aboutsummaryrefslogblamecommitdiffstats
path: root/lib/crypto/doc/src/crypto.xml
blob: 42ba523c8cf61b22616120a385c80aff6ca3bbf9 (plain) (tree)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
















































































































































































































































































































































































































































































































































































































































































































































































































                                                                                                                                                                   
<?xml version="1.0" encoding="latin1" ?>
<!DOCTYPE erlref SYSTEM "erlref.dtd">

<erlref>
  <header>
    <copyright>
      <year>1999</year><year>2009</year>
      <holder>Ericsson AB. All Rights Reserved.</holder>
    </copyright>
    <legalnotice>
      The contents of this file are subject to the Erlang Public License,
      Version 1.1, (the "License"); you may not use this file except in
      compliance with the License. You should have received a copy of the
      Erlang Public License along with this software. If not, it can be
      retrieved online at http://www.erlang.org/.
    
      Software distributed under the License is distributed on an "AS IS"
      basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
      the License for the specific language governing rights and limitations
      under the License.
    
    </legalnotice>

    <title>crypto</title>
    <prepared>Peter H&ouml;gfeldt</prepared>
    <docno></docno>
    <date>2000-06-20</date>
    <rev>B</rev>
  </header>
  <module>crypto</module>
  <modulesummary>Crypto Functions</modulesummary>
  <description>
    <p>This module provides a set of cryptographic functions.
      </p>
    <p>References:</p>
    <list type="bulleted">
      <item>
        <p>md5: The MD5 Message Digest Algorithm (RFC 1321)</p>
      </item>
      <item>
        <p>sha: Secure Hash Standard (FIPS 180-2)</p>
      </item>
      <item>
        <p>hmac: Keyed-Hashing for Message Authentication (RFC 2104)</p>
      </item>
      <item>
        <p>des: Data Encryption Standard (FIPS 46-3)</p>
      </item>
      <item>
        <p>aes: Advanced Encryption Standard (AES) (FIPS 197) </p>
      </item>
      <item>
        <p>ecb, cbc, cfb, ofb: Recommendation for Block Cipher Modes
          of Operation (NIST SP 800-38A).</p>
      </item>
      <item>
        <p>rsa: Recommendation for Block Cipher Modes of Operation
          (NIST 800-38A)</p>
      </item>
      <item>
        <p>dss: Digital Signature Standard (FIPS 186-2)</p>
      </item>
    </list>
    <p>The above publications can be found at <url href="http://csrc.nist.gov/publications">NIST publications</url>, at <url href="http://www.ietf.org">IETF</url>.
      </p>
    <p><em>Types</em></p>
    <pre>
byte() = 0 ... 255
ioelem() = byte() | binary() | iolist()
iolist() = [ioelem()]
Mpint() = <![CDATA[<<ByteLen:32/integer-big, Bytes:ByteLen/binary>>]]>
    </pre>
    <p></p>
  </description>
  <funcs>
    <func>
      <name>start() -> ok</name>
      <fsummary>Start the crypto server.</fsummary>
      <desc>
        <p>Starts the crypto server.</p>
      </desc>
    </func>
    <func>
      <name>stop() -> ok</name>
      <fsummary>Stop the crypto server.</fsummary>
      <desc>
        <p>Stops the crypto server.</p>
      </desc>
    </func>
    <func>
      <name>info() -> [atom()]</name>
      <fsummary>Provide a list of available crypto functions.</fsummary>
      <desc>
        <p>Provides the available crypto functions in terms of a list
          of atoms.</p>
      </desc>
    </func>
    <func>
      <name>info_lib() -> [{Name,VerNum,VerStr}]</name>
      <fsummary>Provides information about the libraries used by crypto.</fsummary>
      <type>
        <v>Name = binary()</v>
        <v>VerNum = integer()</v>
        <v>VerStr = binary()</v>
      </type>
      <desc>
        <p>Provides the name and version of the libraries used by crypto.</p>
        <p><c>Name</c> is the name of the library. <c>VerNum</c> is
