From f1e687312daa91591a2cee5038a2d9434e7db209 Mon Sep 17 00:00:00 2001 From: Hans Bolinder Date: Fri, 11 Dec 2015 12:04:56 +0100 Subject: stdlib: Correct a type --- lib/stdlib/src/io.erl | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/lib/stdlib/src/io.erl b/lib/stdlib/src/io.erl index 5dc8b4541e..f510f61e9f 100644 --- a/lib/stdlib/src/io.erl +++ b/lib/stdlib/src/io.erl @@ -444,7 +444,7 @@ scan_erl_form(Io, Prompt, Pos0, Options) -> %% Parsing Erlang code. -type parse_ret() :: {'ok', - ExprList :: erl_parse:abstract_expr(), + ExprList :: [erl_parse:abstract_expr()], EndLocation :: location()} | {'eof', EndLocation :: location()} | {'error', -- cgit v1.2.3 From 2bf8c4726dfdf94bd6c190f1236c33a064238e02 Mon Sep 17 00:00:00 2001 From: Hans Bolinder Date: Fri, 11 Dec 2015 12:00:36 +0100 Subject: syntax_tools: Correct a type --- lib/syntax_tools/src/erl_recomment.erl | 5 ++++- 1 file changed, 4 insertions(+), 1 deletion(-) diff --git a/lib/syntax_tools/src/erl_recomment.erl b/lib/syntax_tools/src/erl_recomment.erl index 72e1e2d2f5..5ce533285d 100644 --- a/lib/syntax_tools/src/erl_recomment.erl +++ b/lib/syntax_tools/src/erl_recomment.erl @@ -611,12 +611,15 @@ expand_comment(C) -> attrs :: erl_syntax:syntaxTreeAttributes(), precomments = [] :: [erl_syntax:syntaxTree()], postcomments = [] :: [erl_syntax:syntaxTree()], - subtrees = [] :: [erl_syntax:syntaxTree()]}). + subtrees = [] :: [extendedSyntaxTree()]}). + -record(list, {min = 0 :: integer(), max = 0 :: integer(), subtrees = [] :: [erl_syntax:syntaxTree()]}). +-type extendedSyntaxTree() :: #tree{} | #leaf{} | #list{}. + leaf_node(Min, Max, Value) -> #leaf{min = Min, max = Max, -- cgit v1.2.3 From 39dc426b3ee91cb1d2628f217c83147354663cc0 Mon Sep 17 00:00:00 2001 From: Hans Bolinder Date: Wed, 16 Dec 2015 14:31:41 +0100 Subject: doc: Update a refman example --- system/doc/reference_manual/expressions.xml | 20 ++++++++++---------- 1 file changed, 10 insertions(+), 10 deletions(-) diff --git a/system/doc/reference_manual/expressions.xml b/system/doc/reference_manual/expressions.xml index 893398b71b..e98fcbcbb9 100644 --- a/system/doc/reference_manual/expressions.xml +++ b/system/doc/reference_manual/expressions.xml @@ -245,13 +245,13 @@ lists:keysearch(Name, 1, List) handle(Msg, State) spawn(m, init, [])

Examples where ExprF is a fun:

- -Fun1 = fun(X) -> X+1 end -Fun1(3) -=> 4 - -fun lists:append/2([1,2], [3,4]) -=> [1,2,3,4] +
+1> Fun1 = fun(X) -> X+1 end,
+Fun1(3).
+4
+2> fun lists:append/2([1,2], [3,4]).
+[1,2,3,4]
+3> 

Notice that when calling a local function, there is a difference between using the implicitly or fully qualified function name. @@ -1004,7 +1004,7 @@ M4 = M3#{a := 2, b := 3}. % 'a' and 'b' was added in `M1` and `M2`.

A badmatch exception.

-

This is if it is used in the context of the matching operator +

This is if it is used in the context of the match operator as in the example.

Or resulting in the next clause being tested in function heads and @@ -1085,7 +1085,7 @@ Ei = Value |

Used in a bit string construction, Value is an expression that is to evaluate to an integer, float, or bit string. If the expression is not a single literal or variable, it - is to be enclosed in parenthesis.

+ is to be enclosed in parentheses.

Used in a bit string matching, Value must be a variable, or an integer, float, or string.

@@ -1319,7 +1319,7 @@ catch Expr {'EXIT',{badarith,[...]}}

Notice that catch has low precedence and catch subexpressions often needs to be enclosed in a block - expression or in parenthesis:

+ expression or in parentheses:

 3> A = catch 1+2.
 ** 1: syntax error before: 'catch' **
-- 
cgit v1.2.3


From 3bd648f66080d1074533ba18fece0ea7de568d45 Mon Sep 17 00:00:00 2001
From: Hans Bolinder 
Date: Thu, 17 Dec 2015 12:09:24 +0100
Subject: dialyzer: Improve a type

---
 lib/dialyzer/src/dialyzer_utils.erl | 2 +-
 1 file changed, 1 insertion(+), 1 deletion(-)

diff --git a/lib/dialyzer/src/dialyzer_utils.erl b/lib/dialyzer/src/dialyzer_utils.erl
index 7fe982a992..557e10eed7 100644
--- a/lib/dialyzer/src/dialyzer_utils.erl
+++ b/lib/dialyzer/src/dialyzer_utils.erl
@@ -83,7 +83,7 @@ print_types1([{record, _Name} = Key|T], RecDict) ->
 
 %% ----------------------------------------------------------------------------
 
--type abstract_code() :: [tuple()]. %% XXX: import from somewhere
+-type abstract_code() :: [erl_parse:abstract_form()].
 -type comp_options()  :: [compile:option()].
 -type mod_or_fname()  :: module() | file:filename().
 -type fa()            :: {atom(), arity()}.
-- 
cgit v1.2.3


From 034e28c340d38a34c0e00590321380c407ff5faf Mon Sep 17 00:00:00 2001
From: Hans Bolinder 
Date: Thu, 17 Dec 2015 12:29:51 +0100
Subject: hipe: Improve types

---
 lib/hipe/cerl/erl_types.erl | 6 +++---
 1 file changed, 3 insertions(+), 3 deletions(-)

diff --git a/lib/hipe/cerl/erl_types.erl b/lib/hipe/cerl/erl_types.erl
index 67cdcd35e3..69654088d5 100644
--- a/lib/hipe/cerl/erl_types.erl
+++ b/lib/hipe/cerl/erl_types.erl
@@ -316,7 +316,7 @@
 %% Auxiliary types and convenient macros
 %%
 
--type parse_form() :: {atom(), _, _} | {atom(), _, _, _} | {'op', _, _, _, _}. %% XXX: Temporarily
+-type parse_form() :: erl_parse:abstract_expr().
 -type rng_elem()   :: 'pos_inf' | 'neg_inf' | integer().
 
 -record(int_set, {set :: [integer()]}).
@@ -365,8 +365,8 @@
 -type type_key()     :: {'type' | 'opaque', atom(), arity()}.
 -type record_value() :: [{atom(), erl_parse:abstract_expr(), erl_type()}].
 -type type_value()   :: {module(), erl_type(), atom()}.
--type type_table() :: dict:dict(record_key(), record_value())
-                    | dict:dict(type_key(), type_value()).
+-type type_table() :: dict:dict(record_key() | type_key(),
+                                record_value() | type_value()).
 
 -type var_table() :: dict:dict(atom(), erl_type()).
 
-- 
cgit v1.2.3


From 130eb1e9f3af384f13c38e93365c5917f25fd798 Mon Sep 17 00:00:00 2001
From: Hans Bolinder 
Date: Thu, 17 Dec 2015 15:49:33 +0100
Subject: compiler: Improve type and specs

---
 lib/compiler/src/compile.erl | 13 ++++++++++++-
 1 file changed, 12 insertions(+), 1 deletion(-)

diff --git a/lib/compiler/src/compile.erl b/lib/compiler/src/compile.erl
index b61c104b3c..72f1a767ed 100644
--- a/lib/compiler/src/compile.erl
+++ b/lib/compiler/src/compile.erl
@@ -40,6 +40,8 @@
 
 %%----------------------------------------------------------------------
 
+-type abstract_code() :: [erl_parse:abstract_form()].
+
 -type option() :: atom() | {atom(), term()} | {'d', atom(), term()}.
 
 -type err_info() :: {erl_anno:line() | 'none',
@@ -48,6 +50,9 @@
 -type warnings() :: [{file:filename(), [err_info()]}].
 -type mod_ret()  :: {'ok', module()}
                   | {'ok', module(), cerl:c_module()} %% with option 'to_core'
+                  | {'ok',                            %% with option 'to_pp'
+                     module() | [],                   %% module() if 'to_exp'
+                     abstract_code()}
                   | {'ok', module(), warnings()}.
 -type bin_ret()  :: {'ok', module(), binary()}
                   | {'ok', module(), binary(), warnings()}.
@@ -78,7 +83,11 @@ file(File, Opts) when is_list(Opts) ->
 file(File, Opt) ->
     file(File, [Opt|?DEFAULT_OPTIONS]).
 
-forms(File) -> forms(File, ?DEFAULT_OPTIONS).
+-spec forms(abstract_code()) -> comp_ret().
+
+forms(Forms) -> forms(Forms, ?DEFAULT_OPTIONS).
+
+-spec forms(abstract_code(), [option()] | option()) -> comp_ret().
 
 forms(Forms, Opts) when is_list(Opts) ->
     do_compile({forms,Forms}, [binary|Opts++env_default_opts()]);
@@ -106,6 +115,8 @@ noenv_file(File, Opts) when is_list(Opts) ->
 noenv_file(File, Opt) ->
     noenv_file(File, [Opt|?DEFAULT_OPTIONS]).
 
+-spec noenv_forms(abstract_code(), [option()] | option()) -> comp_ret().
+
 noenv_forms(Forms, Opts) when is_list(Opts) ->
     do_compile({forms,Forms}, [binary|Opts]);
 noenv_forms(Forms, Opt) when is_atom(Opt) ->
-- 
cgit v1.2.3


From c92ec9ea35209d443c2fb6393a1610f94ffccc1c Mon Sep 17 00:00:00 2001
From: Hans Bolinder 
Date: Thu, 17 Dec 2015 12:40:43 +0100
Subject: stdlib: Refine the types of the abstract format

---
 lib/stdlib/src/erl_parse.yrl | 414 ++++++++++++++++++++++++++++++++++++++++++-
 1 file changed, 410 insertions(+), 4 deletions(-)

diff --git a/lib/stdlib/src/erl_parse.yrl b/lib/stdlib/src/erl_parse.yrl
index e07ab2efc2..a525c2ae82 100644
--- a/lib/stdlib/src/erl_parse.yrl
+++ b/lib/stdlib/src/erl_parse.yrl
@@ -527,12 +527,418 @@ Erlang code.
 -compile([{hipe,[{regalloc,linear_scan}]}]).
 
