diff options
author | Björn Gustavsson <[email protected]> | 2017-10-19 10:49:57 +0200 |
---|---|---|
committer | Björn Gustavsson <[email protected]> | 2017-10-27 08:49:00 +0200 |
commit | 758712d629475a2f34f8b48babcbae953381b915 (patch) | |
tree | 29386655c4c50cd5dffe13ffd396802d200b16c0 /lib/compiler/src/v3_codegen.erl | |
parent | db67b2c3d1198b2093cb9add3aa55c59bb368ab5 (diff) | |
download | otp-758712d629475a2f34f8b48babcbae953381b915.tar.gz otp-758712d629475a2f34f8b48babcbae953381b915.tar.bz2 otp-758712d629475a2f34f8b48babcbae953381b915.zip |
Eliminate the v3_life pass
The v3_life pass does not do enough to be worth being its own
pass. Essentially it does two things:
* Calculates life-time information starting from the annotations
that v3_kernel provides. That part can be moved into v3_codegen.
* Rewrites the Kernel Erlang records to similar plain tuples
(for example, #k_cons{hd=Hd,tl=Tl} is rewritten to {cons,Hd,Tl}).
That rewriting is not needed and can be eliminated.
Diffstat (limited to 'lib/compiler/src/v3_codegen.erl')
-rw-r--r-- | lib/compiler/src/v3_codegen.erl | 1042 |
1 files changed, 718 insertions, 324 deletions
diff --git a/lib/compiler/src/v3_codegen.erl b/lib/compiler/src/v3_codegen.erl index ee5bafbc5c..006a6a82d2 100644 --- a/lib/compiler/src/v3_codegen.erl +++ b/lib/compiler/src/v3_codegen.erl @@ -19,25 +19,6 @@ %% %% Purpose : Code generator for Beam. -%% The following assumptions have been made: -%% -%% 1. Matches, i.e. things with {match,M,Ret} wrappers, only return -%% values; no variables are exported. If the match would have returned -%% extra variables then these have been transformed to multiple return -%% values. -%% -%% 2. All BIF's called in guards are gc-safe so there is no need to -%% put thing on the stack in the guard. While this would in principle -%% work it would be difficult to keep track of the stack depth when -%% trimming. -%% -%% The code generation uses variable lifetime information added by -%% the v3_life module to save variables, allocate registers and -%% move registers to the stack when necessary. -%% -%% We try to use a consistent variable name scheme throughout. The -%% StackReg record is always called Bef,Int<n>,Aft. - -module(v3_codegen). %% The main interface. @@ -45,12 +26,14 @@ -import(lists, [member/2,keymember/3,keysort/2,keydelete/3, append/1,flatmap/2,filter/2,foldl/3,foldr/3,mapfoldl/3, - sort/1,reverse/1,reverse/2]). --import(v3_life, [vdb_find/2]). + sort/1,reverse/1,reverse/2,map/2]). +-import(ordsets, [add_element/2,intersection/2,union/2]). -%%-compile([export_all]). +-include("v3_kernel.hrl"). --include("v3_life.hrl"). +%% These are not defined in v3_kernel.hrl. +get_kanno(Kthing) -> element(2, Kthing). +set_kanno(Kthing, Anno) -> setelement(2, Kthing, Anno). %% Main codegen structure. -record(cg, {lcount=1, %Label counter @@ -61,38 +44,273 @@ functable=#{}, %Map of local functions: {Name,Arity}=>Label in_catch=false, %Inside a catch or not. need_frame, %Need a stack frame. - ultimate_failure %Label for ultimate match failure. - }). + ultimate_failure, %Label for ultimate match failure. + ctx %Match context. + }). %% Stack/register state record. -record(sr, {reg=[], %Register table stk=[], %Stack table res=[]}). %Reserved regs: [{reserved,I,V}] --type life_module() :: {module(),_,_,[_]}. +%% Internal records. +-record(cg_need_heap, {anno=[] :: term(), + h=0 :: integer()}). +-record(cg_block, {anno=[] :: term(), + es=[] :: [term()]}). + +-type vdb_entry() :: {atom(),non_neg_integer(),non_neg_integer()}. + +-record(l, {i=0 :: non_neg_integer(), %Op number + vdb=[] :: [vdb_entry()], %Variable database + a=[] :: [term()]}). %Core annotation --spec module(life_module(), [compile:option()]) -> {'ok',beam_asm:module_code()}. +-spec module(#k_mdef{}, [compile:option()]) -> {'ok',beam_asm:module_code()}. -module({Mod,Exp,Attr,Forms}, _Options) -> - {Fs,St} = functions(Forms, {atom,Mod}), - {ok,{Mod,Exp,Attr,Fs,St#cg.lcount}}. +module(#k_mdef{name=Mod,exports=Es,attributes=Attr,body=Forms}, _Opts) -> + {Asm,St} = functions(Forms, {atom,Mod}), + {ok,{Mod,Es,Attr,Asm,St#cg.lcount}}. functions(Forms, AtomMod) -> mapfoldl(fun (F, St) -> function(F, AtomMod, St) end, #cg{lcount=1}, Forms). -function({function,Name,Arity,Asm0,Vb,Vdb,Anno}, AtomMod, St0) -> +function(#k_fdef{anno=#k{a=Anno},func=Name,arity=Arity, + vars=As,body=Kb}, AtomMod, St0) -> try - {Asm,EntryLabel,St} = cg_fun(Vb, Asm0, Vdb, AtomMod, - {Name,Arity}, Anno, St0), - Func = {function,Name,Arity,EntryLabel,Asm}, - {Func,St} + %% Annotate kernel records with variable usage. + #k_match{} = Kb, %Assertion. + Vdb0 = init_vars(As), + {Body,_,Vdb} = body(Kb, 1, Vdb0), + + %% Generate the BEAM assembly code. + {Asm,EntryLabel,St} = cg_fun(Body, As, Vdb, AtomMod, + {Name,Arity}, Anno, St0), + Func = {function,Name,Arity,EntryLabel,Asm}, + {Func,St} catch - Class:Error -> - Stack = erlang:get_stacktrace(), - io:fwrite("Function: ~w/~w\n", [Name,Arity]), - erlang:raise(Class, Error, Stack) + Class:Error -> + Stack = erlang:get_stacktrace(), + io:fwrite("Function: ~w/~w\n", [Name,Arity]), + erlang:raise(Class, Error, Stack) end. +%% This pass creates beam format annotated with variable lifetime +%% information. Each thing is given an index and for each variable we +%% store the first and last index for its occurrence. The variable +%% database, VDB, attached to each thing is only relevant internally +%% for that thing. +%% +%% For nested things like matches the numbering continues locally and +%% the VDB for that thing refers to the variable usage within that +%% thing. Variables which live through a such a thing are internally +%% given a very large last index. Internally the indexes continue +%% after the index of that thing. This creates no problems as the +%% internal variable info never escapes and externally we only see +%% variable which are alive both before or after. +%% +%% This means that variables never "escape" from a thing and the only +%% way to get values from a thing is to "return" them, with 'break' or +%% 'return'. Externally these values become the return values of the +%% thing. This is no real limitation as most nested things have +%% multiple threads so working out a common best variable usage is +%% difficult. + +%% body(Kbody, I, Vdb) -> {[Expr],MaxI,Vdb}. +%% Handle a body. + +body(#k_seq{arg=Ke,body=Kb}, I, Vdb0) -> + %%ok = io:fwrite("life ~w:~p~n", [?LINE,{Ke,I,Vdb0}]), + A = get_kanno(Ke), + Vdb1 = use_vars(union(A#k.us, A#k.ns), I, Vdb0), + {Es,MaxI,Vdb2} = body(Kb, I+1, Vdb1), + E = expr(Ke, I, Vdb2), + {[E|Es],MaxI,Vdb2}; +body(Ke, I, Vdb0) -> + %%ok = io:fwrite("life ~w:~p~n", [?LINE,{Ke,I,Vdb0}]), + A = get_kanno(Ke), + Vdb1 = use_vars(union(A#k.us, A#k.ns), I, Vdb0), + E = expr(Ke, I, Vdb1), + {[E],I,Vdb1}. + +%% expr(Kexpr, I, Vdb) -> Expr. + +expr(#k_test{anno=A}=Test, I, _Vdb) -> + Test#k_test{anno=#l{i=I,a=A#k.a}}; +expr(#k_call{anno=A}=Call, I, _Vdb) -> + Call#k_call{anno=#l{i=I,a=A#k.a}}; +expr(#k_enter{anno=A}=Enter, I, _Vdb) -> + Enter#k_enter{anno=#l{i=I,a=A#k.a}}; +expr(#k_bif{anno=A}=Bif, I, _Vdb) -> + Bif#k_bif{anno=#l{i=I,a=A#k.a}}; +expr(#k_match{anno=A,body=Kb,ret=Rs}, I, Vdb) -> + %% Work out imported variables which need to be locked. + Mdb = vdb_sub(I, I+1, Vdb), + M = match(Kb, A#k.us, I+1, Mdb), + L = #l{i=I,vdb=use_vars(A#k.us, I+1, Mdb),a=A#k.a}, + #k_match{anno=L,body=M,ret=Rs}; +expr(#k_guard_match{anno=A,body=Kb,ret=Rs}, I, Vdb) -> + %% Work out imported variables which need to be locked. + Mdb = vdb_sub(I, I+1, Vdb), + M = match(Kb, A#k.us, I+1, Mdb), + L = #l{i=I,vdb=use_vars(A#k.us, I+1, Mdb),a=A#k.a}, + #k_guard_match{anno=L,body=M,ret=Rs}; +expr(#k_protected{}=Protected, I, Vdb) -> + protected(Protected, I, Vdb); +expr(#k_try{anno=A,arg=Ka,vars=Vs,body=Kb,evars=Evs,handler=Kh}=Try, I, Vdb) -> + %% Lock variables that are alive before the catch and used afterwards. + %% Don't lock variables that are only used inside the try. + Tdb0 = vdb_sub(I, I+1, Vdb), + %% This is the tricky bit. Lock variables in Arg that are used in + %% the body and handler. Add try tag 'variable'. + Ab = get_kanno(Kb), + Ah = get_kanno(Kh), + Tdb1 = use_vars(union(Ab#k.us, Ah#k.us), I+3, Tdb0), + Tdb2 = vdb_sub(I, I+2, Tdb1), + Vnames = fun (Kvar) -> Kvar#k_var.name end, %Get the variable names + {Aes,_,Adb} = body(Ka, I+2, add_var({catch_tag,I+1}, I+1, locked, Tdb2)), + {Bes,_,Bdb} = body(Kb, I+4, new_vars(sort(map(Vnames, Vs)), I+3, Tdb2)), + {Hes,_,Hdb} = body(Kh, I+4, new_vars(sort(map(Vnames, Evs)), I+3, Tdb2)), + L = #l{i=I,vdb=Tdb1,a=A#k.a}, + Try#k_try{anno=L, + arg=#cg_block{es=Aes,anno=#l{i=I+1,vdb=Adb,a=[]}}, + vars=Vs,body=#cg_block{es=Bes,anno=#l{i=I+3,vdb=Bdb,a=[]}}, + evars=Evs,handler=#cg_block{es=Hes,anno=#l{i=I+3,vdb=Hdb,a=[]}}}; +expr(#k_try_enter{anno=A,arg=Ka,vars=Vs,body=Kb,evars=Evs,handler=Kh}, I, Vdb) -> + %% Lock variables that are alive before the catch and used afterwards. + %% Don't lock variables that are only used inside the try. + Tdb0 = vdb_sub(I, I+1, Vdb), + %% This is the tricky bit. Lock variables in Arg that are used in + %% the body and handler. Add try tag 'variable'. + Ab = get_kanno(Kb), + Ah = get_kanno(Kh), + Tdb1 = use_vars(union(Ab#k.us, Ah#k.us), I+3, Tdb0), + Tdb2 = vdb_sub(I, I+2, Tdb1), + Vnames = fun (Kvar) -> Kvar#k_var.name end, %Get the variable names + {Aes,_,Adb} = body(Ka, I+2, add_var({catch_tag,I+1}, I+1, 1000000, Tdb2)), + {Bes,_,Bdb} = body(Kb, I+4, new_vars(sort(map(Vnames, Vs)), I+3, Tdb2)), + {Hes,_,Hdb} = body(Kh, I+4, new_vars(sort(map(Vnames, Evs)), I+3, Tdb2)), + L = #l{i=I,vdb=Tdb1,a=A#k.a}, + #k_try_enter{anno=L, + arg=#cg_block{es=Aes,anno=#l{i=I+1,vdb=Adb,a=[]}}, + vars=Vs,body=#cg_block{es=Bes,anno=#l{i=I+3,vdb=Bdb,a=[]}}, + evars=Evs,handler=#cg_block{es=Hes,anno=#l{i=I+3,vdb=Hdb,a=[]}}}; +expr(#k_catch{anno=A,body=Kb}=Catch, I, Vdb) -> + %% Lock variables that are alive before the catch and used afterwards. + %% Don't lock variables that are only used inside the catch. + %% Add catch tag 'variable'. + Cdb0 = vdb_sub(I, I+1, Vdb), + {Es,_,Cdb1} = body(Kb, I+1, add_var({catch_tag,I}, I, locked, Cdb0)), + L = #l{i=I,vdb=Cdb1,a=A#k.a}, + Catch#k_catch{anno=L,body=#cg_block{es=Es}}; +expr(#k_receive{anno=A,var=V,body=Kb,action=Ka}=Recv, I, Vdb) -> + %% Work out imported variables which need to be locked. + Rdb = vdb_sub(I, I+1, Vdb), + M = match(Kb, add_element(V#k_var.name, A#k.us), I+1, + new_vars([V#k_var.name], I, Rdb)), + {Tes,_,Adb} = body(Ka, I+1, Rdb), + Le = #l{i=I,vdb=use_vars(A#k.us, I+1, Vdb),a=A#k.a}, + Recv#k_receive{anno=Le,body=M, + action=#cg_block{anno=#l{i=I+1,vdb=Adb,a=[]},es=Tes}}; +expr(#k_receive_accept{anno=A}, I, _Vdb) -> + #k_receive_accept{anno=#l{i=I,a=A#k.a}}; +expr(#k_receive_next{anno=A}, I, _Vdb) -> + #k_receive_next{anno=#l{i=I,a=A#k.a}}; +expr(#k_put{anno=A}=Put, I, _Vdb) -> + Put#k_put{anno=#l{i=I,a=A#k.a}}; +expr(#k_break{anno=A}=Break, I, _Vdb) -> + Break#k_break{anno=#l{i=I,a=A#k.a}}; +expr(#k_guard_break{anno=A}=Break, I, Vdb) -> + Locked = [V || {V,_,_} <- Vdb], + L = #l{i=I,a=A#k.a}, + Break#k_guard_break{anno=L,locked=Locked}; +expr(#k_return{anno=A}=Ret, I, _Vdb) -> + Ret#k_return{anno=#l{i=I,a=A#k.a}}. + +%% protected(Kprotected, I, Vdb) -> Protected. +%% Only used in guards. + +protected(#k_protected{anno=A,arg=Ts}=Prot, I, Vdb) -> + %% Lock variables that are alive before try and used afterwards. + %% Don't lock variables that are only used inside the protected + %% expression. + Pdb0 = vdb_sub(I, I+1, Vdb), + {T,MaxI,Pdb1} = body(Ts, I+1, Pdb0), + Pdb2 = use_vars(A#k.ns, MaxI+1, Pdb1), %Save "return" values + Prot#k_protected{arg=T,anno=#l{i=I,a=A#k.a,vdb=Pdb2}}. + +%% match(Kexpr, [LockVar], I, Vdb) -> Expr. +%% Convert match tree to old format. + +match(#k_alt{anno=A,first=Kf,then=Kt}, Ls, I, Vdb0) -> + Vdb1 = use_vars(union(A#k.us, Ls), I, Vdb0), + F = match(Kf, Ls, I+1, Vdb1), + T = match(Kt, Ls, I+1, Vdb1), + #k_alt{anno=[],first=F,then=T}; +match(#k_select{anno=A,var=V,types=Kts}=Select, Ls0, I, Vdb0) -> + Vanno = get_kanno(V), + Ls1 = case member(no_usage, Vanno) of + false -> add_element(V#k_var.name, Ls0); + true -> Ls0 + end, + Vdb1 = use_vars(union(A#k.us, Ls1), I, Vdb0), + Ts = [type_clause(Tc, Ls1, I+1, Vdb1) || Tc <- Kts], + Select#k_select{anno=[],types=Ts}; +match(#k_guard{anno=A,clauses=Kcs}, Ls, I, Vdb0) -> + Vdb1 = use_vars(union(A#k.us, Ls), I, Vdb0), + Cs = [guard_clause(G, Ls, I+1, Vdb1) || G <- Kcs], + #k_guard{anno=[],clauses=Cs}; +match(Other, Ls, I, Vdb0) -> + Vdb1 = use_vars(Ls, I, Vdb0), + {B,_,Vdb2} = body(Other, I+1, Vdb1), + Le = #l{i=I,vdb=Vdb2,a=[]}, + #cg_block{anno=Le,es=B}. + +type_clause(#k_type_clause{anno=A,type=T,values=Kvs}, Ls, I, Vdb0) -> + %%ok = io:format("life ~w: ~p~n", [?LINE,{T,Kvs}]), + Vdb1 = use_vars(union(A#k.us, Ls), I+1, Vdb0), + Vs = [val_clause(Vc, Ls, I+1, Vdb1) || Vc <- Kvs], + #k_type_clause{anno=[],type=T,values=Vs}. + +val_clause(#k_val_clause{anno=A,val=V,body=Kb}, Ls0, I, Vdb0) -> + New = (get_kanno(V))#k.ns, + Bus = (get_kanno(Kb))#k.us, + %%ok = io:format("Ls0 = ~p, Used=~p\n New=~p, Bus=~p\n", [Ls0,Used,New,Bus]), + Ls1 = union(intersection(New, Bus), Ls0), %Lock for safety + Vdb1 = use_vars(union(A#k.us, Ls1), I+1, new_vars(New, I, Vdb0)), + B = match(Kb, Ls1, I+1, Vdb1), + Le = #l{i=I,vdb=use_vars(Bus, I+1, Vdb1),a=A#k.a}, + #k_val_clause{anno=Le,val=V,body=B}. + +guard_clause(#k_guard_clause{anno=A,guard=Kg,body=Kb}, Ls, I, Vdb0) -> + Vdb1 = use_vars(union(A#k.us, Ls), I+2, Vdb0), + Gdb = vdb_sub(I+1, I+2, Vdb1), + G = protected(Kg, I+1, Gdb), + B = match(Kb, Ls, I+2, Vdb1), + Le = #l{i=I,vdb=use_vars((get_kanno(Kg))#k.us, I+2, Vdb1),a=A#k.a}, + #k_guard_clause{anno=Le,guard=G,body=B}. + + +%% Here follows the code generator pass. +%% +%% The following assumptions have been made: +%% +%% 1. Matches, i.e. things with {match,M,Ret} wrappers, only return +%% values; no variables are exported. If the match would have returned +%% extra variables then these have been transformed to multiple return +%% values. +%% +%% 2. All BIF's called in guards are gc-safe so there is no need to +%% put thing on the stack in the guard. While this would in principle +%% work it would be difficult to keep track of the stack depth when +%% trimming. +%% +%% The code generation uses variable lifetime information added by +%% the previous pass to save variables, allocate registers and +%% move registers to the stack when necessary. +%% +%% We try to use a consistent variable name scheme throughout. The +%% StackReg record is always called Bef,Int<n>,Aft. + %% cg_fun([Lkexpr], [HeadVar], Vdb, State) -> {[Ainstr],State} cg_fun(Les, Hvs, Vdb, AtomMod, NameArity, Anno, St0) -> @@ -114,14 +332,14 @@ cg_fun(Les, Hvs, Vdb, AtomMod, NameArity, Anno, St0) -> %% Note that and 'if_end' instruction does not need any %% live x registers, so it will always be safe to jump to %% it. (We never ever expect the jump to be taken, and in - %% must functions there will never be any references to + %% most functions there will never be any references to %% the label in the first place.) %% {UltimateMatchFail,St3} = new_label(St2), %% Create initial stack/register state, clear unused arguments. - Bef = clear_dead(#sr{reg=foldl(fun ({var,V}, Reg) -> + Bef = clear_dead(#sr{reg=foldl(fun (#k_var{name=V}, Reg) -> put_reg(V, Reg) end, [], Hvs), stk=[]}, 0, Vdb), @@ -136,45 +354,43 @@ cg_fun(Les, Hvs, Vdb, AtomMod, NameArity, Anno, St0) -> %% cg(Lkexpr, Vdb, StackReg, State) -> {[Ainstr],StackReg,State}. %% Generate code for a kexpr. -%% Split function into two steps for clarity, not efficiency. -cg(Le, Vdb, Bef, St) -> - cg(Le#l.ke, Le, Vdb, Bef, St). - -cg({block,Es}, Le, Vdb, Bef, St) -> +cg(#cg_block{anno=Le,es=Es}, Vdb, Bef, St) -> block_cg(Es, Le, Vdb, Bef, St); -cg({match,M,Rs}, Le, Vdb, Bef, St) -> +cg(#k_match{anno=Le,body=M,ret=Rs}, Vdb, Bef, St) -> match_cg(M, Rs, Le, Vdb, Bef, St); -cg({guard_match,M,Rs}, Le, Vdb, Bef, St) -> +cg(#k_guard_match{anno=Le,body=M,ret=Rs}, Vdb, Bef, St) -> guard_match_cg(M, Rs, Le, Vdb, Bef, St); -cg({call,Func,As,Rs}, Le, Vdb, Bef, St) -> +cg(#k_call{anno=Le,op=Func,args=As,ret=Rs}, Vdb, Bef, St) -> call_cg(Func, As, Rs, Le, Vdb, Bef, St); -cg({enter,Func,As}, Le, Vdb, Bef, St) -> +cg(#k_enter{anno=Le,op=Func,args=As}, Vdb, Bef, St) -> enter_cg(Func, As, Le, Vdb, Bef, St); -cg({bif,Bif,As,Rs}, Le, Vdb, Bef, St) -> - bif_cg(Bif, As, Rs, Le, Vdb, Bef, St); -cg({gc_bif,Bif,As,Rs}, Le, Vdb, Bef, St) -> - gc_bif_cg(Bif, As, Rs, Le, Vdb, Bef, St); -cg({internal,Bif,As,Rs}, Le, Vdb, Bef, St) -> - internal_cg(Bif, As, Rs, Le, Vdb, Bef, St); -cg({receive_loop,Te,Rvar,Rm,Tes,Rs}, Le, Vdb, Bef, St) -> +cg(#k_bif{anno=Le}=Bif, Vdb, Bef, St) -> + bif_cg(Bif, Le, Vdb, Bef, St); +cg(#k_receive{anno=Le,timeout=Te,var=Rvar,body=Rm,action=Tes,ret=Rs}, + Vdb, Bef, St) -> recv_loop_cg(Te, Rvar, Rm, Tes, Rs, Le, Vdb, Bef, St); -cg(receive_next, Le, Vdb, Bef, St) -> +cg(#k_receive_next{anno=Le}, Vdb, Bef, St) -> recv_next_cg(Le, Vdb, Bef, St); -cg(receive_accept, _Le, _Vdb, Bef, St) -> {[remove_message],Bef,St}; -cg({'try',Ta,Vs,Tb,Evs,Th,Rs}, Le, Vdb, Bef, St) -> +cg(#k_receive_accept{}, _Vdb, Bef, St) -> + {[remove_message],Bef,St}; +cg(#k_try{anno=Le,arg=Ta,vars=Vs,body=Tb,evars=Evs,handler=Th,ret=Rs}, + Vdb, Bef, St) -> try_cg(Ta, Vs, Tb, Evs, Th, Rs, Le, Vdb, Bef, St); -cg({try_enter,Ta,Vs,Tb,Evs,Th}, Le, Vdb, Bef, St) -> +cg(#k_try_enter{anno=Le,arg=Ta,vars=Vs,body=Tb,evars=Evs,handler=Th}, + Vdb, Bef, St) -> try_enter_cg(Ta, Vs, Tb, Evs, Th, Le, Vdb, Bef, St); -cg({'catch',Cb,R}, Le, Vdb, Bef, St) -> +cg(#k_catch{anno=Le,body=Cb,ret=[R]}, Vdb, Bef, St) -> catch_cg(Cb, R, Le, Vdb, Bef, St); -cg({set,Var,Con}, Le, Vdb, Bef, St) -> - set_cg(Var, Con, Le, Vdb, Bef, St); -cg({return,Rs}, Le, Vdb, Bef, St) -> return_cg(Rs, Le, Vdb, Bef, St); -cg({break,Bs}, Le, Vdb, Bef, St) -> break_cg(Bs, Le, Vdb, Bef, St); -cg({guard_break,Bs,N}, Le, Vdb, Bef, St) -> +cg(#k_put{anno=Le,arg=Con,ret=Var}, Vdb, Bef, St) -> + put_cg(Var, Con, Le, Vdb, Bef, St); +cg(#k_return{anno=Le,args=Rs}, Vdb, Bef, St) -> + return_cg(Rs, Le, Vdb, Bef, St); +cg(#k_break{anno=Le,args=Bs}, Vdb, Bef, St) -> + break_cg(Bs, Le, Vdb, Bef, St); +cg(#k_guard_break{anno=Le,args=Bs,locked=N}, Vdb, Bef, St) -> guard_break_cg(Bs, N, Le, Vdb, Bef, St); -cg({need_heap,H}, _Le, _Vdb, Bef, St) -> +cg(#cg_need_heap{h=H}, _Vdb, Bef, St) -> {[{test_heap,H,max_reg(Bef#sr.reg)}],Bef,St}. %% cg_list([Kexpr], FirstI, Vdb, StackReg, St) -> {[Ainstr],StackReg,St}. @@ -191,11 +407,11 @@ cg_list(Kes, I, Vdb, Bef, St0) -> %% Insert need_heap instructions in Kexpr list. Try to be smart and %% collect them together as much as possible. -need_heap(Kes0, I) -> +need_heap(Kes0, _I) -> {Kes,H} = need_heap_0(reverse(Kes0), 0, []), %% Prepend need_heap if necessary. - need_heap_need(I, H) ++ Kes. + need_heap_need(H) ++ Kes. need_heap_0([Ke|Kes], H0, Acc) -> {Ns,H} = need_heap_1(Ke, H0), @@ -203,27 +419,54 @@ need_heap_0([Ke|Kes], H0, Acc) -> need_heap_0([], H, Acc) -> {Acc,H}. -need_heap_1(#l{ke={set,_,{binary,_}},i=I}, H) -> - {need_heap_need(I, H),0}; -need_heap_1(#l{ke={set,_,{map,_,_,_}},i=I}, H) -> - {need_heap_need(I, H),0}; -need_heap_1(#l{ke={set,_,Val}}, H) -> +need_heap_1(#k_put{arg=#k_binary{}}, H) -> + {need_heap_need(H),0}; +need_heap_1(#k_put{arg=#k_map{}}, H) -> + {need_heap_need(H),0}; +need_heap_1(#k_put{arg=Val}, H) -> %% Just pass through adding to needed heap. {[],H + case Val of - {cons,_} -> 2; - {tuple,Es} -> 1 + length(Es); + #k_cons{} -> 2; + #k_tuple{es=Es} -> 1 + length(Es); _Other -> 0 end}; -need_heap_1(#l{ke={bif,_Bif,_As,_Rs}}, H) -> - {[],H}; -need_heap_1(#l{i=I}, H) -> +need_heap_1(#k_bif{}=Bif, H) -> + case is_gc_bif(Bif) of + false -> + {[],H}; + true -> + {need_heap_need(H),0} + end; +need_heap_1(_Ke, H) -> %% Call or call-like instruction such as set_tuple_element/3. - {need_heap_need(I, H),0}. - -need_heap_need(_I, 0) -> []; -need_heap_need(I, H) -> [#l{ke={need_heap,H},i=I}]. - -%% match_cg(Match, [Ret], Le, Vdb, StackReg, State) -> + {need_heap_need(H),0}. + +need_heap_need(0) -> []; +need_heap_need(H) -> [#cg_need_heap{h=H}]. + +%% is_gc_bif(#k_bif{}) -> true|false. +%% is_gc_bif(Name, Arity) -> true|false. +%% Determines whether the BIF Name/Arity might do a GC. + +is_gc_bif(#k_bif{op=#k_remote{name=#k_atom{val=Name}},args=Args}) -> + is_gc_bif(Name, length(Args)); +is_gc_bif(#k_bif{op=#k_internal{}}) -> + true. + +is_gc_bif(hd, 1) -> false; +is_gc_bif(tl, 1) -> false; +is_gc_bif(self, 0) -> false; +is_gc_bif(node, 0) -> false; +is_gc_bif(node, 1) -> false; +is_gc_bif(element, 2) -> false; +is_gc_bif(get, 1) -> false; +is_gc_bif(tuple_size, 1) -> false; +is_gc_bif(Bif, Arity) -> + not (erl_internal:bool_op(Bif, Arity) orelse + erl_internal:new_type_test(Bif, Arity) orelse + erl_internal:comp_op(Bif, Arity)). + +%% match_cg(Matc, [Ret], Le, Vdb, StackReg, State) -> %% {[Ainstr],StackReg,State}. %% Generate code for a match. First save all variables on the stack %% that are to survive after the match. We leave saved variables in @@ -252,7 +495,7 @@ guard_match_cg(M, Rs, Le, Vdb, Bef, St0) -> clear_dead(Aft#sr{reg=Reg}, I, Vdb), St2#cg{break=St1#cg.break}}. -guard_match_regs([{I,gbreakvar}|Rs], [{var,V}|Vs]) -> +guard_match_regs([{I,gbreakvar}|Rs], [#k_var{name=V}|Vs]) -> [{I,V}|guard_match_regs(Rs, Vs)]; guard_match_regs([R|Rs], Vs) -> [R|guard_match_regs(Rs, Vs)]; @@ -264,17 +507,14 @@ guard_match_regs([], []) -> []. %% down as each level which uses this takes its own internal Vdb not %% the outer one. -match_cg(Le, Fail, Bef, St) -> - match_cg(Le#l.ke, Le, Fail, Bef, St). - -match_cg({alt,F,S}, _Le, Fail, Bef, St0) -> +match_cg(#k_alt{first=F,then=S}, Fail, Bef, St0) -> {Tf,St1} = new_label(St0), {Fis,Faft,St2} = match_cg(F, Tf, Bef, St1), {Sis,Saft,St3} = match_cg(S, Fail, Bef, St2), Aft = sr_merge(Faft, Saft), {Fis ++ [{label,Tf}] ++ Sis,Aft,St3}; -match_cg({select,{var,Vname}=V,Scs0}, #l{a=Anno}, Fail, Bef, St) -> - ReuseForContext = member(reuse_for_context, Anno) andalso +match_cg(#k_select{var=#k_var{anno=Vanno,name=Vname}=V,types=Scs0}, Fail, Bef, St) -> + ReuseForContext = member(reuse_for_context, Vanno) andalso find_reg(Vname, Bef#sr.reg) =/= error, Scs = case ReuseForContext of false -> Scs0; @@ -283,10 +523,10 @@ match_cg({select,{var,Vname}=V,Scs0}, #l{a=Anno}, Fail, Bef, St) -> match_fmf(fun (S, F, Sta) -> select_cg(S, V, F, Fail, Bef, Sta) end, Fail, St, Scs); -match_cg({guard,Gcs}, _Le, Fail, Bef, St) -> +match_cg(#k_guard{clauses=Gcs}, Fail, Bef, St) -> match_fmf(fun (G, F, Sta) -> guard_clause_cg(G, F, Bef, Sta) end, Fail, St, Gcs); -match_cg({block,Es}, Le, _Fail, Bef, St) -> +match_cg(#cg_block{anno=Le,es=Es}, _Fail, Bef, St) -> %% Must clear registers and stack of dead variables. Int = clear_dead(Bef, Le#l.i, Le#l.vdb), block_cg(Es, Le, Int, St). @@ -294,8 +534,8 @@ match_cg({block,Es}, Le, _Fail, Bef, St) -> %% bsm_rename_ctx([Clause], Var) -> [Clause] %% We know from an annotation that the register for a binary can %% be reused for the match context because the two are not truly -%% alive at the same time (even though the conservative life time -%% information calculated by v3_life says so). +%% alive at the same time (even though the life time information +%% says so). %% %% The easiest way to have those variables share the same register is %% to rename the variable with the shortest life-span (the match @@ -306,12 +546,14 @@ match_cg({block,Es}, Le, _Fail, Bef, St) -> %% We must also remove all information about the match context %% variable from all life-time information databases (Vdb). -bsm_rename_ctx([#l{ke={type_clause,binary, - [#l{ke={val_clause,{binary,{var,Old}},Ke0}}=L2]}}=L1|Cs], New) -> +bsm_rename_ctx([#k_type_clause{type=k_binary,values=Vcs}=TC|Cs], New) -> + [#k_val_clause{val=#k_binary{segs=#k_var{name=Old}}=Bin, + body=Ke0}=VC0] = Vcs, Ke = bsm_rename_ctx(Ke0, Old, New, false), - [L1#l{ke={type_clause,binary, - [L2#l{ke={val_clause,{binary,{var,New}},Ke}}]}}|bsm_rename_ctx(Cs, New)]; -bsm_rename_ctx([C|Cs], New) -> + VC = VC0#k_val_clause{val=Bin#k_binary{segs=#k_var{name=New}}, + body=Ke}, + [TC#k_type_clause{values=[VC]}|bsm_rename_ctx(Cs, New)]; +bsm_rename_ctx([C|Cs], New) -> [C|bsm_rename_ctx(Cs, New)]; bsm_rename_ctx([], _) -> []. @@ -321,34 +563,24 @@ bsm_rename_ctx([], _) -> []. %% only complicatate things to recurse into blocks not in a protected %% (the match context variable is not live inside them). -bsm_rename_ctx(#l{ke={select,{var,V},Cs0}}=L, Old, New, InProt) -> +bsm_rename_ctx(#k_select{var=#k_var{name=V},types=Cs0}=Sel, + Old, New, InProt) -> Cs = bsm_rename_ctx_list(Cs0, Old, New, InProt), - L#l{ke={select,{var,bsm_rename_var(V, Old, New)},Cs}}; -bsm_rename_ctx(#l{ke={type_clause,Type,Cs0}}=L, Old, New, InProt) -> + Sel#k_select{var=#k_var{name=bsm_rename_var(V, Old, New)},types=Cs}; +bsm_rename_ctx(#k_type_clause{values=Cs0}=TC, Old, New, InProt) -> Cs = bsm_rename_ctx_list(Cs0, Old, New, InProt), - L#l{ke={type_clause,Type,Cs}}; -bsm_rename_ctx(#l{ke={val_clause,{bin_end,V},Ke0}}=L, Old, New, InProt) -> - Ke = bsm_rename_ctx(Ke0, Old, New, InProt), - L#l{ke={val_clause,{bin_end,bsm_rename_var(V, Old, New)},Ke}}; -bsm_rename_ctx(#l{ke={val_clause,{bin_seg,V,Sz,U,Type,Fl,Vs},Ke0}}=L, - Old, New, InProt) -> - Ke = bsm_rename_ctx(Ke0, Old, New, InProt), - L#l{ke={val_clause,{bin_seg,bsm_rename_var(V, Old, New),Sz,U,Type,Fl,Vs},Ke}}; -bsm_rename_ctx(#l{ke={val_clause,{bin_int,V,Sz,U,Fl,Val,Vs},Ke0}}=L, - Old, New, InProt) -> - Ke = bsm_rename_ctx(Ke0, Old, New, InProt), - L#l{ke={val_clause,{bin_int,bsm_rename_var(V, Old, New),Sz,U,Fl,Val,Vs},Ke}}; -bsm_rename_ctx(#l{ke={val_clause,Val,Ke0}}=L, Old, New, InProt) -> + TC#k_type_clause{values=Cs}; +bsm_rename_ctx(#k_val_clause{body=Ke0}=VC, Old, New, InProt) -> Ke = bsm_rename_ctx(Ke0, Old, New, InProt), - L#l{ke={val_clause,Val,Ke}}; -bsm_rename_ctx(#l{ke={alt,F0,S0}}=L, Old, New, InProt) -> + VC#k_val_clause{body=Ke}; +bsm_rename_ctx(#k_alt{first=F0,then=S0}=Alt, Old, New, InProt) -> F = bsm_rename_ctx(F0, Old, New, InProt), S = bsm_rename_ctx(S0, Old, New, InProt), - L#l{ke={alt,F,S}}; -bsm_rename_ctx(#l{ke={guard,Gcs0}}=L, Old, New, InProt) -> + Alt#k_alt{first=F,then=S}; +bsm_rename_ctx(#k_guard{clauses=Gcs0}=Guard, Old, New, InProt) -> Gcs = bsm_rename_ctx_list(Gcs0, Old, New, InProt), - L#l{ke={guard,Gcs}}; -bsm_rename_ctx(#l{ke={guard_clause,G0,B0}}=L, Old, New, InProt) -> + Guard#k_guard{clauses=Gcs}; +bsm_rename_ctx(#k_guard_clause{guard=G0,body=B0}=GC, Old, New, InProt) -> G = bsm_rename_ctx(G0, Old, New, InProt), B = bsm_rename_ctx(B0, Old, New, InProt), %% A guard clause may cause unsaved variables to be saved on the stack. @@ -356,49 +588,49 @@ bsm_rename_ctx(#l{ke={guard_clause,G0,B0}}=L, Old, New, InProt) -> %% same register), it is neither in the stack nor register descriptor %% lists and we would crash when we didn't find it unless we remove %% it from the database. - bsm_forget_var(L#l{ke={guard_clause,G,B}}, Old); -bsm_rename_ctx(#l{ke={protected,Ts0,Rs}}=L, Old, New, _InProt) -> + bsm_forget_var(GC#k_guard_clause{guard=G,body=B}, Old); +bsm_rename_ctx(#k_protected{arg=Ts0}=Prot, Old, New, _InProt) -> InProt = true, Ts = bsm_rename_ctx_list(Ts0, Old, New, InProt), - bsm_forget_var(L#l{ke={protected,Ts,Rs}}, Old); -bsm_rename_ctx(#l{ke={match,Ms0,Rs}}=L, Old, New, InProt) -> + bsm_forget_var(Prot#k_protected{arg=Ts}, Old); +bsm_rename_ctx(#k_match{body=Ms0}=Match, Old, New, InProt) -> Ms = bsm_rename_ctx(Ms0, Old, New, InProt), - L#l{ke={match,Ms,Rs}}; -bsm_rename_ctx(#l{ke={guard_match,Ms0,Rs}}=L, Old, New, InProt) -> + Match#k_match{body=Ms}; +bsm_rename_ctx(#k_guard_match{body=Ms0}=Match, Old, New, InProt) -> Ms = bsm_rename_ctx(Ms0, Old, New, InProt), - L#l{ke={guard_match,Ms,Rs}}; -bsm_rename_ctx(#l{ke={test,_,_,_}}=L, _, _, _) -> L; -bsm_rename_ctx(#l{ke={bif,_,_,_}}=L, _, _, _) -> L; -bsm_rename_ctx(#l{ke={gc_bif,_,_,_}}=L, _, _, _) -> L; -bsm_rename_ctx(#l{ke={set,_,_}}=L, _, _, _) -> L; -bsm_rename_ctx(#l{ke={call,_,_,_}}=L, _, _, _) -> L; -bsm_rename_ctx(#l{ke={block,_}}=L, Old, _, false) -> + Match#k_guard_match{body=Ms}; +bsm_rename_ctx(#k_test{}=Test, _, _, _) -> Test; +bsm_rename_ctx(#k_bif{}=Bif, _, _, _) -> Bif; +bsm_rename_ctx(#k_put{}=Put, _, _, _) -> Put; +bsm_rename_ctx(#k_call{}=Call, _, _, _) -> Call; +bsm_rename_ctx(#cg_block{}=Block, Old, _, false) -> %% This block is not inside a protected. The match context variable cannot %% possibly be live inside the block. - bsm_forget_var(L, Old); -bsm_rename_ctx(#l{ke={block,Bl0}}=L, Old, New, true) -> + bsm_forget_var(Block, Old); +bsm_rename_ctx(#cg_block{es=Es0}=Block, Old, New, true) -> %% A block in a protected. We must recursively rename the variable %% inside the block. - Bl = bsm_rename_ctx_list(Bl0, Old, New, true), - bsm_forget_var(L#l{ke={block,Bl}}, Old); -bsm_rename_ctx(#l{ke={guard_break,Bs,Locked0}}=L0, Old, _New, _InProt) -> + Es = bsm_rename_ctx_list(Es0, Old, New, true), + bsm_forget_var(Block#cg_block{es=Es}, Old); +bsm_rename_ctx(#k_guard_break{locked=Locked0}=Break, Old, _New, _InProt) -> Locked = Locked0 -- [Old], - L = L0#l{ke={guard_break,Bs,Locked}}, - bsm_forget_var(L, Old). + bsm_forget_var(Break#k_guard_break{locked=Locked}, Old). bsm_rename_ctx_list([C|Cs], Old, New, InProt) -> [bsm_rename_ctx(C, Old, New, InProt)| bsm_rename_ctx_list(Cs, Old, New, InProt)]; bsm_rename_ctx_list([], _, _, _) -> []. - + bsm_rename_var(Old, Old, New) -> New; bsm_rename_var(V, _, _) -> V. %% bsm_forget_var(#l{}, Variable) -> #l{} %% Remove a variable from the variable life-time database. -bsm_forget_var(#l{vdb=Vdb}=L, V) -> - L#l{vdb=keydelete(V, 1, Vdb)}. +bsm_forget_var(Ke, V) -> + #l{vdb=Vdb} = L0 = get_kanno(Ke), + L = L0#l{vdb=keydelete(V, 1, Vdb)}, + set_kanno(Ke, L). %% block_cg([Kexpr], Le, Vdb, StackReg, St) -> {[Ainstr],StackReg,St}. %% block_cg([Kexpr], Le, StackReg, St) -> {[Ainstr],StackReg,St}. @@ -421,7 +653,7 @@ cg_block(Kes0, I, Vdb, Bef, St0) -> case basic_block(Kes0) of {Kes1,LastI,Args,Rest} -> Ke = hd(Kes1), - Fb = Ke#l.i, + #l{i=Fb} = get_kanno(Ke), cg_basic_block(Kes1, Fb, LastI, Args, Vdb, Bef, St0); {Kes1,Rest} -> cg_list(Kes1, I, Vdb, Bef, St0) @@ -431,36 +663,46 @@ cg_block(Kes0, I, Vdb, Bef, St0) -> basic_block(Kes) -> basic_block(Kes, []). -basic_block([Le|Les], Acc) -> - case collect_block(Le#l.ke) of - include -> basic_block(Les, [Le|Acc]); +basic_block([Ke|Kes], Acc) -> + case collect_block(Ke) of + include -> basic_block(Kes, [Ke|Acc]); {block_end,As} -> case Acc of [] -> - %% If the basic block does not contain any set instructions, + %% If the basic block does not contain any #k_put{} instructions, %% it serves no useful purpose to do basic block optimizations. - {[Le],Les}; + {[Ke],Kes}; _ -> - {reverse(Acc, [Le]),Le#l.i,As,Les} + #l{i=I} = get_kanno(Ke), + {reverse(Acc, [Ke]),I,As,Kes} end; - no_block -> {reverse(Acc, [Le]),Les} + no_block -> {reverse(Acc, [Ke]),Kes} end. -%% sets that may garbage collect are not allowed in basic blocks. - -collect_block({set,_,{binary,_}}) -> no_block; -collect_block({set,_,{map,_,_,_}}) -> no_block; -collect_block({set,_,_}) -> include; -collect_block({call,{var,_}=Var,As,_Rs}) -> {block_end,As++[Var]}; -collect_block({call,Func,As,_Rs}) -> {block_end,As++func_vars(Func)}; -collect_block({enter,{var,_}=Var,As})-> {block_end,As++[Var]}; -collect_block({enter,Func,As}) -> {block_end,As++func_vars(Func)}; -collect_block({return,Rs}) -> {block_end,Rs}; -collect_block({break,Bs}) -> {block_end,Bs}; +%% #k_put{} instructions that may garbage collect are not allowed in basic blocks. + +collect_block(#k_put{arg=#k_binary{}}) -> + no_block; +collect_block(#k_put{arg=#k_map{}}) -> + no_block; +collect_block(#k_put{}) -> + include; +collect_block(#k_call{op=#k_var{}=Var,args=As}) -> + {block_end,As++[Var]}; +collect_block(#k_call{op=Func,args=As}) -> + {block_end,As++func_vars(Func)}; +collect_block(#k_enter{op=#k_var{}=Var,args=As}) -> + {block_end,As++[Var]}; +collect_block(#k_enter{op=Func,args=As}) -> + {block_end,As++func_vars(Func)}; +collect_block(#k_return{args=Rs}) -> + {block_end,Rs}; +collect_block(#k_break{args=Bs}) -> + {block_end,Bs}; collect_block(_) -> no_block. -func_vars({remote,M,F}) when element(1, M) =:= var; - element(1, F) =:= var -> +func_vars(#k_remote{mod=M,name=F}) + when is_record(M, k_var); is_record(F, k_var) -> [M,F]; func_vars(_) -> []. @@ -478,18 +720,19 @@ cg_basic_block(Kes, Fb, Lf, As, Vdb, Bef, St0) -> {Int0,X0_v0,St0}, need_heap(Kes, Fb)), {Keis,Aft,St1}. -cg_basic_block(#l{ke={need_heap,_}}=Ke, {Inta,X0v,Sta}, _Lf, Vdb) -> +cg_basic_block(#cg_need_heap{}=Ke, {Inta,X0v,Sta}, _Lf, Vdb) -> {Keis,Intb,Stb} = cg(Ke, Vdb, Inta, Sta), {Keis, {Intb,X0v,Stb}}; cg_basic_block(Ke, {Inta,X0_v1,Sta}, Lf, Vdb) -> - {Sis,Intb} = save_carefully(Inta, Ke#l.i, Lf+1, Vdb), - {X0_v2,Intc} = allocate_x0(X0_v1, Ke#l.i, Intb), + #l{i=I} = get_kanno(Ke), + {Sis,Intb} = save_carefully(Inta, I, Lf+1, Vdb), + {X0_v2,Intc} = allocate_x0(X0_v1, I, Intb), Intd = reserve(Intc), {Keis,Inte,Stb} = cg(Ke, Vdb, Intd, Sta), {Sis ++ Keis, {Inte,X0_v2,Stb}}. make_reservation([], _) -> []; -make_reservation([{var,V}|As], I) -> [{I,V}|make_reservation(As, I+1)]; +make_reservation([#k_var{name=V}|As], I) -> [{I,V}|make_reservation(As, I+1)]; make_reservation([A|As], I) -> [{I,A}|make_reservation(As, I+1)]. reserve(Sr) -> Sr#sr{reg=reserve(Sr#sr.res, Sr#sr.reg, Sr#sr.stk)}. @@ -538,7 +781,7 @@ save_carefully([V|Vs], Bef, Acc) -> end. x0_vars([], _Fb, _Lf, _Vdb) -> []; -x0_vars([{var,V}|_], Fb, _Lf, Vdb) -> +x0_vars([#k_var{name=V}|_], Fb, _Lf, Vdb) -> {V,F,_L} = VFL = vdb_find(V, Vdb), x0_vars1([VFL], Fb, F, Vdb); x0_vars([X0|_], Fb, Lf, Vdb) -> @@ -640,23 +883,27 @@ turn_yreg(Other, _MaxY) -> %% wrong. These are different as in the second case there is no need %% to try the next type, it will always fail. -select_cg(#l{ke={type_clause,cons,[S]}}, {var,V}, Tf, Vf, Bef, St) -> +select_cg(#k_type_clause{type=Type,values=Vs}, Var, Tf, Vf, Bef, St) -> + #k_var{name=V} = Var, + select_cg(Type, Vs, V, Tf, Vf, Bef, St). + +select_cg(k_cons, [S], V, Tf, Vf, Bef, St) -> select_cons(S, V, Tf, Vf, Bef, St); -select_cg(#l{ke={type_clause,nil,[S]}}, {var,V}, Tf, Vf, Bef, St) -> +select_cg(k_nil, [S], V, Tf, Vf, Bef, St) -> select_nil(S, V, Tf, Vf, Bef, St); -select_cg(#l{ke={type_clause,binary,[S]}}, {var,V}, Tf, Vf, Bef, St) -> +select_cg(k_binary, [S], V, Tf, Vf, Bef, St) -> select_binary(S, V, Tf, Vf, Bef, St); -select_cg(#l{ke={type_clause,bin_seg,S}}, {var,V}, Tf, _Vf, Bef, St) -> +select_cg(k_bin_seg, S, V, Tf, _Vf, Bef, St) -> select_bin_segs(S, V, Tf, Bef, St); -select_cg(#l{ke={type_clause,bin_int,S}}, {var,V}, Tf, _Vf, Bef, St) -> +select_cg(k_bin_int, S, V, Tf, _Vf, Bef, St) -> select_bin_segs(S, V, Tf, Bef, St); -select_cg(#l{ke={type_clause,bin_end,[S]}}, {var,V}, Tf, _Vf, Bef, St) -> +select_cg(k_bin_end, [S], V, Tf, _Vf, Bef, St) -> select_bin_end(S, V, Tf, Bef, St); -select_cg(#l{ke={type_clause,map,S}}, {var,V}, Tf, Vf, Bef, St) -> +select_cg(k_map, S, V, Tf, Vf, Bef, St) -> select_map(S, V, Tf, Vf, Bef, St); -select_cg(#l{ke={type_clause,literal,S}}, {var,V}, Tf, Vf, Bef, St) -> +select_cg(k_literal, S, V, Tf, Vf, Bef, St) -> select_literal(S, V, Tf, Vf, Bef, St); -select_cg(#l{ke={type_clause,Type,Scs}}, {var,V}, Tf, Vf, Bef, St0) -> +select_cg(Type, Scs, V, Tf, Vf, Bef, St0) -> {Vis,{Aft,St1}} = mapfoldl(fun (S, {Int,Sta}) -> {Val,Is,Inta,Stb} = select_val(S, V, Vf, Bef, Sta), @@ -666,22 +913,29 @@ select_cg(#l{ke={type_clause,Type,Scs}}, {var,V}, Tf, Vf, Bef, St0) -> {Vls,Sis,St2} = select_labels(OptVls, St1, [], []), {select_val_cg(Type, fetch_var(V, Bef), Vls, Tf, Vf, Sis), Aft, St2}. -select_val_cg(tuple, R, [Arity,{f,Lbl}], Tf, Vf, [{label,Lbl}|Sis]) -> +select_val_cg(k_tuple, R, [Arity,{f,Lbl}], Tf, Vf, [{label,Lbl}|Sis]) -> [{test,is_tuple,{f,Tf},[R]},{test,test_arity,{f,Vf},[R,Arity]}|Sis]; -select_val_cg(tuple, R, Vls, Tf, Vf, Sis) -> +select_val_cg(k_tuple, R, Vls, Tf, Vf, Sis) -> [{test,is_tuple,{f,Tf},[R]},{select_tuple_arity,R,{f,Vf},{list,Vls}}|Sis]; select_val_cg(Type, R, [Val, {f,Lbl}], Fail, Fail, [{label,Lbl}|Sis]) -> - [{test,is_eq_exact,{f,Fail},[R,{Type,Val}]}|Sis]; + [{test,is_eq_exact,{f,Fail},[R,{type(Type),Val}]}|Sis]; select_val_cg(Type, R, [Val, {f,Lbl}], Tf, Vf, [{label,Lbl}|Sis]) -> [{test,select_type_test(Type),{f,Tf},[R]}, - {test,is_eq_exact,{f,Vf},[R,{Type,Val}]}|Sis]; + {test,is_eq_exact,{f,Vf},[R,{type(Type),Val}]}|Sis]; select_val_cg(Type, R, Vls0, Tf, Vf, Sis) -> - Vls1 = [case Value of {f,_Lbl} -> Value; _ -> {Type,Value} end || Value <- Vls0], + Vls1 = [case Value of + {f,_Lbl} -> Value; + _ -> {type(Type),Value} + end || Value <- Vls0], [{test,select_type_test(Type),{f,Tf},[R]}, {select_val,R,{f,Vf},{list,Vls1}}|Sis]. - -select_type_test(integer) -> is_integer; -select_type_test(atom) -> is_atom; -select_type_test(float) -> is_float. + +type(k_atom) -> atom; +type(k_float) -> float; +type(k_int) -> integer. + +select_type_test(k_int) -> is_integer; +select_type_test(k_atom) -> is_atom; +select_type_test(k_float) -> is_float. combine([{Is,Vs1}, {Is,Vs2}|Vis]) -> combine([{Is,Vs1 ++ Vs2}|Vis]); combine([V|Vis]) -> [V|combine(Vis)]; @@ -706,36 +960,40 @@ select_literal(S, V, Tf, Vf, Bef, St) -> end, match_fmf(F, Tf, St, S). -select_cons(#l{ke={val_clause,{cons,Es},B},i=I,vdb=Vdb}, V, Tf, Vf, Bef, St0) -> +select_cons(#k_val_clause{val=#k_cons{hd=Hd,tl=Tl},body=B,anno=#l{i=I,vdb=Vdb}}, + V, Tf, Vf, Bef, St0) -> + Es = [Hd,Tl], {Eis,Int,St1} = select_extract_cons(V, Es, I, Vdb, Bef, St0), {Bis,Aft,St2} = match_cg(B, Vf, Int, St1), {[{test,is_nonempty_list,{f,Tf},[fetch_var(V, Bef)]}] ++ Eis ++ Bis,Aft,St2}. -select_nil(#l{ke={val_clause,nil,B}}, V, Tf, Vf, Bef, St0) -> +select_nil(#k_val_clause{val=#k_nil{},body=B}, V, Tf, Vf, Bef, St0) -> {Bis,Aft,St1} = match_cg(B, Vf, Bef, St0), {[{test,is_nil,{f,Tf},[fetch_var(V, Bef)]}] ++ Bis,Aft,St1}. -select_binary(#l{ke={val_clause,{binary,{var,V}},B},i=I,vdb=Vdb}, - V, Tf, Vf, Bef, St0) -> +select_binary(#k_val_clause{val=#k_binary{segs=#k_var{name=V}},body=B, + anno=#l{i=I,vdb=Vdb}}, V, Tf, Vf, Bef, St0) -> + #cg{ctx=OldCtx} = St0, Int0 = clear_dead(Bef#sr{reg=Bef#sr.reg}, I, Vdb), - {Bis0,Aft,St1} = match_cg(B, Vf, Int0, St0), + {Bis0,Aft,St1} = match_cg(B, Vf, Int0, St0#cg{ctx=V}), CtxReg = fetch_var(V, Int0), Live = max_reg(Bef#sr.reg), Bis1 = [{test,bs_start_match2,{f,Tf},Live,[CtxReg,V],CtxReg}, {bs_save2,CtxReg,{V,V}}|Bis0], Bis = finish_select_binary(Bis1), - {Bis,Aft,St1}; -select_binary(#l{ke={val_clause,{binary,{var,Ivar}},B},i=I,vdb=Vdb}, - V, Tf, Vf, Bef, St0) -> + {Bis,Aft,St1#cg{ctx=OldCtx}}; +select_binary(#k_val_clause{val=#k_binary{segs=#k_var{name=Ivar}},body=B, + anno=#l{i=I,vdb=Vdb}}, V, Tf, Vf, Bef, St0) -> + #cg{ctx=OldCtx} = St0, Regs = put_reg(Ivar, Bef#sr.reg), Int0 = clear_dead(Bef#sr{reg=Regs}, I, Vdb), - {Bis0,Aft,St1} = match_cg(B, Vf, Int0, St0), + {Bis0,Aft,St1} = match_cg(B, Vf, Int0, St0#cg{ctx=Ivar}), CtxReg = fetch_var(Ivar, Int0), Live = max_reg(Bef#sr.reg), Bis1 = [{test,bs_start_match2,{f,Tf},Live,[fetch_var(V, Bef),Ivar],CtxReg}, {bs_save2,CtxReg,{Ivar,Ivar}}|Bis0], Bis = finish_select_binary(Bis1), - {Bis,Aft,St1}. + {Bis,Aft,St1#cg{ctx=OldCtx}}. finish_select_binary([{bs_save2,R,Point}=I,{bs_restore2,R,Point}|Is]) -> [I|finish_select_binary(Is)]; @@ -757,9 +1015,16 @@ select_bin_segs(Scs, Ivar, Tf, Bef, St) -> select_bin_seg(S, Ivar, Fail, Bef, Sta) end, Tf, St, Scs). -select_bin_seg(#l{ke={val_clause,{bin_seg,Ctx,Size,U,T,Fs0,Es},B},i=I,vdb=Vdb,a=A}, - Ivar, Fail, Bef, St0) -> +select_bin_seg(#k_val_clause{val=#k_bin_seg{size=Size,unit=U,type=T, + seg=Seg,flags=Fs0,next=Next}, + body=B, + anno=#l{i=I,vdb=Vdb,a=A}}, Ivar, Fail, Bef, St0) -> + Ctx = St0#cg.ctx, Fs = [{anno,A}|Fs0], + Es = case Next of + [] -> [Seg]; + _ -> [Seg,Next] + end, {Mis,Int,St1} = select_extract_bin(Es, Size, U, T, Fs, Fail, I, Vdb, Bef, Ctx, B, St0), {Bis,Aft,St2} = match_cg(B, Fail, Int, St1), @@ -772,9 +1037,12 @@ select_bin_seg(#l{ke={val_clause,{bin_seg,Ctx,Size,U,T,Fs0,Es},B},i=I,vdb=Vdb,a= [{bs_restore2,CtxReg,{Ctx,Ivar}}|Mis++Bis] end, {Is,Aft,St2}; -select_bin_seg(#l{ke={val_clause,{bin_int,Ctx,Sz,U,Fs,Val,Es},B},i=I,vdb=Vdb}, - Ivar, Fail, Bef, St0) -> - {Mis,Int,St1} = select_extract_int(Es, Val, Sz, U, Fs, Fail, +select_bin_seg(#k_val_clause{val=#k_bin_int{size=Sz,unit=U,flags=Fs, + val=Val,next=Next}, + body=B, + anno=#l{i=I,vdb=Vdb}}, Ivar, Fail, Bef, St0) -> + Ctx = St0#cg.ctx, + {Mis,Int,St1} = select_extract_int(Next, Val, Sz, U, Fs, Fail, I, Vdb, Bef, Ctx, St0), {Bis,Aft,St2} = match_cg(B, Fail, Int, St1), CtxReg = fetch_var(Ctx, Bef), @@ -795,7 +1063,7 @@ select_bin_seg(#l{ke={val_clause,{bin_int,Ctx,Sz,U,Fs,Val,Es},B},i=I,vdb=Vdb}, end, {[{bs_restore2,CtxReg,{Ctx,Ivar}}|Is],Aft,St2}. -select_extract_int([{var,Tl}], Val, {integer,Sz}, U, Fs, Vf, +select_extract_int(#k_var{name=Tl}, Val, #k_int{val=Sz}, U, Fs, Vf, I, Vdb, Bef, Ctx, St) -> Bits = U*Sz, Bin = case member(big, Fs) of @@ -816,7 +1084,7 @@ select_extract_int([{var,Tl}], Val, {integer,Sz}, U, Fs, Vf, end, {Is,clear_dead(Bef, I, Vdb),St}. -select_extract_bin([{var,Hd},{var,Tl}], Size0, Unit, Type, Flags, Vf, +select_extract_bin([#k_var{name=Hd},#k_var{name=Tl}], Size0, Unit, Type, Flags, Vf, I, Vdb, Bef, Ctx, _Body, St) -> SizeReg = get_bin_size_reg(Size0, Bef), {Es,Aft} = @@ -839,11 +1107,11 @@ select_extract_bin([{var,Hd},{var,Tl}], Size0, Unit, Type, Flags, Vf, {bs_save2,CtxReg,{Ctx,Tl}}],Int1} end, {Es,clear_dead(Aft, I, Vdb),St}; -select_extract_bin([{var,Hd}], Size, Unit, binary, Flags, Vf, +select_extract_bin([#k_var{name=Hd}], Size, Unit, binary, Flags, Vf, I, Vdb, Bef, Ctx, Body, St) -> %% Match the last segment of a binary. We KNOW that the size %% must be 'all'. - Size = {atom,all}, %Assertion. + #k_atom{val=all} = Size, %Assertion. {Es,Aft} = case vdb_find(Hd, Vdb) of {_,_,Lhd} when Lhd =< I -> @@ -868,7 +1136,7 @@ select_extract_bin([{var,Hd}], Size, Unit, binary, Flags, Vf, Name = bs_get_binary2, Live = max_reg(Bef#sr.reg), {[{test,Name,{f,Vf},Live, - [CtxReg,Size,Unit,{field_flags,Flags}],Rhd}], + [CtxReg,atomic(Size),Unit,{field_flags,Flags}],Rhd}], Int1}; true -> %% Since the matching context will not be used again, @@ -883,43 +1151,42 @@ select_extract_bin([{var,Hd}], Size, Unit, binary, Flags, Vf, Name = bs_get_binary2, Live = max_reg(Int1#sr.reg), {[{test,Name,{f,Vf},Live, - [CtxReg,Size,Unit,{field_flags,Flags}],CtxReg}], + [CtxReg,atomic(Size),Unit,{field_flags,Flags}],CtxReg}], Int1} end end, {Es,clear_dead(Aft, I, Vdb),St}. %% is_context_unused(Ke) -> true | false -%% Simple heurististic to determine whether the code that follows will -%% use the current matching context again. (The information of liveness -%% calculcated by v3_life is too conservative to be useful for this purpose.) -%% 'true' means that the code that follows will definitely not use the context -%% again (because it is a block, not guard or matching code); 'false' that we -%% are not sure (there could be more matching). - -is_context_unused(#l{ke=Ke}) -> - is_context_unused(Ke); -is_context_unused({alt,_First,Then}) -> - %% {alt,First,Then} can be used for different purposes. If the Then part +%% Simple heurististic to determine whether the code that follows +%% will use the current