        the numeric version according to the library's own versioning
        scheme. <c>VerStr</c> contains a text variant of the version.</p>
        <pre>
> <input>info_lib().</input>
[{&lt;&lt;"OpenSSL"&gt;&gt;,9469983,&lt;&lt;"OpenSSL 0.9.8a 11 Oct 2005"&gt;&gt;}]
        </pre>
      </desc>
    </func>
    <func>
      <name>md5(Data) -> Digest</name>
      <fsummary>Compute an <c>MD5</c>message digest from <c>Data</c></fsummary>
      <type>
        <v>Data = iolist() | binary()</v>
        <v>Digest = binary()</v>
      </type>
      <desc>
        <p>Computes an <c>MD5</c> message digest from <c>Data</c>, where
          the length of the digest is 128 bits (16 bytes).</p>
      </desc>
    </func>
    <func>
      <name>md5_init() -> Context</name>
      <fsummary>Creates an MD5 context</fsummary>
      <type>
        <v>Context = binary()</v>
      </type>
      <desc>
        <p>Creates an MD5 context, to be used in subsequent calls to 
          <c>md5_update/2</c>.</p>
      </desc>
    </func>
    <func>
      <name>md5_update(Context, Data) -> NewContext</name>
      <fsummary>Update an MD5 <c>Context</c>with <c>Data</c>, and return a <c>NewContext</c></fsummary>
      <type>
        <v>Data = iolist() | binary()</v>
        <v>Context = NewContext = binary()</v>
      </type>
      <desc>
        <p>Updates an MD5 <c>Context</c> with <c>Data</c>, and returns
          a <c>NewContext</c>.</p>
      </desc>
    </func>
    <func>
      <name>md5_final(Context) -> Digest</name>
      <fsummary>Finish the update of an MD5 <c>Context</c>and return the computed <c>MD5</c>message digest</fsummary>
      <type>
        <v>Context = Digest = binary()</v>
      </type>
      <desc>
        <p>Finishes the update of an MD5 <c>Context</c> and returns
          the computed <c>MD5</c> message digest.</p>
      </desc>
    </func>
    <func>
      <name>sha(Data) -> Digest</name>
      <fsummary>Compute an <c>SHA</c>message digest from <c>Data</c></fsummary>
      <type>
        <v>Data = iolist() | binary()</v>
        <v>Digest = binary()</v>
      </type>
      <desc>
        <p>Computes an <c>SHA</c> message digest from <c>Data</c>, where
          the length of the digest is 160 bits (20 bytes).</p>
      </desc>
    </func>
    <func>
      <name>sha_init() -> Context</name>
      <fsummary>Create an SHA context</fsummary>
      <type>
        <v>Context = binary()</v>
      </type>
      <desc>
        <p>Creates an SHA context, to be used in subsequent calls to 
          <c>sha_update/2</c>.</p>
      </desc>
    </func>
    <func>
      <name>sha_update(Context, Data) -> NewContext</name>
      <fsummary>Update an SHA context</fsummary>
      <type>
        <v>Data = iolist() | binary()</v>
        <v>Context = NewContext = binary()</v>
      </type>
      <desc>
        <p>Updates an SHA <c>Context</c> with <c>Data</c>, and returns
          a <c>NewContext</c>.</p>
      </desc>
    </func>
    <func>
      <name>sha_final(Context) -> Digest</name>
      <fsummary>Finish the update of an SHA context</fsummary>
      <type>
        <v>Context = Digest = binary()</v>
      </type>
      <desc>
        <p>Finishes the update of an SHA <c>Context</c> and returns
          the computed <c>SHA</c> message digest.</p>
      </desc>
    </func>
    <func>
      <name>md5_mac(Key, Data) -> Mac</name>
      <fsummary>Compute an <c>MD5 MAC</c>message authentification code</fsummary>
      <type>
        <v>Key = Data = iolist() | binary()</v>
        <v>Mac = binary()</v>
      </type>
      <desc>
        <p>Computes an <c>MD5 MAC</c> message authentification code
          from <c>Key</c> and <c>Data</c>, where the the length of the
          Mac is 128 bits (16 bytes).</p>
      </desc>
    </func>
    <func>
      <name>md5_mac_96(Key, Data) -> Mac</name>
      <fsummary>Compute an <c>MD5 MAC</c>message authentification code</fsummary>
      <type>
        <v>Key = Data = iolist() | binary()</v>
        <v>Mac = binary()</v>
      </type>
      <desc>
        <p>Computes an <c>MD5 MAC</c> message authentification code
          from <c>Key</c> and <c>Data</c>, where the length of the Mac
          is 96 bits (12 bytes).</p>
      </desc>
    </func>
    <func>
      <name>sha_mac(Key, Data) -> Mac</name>
      <fsummary>Compute an <c>MD5 MAC</c>message authentification code</fsummary>
      <type>
        <v>Key = Data = iolist() | binary()</v>
        <v>Mac = binary()</v>
      </type>
      <desc>
        <p>Computes an <c>SHA MAC</c> message authentification code
          from <c>Key</c> and <c>Data</c>, where the length of the Mac
          is 160 bits (20 bytes).</p>