 -export_type([abstract_clause/0, abstract_expr/0, abstract_form/0,
-              error_info/0]).
+              abstract_type/0, error_info/0]).
+
+%% Start of Abstract Format
+
+-type anno() :: erl_anno:anno().
+
+-type abstract_form() :: af_module()
+                       | af_behavior()
+                       | af_behaviour()
+                       | af_export()
+                       | af_import()
+                       | af_export_type()
+                       | af_optional_callbacks()
+                       | af_compile()
+                       | af_file()
+                       | af_record_decl()
+                       | af_type_decl()
+                       | af_function_spec()
+                       | af_wild_attribute()
+                       | af_function_decl().
+
+-type af_module() :: {'attribute', anno(), 'module', module()}.
+
+-type af_behavior() :: {'attribute', anno(), 'behavior', behaviour()}.
+
+-type af_behaviour() :: {'attribute', anno(), 'behaviour', behaviour()}.
+
+-type behaviour() :: atom().
+
+-type af_export() :: {'attribute', anno(), 'export', af_fa_list()}.
+
+-type af_import() :: {'attribute', anno(), 'import', af_fa_list()}.
+
+-type af_fa_list() :: [{function_name(), arity()}].
+
+-type af_export_type() :: {'attribute', anno(), 'export_type', af_ta_list()}.
+
+-type af_ta_list() :: [{type_name(), arity()}].
+
+-type af_optional_callbacks() ::
+        {'attribute', anno(), 'optional_callbacks', af_fa_list()}.
+
+-type af_compile() :: {'attribute', anno(), 'compile', any()}.
+
+-type af_file() :: {'attribute', anno(), 'file', {string(), anno()}}.
+
+-type af_record_decl() ::
+        {'attribute', anno(), 'record', {record_name(), [af_field_decl()]}}.
+
+-type af_field_decl() :: af_typed_field() | af_field().
+
+-type af_typed_field() ::
+        {'typed_record_field', af_field(), abstract_type()}.
+
+-type af_field() :: {'record_field', anno(), af_field_name()}
+                  | {'record_field', anno(), af_field_name(), abstract_expr()}.
+
+-type af_type_decl() :: {'attribute', anno(), type_attr(),
+                         {type_name(), abstract_type(), [af_variable()]}}.
+
+-type type_attr() :: 'opaque' | 'type'.
+
+-type af_function_spec() :: {'attribute', anno(), spec_attr(),
+                             {{function_name(), arity()},
+                              af_function_type_list()}}
+                          | {'attribute', anno(), 'spec',
+                             {{module(), function_name(), arity()},
+                              af_function_type_list()}}.
+
+-type spec_attr() :: 'callback' | 'spec'.
+
+-type af_wild_attribute() :: {'attribute', anno(), atom(), any()}.
+
+-type af_function_decl() ::
+        {'function', anno(), function_name(), arity(), af_clause_seq()}.
+
+-type abstract_expr() :: af_literal()
+                       | af_match(abstract_expr())
+                       | af_variable()
+                       | af_tuple(abstract_expr())
+                       | af_nil()
+                       | af_cons(abstract_expr())
+                       | af_bin(abstract_expr())
+                       | af_binary_op(abstract_expr())
+                       | af_unary_op(abstract_expr())
+                       | af_record_access(abstract_expr())
+                       | af_record_update(abstract_expr())
+                       | af_record_index()
+                       | af_record_field_access(abstract_expr())
+                       | af_map_access(abstract_expr())
+                       | af_map_update(abstract_expr())
+                       | af_catch()
+                       | af_local_call()
+                       | af_remote_call()
+                       | af_list_comprehension()
+                       | af_binary_comprehension()
+                       | af_block()
+                       | af_if()
+                       | af_case()
+                       | af_try()
+                       | af_receive()
+                       | af_local_fun()
+                       | af_remote_fun()
+                       | af_fun()
+                       | af_named_fun().
+
+-type af_record_update(T) :: {'record',
+                              anno(),
+                              abstract_expr(),
+                              record_name(),
+                              [af_record_field(T)]}.
+
+-type af_catch() :: {'catch', anno(), abstract_expr()}.
+
+-type af_local_call() :: {'call', anno(), af_local_function(), af_args()}.
+
+-type af_remote_call() :: {'call', anno(), af_remote_function(), af_args()}.
+
+-type af_args() :: [abstract_expr()].
+
+-type af_local_function() :: abstract_expr().
+
+-type af_remote_function() ::
+        {'remote', anno(), abstract_expr(), abstract_expr()}.
+
+-type af_list_comprehension() ::
+        {'lc', anno(), af_template(), af_qualifier_seq()}.
+
+-type af_binary_comprehension() ::
+        {'bc', anno(), af_template(), af_qualifier_seq()}.
+
+-type af_template() :: abstract_expr().
+
+-type af_qualifier_seq() :: [af_qualifier()].
+
+-type af_qualifier() :: af_generator() | af_filter().
+
+-type af_generator() :: {'generate', anno(), af_pattern(), abstract_expr()}
+                      | {'b_generate', anno(), af_pattern(), abstract_expr()}.
+
+-type af_filter() :: abstract_expr().
+
+-type af_block() :: {'block', anno(), af_body()}.
+
+-type af_if() :: {'if', anno(), af_clause_seq()}.
+
+-type af_case() :: {'case', anno(), abstract_expr(), af_clause_seq()}.
+
+-type af_try() :: {'try',
+                   anno(),
+                   af_body() | [],
+                   af_clause_seq() | [],
+                   af_clause_seq() | [],
+                   af_body() | []}.
+
+-type af_clause_seq() :: [af_clause(), ...].
+
+-type af_receive() ::
+        {'receive', anno(), af_clause_seq()}
+      | {'receive', anno(), af_clause_seq(), abstract_expr(), af_body()}.
+
+-type af_local_fun() ::
+        {'fun', anno(), {'function', function_name(), arity()}}.
+
+-type af_remote_fun() ::
+        {'fun', anno(), {'function', module(), function_name(), arity()}}
+      | {'fun', anno(), {'function', af_atom(), af_atom(), af_integer()}}.
+
+-type af_fun() :: {'fun', anno(), {'clauses', af_clause_seq()}}.
+
+-type af_named_fun() :: {'named_fun', anno(), fun_name(), af_clause_seq()}.
+
+-type fun_name() :: atom().
+
+-type abstract_clause() :: af_clause().
+
+-type af_clause() ::
+        {'clause', anno(), [af_pattern()], af_guard_seq(), af_body()}.
+
+-type af_body() :: [abstract_expr(), ...].
+
+-type af_guard_seq() :: [af_guard()].
+
+-type af_guard() :: [af_guard_test(), ...].
+
+-type af_guard_test() :: af_literal()
+                       | af_variable()
+                       | af_tuple(af_guard_test())
+                       | af_nil()
+                       | af_cons(af_guard_test())
+                       | af_bin(af_guard_test())
+                       | af_binary_op(af_guard_test())
+                       | af_unary_op(af_guard_test())
+                       | af_record_access(af_guard_test())
+                       | af_record_index()
+                       | af_record_field_access(af_guard_test())
+                       | af_map_access(abstract_expr()) % FIXME
+                       | af_map_update(abstract_expr()) % FIXME
+                       | af_guard_call()
+                       | af_remote_guard_call().
+
+-type af_record_field_access(T) ::
+        {'record_field', anno(), T, record_name(), af_field_name()}.
+
+-type af_map_access(T) :: {'map', anno(), [af_map_field(T)]}.
+
+-type af_map_update(T) :: {'map', anno(), T, [af_map_field(T)]}.
+
+-type af_map_field(T) :: af_map_field_assoc(T) | af_map_field_exact(T).
+
+-type af_map_field_assoc(T) :: {'map_field_assoc', anno(), T, T}.
+
+-type af_map_field_exact(T) :: {'map_field_exact', anno(), T, T}.
+
+-type af_guard_call() :: {'call', anno(), function_name(), [af_guard_test()]}.
+
+-type af_remote_guard_call() ::
+        {'call', anno(),
+         {'remote', anno(), af_lit_atom('erlang'), af_atom()},
+         [af_guard_test()]}.
+
+-type af_pattern() :: af_literal()
+                    | af_match(af_pattern())
+                    | af_variable()
+                    | af_tuple(af_pattern())
+                    | af_nil()
+                    | af_cons(af_pattern())
+                    | af_bin(af_pattern())
+                    | af_binary_op(af_pattern())
+                    | af_unary_op(af_pattern())
+                    | af_record_access(af_pattern())
+                    | af_record_index()
+                    | af_map_pattern().
+
+-type af_record_index() ::
+        {'record_index', anno(), record_name(), af_field_name()}.
+
+-type af_record_access(T) ::
+        {'record', anno(), record_name(), [af_record_field(T)]}.
+
+-type af_record_field(T) :: {'record_field', anno(), af_field_name(), T}.
+
+-type af_map_pattern() ::
+        {'map', anno(), [af_map_field_exact(abstract_expr)]}. % FIXME?
+
+-type abstract_type() :: af_annotated_type()
+                       | af_atom()
+                       | af_bitstring_type()
+                       | af_empty_list_type()
+                       | af_fun_type()
+                       | af_integer_range_type()
+                       | af_map_type()
+                       | af_predefined_type()
+                       | af_record_type()
+                       | af_remote_type()
+                       | af_singleton_integer_type()
+                       | af_tuple_type()
+                       | af_type_union()
+                       | af_type_variable()
+                       | af_user_defined_type().
+
+-type af_annotated_type() ::
+        {'ann_type', anno(), [af_anno() | abstract_type()]}. % [Var, Type]
+
+-type af_anno() :: af_variable().
+
+-type af_bitstring_type() ::
+        {'type', anno(), 'binary', [af_singleton_integer_type()]}.
+
+-type af_empty_list_type() :: {'type', anno(), 'nil', []}.
+
+-type af_fun_type() :: {'type', anno(), 'fun', []}
+                     | {'type', anno(), 'fun', [{'type', anno(), 'any'} |
+                                                abstract_type()]}
+                     | {'type', anno(), 'fun', af_function_type()}.
+
+-type af_integer_range_type() ::
+        {'type', anno(), 'range', [af_singleton_integer_type()]}.
+
+-type af_map_type() :: {'type', anno(), 'map', 'any'}
+                     | {'type', anno(), 'map', [af_map_pair_type()]}.
+
+-type af_map_pair_type() ::
+        {'type', anno(), 'map_field_assoc', [abstract_type()]}.
+
+-type af_predefined_type() ::
+        {'type', anno(), type_name(),  [abstract_type()]}.
+
+-type af_record_type() ::
+        {'type', anno(), 'record', [(Name :: af_atom()) % [Name, T1, ... Tk]
+                                    | af_record_field_type()]}.
+
+-type af_record_field_type() ::
+        {'type', anno(), 'field_type', [(Name :: af_atom()) |
+                                        abstract_type()]}. % [Name, Type]
+
+-type af_remote_type() ::
+        {'remote_type', anno(), [(Module :: af_atom()) |
+                                 (TypeName :: af_atom()) |
+                                 [abstract_type()]]}. % [Module, Name, [T]]
+
+-type af_tuple_type() :: {'type', anno(), 'tuple', 'any'}
+                       | {'type', anno(), 'tuple', [abstract_type()]}.
+
+-type af_type_union() :: {'type', anno(), 'union', [abstract_type()]}.
+
+-type af_type_variable() :: {'var', anno(), atom()}. % except '_'
+
+-type af_user_defined_type() ::
+        {'user_type', anno(), type_name(),  [abstract_type()]}.
+
+-type af_function_type_list() :: [af_constrained_function_type() |
+                                  af_function_type()].
+
+-type af_constrained_function_type() ::
+        {'type', anno(), 'bounded_fun', [af_function_type() | % [Ft, Fc]
+                                         af_function_constraint()]}.
+
+-type af_function_type() ::
+        {'type', anno(), 'fun',
+         [{'type', anno(), 'product', [abstract_type()]} | abstract_type()]}.
+
+-type af_function_constraint() :: [af_constraint()].
+
+-type af_constraint() :: {'type', anno(), 'constraint',
+                          af_lit_atom('is_subtype'),
+                          [af_type_variable() | abstract_type()]}. % [V, T]
+
+-type af_singleton_integer_type() :: af_integer()
+                                   | af_unary_op(af_singleton_integer_type())
+                                   | af_binary_op(af_singleton_integer_type()).
+
+-type af_literal() :: af_atom() | af_integer() | af_float() | af_string().
+
+-type af_atom() :: af_lit_atom(atom()).
+
+-type af_lit_atom(A) :: {'atom', anno(), A}.
+
+-type af_integer() :: {'integer', anno(), non_neg_integer()}.
+
+-type af_float() :: {'float', anno(), float()}.
+
+-type af_string() :: {'string', anno(), string()}.
+
+-type af_match(T) :: {'match', anno(), af_pattern(), T}.
+
+-type af_variable() :: {'var', anno(), atom()}. % | af_anon_variable()
+
+%-type af_anon_variable() :: {'var', anno(), '_'}.
+
+-type af_tuple(T) :: {'tuple', anno(), [T]}.
+
+-type af_nil() :: {'nil', anno()}.
+
+-type af_cons(T) :: {'cons', anno(), T, T}.
+
+-type af_bin(T) :: {'bin', anno(), [af_binelement(T)]}.
+
+-type af_binelement(T) :: {'bin_element',
+                           anno(),
+                           T,
+                           af_binelement_size(),
+                           type_specifier_list()}.
+
+-type af_binelement_size() :: 'default' | abstract_expr().
+
+-type af_binary_op(T) :: {'op', anno(), binary_op(), T, T}.
+
+-type binary_op() :: '/' | '*' | 'div' | 'rem' | 'band' | 'and' | '+' | '-'
+                   | 'bor' | 'bxor' | 'bsl' | 'bsr' | 'or' | 'xor' | '++'
+                   | '--' | '==' | '/=' | '=<' | '<'  | '>=' | '>' | '=:='
+                   | '=/='.
+
+-type af_unary_op(T) :: {'op', anno(), unary_op(), T}.
+
+-type unary_op() :: '+' | '*' | 'bnot' | 'not'.
+
+%% See also lib/stdlib/{src/erl_bits.erl,include/erl_bits.hrl}.
+-type type_specifier_list() :: 'default' | [type_specifier(), ...].
+
+-type type_specifier() :: type()
+                        | signedness()
+                        | endianness()
+                        | unit().
+
+-type type() :: 'integer'
+              | 'float'
+              | 'binary'
+              | 'bytes'
+              | 'bitstring'
+              | 'bits'
+              | 'utf8'
+              | 'utf16'
+              | 'utf32'.
+
+-type signedness() :: 'signed' | 'unsigned'.
+
+-type endianness() :: 'big' | 'little' | 'native'.
+
+-type unit() :: {'unit', 1..256}.
+
+-type record_name() :: atom().
+
+-type af_field_name() :: af_atom().
+
+-type function_name() :: atom().
+
+-type type_name() :: atom().
+
+%% End of Abstract Format
 
