A5,Dst]}|Is], D, Acc) ->
    ndc_1(Is, D, [{test,Op,F,Live,[A1,A3,A4,A5],Dst}|Acc]);
ndc_1([{test,bs_get_float2=Op,F,[A1,Live,A3,A4,A5,Dst]}|Is], D, Acc) ->
    ndc_1(Is, D, [{test,Op,F,Live,[A1,A3,A4,A5],Dst}|Acc]);
ndc_1([{test,bs_get_integer2=Op,F,[A1,Live,A3,A4,A5,Dst]}|Is], D, Acc) ->
    ndc_1(Is, D, [{test,Op,F,Live,[A1,A3,A4,A5],Dst}|Acc]);
ndc_1([{test,bs_get_utf8=Op,F,[A1,Live,A3,Dst]}|Is], D, Acc) ->
    ndc_1(Is, D, [{test,Op,F,Live,[A1,A3],Dst}|Acc]);
ndc_1([{test,bs_get_utf16=Op,F,[A1,Live,A3,Dst]}|Is], D, Acc) ->
    ndc_1(Is, D, [{test,Op,F,Live,[A1,A3],Dst}|Acc]);
ndc_1([{test,bs_get_utf32=Op,F,[A1,Live,A3,Dst]}|Is], D, Acc) ->
    ndc_1(Is, D, [{test,Op,F,Live,[A1,A3],Dst}|Acc]);
ndc_1([I|Is], D, Acc) ->
    ndc_1(Is, D, [I|Acc]);
ndc_1([], _, Acc) ->
    reverse(Acc).