      </desc>
    </func>
    <func>
      <name>sha_mac_96(Key, Data) -> Mac</name>
      <fsummary>Compute an <c>MD5 MAC</c>message authentification code</fsummary>
      <type>
        <v>Key = Data = iolist() | binary()</v>
        <v>Mac = binary()</v>
      </type>
      <desc>
        <p>Computes an <c>SHA MAC</c> message authentification code
          from <c>Key</c> and <c>Data</c>, where the length of the Mac
          is 96 bits (12 bytes).</p>
      </desc>
    </func>
    <func>
      <name>des_cbc_encrypt(Key, IVec, Text) -> Cipher</name>
      <fsummary>Encrypt <c>Text</c>according to DES in CBC mode</fsummary>
      <type>
        <v>Key = Text = iolist() | binary()</v>
        <v>IVec = Cipher = binary()</v>
      </type>
      <desc>
        <p>Encrypts <c>Text</c> according to DES in CBC
          mode. <c>Text</c> must be a multiple of 64 bits (8
          bytes). <c>Key</c> is the DES key, and <c>IVec</c> is an
          arbitrary initializing vector. The lengths of <c>Key</c> and
          <c>IVec</c> must be 64 bits (8 bytes).</p>
      </desc>
    </func>
    <func>
      <name>des_cbc_decrypt(Key, IVec, Cipher) -> Text</name>
      <fsummary>Decrypt <c>Cipher</c>according to DES in CBC mode</fsummary>
      <type>
        <v>Key = Cipher = iolist() | binary()</v>
        <v>IVec = Text = binary()</v>
      </type>
      <desc>
        <p>Decrypts <c>Cipher</c> according to DES in CBC mode.
          <c>Key</c> is the DES key, and <c>IVec</c> is an arbitrary
          initializing vector.  <c>Key</c> and <c>IVec</c> must have
          the same values as those used when encrypting. <c>Cipher</c>
          must be a multiple of 64 bits (8 bytes).  The lengths of
          <c>Key</c> and <c>IVec</c> must be 64 bits (8 bytes).</p>
      </desc>
    </func>
    <func>
      <name>des_cbc_ivec(Data) -> IVec</name>
      <fsummary>Get <c>IVec</c> to be used in next iteration of
                <c>des_cbc_[ecrypt|decrypt]</c></fsummary>
      <type>
        <v>Data = iolist() | binary()</v>
        <v>IVec = binary()</v>
      </type>
      <desc>
        <p>Returns the <c>IVec</c> to be used in a next iteration of 
          <c>des_cbc_[encrypt|decrypt]</c>. <c>Data</c> is the encrypted
          data from the previous iteration step.</p>
      </desc>
    </func>
    <func>
      <name>des3_cbc_encrypt(Key1, Key2, Key3, IVec, Text) -> Cipher</name>
      <fsummary>Encrypt <c>Text</c>according to DES3 in CBC mode</fsummary>
      <type>
        <v>Key1 =Key2 = Key3 Text = iolist() | binary()</v>
        <v>IVec = Cipher = binary()</v>
      </type>
      <desc>
        <p>Encrypts <c>Text</c> according to DES3 in CBC
          mode. <c>Text</c> must be a multiple of 64 bits (8
          bytes). <c>Key1</c>, <c>Key2</c>, <c>Key3</c>, are the DES
          keys, and <c>IVec</c> is an arbitrary initializing
          vector. The lengths of each of <c>Key1</c>, <c>Key2</c>,
          <c>Key3</c> and <c>IVec</c> must be 64 bits (8 bytes).</p>
      </desc>
    </func>
    <func>
      <name>des3_cbc_decrypt(Key1, Key2, Key3, IVec, Cipher) -> Text</name>
      <fsummary>Decrypt <c>Cipher</c>according to DES in CBC mode</fsummary>
      <type>
        <v>Key1 = Key2 = Key3 = Cipher = iolist() | binary()</v>
        <v>IVec = Text = binary()</v>
      </type>
      <desc>
        <p>Decrypts <c>Cipher</c> according to DES3 in CBC mode.
          <c>Key1</c>, <c>Key2</c>, <c>Key3</c> are the DES key, and
          <c>IVec</c> is an arbitrary initializing vector.
          <c>Key1</c>, <c>Key2</c>, <c>Key3</c> and <c>IVec</c> must
          and <c>IVec</c> must have the same values as those used when
          encrypting. <c>Cipher</c> must be a multiple of 64 bits (8
          bytes).  The lengths of <c>Key1</c>, <c>Key2</c>,
          <c>Key3</c>, and <c>IVec</c> must be 64 bits (8 bytes).</p>
      </desc>
    </func>
    <func>
      <name>blowfish_cfb64_encrypt(Key, IVec, Text) -> Cipher</name>
      <fsummary>Encrypt <c>Text</c>using Blowfish in CFB mode with 64
        bit feedback</fsummary>
      <type>
        <v>Key = Text = iolist() | binary()</v>
        <v>IVec = Cipher = binary()</v>
      </type>
      <desc>
        <p>Encrypts <c>Text</c> using Blowfish in CFB mode with 64 bit
          feedback. <c>Key</c> is the Blowfish key, and <c>IVec</c> is an
          arbitrary initializing vector. The length of <c>IVec</c>
          must be 64 bits (8 bytes).</p>
      </desc>
    </func>
    <func>
      <name>blowfish_cfb64_decrypt(Key, IVec, Text) -> Cipher</name>
      <fsummary>Decrypt <c>Text</c>using Blowfish in CFB mode with 64
        bit feedback</fsummary>