 %% XXX. To be refined.
--type abstract_clause() :: term().
--type abstract_expr() :: term().
--type abstract_form() :: term().
 -type error_description() :: term().
 -type error_info() :: {erl_anno:line(), module(), error_description()}.
 -type token() :: erl_scan:token().
-- 
cgit v1.2.3


From b21f71c1bb79d3979505ad6ad1e496472b38c6b9 Mon Sep 17 00:00:00 2001
From: Hans Bolinder 
Date: Thu, 17 Dec 2015 12:41:44 +0100
Subject: stdlib: Update erl_parse(3)

Calls to map_anno(), fold_anno(), and mapfold_anno() with lists of
erl_parse trees have been replaced. Those functions accept lists of
erl_parse trees, but it was not the intention when the functions were
introduced, and it is not documented.
---
 lib/stdlib/doc/src/erl_parse.xml | 120 ++++++++++++++++++++++++---------------
 lib/stdlib/src/erl_lint.erl      |   5 ++
 lib/stdlib/src/erl_parse.yrl     |  25 ++++----
 lib/stdlib/src/qlc_pt.erl        |  34 ++++++-----
 4 files changed, 114 insertions(+), 70 deletions(-)

diff --git a/lib/stdlib/doc/src/erl_parse.xml b/lib/stdlib/doc/src/erl_parse.xml
index 0938b5dec3..13be488c33 100644
--- a/lib/stdlib/doc/src/erl_parse.xml
+++ b/lib/stdlib/doc/src/erl_parse.xml
@@ -4,7 +4,7 @@
 
   
- 19962015 + 19962016 Ericsson AB. All Rights Reserved. @@ -44,20 +44,32 @@ - -

Parse tree for Erlang clause.

+ abstract_clause() +

+ Abstract form of an Erlang clause.

- -

Parse tree for Erlang expression.

+ abstract_expr() +

+ Abstract form of an Erlang expression.

- -

Parse tree for Erlang form.

+ abstract_form() +

+ Abstract form of an Erlang form.

+ + abstract_type() +

+ Abstract form of an Erlang type.

+
+
+ + + @@ -180,7 +192,7 @@

Converts the Erlang data structure Data into an abstract form of type AbsTerm.

The Line option is the line that will - be assigned to each node of the abstract form.

+ be assigned to each node of AbsTerm.

The Encoding option is used for selecting which integer lists will be considered as strings. The default is to use the encoding returned by @@ -196,47 +208,53 @@ - Map a function over the annotations of an abstract form + Map a function over the annotations of a erl_parse tree -

Modifies the abstract form Abstr by applying - Fun on every collection of annotations of the - abstract form. The abstract form is traversed in a - depth-first, left-to-right, fashion. +

Modifies the erl_parse tree Abstr + by applying Fun on each collection of + annotations of the nodes of the erl_parse tree. The + erl_parse tree is traversed in a depth-first, + left-to-right, fashion.

- Fold a function over the annotations of an abstract form + Fold a function over the annotations of a erl_parse tree -

Updates an accumulator by applying Fun on - every collection of annotations of the abstract form - Abstr. The first call to Fun has - AccIn as argument, and the returned accumulator - AccOut is passed to the next call, and so on. - The final value of the accumulator is returned. The abstract - form is traversed in a depth-first, left-to-right, fashion. +

Updates an accumulator by applying Fun on + each collection of annotations of the erl_parse tree + Abstr. The first call to + Fun has AccIn as + argument, and the returned accumulator + AccOut is passed to the next call, and + so on. The final value of the accumulator is returned. The + erl_parse tree is traversed in a depth-first, left-to-right, + fashion.

- Map and fold a function over the annotations of an abstract form + Map and fold a function over the annotations of a + erl_parse tree -

Modifies the abstract form Abstr by applying - Fun on every collection of annotations of the - abstract form, while at the same time updating an - accumulator. The first call to Fun has - AccIn as second argument, and the returned - accumulator AccOut is passed to the next call, - and so on. The modified abstract form as well as the the - final value of the accumulator is returned. The abstract - form is traversed in a depth-first, left-to-right, fashion. +

Modifies the erl_parse tree Abstr + by applying Fun on each collection of + annotations of the nodes of the erl_parse tree, while + at the same time updating an accumulator. The first call to + Fun has AccIn as + second argument, and the returned accumulator + AccOut is passed to the next call, and + so on. The modified erl_parse tree as well as the the + final value of the accumulator are returned. The + erl_parse tree is traversed in a depth-first, + left-to-right, fashion.

@@ -246,12 +264,15 @@ Create new annotations -

Creates an abstract form from a term which has the same - structure as an abstract form, but locations where the - abstract form has annotations. For each location, erl_anno:new/1 is - called, and the annotations replace the location. +

Assumes that Term is a term with the same + structure as a erl_parse tree, but with locations where a + erl_parse tree has collections of annotations. + Returns a erl_parse tree where each location L + has been replaced by the value returned by erl_anno:new(L). + The term Term is traversed in a + depth-first, left-to-right, fashion.

@@ -261,12 +282,14 @@ Return annotations as terms -

Assumes that Term is a term with the same - structure as an abstract form, but with terms, T say, on - those places where an abstract form has annotations. Returns - an abstract form where every term T has been replaced by the - value returned by calling erl_anno:from_term(T). The - term Term is traversed in a depth-first, +

Assumes that Term is a term with the same + structure as a erl_parse tree, but with terms, + T say, where a erl_parse tree has collections + of annotations. Returns a erl_parse tree where each + term T has been replaced by the value returned by + + erl_anno:from_term(T). The term + Term is traversed in a depth-first, left-to-right, fashion.

@@ -277,10 +300,13 @@ Return the representation of annotations -

Returns a term where every collection of annotations Anno of - Abstr has been replaced by the term returned by - calling erl_anno:to_term(Anno). The abstract form is - traversed in a depth-first, left-to-right, fashion. +

Returns a term where each collection of annotations + Anno of the nodes of the erl_parse tree + Abstr has been replaced by the term + returned by + erl_anno:to_term(Anno). The + erl_parse tree is traversed in a depth-first, + left-to-right, fashion.