matching context again. (The liveness +%% information is too conservative to be useful for this purpose.) +%% 'true' means that the code that follows will definitely not use +%% the context again (because it is a block, not guard or matching +%% code); 'false' that we are not sure (there could be more +%% matching). + +is_context_unused(#k_alt{then=Then}) -> + %% #k_alt{} can be used for different purposes. If the Then part %% is a block, it means that matching has finished and is used for a guard %% to choose between the matched clauses. is_context_unused(Then); -is_context_unused({block,_}) -> +is_context_unused(#cg_block{}) -> true; is_context_unused(_) -> false. -select_bin_end(#l{ke={val_clause,{bin_end,Ctx},B}}, - Ivar, Tf, Bef, St0) -> +select_bin_end(#k_val_clause{val=#k_bin_end{},body=B}, Ivar, Tf, Bef, St0) -> + Ctx = St0#cg.ctx, {Bis,Aft,St2} = match_cg(B, Tf, Bef, St0), CtxReg = fetch_var(Ctx, Bef), {[{bs_restore2,CtxReg,{Ctx,Ivar}}, {test,bs_test_tail2,{f,Tf},[CtxReg,0]}|Bis],Aft,St2}. -get_bin_size_reg({var,V}, Bef) -> +get_bin_size_reg(#k_var{name=V}, Bef) -> fetch_var(V, Bef); get_bin_size_reg(Literal, _Bef) -> - Literal. + atomic(Literal). build_bs_instr(Type, Vf, CtxReg, Live, SizeReg, Unit, Flags, Rhd) -> {Format,Name} = case Type of @@ -953,11 +1220,18 @@ build_skip_instr(Type, Vf, CtxReg, Live, SizeReg, Unit, Flags) -> {test,Name,{f,Vf},[CtxReg,Live,{field_flags,Flags}]} end. -select_val(#l{ke={val_clause,{tuple,Es},B},i=I,vdb=Vdb}, V, Vf, Bef, St0) -> +select_val(#k_val_clause{val=#k_tuple{es=Es},body=B,anno=#l{i=I,vdb=Vdb}}, + V, Vf, Bef, St0) -> {Eis,Int,St1} = select_extract_tuple(V, Es, I, Vdb, Bef, St0), {Bis,Aft,St2} = match_cg(B, Vf, Int, St1), {length(Es),Eis ++ Bis,Aft,St2}; -select_val(#l{ke={val_clause,{_,Val},B}}, _V, Vf, Bef, St0) -> +select_val(#k_val_clause{val=Val0,body=B}, _V, Vf, Bef, St0) -> + Val = case Val0 of + #k_atom{val=Lit} -> Lit; + #k_float{val=Lit} -> Lit; + #k_int{val=Lit} -> Lit; + #k_literal{val=Lit} -> Lit + end, {Bis,Aft,St1} = match_cg(B, Vf, Bef, St0), {Val,Bis,Aft,St1}. @@ -966,7 +1240,7 @@ select_val(#l{ke={val_clause,{_,Val},B}}, _V, Vf, Bef, St0) -> %% Extract tuple elements, but only if they do not immediately die. select_extract_tuple(Src, Vs, I, Vdb, Bef, St) -> - F = fun ({var,V}, {Int0,Elem}) -> + F = fun (#k_var{name=V}, {Int0,Elem}) -> case vdb_find(V, Vdb) of {V,_,L} when L =< I -> {[], {Int0,Elem+1}}; _Other -> @@ -983,9 +1257,10 @@ select_extract_tuple(Src, Vs, I, Vdb, Bef, St) -> select_map(Scs, V, Tf, Vf, Bef, St0) -> Reg = fetch_var(V, Bef), {Is,Aft,St1} = - match_fmf(fun(#l{ke={val_clause,{map,exact,_,Es},B},i=I,vdb=Vdb}, Fail, St1) -> - select_map_val(V, Es, B, Fail, I, Vdb, Bef, St1) - end, Vf, St0, Scs), + match_fmf(fun(#k_val_clause{val=#k_map{op=exact,es=Es}, + body=B,anno=#l{i=I,vdb=Vdb}}, Fail, St1) -> + select_map_val(V, Es, B, Fail, I, Vdb, Bef, St1) + end, Vf, St0, Scs), {[{test,is_map,{f,Tf},[Reg]}|Is],Aft,St1}. select_map_val(V, Es, B, Fail, I, Vdb, Bef, St0) -> @@ -1002,29 +1277,32 @@ select_extract_map(Src, Vs, Fail, I, Vdb, Bef, St) -> %% Assume keys are term-sorted Rsrc = fetch_var(Src, Bef), - {{HasKs,GetVs,HasVarKs,GetVarVs},Aft} = lists:foldr(fun - ({map_pair,{var,K},{var,V}},{{HasKsi,GetVsi,HasVarVsi,GetVarVsi},Int0}) -> - case vdb_find(V, Vdb) of - {V,_,L} when L =< I -> - RK = fetch_var(K,Int0), - {{HasKsi,GetVsi,[RK|HasVarVsi],GetVarVsi},Int0}; - _Other -> - Reg1 = put_reg(V, Int0#sr.reg), - Int1 = Int0#sr{reg=Reg1}, - RK = fetch_var(K,Int0), - RV = fetch_reg(V,Reg1), - {{HasKsi,GetVsi,HasVarVsi,[[RK,RV]|GetVarVsi]},Int1} - end; - ({map_pair,Key,{var,V}},{{HasKsi,GetVsi,HasVarVsi,GetVarVsi},Int0}) -> - case vdb_find(V, Vdb) of - {V,_,L} when L =< I -> - {{[Key|HasKsi],GetVsi,HasVarVsi,GetVarVsi},Int0}; - _Other -> - Reg1 = put_reg(V, Int0#sr.reg), - Int1 = Int0#sr{reg=Reg1}, - {{HasKsi,[Key,fetch_reg(V, Reg1)|GetVsi],HasVarVsi,GetVarVsi},Int1} - end - end, {{[],[],[],[]},Bef}, Vs), + {{HasKs,GetVs,HasVarKs,GetVarVs},Aft} = + foldr(fun(#k_map_pair{key=#k_var{name=K},val=#k_var{name=V}}, + {{HasKsi,GetVsi,HasVarVsi,GetVarVsi},Int0}) -> + case vdb_find(V, Vdb) of + {V,_,L} when L =< I -> + RK = fetch_var(K,Int0), + {{HasKsi,GetVsi,[RK|HasVarVsi],GetVarVsi},Int0}; + _Other -> + Reg1 = put_reg(V, Int0#sr.reg), + Int1 = Int0#sr{reg=Reg1}, + RK = fetch_var(K,Int0), + RV = fetch_reg(V,Reg1), + {{HasKsi,GetVsi,HasVarVsi,[[RK,RV]|GetVarVsi]},Int1} + end; + (#k_map_pair{key=Key,val=#k_var{name=V}}, + {{HasKsi,GetVsi,HasVarVsi,GetVarVsi},Int0}) -> + case vdb_find(V, Vdb) of + {V,_,L} when L =< I -> + {{[atomic(Key)|HasKsi],GetVsi,HasVarVsi,GetVarVsi},Int0}; + _Other -> + Reg1 = put_reg(V, Int0#sr.reg), + Int1 = Int0#sr{reg=Reg1}, + {{HasKsi,[atomic(Key),fetch_reg(V, Reg1)|GetVsi], + HasVarVsi,GetVarVsi},Int1} + end + end, {{[],[],[],[]},Bef}, Vs), Code = [{test,has_map_fields,{f,Fail},Rsrc,{list,HasKs}} || HasKs =/= []] ++ [{test,has_map_fields,{f,Fail},Rsrc,{list,[K]}} || K <- HasVarKs] ++ @@ -1033,7 +1311,7 @@ select_extract_map(Src, Vs, Fail, I, Vdb, Bef, St) -> {Code, Aft, St}. -select_extract_cons(Src, [{var,Hd}, {var,Tl}], I, Vdb, Bef, St) -> +select_extract_cons(Src, [#k_var{name=Hd}, #k_var{name=Tl}], I, Vdb, Bef, St) -> {Es,Aft} = case {vdb_find(Hd, Vdb), vdb_find(Tl, Vdb)} of {{_,_,Lhd}, {_,_,Ltl}} when Lhd =< I, Ltl =< I -> %% Both head and tail are dead. No need to generate @@ -1056,7 +1334,7 @@ select_extract_cons(Src, [{var,Hd}, {var,Tl}], I, Vdb, Bef, St) -> {Es,Aft,St}. -guard_clause_cg(#l{ke={guard_clause,G,B},vdb=Vdb}, Fail, Bef, St0) -> +guard_clause_cg(#k_guard_clause{anno=#l{vdb=Vdb},guard=G,body=B}, Fail, Bef, St0) -> {Gis,Int,St1} = guard_cg(G, Fail, Vdb, Bef, St0), {Bis,Aft,St} = match_cg(B, Fail, Int, St1), {Gis ++ Bis,Aft,St}. @@ -1069,11 +1347,13 @@ guard_clause_cg(#l{ke={guard_clause,G,B},vdb=Vdb}, Fail, Bef, St0) -> %% the correct exit point. Primops and tests all go to the next %% instruction on success or jump to a failure label. -guard_cg(#l{ke={protected,Ts,Rs},i=I,vdb=Pdb}, Fail, _Vdb, Bef, St) -> +guard_cg(#k_protected{arg=Ts,ret=Rs,anno=#l{i=I,vdb=Pdb}}, Fail, _Vdb, Bef, St) -> protected_cg(Ts, Rs, Fail, I, Pdb, Bef, St); -guard_cg(#l{ke={block,Ts},i=I,vdb=Bdb}, Fail, _Vdb, Bef, St) -> +guard_cg(#cg_block{es=Ts,anno=#l{i=I,vdb=Bdb}}, Fail, _Vdb, Bef, St) -> guard_cg_list(Ts, Fail, I, Bdb, Bef, St); -guard_cg(#l{ke={test,Test,As,Inverted},i=I,vdb=_Tdb}, Fail, Vdb, Bef, St0) -> +guard_cg(#k_test{anno=#l{i=I},op=Test0,args=As,inverted=Inverted}, + Fail, Vdb, Bef, St0) -> + #k_remote{mod=#k_atom{val=erlang},name=#k_atom{val=Test}} = Test0, case Inverted of false -> test_cg(Test, As, Fail, I, Vdb, Bef, St0); @@ -1107,7 +1387,7 @@ protected_cg(Ts, Rs, _Fail, I, Vdb, Bef, St0) -> St2#cg{bfail=Pfail}), %%ok = io:fwrite("cg ~w: ~p~n", [?LINE,{Rs,I,Vdb,Aft}]), %% Set return values to false. - Mis = [{move,{atom,false},fetch_var(V,Aft)}||{var,V} <- Rs], + Mis = [{move,{atom,false},fetch_var(V,Aft)}||#k_var{name=V} <- Rs], {Tis ++ [{jump,{f,Psucc}}, {label,Pfail}] ++ Mis ++ [{label,Psucc}], Aft,St3#cg{bfail=St0#cg.bfail}}. @@ -1132,7 +1412,7 @@ test_cg(is_map, [A], Fail, I, Vdb, Bef, St) -> Arg = cg_reg_arg_prefer_y(A, Bef), Aft = clear_dead(Bef, I, Vdb), {[{test,is_map,{f,Fail},[Arg]}],Aft,St}; -test_cg(is_boolean, [{atom,Val}], Fail, I, Vdb, Bef, St) -> +test_cg(is_boolean, [#k_atom{val=Val}], Fail, I, Vdb, Bef, St) -> Aft = clear_dead(Bef, I, Vdb), Is = case is_boolean(Val) of true -> []; @@ -1178,7 +1458,7 @@ match_fmf(F, LastFail, St0, [H|T]) -> %% frame size. Finally the actual call is made. Call then needs the %% return values filled in. -call_cg({var,_V} = Var, As, Rs, Le, Vdb, Bef, St0) -> +call_cg(#k_var{}=Var, As, Rs, Le, Vdb, Bef, St0) -> {Sis,Int} = cg_setup_call(As++[Var], Bef, Le#l.i, Vdb), %% Put return values in registers. Reg = load_vars(Rs, clear_regs(Int#sr.reg)), @@ -1187,9 +1467,8 @@ call_cg({var,_V} = Var, As, Rs, Le, Vdb, Bef, St0) -> {Frees,Aft} = free_dead(clear_dead(Int#sr{reg=Reg}, Le#l.i, Vdb)), {Sis ++ Frees ++ [line(Le),{call_fun,Arity}],Aft, need_stack_frame(St0)}; -call_cg({remote,Mod,Name}, As, Rs, Le, Vdb, Bef, St0) - when element(1, Mod) =:= var; - element(1, Name) =:= var -> +call_cg(#k_remote{mod=Mod,name=Name}, As, Rs, Le, Vdb, Bef, St0) + when is_record(Mod, k_var); is_record(Name, k_var) -> {Sis,Int} = cg_setup_call(As++[Mod,Name], Bef, Le#l.i, Vdb), %% Put return values in registers. Reg = load_vars(Rs, clear_regs(Int#sr.reg)), @@ -1207,8 +1486,9 @@ call_cg(Func, As, Rs, Le, Vdb, Bef, St0) -> %% %% move {atom,ok} DestReg %% jump FailureLabel - {remote,{atom,erlang},{atom,error}} = Func, %Assertion. - [{var,DestVar}] = Rs, + #k_remote{mod=#k_atom{val=erlang}, + name=#k_atom{val=error}} = Func, %Assertion. + [#k_var{name=DestVar}] = Rs, Int0 = clear_dead(Bef, Le#l.i, Vdb), Reg = put_reg(DestVar, Int0#sr.reg), Int = Int0#sr{reg=Reg}, @@ -1227,11 +1507,11 @@ call_cg(Func, As, Rs, Le, Vdb, Bef, St0) -> {Sis ++ Frees ++ [line(Le)|Call],Aft,St1} end. -build_call({remote,{atom,erlang},{atom,'!'