      <type>
        <v>Key = Text = iolist() | binary()</v>
        <v>IVec = Cipher = binary()</v>
      </type>
      <desc>
        <p>Decrypts <c>Text</c> using Blowfish in CFB mode with 64 bit
          feedback. <c>Key</c> is the Blowfish key, and <c>IVec</c> is an
          arbitrary initializing vector. The length of <c>IVec</c>
          must be 64 bits (8 bytes).</p>
      </desc>
    </func>
    <func>
      <name>aes_cfb_128_encrypt(Key, IVec, Text) -> Cipher</name>
      <name>aes_cbc_128_encrypt(Key, IVec, Text) -> Cipher</name>
      <fsummary>Encrypt <c>Text</c>according to AES in Cipher Feedback  mode or Cipher Block Chaining mode</fsummary>
      <type>
        <v>Key = Text = iolist() | binary()</v>
        <v>IVec = Cipher = binary()</v>
      </type>
      <desc>
        <p>Encrypts <c>Text</c> according to AES in Cipher Feedback 
          mode (CFB) or Cipher Block Chaining mode (CBC). <c>Text</c>
          must be a multiple of 128 bits (16 bytes). <c>Key</c> is the
          AES key, and <c>IVec</c> is an arbitrary initializing vector.
          The lengths of <c>Key</c> and <c>IVec</c> must be 128 bits
          (16 bytes).</p>
      </desc>
    </func>
    <func>
      <name>aes_cfb_128_decrypt(Key, IVec, Cipher) -> Text</name>
      <name>aes_cbc_128_decrypt(Key, IVec, Cipher) -> Text</name>
      <fsummary>Decrypt <c>Cipher</c>according to AES in Cipher Feedback  mode or Cipher Block Chaining mode</fsummary>
      <type>
        <v>Key = Cipher = iolist() | binary()</v>
        <v>IVec = Text = binary()</v>
      </type>
      <desc>
        <p>Decrypts <c>Cipher</c> according to Cipher Feedback Mode (CFB)
          or Cipher Block Chaining mode (CBC).
          <c>Key</c> is the AES key, and <c>IVec</c> is an arbitrary
          initializing vector. <c>Key</c> and <c>IVec</c> must have
          the same values as those used when encrypting. <c>Cipher</c>
          must be a multiple of 128 bits (16 bytes).  The lengths of
          <c>Key</c> and <c>IVec</c> must be 128 bits (16 bytes).</p>
      </desc>
    </func>
    <func>
      <name>aes_cbc_ivec(Data) -> IVec</name>
      <fsummary>Get <c>IVec</c> to be used in next iteration of
                <c>aes_cbc_*_[ecrypt|decrypt]</c></fsummary>
      <type>
        <v>Data = iolist() | binary()</v>
        <v>IVec = binary()</v>
      </type>
      <desc>
        <p>Returns the <c>IVec</c> to be used in a next iteration of 
          <c>aes_cbc_*_[encrypt|decrypt]</c>. <c>Data</c> is the encrypted
          data from the previous iteration step.</p>
      </desc>
    </func>
    <func>
      <name>erlint(Mpint) -> N</name>
      <name>mpint(N) -> Mpint</name>
      <fsummary>Convert between binary multi-precision integer and erlang big integer</fsummary>
      <type>
        <v>Mpint = binary()</v>
        <v>N = integer()</v>
      </type>
      <desc>
        <p>Convert a binary multi-precision integer <c>Mpint</c> to and from
          an erlang big integer. A multi-precision integer is a binary
          with the following form:
          <c><![CDATA[<<ByteLen:32/integer, Bytes:ByteLen/binary>>]]></c> where both
          <c>ByteLen</c> and <c>Bytes</c> are big-endian. Mpints are used in
          some of the functions in <c>crypto</c> and are not translated
          in the API for performance reasons.</p>
      </desc>
    </func>
    <func>
      <name>rand_bytes(N) -> binary()</name>
      <fsummary>Generate a binary of random bytes</fsummary>
      <type>
        <v>N = integer()</v>
      </type>
      <desc>
        <p>Generates N bytes randomly uniform 0..255, and returns the
          result in a binary. Uses the <c>crypto</c> library pseudo-random
          number generator.</p>
      </desc>
    </func>
    <func>
      <name>rand_uniform(Lo, Hi) -> N</name>
      <fsummary>Generate a random number</fsummary>
      <type>
        <v>Lo, Hi, N = Mpint | integer()</v>
        <v>Mpint = binary()</v>
      </type>
      <desc>
        <p>Generate a random number <c><![CDATA[N, Lo =< N < Hi.]]></c> Uses the
          <c>crypto</c> library pseudo-random number generator. The
          arguments (and result) can be either erlang integers or binary
          multi-precision integers.</p>
      </desc>
    </func>
    <func>
      <name>mod_exp(N, P, M) -> Result</name>
      <fsummary>Perform N ^ P mod M</fsummary>
      <type>
        <v>N, P, M, Result = Mpint</v>
        <v>Mpint = binary()</v>
      </type>
      <desc>
        <p>This function performs the exponentiation <c>N ^ P mod M</c>,
          using the <c>crypto</c> library.</p>
      </desc>
    </func>