diff --git a/lib/stdlib/src/erl_lint.erl b/lib/stdlib/src/erl_lint.erl index 4a42754d92..9ef4acdf5f 100644 --- a/lib/stdlib/src/erl_lint.erl +++ b/lib/stdlib/src/erl_lint.erl @@ -696,7 +696,12 @@ set_form_file({function,L,N,A,C}, File) -> set_form_file(Form, _File) -> Form. +set_file(Ts, File) when is_list(Ts) -> + [anno_set_file(T, File) || T <- Ts]; set_file(T, File) -> + anno_set_file(T, File). + +anno_set_file(T, File) -> F = fun(Anno) -> erl_anno:set_file(File, Anno) end, erl_parse:map_anno(F, T). diff --git a/lib/stdlib/src/erl_parse.yrl b/lib/stdlib/src/erl_parse.yrl index a525c2ae82..b1c574ea60 100644 --- a/lib/stdlib/src/erl_parse.yrl +++ b/lib/stdlib/src/erl_parse.yrl @@ -2,7 +2,7 @@ %% %% %CopyrightBegin% %% -%% Copyright Ericsson AB 1996-2015. All Rights Reserved. +%% Copyright Ericsson AB 1996-2016. All Rights Reserved. %% %% Licensed under the Apache License, Version 2.0 (the "License"); %% you may not use this file except in compliance with the License. @@ -1489,11 +1489,16 @@ type_preop_prec('-') -> {600,700}; type_preop_prec('bnot') -> {600,700}; type_preop_prec('#') -> {700,800}. +-type erl_parse_tree() :: abstract_clause() + | abstract_expr() + | abstract_form() + | abstract_type(). + -spec map_anno(Fun, Abstr) -> NewAbstr when Fun :: fun((Anno) -> Anno), Anno :: erl_anno:anno(), - Abstr :: abstract_form() | abstract_expr(), - NewAbstr :: abstract_form() | abstract_expr(). + Abstr :: erl_parse_tree(), + NewAbstr :: erl_parse_tree(). map_anno(F0, Abstr) -> F = fun(A, Acc) -> {F0(A), Acc} end, @@ -1506,8 +1511,8 @@ map_anno(F0, Abstr) -> Acc0 :: term(), AccIn :: term(), AccOut :: term(), - Abstr :: abstract_form() | abstract_expr(), - NewAbstr :: abstract_form() | abstract_expr(). + Abstr :: erl_parse_tree(), + NewAbstr :: erl_parse_tree(). fold_anno(F0, Acc0, Abstr) -> F = fun(A, Acc) -> {A, F0(A, Acc)} end, @@ -1521,26 +1526,26 @@ fold_anno(F0, Acc0, Abstr) -> Acc1 :: term(), AccIn :: term(), AccOut :: term(), - Abstr :: abstract_form() | abstract_expr(), - NewAbstr :: abstract_form() | abstract_expr(). + Abstr :: erl_parse_tree(), + NewAbstr :: erl_parse_tree(). mapfold_anno(F, Acc0, Abstr) -> modify_anno1(Abstr, Acc0, F). -spec new_anno(Term) -> Abstr when Term :: term(), - Abstr :: abstract_form() | abstract_expr(). + Abstr :: erl_parse_tree(). new_anno(Term) -> map_anno(fun erl_anno:new/1, Term). -spec anno_to_term(Abstr) -> term() when - Abstr :: abstract_form() | abstract_expr(). + Abstr :: erl_parse_tree(). anno_to_term(Abstract) -> map_anno(fun erl_anno:to_term/1, Abstract). --spec anno_from_term(Term) -> abstract_form() | abstract_expr() when +-spec anno_from_term(Term) -> erl_parse_tree() when Term :: term(). anno_from_term(Term) -> diff --git a/lib/stdlib/src/qlc_pt.erl b/lib/stdlib/src/qlc_pt.erl index 9577d17a85..9f69cd5003 100644 --- a/lib/stdlib/src/qlc_pt.erl +++ b/lib/stdlib/src/qlc_pt.erl @@ -1,7 +1,7 @@ %% %% %CopyrightBegin% %% -%% Copyright Ericsson AB 2004-2015. All Rights Reserved. +%% Copyright Ericsson AB 2004-2016. All Rights Reserved. %% %% Licensed under the Apache License, Version 2.0 (the "License"); %% you may not use this file except in compliance with the License. @@ -200,7 +200,7 @@ exclude_integers_from_unique_line_numbers(Forms, NodeInfo) -> find_integers(Forms) -> F = fun(A) -> - Fs1 = erl_parse:map_anno(fun(_) -> A end, Forms), + Fs1 = map_anno(fun(_) -> A end, Forms), ordsets:from_list(integers(Fs1, [])) end, ordsets:to_list(ordsets:intersection(F(anno0()), F(anno1()))). @@ -319,13 +319,13 @@ badarg(Forms, State) -> E0. lc_nodes(E, NodeInfo) -> - erl_parse:map_anno(fun(Anno) -> - N = erl_anno:line(Anno), - [{N, Data}] = ets:lookup(NodeInfo, N), - NData = Data#{inside_lc => true}, - true = ets:insert(NodeInfo, {N, NData}), - Anno - end, E). + map_anno(fun(Anno) -> + N = erl_anno:line(Anno), + [{N, Data}] = ets:lookup(NodeInfo, N), + NData = Data#{inside_lc => true}, + true = ets:insert(NodeInfo, {N, NData}), + Anno + end, E). used_genvar_messages(MsL, S) -> [{File,[{Loc,?APIMOD,{used_generator_variable,V}}]} @@ -416,7 +416,7 @@ intro_anno(LC, Where, QId, NodeInfo) -> true = ets:insert(NodeInfo, {Location,Data}), Anno end, - erl_parse:map_anno(Fun, save_anno(LC, NodeInfo)). + map_anno(Fun, save_anno(LC, NodeInfo)). compile_errors(FormsNoShadows) -> case compile_forms(FormsNoShadows, []) of @@ -1650,7 +1650,7 @@ reset_anno(T) -> set_anno(T, anno0()). set_anno(T, A) -> - erl_parse:map_anno(fun(_L) -> A end, T). + map_anno(fun(_L) -> A end, T). -record(fstate, {state, bind_fun, imported}). @@ -2609,7 +2609,7 @@ save_anno(Abstr, NodeInfo) -> true = ets:insert(NodeInfo, Data), erl_anno:new(N) end, - erl_parse:map_anno(F, Abstr). + map_anno(F, Abstr). next_slot(T) -> I = ets:update_counter(T, var_n, 1), @@ -2633,7 +2633,7 @@ restore_anno(Abstr, NodeInfo) -> Anno end end, - erl_parse:map_anno(F, Abstr). + map_anno(F, Abstr). restore_loc(Location, #state{node_info = NodeInfo}) -> case ets:lookup(NodeInfo, Location) of @@ -2872,6 +2872,14 @@ var_mapfold(F, A0, [E0 | Es0]) -> var_mapfold(_F, A, E) -> {E, A}. +map_anno(F, AbstrList) when is_list(AbstrList) -> + [map_anno1(F, Abstr) || Abstr <- AbstrList]; +map_anno(F, Abstr) -> + map_anno1(F, Abstr). + +map_anno1(F, Abstr) -> + erl_parse:map_anno(F, Abstr). + family_list(L) -> sofs:to_external(family(L)). -- cgit v1.2.3 From 34e02fed50bbaa2af7b1828968b6ec02a54e98c8 Mon Sep 17 00:00:00 2001 From: Hans Bolinder Date: Wed, 20 Jan 2016 09:54:00 +0100 Subject: erts: Improve the documentation of the abstract format --- erts/doc/src/absform.xml | 240 ++++++++++++++++++++++++++--------------------- 1 file changed, 131 insertions(+), 109 deletions(-) diff --git a/erts/doc/src/absform.xml b/erts/doc/src/absform.xml index 1c0c3e1319..3f47b3061b 100644 --- a/erts/doc/src/absform.xml +++ b/erts/doc/src/absform.xml @@ -4,7 +4,7 @@
- 20012015 + 20012016 Ericsson AB. All Rights Reserved. @@ -80,12 +80,15 @@ Rep(F) = {attribute,LINE,import,{Mod,[{Fun_1,A_1}, ..., {Fun_k,A_k}]}}. If F is an attribute -export_type([Type_1/A_1, ..., Type_k/A_k]), then Rep(F) = {attribute,LINE,export_type,[{Type_1,A_1}, ..., {Type_k,A_k}]}. + If F is an attribute -optional_callbacks([Fun_1/A_1, ..., Fun_k/A_k]), then + Rep(F) = {attribute,LINE,optional_callbacks,[{Fun_1,A_1}, ..., {Fun_k,A_k}]}. If F is an attribute -compile(Options), then Rep(F) = {attribute,LINE,compile,Options}. If F is an attribute -file(File,Line), then Rep(F) = {attribute,LINE,file,{File,Line}}. If F is a record declaration - -record(Name,{V_1, ..., V_k}), then Rep(F) = + -record(Name,{V_1, ..., V_k}), + where each V_i is a record field, then Rep(F) = {attribute,LINE,record,{Name,[Rep(V_1), ..., Rep(V_k)]}}. For Rep(V), see below. If F is a type declaration @@ -173,12 +176,12 @@
Patterns -

If Ps is a sequence of patterns P_1, ..., P_k, then +

If Ps is a sequence of patterns P_1, ..., P_k, then Rep(Ps) = [Rep(P_1), ..., Rep(P_k)]. Such sequences occur as the list of arguments to a function or fun.

Individual patterns are represented as follows:

- If P is an atomic literal L, then Rep(P) = Rep(L). + If P is an atomic literal L, then Rep(P) = Rep(L). If P is a compound pattern P_1 = P_2, then Rep(P) = {match,LINE,Rep(P_1),Rep(P_2)}. If P is a variable pattern V, then @@ -211,6 +214,10 @@ {record,LINE,Name,[{record_field,LINE,Rep(Field_1),Rep(P_1)}, ..., {record_field,LINE,Rep(Field_k),Rep(P_k)}]}. If P is #Name.Field, then Rep(P) = {record_index,LINE,Name,Rep(Field)}. + If P is a map pattern #{A_1, ..., A_k}, where each + A_i is an association P_i_1 := P_i_2, then Rep(P) = + {map,LINE,[Rep(A_1), ..., Rep(A_k)]}. For Rep(A), see + below. If P is ( P_0 ), then Rep(P) = Rep(P_0), that is, patterns cannot be distinguished from their bodies. @@ -221,11 +228,11 @@
Expressions -

A body B is a sequence of expressions E_1, ..., E_k, and - Rep(B) = [Rep(E_1), ..., Rep(E_k)].

+

A body B is a nonempty sequence of expressions E_1, ..., E_k, + and Rep(B) = [Rep(E_1), ..., Rep(E_k)].

An expression E is one of the following alternatives:

- If P is an atomic literal L, then Rep(P) = Rep(L). + If E is an atomic literal L, then Rep(E) = Rep(L). If E is P = E_0, then Rep(E) = {match,LINE,Rep(P),Rep(E_0)}. If E is a variable V, then Rep(E) = {var,LINE,A}, @@ -256,14 +263,16 @@ Rep(E) = {record_index,LINE,Name,Rep(Field)}. If E is E_0#Name.Field, then Rep(E) = {record_field,LINE,Rep(E_0),Name,Rep(Field)}. - If E is #{W_1, ..., W_k} where each - W_i is a map assoc or exact field, then Rep(E) = - {map,LINE,[Rep(W_1), ..., Rep(W_k)]}. For Rep(W), see + If E is a map creation #{A_1, ..., A_k}, + where each A_i is an association E_i_1 => E_i_2 + or E_i_1 := E_i_2, then Rep(E) = + {map,LINE,[Rep(A_1), ..., Rep(A_k)]}. For Rep(A), see below. - If E is E_0#{W_1, ..., W_k} where - W_i is a map assoc or exact field, then Rep(E) = - {map,LINE,Rep(E_0),[Rep(W_1), ..., Rep(W_k)]}. - For Rep(W), see below. + If E is a map update E_0#{A_1, ..., A_k}, + where each A_i is an association E_i_1 => E_i_2 + or E_i_1 := E_i_2, then Rep(E) = + {map,LINE,Rep(E_0),[Rep(A_1), ..., Rep(A_k)]}. + For Rep(A), see below. If E is catch E_0, then Rep(E) = {'catch',LINE,Rep(E_0)}. If E is E_0(E_1, ..., E_k), then @@ -271,15 +280,15 @@ If E is E_m:E_0(E_1, ..., E_k), then Rep(E) = {call,LINE,{remote,LINE,Rep(E_m),Rep(E_0)},[Rep(E_1), ..., Rep(E_k)]}. - If E is a list comprehension [E_0 || W_1, ..., W_k], - where each W_i is a generator or a filter, then Rep(E) = - {lc,LINE,Rep(E_0),[Rep(W_1), ..., Rep(W_k)]}. For Rep(W), see + If E is a list comprehension [E_0 || Q_1, ..., Q_k], + where each Q_i is a qualifier, then Rep(E) = + {lc,LINE,Rep(E_0),[Rep(Q_1), ..., Rep(Q_k)]}. For Rep(Q), see below. If E is a binary comprehension - <<E_0 || W_1, ..., W_k>>, - where each W_i is a generator or a filter, then - Rep(E) = {bc,LINE,Rep(E_0),[Rep(W_1), ..., Rep(W_k)]}. - For Rep(W), see below. + <<E_0 || Q_1, ..., Q_k>>, + where each Q_i is a qualifier, then + Rep(E) = {bc,LINE,Rep(E_0),[Rep(Q_1), ..., Rep(Q_k)]}. + For Rep(Q), see below. If E is begin B end, where B is a body, then Rep(E) = {block,LINE,Rep(B)}. If E is if Ic_1 ; ... ; Ic_k end, @@ -311,7 +320,7 @@ {'try',LINE,Rep(B),[],[Rep(Tc_1), ..., Rep(Tc_k)],Rep(A)}. If E is try B of Cc_1 ; ... ; Cc_k catch Tc_1 ; ... ; Tc_n after A end, where B and A are a bodies, - each Cc_i is a case clause and + each Cc_i is a case clause, and each Tc_j is a catch clause then Rep(E) = {'try',LINE,Rep(B),[Rep(Cc_1), ..., Rep(Cc_k)],[Rep(Tc_1), ..., Rep(Tc_n)],Rep(A)}. @@ -328,10 +337,10 @@ {'fun',LINE,{function,Rep(Module),Rep(Name),Rep(Arity)}}. (Before the R15 release: Rep(E) = {'fun',LINE,{function,Module,Name,Arity}}.) - If E is fun Fc_1 ; ... ; Fc_k end + If E is fun Fc_1 ; ... ; Fc_k end, where each Fc_i is a function clause then Rep(E) = {'fun',LINE,{clauses,[Rep(Fc_1), ..., Rep(Fc_k)]}}. - If E is fun Name Fc_1 ; ... ; Name Fc_k end + If E is fun Name Fc_1 ; ... ; Name Fc_k end, where Name is a variable and each Fc_i is a function clause then Rep(E) = {named_fun,LINE,Name,[Rep(Fc_1), ..., Rep(Fc_k)]}. @@ -342,46 +351,43 @@
- Generators and Filters -