}}, 2, St0) -> +build_call(#k_remote{mod=#k_atom{val=erlang},name=#k_atom{val='!'}}, 2, St0) -> {[send],need_stack_frame(St0)}; -build_call({remote,{atom,Mod},{atom,Name}}, Arity, St0) -> +build_call(#k_remote{mod=#k_atom{val=Mod},name=#k_atom{val=Name}}, Arity, St0) -> {[{call_ext,Arity,{extfunc,Mod,Name,Arity}}],need_stack_frame(St0)}; -build_call(Name, Arity, St0) when is_atom(Name) -> +build_call(#k_local{name=Name}, Arity, St0) when is_atom(Name) -> {Lbl,St1} = local_func_label(Name, Arity, need_stack_frame(St0)), {[{call,Arity,{f,Lbl}}],St1}. @@ -1247,16 +1527,15 @@ free_dead([Any|Stk], Y, Instr, StkAcc) -> free_dead(Stk, Y+1, Instr, [Any|StkAcc]); free_dead([], _, Instr, StkAcc) -> {Instr,reverse(StkAcc)}. -enter_cg({var,_V} = Var, As, Le, Vdb, Bef, St0) -> +enter_cg(#k_var{} = Var, As, Le, Vdb, Bef, St0) -> {Sis,Int} = cg_setup_call(As++[Var], Bef, Le#l.i, Vdb), %% Build complete code and final stack/register state. Arity = length(As), {Sis ++ [line(Le),{call_fun,Arity},return], clear_dead(Int#sr{reg=clear_regs(Int#sr.reg)}, Le#l.i, Vdb), need_stack_frame(St0)}; -enter_cg({remote,Mod,Name}, As, Le, Vdb, Bef, St0) - when element(1, Mod) =:= var; - element(1, Name) =:= var -> +enter_cg(#k_remote{mod=Mod,name=Name}, As, Le, Vdb, Bef, St0) + when is_record(Mod, k_var); is_record(Name, k_var) -> {Sis,Int} = cg_setup_call(As++[Mod,Name], Bef, Le#l.i, Vdb), %% Build complete code and final stack/register state. Arity = length(As), @@ -1274,19 +1553,19 @@ enter_cg(Func, As, Le, Vdb, Bef, St0) -> clear_dead(Int#sr{reg=clear_regs(Int#sr.reg)}, Le#l.i, Vdb), St1}. -build_enter({remote,{atom,erlang},{atom,'!'}}, 2, St0) -> +build_enter(#k_remote{mod=#k_atom{val=erlang},name=#k_atom{val='!'}}, 2, St0) -> {[send,return],need_stack_frame(St0)}; -build_enter({remote,{atom,Mod},{atom,Name}}, Arity, St0) -> +build_enter(#k_remote{mod=#k_atom{val=Mod},name=#k_atom{val=Name}}, Arity, St0) -> St1 = case trap_bif(Mod, Name, Arity) of true -> need_stack_frame(St0); false -> St0 end, {[{call_ext_only,Arity,{extfunc,Mod,Name,Arity}}],St1}; -build_enter(Name, Arity, St0) when is_atom(Name) -> +build_enter(#k_local{name=Name}, Arity, St0) when is_atom(Name) -> {Lbl,St1} = local_func_label(Name, Arity, St0), {[{call_only,Arity,{f,Lbl}}],St1}. -enter_line({remote,{atom,Mod},{atom,Name}}, Arity, Le) -> +enter_line(#k_remote{mod=#k_atom{val=Mod},name=#k_atom{val=Name}}, Arity, Le) -> case erl_bifs:is_safe(Mod, Name, Arity) of false -> %% Tail-recursive call, possibly to a BIF. @@ -1334,6 +1613,22 @@ trap_bif(erlang, group_leader, 2) -> true; trap_bif(erlang, exit, 2) -> true; trap_bif(_, _, _) -> false. +%% bif_cg(#k_bif{}, Le, Vdb, StackReg, State) -> +%% {[Ainstr],StackReg,State}. +%% Generate code a BIF. + +bif_cg(#k_bif{op=#k_internal{name=Name},args=As,ret=Rs}, Le, Vdb, Bef, St) -> + internal_cg(Name, As, Rs, Le, Vdb, Bef, St); +bif_cg(#k_bif{op=#k_remote{mod=#k_atom{val=erlang},name=#k_atom{val=Name}}, + args=As,ret=Rs}, Le, Vdb, Bef, St) -> + Ar = length(As), + case is_gc_bif(Name, Ar) of + false -> + bif_cg(Name, As, Rs, Le, Vdb, Bef, St); + true -> + gc_bif_cg(Name, As, Rs, Le, Vdb, Bef, St) + end. + %% internal_cg(Bif, [Arg], [Ret], Le, Vdb, StackReg, State) -> %% {[Ainstr],StackReg,State}. @@ -1352,8 +1647,8 @@ internal_cg(dsetelement, [Index0,Tuple0,New0], _Rs, Le, Vdb, Bef, St0) -> clear_dead(Bef, Le#l.i, Vdb), St0}; internal_cg(make_fun, [Func0,Arity0|As], Rs, Le, Vdb, Bef, St0) -> %% This behaves more like a function call. - {atom,Func} = Func0, - {integer,Arity} = Arity0, + #k_atom{val=Func} = Func0, + #k_int{val=Arity} = Arity0, {Sis,Int} = cg_setup_call(As, Bef, Le#l.i, Vdb), Reg = load_vars(Rs, clear_regs(Int#sr.reg)), {FuncLbl,St1} = local_func_label(Func, Arity, St0), @@ -1373,7 +1668,7 @@ internal_cg(raise, As, Rs, Le, Vdb, Bef, St) -> %% bif_cg(Bif, [Arg], [Ret], Le, Vdb, StackReg, State) -> %% {[Ainstr],StackReg,State}. -bif_cg(Bif, As, [{var,V}], Le, Vdb, Bef, St0) -> +bif_cg(Bif, As, [#k_var{name=V}], Le, Vdb, Bef, St0) -> Ars = cg_reg_args(As, Bef), %% If we are inside a catch and in a body (not in guard) and the @@ -1411,7 +1706,7 @@ bif_cg(Bif, As, [{var,V}], Le, Vdb, Bef, St0) -> %% gc_bif_cg(Bif, [Arg], [Ret], Le, Vdb, StackReg, State) -> %% {[Ainstr],StackReg,State}. -gc_bif_cg(Bif, As, [{var,V}], Le, Vdb, Bef, St0) -> +gc_bif_cg(Bif, As, [#k_var{name=V}], Le, Vdb, Bef, St0) -> Ars = cg_reg_args(As, Bef), %% If we are inside a catch and in a body (not in guard) and the @@ -1457,7 +1752,7 @@ recv_loop_cg(Te, Rvar, Rm, Tes, Rs, Le, Vdb, Bef, St0) -> %% cg_recv_mesg( ) -> {[Ainstr],Aft,St}. -cg_recv_mesg({var,R}, Rm, Tl, Bef, St0) -> +cg_recv_mesg(#k_var{name=R}, Rm, Tl, Bef, St0) -> Int0 = Bef#sr{reg=put_reg(R, Bef#sr.reg)}, Ret = fetch_reg(R, Int0#sr.reg), %% Int1 = clear_dead(Int0, I, Rm#l.vdb), @@ -1467,22 +1762,22 @@ cg_recv_mesg({var,R}, Rm, Tl, Bef, St0) -> %% cg_recv_wait(Te, Tes, I, Vdb, Int2, St3) -> {[Ainstr],Aft,St}. -cg_recv_wait({atom,infinity}, Tes, I, Bef, St0) -> +cg_recv_wait(#k_atom{val=infinity}, #cg_block{anno=Le,es=Tes}, I, Bef, St0) -> %% We know that the 'after' body will never be executed. %% But to keep the stack and register information up to date, %% we will generate the code for the 'after' body, and then discard it. - Int1 = clear_dead(Bef, I, Tes#l.vdb), - {_,Int2,St1} = cg_block(Tes#l.ke, Tes#l.i, Tes#l.vdb, - Int1#sr{reg=clear_regs(Int1#sr.reg)}, St0), + Int1 = clear_dead(Bef, I, Le#l.vdb), + {_,Int2,St1} = cg_block(Tes, Le#l.i, Le#l.vdb, + Int1#sr{reg=clear_regs(Int1#sr.reg)}, St0), {[{wait,{f,St1#cg.recv}}],Int2,St1}; -cg_recv_wait({integer,0}, Tes, _I, Bef, St0) -> - {Tis,Int,St1} = cg_block(Tes#l.ke, Tes#l.i, Tes#l.vdb, Bef, St0), +cg_recv_wait(#k_int{val=0}, #cg_block{anno=Le,es=Tes}, _I, Bef, St0) -> + {Tis,Int,St1} = cg_block(Tes, Le#l.i, Le#l.vdb, Bef, St0), {[timeout|Tis],Int,St1}; -cg_recv_wait(Te, Tes, I, Bef, St0) -> +cg_recv_wait(Te, #cg_block{anno=Le,es=Tes}, I, Bef, St0) -> Reg = cg_reg_arg(Te, Bef), %% Must have empty registers here! Bug if anything in registers. - Int0 = clear_dead(Bef, I, Tes#l.vdb), - {Tis,Int,St1} = cg_block(Tes#l.ke, Tes#l.i, Tes#l.vdb, + Int0 = clear_dead(Bef, I, Le#l.vdb), + {Tis,Int,St1} = cg_block(Tes, Le#l.i, Le#l.vdb, Int0#sr{reg=clear_regs(Int0#sr.reg)}, St0), {[{wait_timeout,{f,St1#cg.recv},Reg},timeout] ++ Tis,Int,St1}. @@ -1500,7 +1795,7 @@ try_cg(Ta, Vs, Tb, Evs, Th, Rs, Le, Vdb, Bef, St0) -> {B,St1} = new_label(St0), %Body label {H,St2} = new_label(St1), %Handler label {E,St3} = new_label(St2), %End label - TryTag = Ta#l.i, + #l{i=TryTag} = get_kanno(Ta), Int1 = Bef#sr{stk=put_catch(TryTag, Bef#sr.stk)}, TryReg = fetch_stack({catch_tag,TryTag}, Int1#sr.stk), {Ais,Int2,St4} = cg(Ta, Vdb, Int1, St3#cg{break=B,in_catch=true}), @@ -1520,7 +1815,7 @@ try_cg(Ta, Vs, Tb, Evs, Th, Rs, Le, Vdb, Bef, St0) -> try_enter_cg(Ta, Vs, Tb, Evs, Th, Le, Vdb, Bef, St0) -> {B,St1} = new_label(St0), %Body label {H,St2} = new_label(St1), %Handler label - TryTag = Ta#l.i, + #l{i=TryTag} = get_kanno(Ta), Int1 = Bef#sr{stk=put_catch(TryTag, Bef#sr.stk)}, TryReg = fetch_stack({catch_tag,TryTag}, Int1#sr.stk), {Ais,Int2,St3} = cg(Ta, Vdb, Int1, St2#cg{break=B,in_catch=true}), @@ -1538,7 +1833,7 @@ try_enter_cg(Ta, Vs, Tb, Evs, Th, Le, Vdb, Bef, St0) -> %% catch_cg(CatchBlock, Ret, Le, Vdb, Bef, St) -> {[Ainstr],Aft,St}. -catch_cg(C, {var,R}, Le, Vdb, Bef, St0) -> +catch_cg(#cg_block{es=C}, #k_var{name=R}, Le, Vdb, Bef, St0) -> {B,St1} = new_label(St0), CatchTag = Le#l.i, Int1 = Bef#sr{stk=put_catch(CatchTag, Bef#sr.stk)}, @@ -1552,8 +1847,8 @@ catch_cg(C, {var,R}, Le, Vdb, Bef, St0) -> clear_dead(Aft, Le#l.i, Vdb), St2#cg{break=St1#cg.break,in_catch=St1#cg.in_catch}}. -%% set_cg([Var], Constr, Le, Vdb, Bef, St) -> {[Ainstr],Aft,St}. -%% We have to be careful how a 'set' works. First the structure is +%% put_cg([Var], Constr, Le, Vdb, Bef, St) -> {[Ainstr],Aft,St}. +%% We have to be careful how a 'put' works. First the structure is %% built, then it is filled and finally things can be cleared. The %% annotation must reflect this and make sure that the return %% variable is allocated first. @@ -1561,13 +1856,14 @@ catch_cg(C, {var,R}, Le, Vdb, Bef, St0) -> %% put_list and put_map are atomic instructions, both of %% which can safely resuse one of the source registers as