    <func>
      <name>rsa_sign(Data, Key) -> Signature</name>
      <name>rsa_sign(DigestType, Data, Key) -> Signature</name> 
      <fsummary>Sign the data using rsa with the given key.</fsummary>
      <type>
        <v>Data = Mpint</v>
        <v>Key = [E, N, D]</v>
        <v>E, N, D = Mpint</v>
        <d>Where <c>E</c> is the public exponent, <c>N</c> is public modulus and 
	  <c>D</c> is the private exponent.</d>
	<v>DigestType = md5 | sha</v>
	<d>The default <c>DigestType</c> is sha.</d>
        <v>Mpint = binary()</v>
        <v>Signature = binary()</v>
      </type>
      <desc>
        <p>Calculates a <c>DigestType</c> digest of the <c>Data</c>
	  and creates a RSA signature with the private key <c>Key</c>
	  of the digest.</p>
      </desc>
    </func>

    <func>
      <name>rsa_verify(Data, Signature, Key) -> Verified</name>
      <name>rsa_verify(DigestType, Data, Signature, Key) -> Verified </name> 
      <fsummary>Verify the digest and signature using rsa with given public key.</fsummary>
      <type>
        <v>Verified = boolean()</v>
        <v>Data, Signature = Mpint</v>
        <v>Key = [E, N]</v>
        <v>E, N = Mpint</v>
        <d>Where <c>E</c> is the public exponent and <c>N</c> is public modulus.</d>
	<v>DigestType = md5 | sha</v>
	<d> The default <c>DigestType</c> is sha.</d>
        <v>Mpint = binary()</v>
      </type>
      <desc>
        <p>Calculates a <c>DigestType</c> digest of the <c>Data</c>
          and verifies that the digest matches the RSA signature using the
          signer's public key <c>Key</c>.
	</p>
      </desc>
    </func>
    