When W is a generator or a filter (in the body of a list or - binary comprehension), then:

+ Qualifiers +

A qualifier Q is one of the following alternatives:

- If W is a generator P <- E, where P is + If Q is a generator P <- E, where P is a pattern and E is an expression, then - Rep(W) = {generate,LINE,Rep(P),Rep(E)}. - If W is a generator P <= E, where P is + Rep(Q) = {generate,LINE,Rep(P),Rep(E)}. + If Q is a generator P <= E, where P is a pattern and E is an expression, then - Rep(W) = {b_generate,LINE,Rep(P),Rep(E)}. - If W is a filter E, which is an expression, then - Rep(W) = Rep(E). + Rep(Q) = {b_generate,LINE,Rep(P),Rep(E)}. + If Q is a filter E, where E is an expression, then + Rep(Q) = Rep(E).
Binary Element Type Specifiers

A type specifier list TSL for a binary element is a sequence of type - specifiers TS_1 - ... - TS_k. + specifiers TS_1 - ... - TS_k, and Rep(TSL) = [Rep(TS_1), ..., Rep(TS_k)].

-

When TS is a type specifier for a binary element, then:

- If TS is an atom A, then Rep(TS) = A. - If TS is a couple A:Value where A is an atom - and Value is an integer, then Rep(TS) = - {A,Value}. + If TS is a type specifier A, where A is an atom, + then Rep(TS) = A. + If TS is a type specifier A:Value, + where A is an atom and Value is an integer, + then Rep(TS) = {A,Value}.
- Map Assoc and Exact Fields -

When W is an assoc or exact field (in the body of a map), then:

+ Associations +

An association A is one of the following alternatives:

- If W is an assoc field K => V, where - K and V are both expressions, - then Rep(W) = {map_field_assoc,LINE,Rep(K),Rep(V)}. + If A is an association K => V, + then Rep(A) = {map_field_assoc,LINE,Rep(K),Rep(V)}. - If W is an exact field K := V, where - K and V are both expressions, - then Rep(W) = {map_field_exact,LINE,Rep(K),Rep(V)}. + If A is an association K := V, + then Rep(A) = {map_field_exact,LINE,Rep(K),Rep(V)}.
@@ -393,37 +399,37 @@ and catch clauses.

A clause C is one of the following alternatives:

- If C is a function clause ( Ps ) -> B + If C is a function clause ( Ps ) -> B, where Ps is a pattern sequence and B is a body, then Rep(C) = {clause,LINE,Rep(Ps),[],Rep(B)}. - If C is a function clause ( Ps ) when Gs -> B + If C is a function clause ( Ps ) when Gs -> B, where Ps is a pattern sequence, Gs is a guard sequence and B is a body, then Rep(C) = {clause,LINE,Rep(Ps),Rep(Gs),Rep(B)}. - If C is an if clause Gs -> B + If C is an if clause Gs -> B, where Gs is a guard sequence and B is a body, then Rep(C) = {clause,LINE,[],Rep(Gs),Rep(B)}. - If C is a case clause P -> B + If C is a case clause P -> B, where P is a pattern and B is a body, then Rep(C) = {clause,LINE,[Rep(P)],[],Rep(B)}. - If C is a case clause P when Gs -> B + If C is a case clause P when Gs -> B, where P is a pattern, Gs is a guard sequence and B is a body, then Rep(C) = {clause,LINE,[Rep(P)],Rep(Gs),Rep(B)}. - If C is a catch clause P -> B + If C is a catch clause P -> B, where P is a pattern and B is a body, then Rep(C) = {clause,LINE,[Rep({throw,P,_})],[],Rep(B)}. - If C is a catch clause X : P -> B + If C is a catch clause X : P -> B, where X is an atomic literal or a variable pattern, - P is a pattern and B is a body, then + P is a pattern, and B is a body, then Rep(C) = {clause,LINE,[Rep({X,P,_})],[],Rep(B)}. - If C is a catch clause P when Gs -> B - where P is a pattern, Gs is a guard sequence + If C is a catch clause P when Gs -> B, + where P is a pattern, Gs is a guard sequence, and B is a body, then Rep(C) = {clause,LINE,[Rep({throw,P,_})],Rep(Gs),Rep(B)}. - If C is a catch clause X : P when Gs -> B + If C is a catch clause X : P when Gs -> B, where X is an atomic literal or a variable pattern, - P is a pattern, Gs is a guard sequence + P is a pattern, Gs is a guard sequence, and B is a body, then Rep(C) = {clause,LINE,[Rep({X,P,_})],Rep(Gs),Rep(B)}. @@ -439,7 +445,7 @@ [Rep(Gt_1), ..., Rep(Gt_k)].

A guard test Gt is one of the following alternatives:

- If Gt is an atomic literal L, then Rep(Gt) = Rep(L). + If Gt is an atomic literal L, then Rep(Gt) = Rep(L). If Gt is a variable pattern V, then Rep(Gt) = {var,LINE,A}, where A is an atom with a printname consisting of the same characters as V. @@ -467,15 +473,21 @@ Rep(Gt) = {record_index,LINE,Name,Rep(Field)}. If Gt is Gt_0#Name.Field, then Rep(Gt) = {record_field,LINE,Rep(Gt_0),Name,Rep(Field)}. + If Gt is a map creation #{A_1, ..., A_k}, + where each A_i is an association Gt_i_1 => Gt_i_2 + or Gt_i_1 := Gt_i_2, then Rep(Gt) = + {map,LINE,[Rep(A_1), ..., Rep(A_k)]}. For Rep(A), see + above. + If Gt is a map update Gt_0#{A_1, ..., A_k}, where each + A_i is an association Gt_i_1 => Gt_i_2 + or Gt_i_1 := Gt_i_2, then Rep(Gt) = + {map,LINE,Rep(Gt_0),[Rep(A_1), ..., Rep(A_k)]}. + For Rep(A), see above. If Gt is A(Gt_1, ..., Gt_k), where A is an atom, then Rep(Gt) = {call,LINE,Rep(A),[Rep(Gt_1), ..., Rep(Gt_k)]}. If Gt is A_m:A(Gt_1, ..., Gt_k), where A_m is the atom erlang and A is an atom or an operator, then Rep(Gt) = {call,LINE,{remote,LINE,Rep(A_m),Rep(A)},[Rep(Gt_1), ..., Rep(Gt_k)]}. - If Gt is {A_m,A}(Gt_1, ..., Gt_k), where A_m is - the atom erlang and A is an atom or an operator, then - Rep(Gt) = {call,LINE,Rep({A_m,A}),[Rep(Gt_1), ..., Rep(Gt_k)]}. - If Gt is ( Gt_0 ), then Rep(Gt) = Rep(Gt_0), that is, parenthesized guard tests cannot be distinguished from their bodies. @@ -487,21 +499,20 @@
Types - If T is an annotated type Anno :: Type, - where Anno is a variable and - Type is a type, then Rep(T) = - {ann_type,LINE,[Rep(Anno),Rep(Type)]}. + If T is an annotated type A :: T_0, + where A is a variable, then Rep(T) = + {ann_type,LINE,[Rep(A),Rep(T_0)]}. If T is an atom or integer literal L, then Rep(T) = Rep(L). - If T is L Op R, - where Op is a binary operator and L and R - are types (this is an occurrence of an expression that can be - evaluated to an integer at compile time), then - Rep(T) = {op,LINE,Op,Rep(L),Rep(R)}. - If T is Op A, where Op is a - unary operator and A is a type (this is an occurrence of + If T is an operator type T_1 Op T_2, + where Op is a binary operator (this is an occurrence of + an expression that can be evaluated to an integer at compile + time), then + Rep(T) = {op,LINE,Op,Rep(T_1),Rep(T_2)}. + If T is an operator type Op T_0, where Op is a + unary operator (this is an occurrence of an expression that can be evaluated to an integer at compile time), - then Rep(T) = {op,LINE,Op,Rep(A)}. + then Rep(T) = {op,LINE,Op,Rep(T_0)}. If T is a bitstring type <<_:M,_:_*N>>, where M and N are singleton integer types, then Rep(T) = {type,LINE,binary,[Rep(M),Rep(N)]}. @@ -509,53 +520,44 @@ {type,Line,nil,[]}. If T is a fun type fun(), then Rep(T) = {type,LINE,'fun',[]}. - If T is a fun type fun((...) -> B), - where B is a type, then - Rep(T) = {type,LINE,'fun',[{type,LINE,any},Rep(B)]}. + If T is a fun type fun((...) -> T_0), then + Rep(T) = {type,LINE,'fun',[{type,LINE,any},Rep(T_0)]}. If T is a fun type fun(Ft), where Ft is a function type, - then Rep(T) = Rep(Ft). + then Rep(T) = Rep(Ft). For Rep(Ft), see below. If T is an integer range type L .. H, where L and H are singleton integer types, then Rep(T) = {type,LINE,range,[Rep(L),Rep(H)]}. If T is a map type map(), then Rep(T) = {type,LINE,map,any}. - If T is a map type #{P_1, ..., P_k}, where each - P_i is a map pair type, then Rep(T) = - {type,LINE,map,[Rep(P_1), ..., Rep(P_k)]}. - If T is a map pair type K => V, where - K and V are types, then Rep(T) = - {type,LINE,map_field_assoc,[Rep(K),Rep(V)]}. - If T is a predefined (or built-in) type N(A_1, ..., A_k), - where each A_i is a type, then Rep(T) = - {type,LINE,N,[Rep(A_1), ..., Rep(A_k)]}. + If T is a map type #{A_1, ..., A_k}, where each + A_i is an association type, then Rep(T) = + {type,LINE,map,[Rep(A_1), ..., Rep(A_k)]}. + For Rep(A), see below. + If T is a predefined (or built-in) type N(T_1, ..., T_k), + then Rep(T) = + {type,LINE,N,[Rep(T_1), ..., Rep(T_k)]}. If T is a record type #Name{F_1, ..., F_k}, where each F_i is a record field type, then Rep(T) = {type,LINE,record,[Rep(Name),Rep(F_1), ..., Rep(F_k)]}. - - If T is a record field type Name :: Type, - where Type is a type, then Rep(T) = - {type,LINE,field_type,[Rep(Name),Rep(Type)]}. - If T is a remote type M:N(A_1, ..., A_k), where - each A_i is a type, then Rep(T) = - {remote_type,LINE,[Rep(M),Rep(N),[Rep(A_1), ..., Rep(A_k)]]}. + For Rep(F), see below. + If T is a remote type M:N(T_1, ..., T_k), then Rep(T) = + {remote_type,LINE,[Rep(M),Rep(N),[Rep(T_1), ..., Rep(T_k)]]}. If T is a tuple type tuple(), then Rep(T) = {type,LINE,tuple,any}. - If T is a tuple type {A_1, ..., A_k}, where - each A_i is a type, then Rep(T) = - {type,LINE,tuple,[Rep(A_1), ..., Rep(A_k)]}. - If T is a type union T_1 | ... | T_k, - where each T_i is a type, then Rep(T) = + If T is a tuple type {T_1, ..., T_k}, then Rep(T) = + {type,LINE,tuple,[Rep(T_1), ..., Rep(T_k)]}. + If T is a type union T_1 | ... | T_k, then Rep(T) = {type,LINE,union,[Rep(T_1), ..., Rep(T_k)]}. If T is a type variable V, then Rep(T) = {var,LINE,A}, where A is an atom with a printname consisting of the same characters as V. A type variable is any variable except underscore (_). - If T is a user-defined type N(A_1, ..., A_k), - where each A_i is a type, then Rep(T) = - {user_type,LINE,N,[Rep(A_1), ..., Rep(A_k)]}. + If T is a user-defined type N(T_1, ..., T_k), + then Rep(T) = + {user_type,LINE,N,[Rep(T_1), ..., Rep(T_k)]}. If T is ( T_0 ), then Rep(T) = Rep(T_0), that is, parenthesized types cannot be distinguished from their bodies. @@ -563,15 +565,17 @@
Function Types +