target. -set_cg([{var,R}], {cons,Es}, Le, Vdb, Bef, St) -> - [S1,S2] = cg_reg_args(Es, Bef), +put_cg([#k_var{name=R}], #k_cons{hd=Hd,tl=Tl}, Le, Vdb, Bef, St) -> + [S1,S2] = cg_reg_args([Hd,Tl], Bef), Int0 = clear_dead(Bef, Le#l.i, Vdb), Int1 = Int0#sr{reg=put_reg(R, Int0#sr.reg)}, Ret = fetch_reg(R, Int1#sr.reg), {[{put_list,S1,S2,Ret}], Int1, St}; -set_cg([{var,R}], {binary,Segs}, Le, Vdb, Bef, #cg{bfail=Bfail}=St) -> +put_cg([#k_var{name=R}], #k_binary{segs=Segs}, Le, Vdb, Bef, + #cg{bfail=Bfail}=St) -> %% At run-time, binaries are constructed in three stages: %% 1) First the size of the binary is calculated. %% 2) Then the binary is allocated. @@ -1595,7 +1891,9 @@ set_cg([{var,R}], {binary,Segs}, Le, Vdb, Bef, #cg{bfail=Bfail}=St) -> {Sis++Code,Aft,St}; %% Map: single variable key. -set_cg([{var,R}], {map,Op,Map,[{map_pair,{var,_}=K,V}]}, Le, Vdb, Bef, St0) -> +put_cg([#k_var{name=R}], #k_map{op=Op,var=Map, + es=[#k_map_pair{key=#k_var{}=K,val=V}]}, + Le, Vdb, Bef, St0) -> {Sis,Int0} = maybe_adjust_stack(Bef, Le#l.i, Le#l.i+1, Vdb, St0), SrcReg = cg_reg_arg_prefer_y(Map, Int0), @@ -1610,22 +1908,23 @@ set_cg([{var,R}], {map,Op,Map,[{map_pair,{var,_}=K,V}]}, Le, Vdb, Bef, St0) -> Aft = Aft0#sr{reg=put_reg(R, Aft0#sr.reg)}, Target = fetch_reg(R, Aft#sr.reg), - {Is,St1} = set_cg_map(Line, Op, SrcReg, Target, Live, List, St0), + {Is,St1} = put_cg_map(Line, Op, SrcReg, Target, Live, List, St0), {Sis++Is,Aft,St1}; %% Map: (possibly) multiple literal keys. -set_cg([{var,R}], {map,Op,Map,Es}, Le, Vdb, Bef, St0) -> +put_cg([#k_var{name=R}], #k_map{op=Op,var=Map,es=Es}, Le, Vdb, Bef, St0) -> %% assert key literals - [] = [Var||{map_pair,{var,_}=Var,_} <- Es], + [] = [Var || #k_map_pair{key=#k_var{}=Var} <- Es], {Sis,Int0} = maybe_adjust_stack(Bef, Le#l.i, Le#l.i+1, Vdb, St0), SrcReg = cg_reg_arg_prefer_y(Map, Int0), Line = line(Le#l.a), %% fetch registers for values to be put into the map - Pairs = [{K,V} || {_,K,V} <- Es], - List = flatmap(fun({K,V}) -> [K,cg_reg_arg(V,Int0)] end, Pairs), + List = flatmap(fun(#k_map_pair{key=K,val=V}) -> + [atomic(K),cg_reg_arg(V, Int0)] + end, Es), Live = max_reg(Bef#sr.reg), @@ -1634,16 +1933,16 @@ set_cg([{var,R}], {map,Op,Map,Es}, Le, Vdb, Bef, St0) -> Aft = Aft0#sr{reg=put_reg(R, Aft0#sr.reg)}, Target = fetch_reg(R, Aft#sr.reg), - {Is,St1} = set_cg_map(Line, Op, SrcReg, Target, Live, List, St0), + {Is,St1} = put_cg_map(Line, Op, SrcReg, Target, Live, List, St0), {Sis++Is,Aft,St1}; %% Everything else. -set_cg([{var,R}], Con, Le, Vdb, Bef, St) -> +put_cg([#k_var{name=R}], Con, Le, Vdb, Bef, St) -> %% Find a place for the return register first. Int = Bef#sr{reg=put_reg(R, Bef#sr.reg)}, Ret = fetch_reg(R, Int#sr.reg), Ais = case Con of - {tuple,Es} -> + #k_tuple{es=Es} -> [{put_tuple,length(Es),Ret}] ++ cg_build_args(Es, Bef); Other -> [{move,cg_reg_arg(Other, Int),Ret}] @@ -1651,7 +1950,7 @@ set_cg([{var,R}], Con, Le, Vdb, Bef, St) -> {Ais,clear_dead(Int, Le#l.i, Vdb),St}. -set_cg_map(Line, Op0, SrcReg, Target, Live, List, St0) -> +put_cg_map(Line, Op0, SrcReg, Target, Live, List, St0) -> Bfail = St0#cg.bfail, Fail = {f,St0#cg.bfail}, Op = case Op0 of @@ -1865,7 +2164,8 @@ cg_bin_opt_1([I|Is]) -> cg_bin_opt_1([]) -> []. -cg_bin_put({bin_seg,[],S0,U,T,Fs,[E0,Next]}, Fail, Bef) -> +cg_bin_put(#k_bin_seg{size=S0,unit=U,type=T,flags=Fs,seg=E0,next=Next}, + Fail, Bef) -> S1 = cg_reg_arg(S0, Bef), E1 = cg_reg_arg(E0, Bef), {Format,Op} = case T of @@ -1882,7 +2182,7 @@ cg_bin_put({bin_seg,[],S0,U,T,Fs,[E0,Next]}, Fail, Bef) -> utf -> [{Op,Fail,{field_flags,Fs},E1}|cg_bin_put(Next, Fail, Bef)] end; -cg_bin_put({bin_end,[]}, _, _) -> []. +cg_bin_put(#k_bin_end{}, _, _) -> []. cg_build_args(As, Bef) -> [{put,cg_reg_arg(A, Bef)} || A <- As]. @@ -1936,11 +2236,11 @@ get_locked_regs([], _) -> []. cg_reg_args(As, Bef) -> [cg_reg_arg(A, Bef) || A <- As]. -cg_reg_arg({var,V}, Bef) -> fetch_var(V, Bef); -cg_reg_arg(Literal, _) -> Literal. +cg_reg_arg(#k_var{name=V}, Bef) -> fetch_var(V, Bef); +cg_reg_arg(Literal, _) -> atomic(Literal). -cg_reg_arg_prefer_y({var,V}, Bef) -> fetch_var_prefer_y(V, Bef); -cg_reg_arg_prefer_y(Literal, _) -> Literal. +cg_reg_arg_prefer_y(#k_var{name=V}, Bef) -> fetch_var_prefer_y(V, Bef); +cg_reg_arg_prefer_y(Literal, _) -> atomic(Literal). %% cg_setup_call([Arg], Bef, Cur, Vdb) -> {[Instr],Aft}. %% Do the complete setup for a call/enter. @@ -1978,9 +2278,9 @@ cg_call_args(As, Bef, I, Vdb) -> load_arg_regs(Regs, As) -> load_arg_regs(Regs, As, 0). -load_arg_regs([_|Rs], [{var,V}|As], I) -> [{I,V}|load_arg_regs(Rs, As, I+1)]; +load_arg_regs([_|Rs], [#k_var{name=V}|As], I) -> [{I,V}|load_arg_regs(Rs, As, I+1)]; load_arg_regs([_|Rs], [A|As], I) -> [{I,A}|load_arg_regs(Rs, As, I+1)]; -load_arg_regs([], [{var,V}|As], I) -> [{I,V}|load_arg_regs([], As, I+1)]; +load_arg_regs([], [#k_var{name=V}|As], I) -> [{I,V}|load_arg_regs([], As, I+1)]; load_arg_regs([], [A|As], I) -> [{I,A}|load_arg_regs([], As, I+1)]; load_arg_regs(Rs, [], _) -> Rs. @@ -2016,12 +2316,13 @@ move_unsaved([], _, Regs, Acc) -> {Acc,Regs}. gen_moves(As, Sr) -> gen_moves(As, Sr, 0, []). -gen_moves([{var,V}|As], Sr, I, Acc) -> +gen_moves([#k_var{name=V}|As], Sr, I, Acc) -> case fetch_var(V, Sr) of {x,I} -> gen_moves(As, Sr, I+1, Acc); Reg -> gen_moves(As, Sr, I+1, [{move,Reg,{x,I}}|Acc]) end; -gen_moves([A|As], Sr, I, Acc) -> +gen_moves([A0|As], Sr, I, Acc) -> + A = atomic(A0), gen_moves(As, Sr, I+1, [{move,A,{x,I}}|Acc]); gen_moves([], _, _, Acc) -> lists:keysort(3, Acc). @@ -2190,7 +2491,7 @@ fetch_var_prefer_y(V, #sr{reg=Reg,stk=Stk}) -> end. load_vars(Vs, Regs) -> - foldl(fun ({var,V}, Rs) -> put_reg(V, Rs) end, Regs, Vs). + foldl(fun (#k_var{name=V}, Rs) -> put_reg(V, Rs) end, Regs, Vs). %% put_reg(Val, Regs) -> Regs. %% find_reg(Val, Regs) -> {ok,r{R}} | error. @@ -2291,6 +2592,16 @@ put_catch(Tag, [Other|Stk], Acc) -> drop_catch(Tag, [{{catch_tag,Tag}}|Stk]) -> [free|Stk]; drop_catch(Tag, [Other|Stk]) -> [Other|drop_catch(Tag, Stk)]. +%% atomic(Klit) -> Lit. +%% atomic_list([Klit]) -> [Lit]. + +atomic(#k_literal{val=V}) -> {literal,V}; +atomic(#k_int{val=I}) -> {integer,I}; +atomic(#k_float{val=F}) -> {float,F}; +atomic(#k_atom{val=A}) -> {atom,A}; +%%atomic(#k_char{val=C}) -> {char,C}; +atomic(#k_nil{}) -> nil. + %% new_label(St) -> {L,St}. new_label(#cg{lcount=Next}=St) -> @@ -2333,3 +2644,86 @@ flatmapfoldl(F, Accu0, [Hd|Tail]) -> {Rs,Accu2} = flatmapfoldl(F, Accu1, Tail), {R++Rs,Accu2}; flatmapfoldl(_, Accu, []) -> {[],Accu}. + +%% Keep track of life time for variables. +%% +%% init_vars([{var,VarName}]) -> Vdb. +%% new_vars([VarName], I, Vdb) -> Vdb. +%% use_vars([VarName], I, Vdb) -> Vdb. +%% add_var(VarName, F, L, Vdb) -> Vdb. +%% +%% The list of variable names for new_vars/3 and use_vars/3 +%% must be sorted. + +init_vars(Vs) -> + vdb_new(Vs). + +new_vars([], _, Vdb) -> Vdb; +new_vars([V], I, Vdb) -> vdb_store_new(V, {V,I,I}, Vdb); +new_vars(Vs, I, Vdb) -> vdb_update_vars(Vs, Vdb, I). + +use_vars([], _, Vdb) -> + Vdb; +use_vars([V], I, Vdb) -> + case vdb_find(V, Vdb) of + {V,F,L} when I > L -> vdb_update(V, {V,F,I}, Vdb); + {V,_,_} -> Vdb; + error -> vdb_store_new(V, {V,I,I}, Vdb) + end; +use_vars(Vs, I, Vdb) -> vdb_update_vars(Vs, Vdb, I). + +add_var(V, F, L, Vdb) -> + vdb_store_new(V, {V,F,L}, Vdb). + +%% vdb + +vdb_new(Vs) -> + ordsets:from_list([{V,0,0} || #k_var{name=V} <- Vs]). + +-type var() :: atom(). + +-spec vdb_find(var(), [vdb_entry()]) -> 'error' | vdb_entry(). + +vdb_find(V, Vdb) -> + case lists:keyfind(V, 1, Vdb) of + false -> error; + Vd -> Vd + end. + +vdb_update(V, Update, [{V,_,_}|Vdb]) -> + [Update|Vdb]; +vdb_update(V, Update, [Vd|Vdb]) -> + [Vd|vdb_update(V, Update, Vdb)]. + +vdb_store_new(V, New, [{V1,_,_}=Vd|Vdb]) when V > V1 -> + [Vd|vdb_store_new(V, New, Vdb)]; +vdb_store_new(V, New, [{V1,_,_}|_]=Vdb) when V < V1 -> + [New|Vdb]; +vdb_store_new(_, New, []) -> [New]. + +vdb_update_vars([V|_]=Vs, [{V1,_,_}=Vd|Vdb], I) when V > V1 -> + [Vd|vdb_update_vars(Vs, Vdb, I)]; +vdb_update_vars([V|Vs], [{V1,_,_}|_]=Vdb, I) when V < V1 -> + %% New variable. + [{V,I,I}|vdb_update_vars(Vs, Vdb, I)]; +vdb_update_vars([V|Vs], [{_,F,L}=Vd|Vdb], I) -> + %% Existing variable. + if + I > L -> [{V,F,I}|vdb_update_vars(Vs, Vdb, I)]; + true -> [Vd|vdb_update_vars(Vs, Vdb, I)] + end; +vdb_update_vars([V|Vs], [], I) -> + %% New variable. + [{V,I,I}|vdb_update_vars(Vs, [], I)]; +vdb_update_vars([], Vdb, _) -> Vdb. + +%% vdb_sub(Min, Max, Vdb) -> Vdb. +%% Extract variables which are used before and after Min. Lock +%% variables alive after Max. + +vdb_sub(Min, Max, Vdb) -> + [ if L >= Max -> {V,F,locked}; + true -> Vd + end || {V,F,L}=Vd <- Vdb, + F < Min, + L >= Min ]. |