    <func>
      <name>rsa_public_encrypt(PlainText, PublicKey, Padding) -> ChipherText</name> 
      <fsummary>Encrypts Msg using the public Key.</fsummary>
      <type>
	<v>PlainText = binary()</v>
	<v>PublicKey = [E, N]</v>
	<v>E, N = Mpint</v>	
	<d>Where <c>E</c> is the public exponent and <c>N</c> is public modulus.</d>
	<v>Padding = rsa_pkcs1_padding | rsa_pkcs1_oaep_padding | rsa_no_padding</v>
        <v>ChipherText = binary()</v>
      </type>
      <desc>
	<p>Encrypts the <c>PlainText</c> (usually a session key) using the <c>PublicKey</c>
	  and returns the cipher. The <c>Padding</c> decides what padding mode is used,
	  <c>rsa_pkcs1_padding</c> is PKCS #1 v1.5 currently the most
	  used mode and <c>rsa_pkcs1_oaep_padding</c> is EME-OAEP as
	  defined in PKCS #1 v2.0 with SHA-1, MGF1 and an empty encoding
	  parameter. This mode is recommended for all new applications.
	  The size of the <c>Msg</c> must be less
	  than <c>byte_size(N)-11</c> if
	  <c>rsa_pkcs1_padding</c> is used, <c>byte_size(N)-41</c> if 
	  <c>rsa_pkcs1_oaep_padding</c> is used and <c>byte_size(N)</c> if <c>rsa_no_padding</c> 
	  is used.
	  Where byte_size(N) is the size part of an <c>Mpint-1</c>.
	</p>
      </desc>
    </func>

    <func>
      <name>rsa_private_decrypt(ChipherText, PrivateKey, Padding) -> PlainText</name> 
      <fsummary>Decrypts ChipherText using the private Key.</fsummary>
      <type>
	<v>ChipherText = binary()</v>
	<v>PrivateKey = [E, N, D]</v>
	<v>E, N, D = Mpint</v>
	<d>Where <c>E</c> is the public exponent, <c>N</c> is public modulus  and 
	  <c>D</c> is the private exponent.</d>
	<v>Padding = rsa_pkcs1_padding | rsa_pkcs1_oaep_padding | rsa_no_padding</v>
        <v>PlainText = binary()</v>
      </type>
      <desc>
	<p>Decrypts the <c>ChipherText</c> (usually a session key encrypted with 
	  <seealso marker="#rsa_public_encrypt/3">rsa_public_encrypt/3</seealso>) 
	  using the <c>PrivateKey</c> and returns the
	  message. The <c>Padding</c> is the padding mode that was
	  used to encrypt the data, 
	  see <seealso marker="#rsa_public_encrypt/3">rsa_public_encrypt/3</seealso>.
	</p>
      </desc>
    </func>
    <func>
      <name>rsa_private_encrypt(PlainText, PrivateKey, Padding) -> ChipherText</name> 
      <fsummary>Encrypts Msg using the private Key.</fsummary>
      <type>
	<v>PlainText = binary()</v>
	<v>PrivateKey = [E, N, D]</v>
	<v>E, N, D = Mpint</v>	
	<d>Where <c>E</c> is the public exponent, <c>N</c> is public modulus and 
	  <c>D</c> is the private exponent.</d>
	<v>Padding = rsa_pkcs1_padding | rsa_no_padding</v>
        <v>ChipherText = binary()</v>
      </type>
      <desc>
	<p>Encrypts the <c>PlainText</c> using the <c>PrivateKey</c>
	  and returns the cipher. The <c>Padding</c> decides what padding mode is used,
	  <c>rsa_pkcs1_padding</c> is PKCS #1 v1.5 currently the most
	  used mode.
	  The size of the <c>Msg</c> must be less than <c>byte_size(N)-11</c> if
	  <c>rsa_pkcs1_padding</c> is used, and <c>byte_size(N)</c> if <c>rsa_no_padding</c> 
	  is used.  Where byte_size(N) is the size part of an <c>Mpint-1</c>.
	</p>
      </desc>
    </func>