A function type Ft is one of the following alternatives:

If Ft is a constrained function type Ft_1 when Fc, where Ft_1 is a function type and Fc is a function constraint, then Rep(T) = - {type,LINE,bounded_fun,[Rep(Ft_1),Rep(Fc)]}. - If Ft is a function type (A_1, ..., A_n) -> B, - where each A_i and B are types, then - Rep(Ft) = {type,LINE,'fun',[{type,LINE,product,[Rep(A_1), - ..., Rep(A_n)]},Rep(B)]}. + {type,LINE,bounded_fun,[Rep(Ft_1),Rep(Fc)]}. + For Rep(Fc), see below. + If Ft is a function type (T_1, ..., T_n) -> T_0, + where each T_i is a type, then + Rep(Ft) = {type,LINE,'fun',[{type,LINE,product,[Rep(T_1), + ..., Rep(T_n)]},Rep(T_0)]}.
@@ -587,6 +591,24 @@
+ +
+ Association Types + + If A is an association type K => V, where + K and V are types, then Rep(A) = + {type,LINE,map_field_assoc,[Rep(K),Rep(V)]}. + +
+ +
+ Record Field Types + + If F is a record field type Name :: Type, + where Type is a type, then Rep(F) = + {type,LINE,field_type,[Rep(Name),Rep(Type)]}. + +
-- cgit v1.2.3 From 6e2d941bf278191c11f6d1cebdfab5e51419d734 Mon Sep 17 00:00:00 2001 From: Hans Bolinder Date: Wed, 20 Jan 2016 09:55:21 +0100 Subject: erts: Improve readability of The Abstract Format More verbose, but hopefully more readable than before. --- erts/doc/src/absform.xml | 420 +++++++++++++++++++++++++---------------------- 1 file changed, 228 insertions(+), 192 deletions(-) diff --git a/erts/doc/src/absform.xml b/erts/doc/src/absform.xml index 3f47b3061b..ccdecf44ec 100644 --- a/erts/doc/src/absform.xml +++ b/erts/doc/src/absform.xml @@ -68,34 +68,29 @@ If D is a module declaration consisting of the forms F_1, ..., F_k, then Rep(D) = [Rep(F_1), ..., Rep(F_k)]. - If F is an attribute -module(Mod), then - Rep(F) = {attribute,LINE,module,Mod}. If F is an attribute -behavior(Behavior), then Rep(F) = {attribute,LINE,behavior,Behavior}. If F is an attribute -behaviour(Behaviour), then Rep(F) = {attribute,LINE,behaviour,Behaviour}. + If F is an attribute -compile(Options), then + Rep(F) = {attribute,LINE,compile,Options}. If F is an attribute -export([Fun_1/A_1, ..., Fun_k/A_k]), then Rep(F) = {attribute,LINE,export,[{Fun_1,A_1}, ..., {Fun_k,A_k}]}. - If F is an attribute -import(Mod,[Fun_1/A_1, ..., Fun_k/A_k]), then - Rep(F) = {attribute,LINE,import,{Mod,[{Fun_1,A_1}, ..., {Fun_k,A_k}]}}. If F is an attribute -export_type([Type_1/A_1, ..., Type_k/A_k]), then Rep(F) = {attribute,LINE,export_type,[{Type_1,A_1}, ..., {Type_k,A_k}]}. + If F is an attribute -import(Mod,[Fun_1/A_1, ..., Fun_k/A_k]), then + Rep(F) = {attribute,LINE,import,{Mod,[{Fun_1,A_1}, ..., {Fun_k,A_k}]}}. + If F is an attribute -module(Mod), then + Rep(F) = {attribute,LINE,module,Mod}. If F is an attribute -optional_callbacks([Fun_1/A_1, ..., Fun_k/A_k]), then Rep(F) = {attribute,LINE,optional_callbacks,[{Fun_1,A_1}, ..., {Fun_k,A_k}]}. - If F is an attribute -compile(Options), then - Rep(F) = {attribute,LINE,compile,Options}. If F is an attribute -file(File,Line), then Rep(F) = {attribute,LINE,file,{File,Line}}. - If F is a record declaration - -record(Name,{V_1, ..., V_k}), - where each V_i is a record field, then Rep(F) = - {attribute,LINE,record,{Name,[Rep(V_1), ..., Rep(V_k)]}}. - For Rep(V), see below. - If F is a type declaration - -Type Name(V_1, ..., V_k) :: T, where - Type is either the atom type or the atom opaque, - each V_i is a variable, and T is a type, then Rep(F) = - {attribute,LINE,Type,{Name,Rep(T),[Rep(V_1), ..., Rep(V_k)]}}. + If F is a function declaration + Name Fc_1 ; ... ; Name Fc_k, + where each Fc_i is a function clause with a + pattern sequence of the same length Arity, then + Rep(F) = {function,LINE,Name,Arity,[Rep(Fc_1), ...,Rep(Fc_k)]}. If F is a function specification -Spec Name Ft_1; ...; Ft_k, @@ -112,15 +107,20 @@ Arity, then Rep(F) = {attribute,Line,spec,{{Mod,Name,Arity},[Rep(Ft_1), ..., Rep(Ft_k)]}}. + If F is a record declaration + -record(Name,{V_1, ..., V_k}), + where each V_i is a record field, then Rep(F) = + {attribute,LINE,record,{Name,[Rep(V_1), ..., Rep(V_k)]}}. + For Rep(V), see below. + If F is a type declaration + -Type Name(V_1, ..., V_k) :: T, where + Type is either the atom type or the atom opaque, + each V_i is a variable, and T is a type, then Rep(F) = + {attribute,LINE,Type,{Name,Rep(T),[Rep(V_1), ..., Rep(V_k)]}}. + If F is a wild attribute -A(T), then Rep(F) = {attribute,LINE,A,T}.

- If F is a function declaration - Name Fc_1 ; ... ; Name Fc_k, - where each Fc_i is a function clause with a - pattern sequence of the same length Arity, then - Rep(F) = {function,LINE,Name,Arity,[Rep(Fc_1), ...,Rep(Fc_k)]}. -
@@ -160,15 +160,15 @@

There are five kinds of atomic literals, which are represented in the same way in patterns, expressions and guards:

- If L is an integer or character literal, then - Rep(L) = {integer,LINE,L}. + If L is an atom literal, then + Rep(L) = {atom,LINE,L}. If L is a float literal, then Rep(L) = {float,LINE,L}. + If L is an integer or character literal, then + Rep(L) = {integer,LINE,L}. If L is a string literal consisting of the characters C_1, ..., C_k, then Rep(L) = {string,LINE,[C_1, ..., C_k]}. - If L is an atom literal, then - Rep(L) = {atom,LINE,L}.

Note that negative integer and float literals do not occur as such; they are parsed as an application of the unary negation operator.

@@ -182,45 +182,53 @@

Individual patterns are represented as follows:

If P is an atomic literal L, then Rep(P) = Rep(L). + If P is a binary pattern + <<P_1:Size_1/TSL_1, ..., P_k:Size_k/TSL_k>>, where each + Size_i is an expression that can be evaluated to an integer + and each TSL_i is a type specificer list, then + Rep(P) = {bin,LINE,[{bin_element,LINE,Rep(P_1),Rep(Size_1),Rep(TSL_1)}, ..., {bin_element,LINE,Rep(P_k),Rep(Size_k),Rep(TSL_k)}]}. + For Rep(TSL), see below. + An omitted Size_i is represented by default. + An omitted TSL_i is represented by default. If P is a compound pattern P_1 = P_2, then Rep(P) = {match,LINE,Rep(P_1),Rep(P_2)}. - If P is a variable pattern V, then - Rep(P) = {var,LINE,A}, - where A is an atom with a printname consisting of the same characters as - V. - If P is a universal pattern _, then - Rep(P) = {var,LINE,'_'}. - If P is a tuple pattern {P_1, ..., P_k}, then - Rep(P) = {tuple,LINE,[Rep(P_1), ..., Rep(P_k)]}. - If P is a nil pattern [], then - Rep(P) = {nil,LINE}. If P is a cons pattern [P_h | P_t], then Rep(P) = {cons,LINE,Rep(P_h),Rep(P_t)}. - If E is a binary pattern <<P_1:Size_1/TSL_1, ..., P_k:Size_k/TSL_k>>, then - Rep(E) = {bin,LINE,[{bin_element,LINE,Rep(P_1),Rep(Size_1),Rep(TSL_1)}, ..., {bin_element,LINE,Rep(P_k),Rep(Size_k),Rep(TSL_k)}]}. - For Rep(TSL), see below. - An omitted Size is represented by default. An omitted TSL - (type specifier list) is represented by default. - If P is P_1 Op P_2, where Op is a binary operator (this - is either an occurrence of ++ applied to a literal string or character - list, or an occurrence of an expression that can be evaluated to a number - at compile time), - then Rep(P) = {op,LINE,Op,Rep(P_1),Rep(P_2)}. - If P is Op P_0, where Op is a unary operator (this is an - occurrence of an expression that can be evaluated to a number at compile - time), then Rep(P) = {op,LINE,Op,Rep(P_0)}. - If P is a record pattern #Name{Field_1=P_1, ..., Field_k=P_k}, - then Rep(P) = - {record,LINE,Name,[{record_field,LINE,Rep(Field_1),Rep(P_1)}, ..., {record_field,LINE,Rep(Field_k),Rep(P_k)}]}. - If P is #Name.Field, then - Rep(P) = {record_index,LINE,Name,Rep(Field)}. If P is a map pattern #{A_1, ..., A_k}, where each A_i is an association P_i_1 := P_i_2, then Rep(P) = {map,LINE,[Rep(A_1), ..., Rep(A_k)]}. For Rep(A), see below. - If P is ( P_0 ), then + If P is a nil pattern [], then + Rep(P) = {nil,LINE}. + If P is an operator pattern P_1 Op P_2, + where Op is a binary operator (this is either an occurrence + of ++ applied to a literal string or character + list, or an occurrence of an expression that can be evaluated to a number + at compile time), + then Rep(P) = {op,LINE,Op,Rep(P_1),Rep(P_2)}. + If P is an operator pattern Op P_0, + where Op is a unary operator (this is an occurrence of + an expression that can be evaluated to a number at compile + time), then Rep(P) = {op,LINE,Op,Rep(P_0)}. + If P is a parenthesized pattern ( P_0 ), then Rep(P) = Rep(P_0), - that is, patterns cannot be distinguished from their bodies. + that is, parenthesized patterns cannot be distinguished from their + bodies. + If P is a record field index pattern #Name.Field, + where Field is an atom, then + Rep(P) = {record_index,LINE,Name,Rep(Field)}. + If P is a record pattern + #Name{Field_1=P_1, ..., Field_k=P_k}, + where each Field_i is an atom or _, then Rep(P) = + {record,LINE,Name,[{record_field,LINE,Rep(Field_1),Rep(P_1)}, ..., {record_field,LINE,Rep(Field_k),Rep(P_k)}]}. + If P is a tuple pattern {P_1, ..., P_k}, then + Rep(P) = {tuple,LINE,[Rep(P_1), ..., Rep(P_k)]}. + If P is a universal pattern _, then + Rep(P) = {var,LINE,'_'}. + If P is a variable pattern V, then + Rep(P) = {var,LINE,A}, + where A is an atom with a printname consisting of the same characters as + V.

Note that every pattern has the same source form as some expression, and is represented the same way as the corresponding expression.

@@ -233,36 +241,58 @@

An expression E is one of the following alternatives:

If E is an atomic literal L, then Rep(E) = Rep(L). - If E is P = E_0, then - Rep(E) = {match,LINE,Rep(P),Rep(E_0)}. - If E is a variable V, then Rep(E) = {var,LINE,A}, - where A is an atom with a printname consisting of the same - characters as V. - If E is a tuple skeleton {E_1, ..., E_k}, then - Rep(E) = {tuple,LINE,[Rep(E_1), ..., Rep(E_k)]}. - If E is [], then - Rep(E) = {nil,LINE}. + If E is a binary comprehension + <<E_0 || Q_1, ..., Q_k>>, + where each Q_i is a qualifier, then + Rep(E) = {bc,LINE,Rep(E_0),[Rep(Q_1), ..., Rep(Q_k)]}. + For Rep(Q), see below. + If E is a binary constructor <<E_1:Size_1/TSL_1, ..., E_k:Size_k/TSL_k>>, + where each Size_i is an expression and each + TSL_i is a type specificer list, then Rep(E) = + {bin,LINE,[{bin_element,LINE,Rep(E_1),Rep(Size_1),Rep(TSL_1)}, ..., {bin_element,LINE,Rep(E_k),Rep(Size_k),Rep(TSL_k)}]}. + For Rep(TSL), see below. + An omitted Size_i is represented by default. + An omitted TSL_i is represented by default. + If E is a block expression begin B end, + where B is a body, then + Rep(E) = {block,LINE,Rep(B)}. + If E is a case expression case E_0 of Cc_1 ; ... ; Cc_k end, + where E_0 is an expression and each Cc_i is a + case clause then Rep(E) = + {'case',LINE,Rep(E_0),[Rep(Cc_1), ..., Rep(Cc_k)]}. + If E is a catch expression catch E_0, then + Rep(E) = {'catch',LINE,Rep(E_0)}. If E is a cons skeleton [E_h | E_t], then Rep(E) = {cons,LINE,Rep(E_h),Rep(E_t)}. - If E is a binary constructor <<V_1:Size_1/TSL_1, ..., V_k:Size_k/TSL_k>>, then Rep(E) = - {bin,LINE,[{bin_element,LINE,Rep(V_1),Rep(Size_1),Rep(TSL_1)}, ..., {bin_element,LINE,Rep(V_k),Rep(Size_k),Rep(TSL_k)}]}. - For Rep(TSL), see below. - An omitted Size is represented by default. An omitted TSL - (type specifier list) is represented by default. - If E is E_1 Op E_2, where Op is a binary operator, - then Rep(E) = {op,LINE,Op,Rep(E_1),Rep(E_2)}. - If E is Op E_0, where Op is a unary operator, then - Rep(E) = {op,LINE,Op,Rep(E_0)}. - If E is #Name{Field_1=E_1, ..., Field_k=E_k}, + If E is a fun expression fun Name/Arity, then + Rep(E) = {'fun',LINE,{function,Name,Arity}}. + If E is a fun expression + fun Module:Name/Arity, then Rep(E) = + {'fun',LINE,{function,Rep(Module),Rep(Name),Rep(Arity)}}. + (Before the R15 release: Rep(E) = + {'fun',LINE,{function,Module,Name,Arity}}.) + If E is a fun expression fun Fc_1 ; ... ; Fc_k end, + where each Fc_i is a function clause then Rep(E) = + {'fun',LINE,{clauses,[Rep(Fc_1), ..., Rep(Fc_k)]}}. + If E is a fun expression + fun Name Fc_1 ; ... ; Name Fc_k end, + where Name is a variable and each + Fc_i is a function clause then Rep(E) = + {named_fun,LINE,Name,[Rep(Fc_1), ..., Rep(Fc_k)]}. + + If E is a function call E_0(E_1, ..., E_k), then + Rep(E) = {call,LINE,Rep(E_0),[Rep(E_1), ..., Rep(E_k)]}. + If E is a function call E_m:E_0(E_1, ..., E_k), then Rep(E) = - {record,LINE,Name,[{record_field,LINE,Rep(Field_1),Rep(E_1)}, ..., {record_field,LINE,Rep(Field_k),Rep(E_k)}]}. - If E is E_0#Name{Field_1=E_1, ..., Field_k=E_k}, then - Rep(E) = - {record,LINE,Rep(E_0),Name,[{record_field,LINE,Rep(Field_1),Rep(E_1)}, ..., {record_field,LINE,Rep(Field_k),Rep(E_k)}]}. - If E is #Name.Field, then - Rep(E) = {record_index,LINE,Name,Rep(Field)}. - If E is E_0#Name.Field, then - Rep(E) = {record_field,LINE,Rep(E_0),Name,Rep(Field)}. + {call,LINE,{remote,LINE,Rep(E_m),Rep(E_0)},[Rep(E_1), ..., Rep(E_k)]}. + + If E is an if expression if Ic_1 ; ... ; Ic_k end, + where each Ic_i is an if clause then Rep(E) = + {'if',LINE,[Rep(Ic_1), ..., Rep(Ic_k)]}. + If E is a list comprehension [E_0 || Q_1, ..., Q_k], + where each Q_i is a qualifier, then Rep(E) = + {lc,LINE,Rep(E_0),[Rep(Q_1), ..., Rep(Q_k)]}. For Rep(Q), see + below. If E is a map creation #{A_1, ..., A_k}, where each A_i is an association E_i_1 => E_i_2 or E_i_1 := E_i_2, then Rep(E) = @@ -273,95 +303,92 @@ or E_i_1 := E_i_2, then Rep(E) = {map,LINE,Rep(E_0),[Rep(A_1), ..., Rep(A_k)]}. For Rep(A), see below. - If E is catch E_0, then - Rep(E) = {'catch',LINE,Rep(E_0)}. - If E is E_0(E_1, ..., E_k), then - Rep(E) = {call,LINE,Rep(E_0),[Rep(E_1), ..., Rep(E_k)]}. - If E is E_m:E_0(E_1, ..., E_k), then Rep(E) = - {call,LINE,{remote,LINE,Rep(E_m),Rep(E_0)},[Rep(E_1), ..., Rep(E_k)]}. - - If E is a list comprehension [E_0 || Q_1, ..., Q_k], - where each Q_i is a qualifier, then Rep(E) = - {lc,LINE,Rep(E_0),[Rep(Q_1), ..., Rep(Q_k)]}. For Rep(Q), see - below. - If E is a binary comprehension - <<E_0 || Q_1, ..., Q_k>>, - where each Q_i is a qualifier, then - Rep(E) = {bc,LINE,Rep(E_0),[Rep(Q_1), ..., Rep(Q_k)]}. - For Rep(Q), see below. - If E is begin B end, where B is a body, then - Rep(E) = {block,LINE,Rep(B)}. - If E is if Ic_1 ; ... ; Ic_k end, - where each Ic_i is an if clause then Rep(E) = - {'if',LINE,[Rep(Ic_1), ..., Rep(Ic_k)]}. - If E is case E_0 of Cc_1 ; ... ; Cc_k end, - where E_0 is an expression and each Cc_i is a - case clause then Rep(E) = - {'case',LINE,Rep(E_0),[Rep(Cc_1), ..., Rep(Cc_k)]}. - If E is try B catch Tc_1 ; ... ; Tc_k end, + If E is a match operator expression P = E_0, + where P is a pattern, then + Rep(E) = {match,LINE,Rep(P),Rep(E_0)}. + If E is nil, [], then + Rep(E) = {nil,LINE}. + If E is an operator expression E_1 Op E_2, + where Op is a binary operator other than the match + operator =, then + Rep(E) = {op,LINE,Op,Rep(E_1),Rep(E_2)}. + If E is an operator expression Op E_0, + where Op is a unary operator, then + Rep(E) = {op,LINE,Op,Rep(E_0)}. + If E is a parenthesized expression ( E_0 ), then + Rep(E) = Rep(E_0), that is, parenthesized + expressions cannot be distinguished from their bodies. + If E is a receive expression receive Cc_1 ; ... ; Cc_k end, + where each Cc_i is a case clause then Rep(E) = + {'receive',LINE,[Rep(Cc_1), ..., Rep(Cc_k)]}. + If E is a receive expression + receive Cc_1 ; ... ; Cc_k after E_0 -> B_t end, + where each Cc_i is a case clause, + E_0 is an expression and B_t is a body, then Rep(E) = + {'receive',LINE,[Rep(Cc_1), ..., Rep(Cc_k)],Rep(E_0),Rep(B_t)}. + If E is a record creation + #Name{Field_1=E_1, ..., Field_k=E_k}, + where each Field_i is an atom or _, then Rep(E) = + {record,LINE,Name,[{record_field,LINE,Rep(Field_1),Rep(E_1)}, ..., {record_field,LINE,Rep(Field_k),Rep(E_k)}]}. + If E is a record field access E_0#Name.Field, + where Field is an atom, then + Rep(E) = {record_field,LINE,Rep(E_0),Name,Rep(Field)}. + If E is a record field index #Name.Field, + where Field is an atom, then + Rep(E) = {record_index,LINE,Name,Rep(Field)}. + If E is a record update + E_0#Name{Field_1=E_1, ..., Field_k=E_k}, + where each Field_i is an atom, then Rep(E) = + {record,LINE,Rep(E_0),Name,[{record_field,LINE,Rep(Field_1),Rep(E_1)}, ..., {record_field,LINE,Rep(Field_k),Rep(E_k)}]}. + If E is a tuple skeleton {E_1, ..., E_k}, then + Rep(E) = {tuple,LINE,[Rep(E_1), ..., Rep(E_k)]}. + If E is a try expression try B catch Tc_1 ; ... ; Tc_k end, where B is a body and each Tc_i is a catch clause then Rep(E) = {'try',LINE,Rep(B),[],[Rep(Tc_1), ..., Rep(Tc_k)],[]}. - If E is try B of Cc_1 ; ... ; Cc_k catch Tc_1 ; ... ; Tc_n end, + If E is a try expression + try B of Cc_1 ; ... ; Cc_k catch Tc_1 ; ... ; Tc_n end, where B is a body, each Cc_i is a case clause and each Tc_j is a catch clause then Rep(E) = {'try',LINE,Rep(B),[Rep(Cc_1), ..., Rep(Cc_k)],[Rep(Tc_1), ..., Rep(Tc_n)],[]}. - If E is try B after A end, + If E is a try expression try B after A end, where B and A are bodies then Rep(E) = {'try',LINE,Rep(B),[],[],Rep(A)}. - If E is try B of Cc_1 ; ... ; Cc_k after A end, + If E is a try expression + try B of Cc_1 ; ... ; Cc_k after A end, where B and A are a bodies and each Cc_i is a case clause then Rep(E) = {'try',LINE,Rep(B),[Rep(Cc_1), ..., Rep(Cc_k)],[],Rep(A)}. - If E is try B catch Tc_1 ; ... ; Tc_k after A end, + If E is a try expression + try B catch Tc_1 ; ... ; Tc_k after A end, where B and A are bodies and each Tc_i is a catch clause then Rep(E) = {'try',LINE,Rep(B),[],[Rep(Tc_1), ..., Rep(Tc_k)],Rep(A)}. - If E is try B of Cc_1 ; ... ; Cc_k catch Tc_1 ; ... ; Tc_n after A end, + If E is a try expression + try B of Cc_1 ; ... ; Cc_k catch Tc_1 ; ... ; Tc_n after A end, where B and A are a bodies, each Cc_i is a case clause, and each Tc_j is a catch clause then Rep(E) = {'try',LINE,Rep(B),[Rep(Cc_1), ..., Rep(Cc_k)],[Rep(Tc_1), ..., Rep(Tc_n)],Rep(A)}. - If E is receive Cc_1 ; ... ; Cc_k end, - where each Cc_i is a case clause then Rep(E) = - {'receive',LINE,[Rep(Cc_1), ..., Rep(Cc_k)]}. - If E is receive Cc_1 ; ... ; Cc_k after E_0 -> B_t end, - where each Cc_i is a case clause, - E_0 is an expression and B_t is a body, then Rep(E) = - {'receive',LINE,[Rep(Cc_1), ..., Rep(Cc_k)],Rep(E_0),Rep(B_t)}. - If E is fun Name / Arity, then - Rep(E) = {'fun',LINE,{function,Name,Arity}}. - If E is fun Module:Name/Arity, then Rep(E) = - {'fun',LINE,{function,Rep(Module),Rep(Name),Rep(Arity)}}. - (Before the R15 release: Rep(E) = - {'fun',LINE,{function,Module,Name,Arity}}.) - If E is fun Fc_1 ; ... ; Fc_k end, - where each Fc_i is a function clause then Rep(E) = - {'fun',LINE,{clauses,[Rep(Fc_1), ..., Rep(Fc_k)]}}. - If E is fun Name Fc_1 ; ... ; Name Fc_k end, - where Name is a variable and each - Fc_i is a function clause then Rep(E) = - {named_fun,LINE,Name,[Rep(Fc_1), ..., Rep(Fc_k)]}. - - If E is ( E_0 ), then - Rep(E) = Rep(E_0), that is, parenthesized - expressions cannot be distinguished from their bodies. + If E is a variable V, then Rep(E) = {var,LINE,A}, + where A is an atom with a printname consisting of the same + characters as V.
Qualifiers