    <func>
      <name>rsa_public_decrypt(ChipherText, PublicKey, Padding) -> PlainText</name> 
      <fsummary>Decrypts ChipherText using the public Key.</fsummary>
      <type>
	<v>ChipherText = binary()</v>
	<v>PublicKey = [E, N]</v>
	<v>E, N = Mpint</v>
	<d>Where <c>E</c> is the public exponent and <c>N</c> is public modulus</d>
	<v>Padding = rsa_pkcs1_padding | rsa_no_padding</v>
        <v>PlainText = binary()</v>
      </type>
      <desc>
	<p>Decrypts the <c>ChipherText</c> (encrypted with 
	  <seealso marker="#rsa_private_encrypt/3">rsa_private_encrypt/3</seealso>) 
	  using the <c>PrivateKey</c> and returns the
	  message. The <c>Padding</c> is the padding mode that was
	  used to encrypt the data, 
	  see <seealso marker="#rsa_private_encrypt/3">rsa_private_encrypt/3</seealso>.
	</p>
      </desc>
    </func>
      
    <func>
      <name>dss_sign(Data, Key) -> Signature</name>
      <fsummary>Sign the data using dsa with given private key.</fsummary>
      <type>
        <v>Digest = Mpint</v>
        <v>Key = [P, Q, G, X]</v>
        <v>P, Q, G, X = Mpint</v>
	<d> Where <c>P</c>, <c>Q</c> and <c>G</c> are the dss
	  parameters and <c>X</c> is the private key.</d>
        <v>Mpint = binary()</v>
        <v>Signature = binary()</v>
      </type>
      <desc>
        <p>Calculates the sha digest of the <c>Data</c>
	  and creates a DSS signature with the private key <c>Key</c>
	  of the digest.</p>
      </desc>
    </func>

    <func>
      <name>dss_verify(Data, Signature, Key) -> Verified</name>
      <fsummary>Verify the data and signature using dsa with given public key.</fsummary>
      <type>
        <v>Verified = boolean()</v>
        <v>Digest, Signature = Mpint</v>
        <v>Key = [P, Q, G, Y]</v>
        <v>P, Q, G, Y = Mpint</v>
	<d> Where <c>P</c>, <c>Q</c> and <c>G</c> are the dss
	  parameters and <c>Y</c> is the public key.</d>
        <v>Mpint = binary()</v>
      </type>
      <desc>
        <p>Calculates the sha digest of the <c>Data</c> and verifies that the
          digest matches the DSS signature using the public key <c>Key</c>.
	</p>
      </desc>
    </func>

    <func>
      <name>rc4_encrypt(Key, Data) -> Result</name>
      <fsummary>Encrypt data using RC4</fsummary>
      <type>
	<v>Key, Data = iolist() | binary()</v>
	<v>Result = binary()</v>
      </type>
      <desc>
	<p>Encrypts the data with RC4 symmetric stream encryption.
	  Since it is symmetric, the same function is used for
	  decryption.</p>
      </desc>
    </func>

    <func>
      <name>dh_generate_key(DHParams) -> {PublicKey,PrivateKey} </name>
      <name>dh_generate_key(PrivateKey, DHParams) -> {PublicKey,PrivateKey} </name>
      <fsummary>Generates a Diffie-Hellman public key</fsummary>
      <type>
	<v>DHParameters = [P, G]</v>
	<v>P, G = Mpint</v>
	<d> Where <c>P</c> is the shared prime number and <c>G</c> is the shared generator.</d>
	<v>PublicKey, PrivateKey = Mpint()</v>
      </type>
      <desc>
	<p>Generates a Diffie-Hellman <c>PublicKey</c> and <c>PrivateKey</c> (if not given).
	</p>
      </desc>
    </func>

    <func>
      <name>dh_compute_key(OthersPublicKey, MyPrivateKey, DHParams) -> SharedSecret</name>
      <fsummary>Computes the shared secret</fsummary>
      <type>
	<v>DHParameters = [P, G]</v>
	<v>P, G = Mpint</v>
	<d> Where <c>P</c> is the shared prime number and <c>G</c> is the shared generator.</d>
	<v>OthersPublicKey, MyPrivateKey = Mpint()</v>
	<v>SharedSecret = binary()</v>
      </type>
      <desc>
	<p>Computes the shared secret from the private key and the other party's public key.
	</p>
      </desc>
    </func>
   

    <func>
      <name>exor(Data1, Data2) -> Result</name>
      <fsummary>XOR data</fsummary>
      <type>
	<v>Data1, Data2 = iolist() | binary()</v>
	<v>Result = binary()</v>
      </type>
      <desc>
	<p>Performs bit-wise XOR (exclusive or) on the data supplied.</p>
      </desc>
    </func>
  </funcs>

  <section>
    <title>DES in CBC mode</title>
    <p>The Data Encryption Standard (DES) defines an algorithm for
      encrypting and decrypting an 8 byte quantity using an 8 byte key
      (actually only 56 bits of the key is used).
      </p>
    <p>When it comes to encrypting and decrypting blocks that are
      multiples of 8 bytes various modes are defined (NIST SP
      800-38A). One of those modes is the Cipher Block Chaining (CBC)
      mode, where the encryption of an 8 byte segment depend not only
      of the contents of the segment itself, but also on the result of
      encrypting the previous segment: the encryption of the previous
      segment becomes the initializing vector of the encryption of the
      current segment.
      </p>
    <p>Thus the encryption of every segment depends on the encryption
      key (which is secret) and the encryption of the previous
      segment, except the first segment which has to be provided with
      an initial initializing vector. That vector could be chosen at
      random, or be a counter of some kind. It does not have to be
      secret.
      </p>
    <p>The following example is drawn from the old FIPS 81 standard
      (replaced by NIST SP 800-38A), where both the plain text and the
      resulting cipher text is settled. The following code fragment
      returns `true'.
      </p>
    <pre><![CDATA[

      Key = <<16#01,16#23,16#45,16#67,16#89,16#ab,16#cd,16#ef>>,
      IVec = <<16#12,16#34,16#56,16#78,16#90,16#ab,16#cd,16#ef>>,
      P = "Now is the time for all ",
      C = crypto:des_cbc_encrypt(Key, IVec, P),
         % Which is the same as 
      P1 = "Now is t", P2 = "he time ", P3 = "for all ",
      C1 = crypto:des_cbc_encrypt(Key, IVec, P1),
      C2 = crypto:des_cbc_encrypt(Key, C1, P2),
      C3 = crypto:des_cbc_encrypt(Key, C2, P3),

      C = <<C1/binary, C2/binary, C3/binary>>,
      C = <<16#e5,16#c7,16#cd,16#de,16#87,16#2b,16#f2,16#7c,
             16#43,16#e9,16#34,16#00,16#8c,16#38,16#9c,16#0f,
             16#68,16#37,16#88,16#49,16#9a,16#7c,16#05,16#f6>>,
      <<"Now is the time for all ">> == 
                        crypto:des_cbc_decrypt(Key, IVec, C).
    ]]></pre>
    <p>The following is true for the DES CBC mode. For all
      decompositions <c>P1 ++ P2 = P</c> of a plain text message
      <c>P</c> (where the length of all quantities are multiples of 8
      bytes), the encryption <c>C</c> of <c>P</c> is equal to <c>C1 ++
      C2</c>, where <c>C1</c> is obtained by encrypting <c>P1</c> with
      <c>Key</c> and the initializing vector <c>IVec</c>, and where
      <c>C2</c> is obtained by encrypting <c>P2</c> with <c>Key</c>
      and the initializing vector <c>last8(C1)</c>,
      where <c>last(Binary)</c> denotes the last 8 bytes of the
      binary <c>Binary</c>.
      </p>
    <p>Similarly, for all decompositions <c>C1 ++ C2 = C</c> of a
      cipher text message <c>C</c> (where the length of all quantities
      are multiples of 8 bytes), the decryption <c>P</c> of <c>C</c>
      is equal to <c>P1 ++ P2</c>, where <c>P1</c> is obtained by
      decrypting <c>C1</c> with <c>Key</c> and the initializing vector
      <c>IVec</c>, and where <c>P2</c> is obtained by decrypting
      <c>C2</c> with <c>Key</c> and the initializing vector
      <c>last8(C1)</c>, where <c>last8(Binary)</c> is as above.
      </p>
    <p>For DES3 (which uses three 64 bit keys) the situation is the
      same.
    </p>
  </section>
</erlref>