A qualifier Q is one of the following alternatives:

+ If Q is a filter E, where E is an expression, then + Rep(Q) = Rep(E). If Q is a generator P <- E, where P is a pattern and E is an expression, then Rep(Q) = {generate,LINE,Rep(P),Rep(E)}. If Q is a generator P <= E, where P is a pattern and E is an expression, then Rep(Q) = {b_generate,LINE,Rep(P),Rep(E)}. - If Q is a filter E, where E is an expression, then - Rep(Q) = Rep(E).
@@ -399,16 +426,6 @@ and catch clauses.

A clause C is one of the following alternatives:

- If C is a function clause ( Ps ) -> B, - where Ps is a pattern sequence and B is a body, then - Rep(C) = {clause,LINE,Rep(Ps),[],Rep(B)}. - If C is a function clause ( Ps ) when Gs -> B, - where Ps is a pattern sequence, - Gs is a guard sequence and B is a body, then - Rep(C) = {clause,LINE,Rep(Ps),Rep(Gs),Rep(B)}. - If C is an if clause Gs -> B, - where Gs is a guard sequence and B is a body, then - Rep(C) = {clause,LINE,[],Rep(Gs),Rep(B)}. If C is a case clause P -> B, where P is a pattern and B is a body, then Rep(C) = {clause,LINE,[Rep(P)],[],Rep(B)}. @@ -432,6 +449,16 @@ P is a pattern, Gs is a guard sequence, and B is a body, then Rep(C) = {clause,LINE,[Rep({X,P,_})],Rep(Gs),Rep(B)}. + If C is a function clause ( Ps ) -> B, + where Ps is a pattern sequence and B is a body, then + Rep(C) = {clause,LINE,Rep(Ps),[],Rep(B)}. + If C is a function clause ( Ps ) when Gs -> B, + where Ps is a pattern sequence, + Gs is a guard sequence and B is a body, then + Rep(C) = {clause,LINE,Rep(Ps),Rep(Gs),Rep(B)}. + If C is an if clause Gs -> B, + where Gs is a guard sequence and B is a body, then + Rep(C) = {clause,LINE,[],Rep(Gs),Rep(B)}.
@@ -446,33 +473,23 @@

A guard test Gt is one of the following alternatives:

If Gt is an atomic literal L, then Rep(Gt) = Rep(L). - If Gt is a variable pattern V, then - Rep(Gt) = {var,LINE,A}, where A is an atom with - a printname consisting of the same characters as V. - If Gt is a tuple skeleton {Gt_1, ..., Gt_k}, then - Rep(Gt) = {tuple,LINE,[Rep(Gt_1), ..., Rep(Gt_k)]}. - If Gt is [], then Rep(Gt) = {nil,LINE}. - If Gt is a cons skeleton [Gt_h | Gt_t], then - Rep(Gt) = {cons,LINE,Rep(Gt_h),Rep(Gt_t)}. If Gt is a binary constructor - <<Gt_1:Size_1/TSL_1, ..., Gt_k:Size_k/TSL_k>>, then + <<Gt_1:Size_1/TSL_1, ..., Gt_k:Size_k/TSL_k>>, + where each Size_i is a guard test and each + TSL_i is a type specificer list, then Rep(Gt) = {bin,LINE,[{bin_element,LINE,Rep(Gt_1),Rep(Size_1),Rep(TSL_1)}, ..., {bin_element,LINE,Rep(Gt_k),Rep(Size_k),Rep(TSL_k)}]}. For Rep(TSL), see above. - An omitted Size is represented by default. - An omitted TSL (type specifier list) is represented - by default. - If Gt is Gt_1 Op Gt_2, where Op - is a binary operator, then Rep(Gt) = - {op,LINE,Op,Rep(Gt_1),Rep(Gt_2)}. - If Gt is Op Gt_0, where Op is a unary operator, then - Rep(Gt) = {op,LINE,Op,Rep(Gt_0)}. - If Gt is #Name{Field_1=Gt_1, ..., Field_k=Gt_k}, then - Rep(E) = - {record,LINE,Name,[{record_field,LINE,Rep(Field_1),Rep(Gt_1)}, ..., {record_field,LINE,Rep(Field_k),Rep(Gt_k)}]}. - If Gt is #Name.Field, then - Rep(Gt) = {record_index,LINE,Name,Rep(Field)}. - If Gt is Gt_0#Name.Field, then - Rep(Gt) = {record_field,LINE,Rep(Gt_0),Name,Rep(Field)}. + An omitted Size_i is represented by default. + An omitted TSL_i is represented by default.
+ If Gt is a cons skeleton [Gt_h | Gt_t], then + Rep(Gt) = {cons,LINE,Rep(Gt_h),Rep(Gt_t)}. + If Gt is a function call A(Gt_1, ..., Gt_k), + where A is an atom, then Rep(Gt) = + {call,LINE,Rep(A),[Rep(Gt_1), ..., Rep(Gt_k)]}. + If Gt is a function call A_m:A(Gt_1, ..., Gt_k), + where A_m is the atom erlang and A is + an atom or an operator, then Rep(Gt) = + {call,LINE,{remote,LINE,Rep(A_m),Rep(A)},[Rep(Gt_1), ..., Rep(Gt_k)]}. If Gt is a map creation #{A_1, ..., A_k}, where each A_i is an association Gt_i_1 => Gt_i_2 or Gt_i_1 := Gt_i_2, then Rep(Gt) = @@ -483,14 +500,33 @@ or Gt_i_1 := Gt_i_2, then Rep(Gt) = {map,LINE,Rep(Gt_0),[Rep(A_1), ..., Rep(A_k)]}. For Rep(A), see above. - If Gt is A(Gt_1, ..., Gt_k), where A is an atom, then - Rep(Gt) = {call,LINE,Rep(A),[Rep(Gt_1), ..., Rep(Gt_k)]}. - If Gt is A_m:A(Gt_1, ..., Gt_k), where A_m is - the atom erlang and A is an atom or an operator, then - Rep(Gt) = {call,LINE,{remote,LINE,Rep(A_m),Rep(A)},[Rep(Gt_1), ..., Rep(Gt_k)]}. - If Gt is ( Gt_0 ), then + If Gt is nil, [], + then Rep(Gt) = {nil,LINE}. + If Gt is an operator guard test Gt_1 Op Gt_2, + where Op is a binary operator other than the match + operator =, then + Rep(Gt) = {op,LINE,Op,Rep(Gt_1),Rep(Gt_2)}. + If Gt is an operator guard test Op Gt_0, + where Op is a unary operator, then + Rep(Gt) = {op,LINE,Op,Rep(Gt_0)}. + If Gt is a parenthesized guard test ( Gt_0 ), then Rep(Gt) = Rep(Gt_0), that is, parenthesized guard tests cannot be distinguished from their bodies. + If Gt is a record creation + #Name{Field_1=Gt_1, ..., Field_k=Gt_k}, + where each Field_i is an atom or _, then Rep(Gt) = + {record,LINE,Name,[{record_field,LINE,Rep(Field_1),Rep(Gt_1)}, ..., {record_field,LINE,Rep(Field_k),Rep(Gt_k)}]}. + If Gt is a record field access Gt_0#Name.Field, + where Field is an atom, then + Rep(Gt) = {record_field,LINE,Rep(Gt_0),Name,Rep(Field)}. + If Gt is a record field index #Name.Field, + where Field is an atom, then + Rep(Gt) = {record_index,LINE,Name,Rep(Field)}. + If Gt is a tuple skeleton {Gt_1, ..., Gt_k}, then + Rep(Gt) = {tuple,LINE,[Rep(Gt_1), ..., Rep(Gt_k)]}. + If Gt is a variable pattern V, then + Rep(Gt) = {var,LINE,A}, where A is an atom with + a printname consisting of the same characters as V.

Note that every guard test has the same source form as some expression, and is represented the same way as the corresponding expression.

@@ -504,15 +540,6 @@ {ann_type,LINE,[Rep(A),Rep(T_0)]}.
If T is an atom or integer literal L, then Rep(T) = Rep(L). - If T is an operator type T_1 Op T_2, - where Op is a binary operator (this is an occurrence of - an expression that can be evaluated to an integer at compile - time), then - Rep(T) = {op,LINE,Op,Rep(T_1),Rep(T_2)}. - If T is an operator type Op T_0, where Op is a - unary operator (this is an occurrence of - an expression that can be evaluated to an integer at compile time), - then Rep(T) = {op,LINE,Op,Rep(T_0)}. If T is a bitstring type <<_:M,_:_*N>>, where M and N are singleton integer types, then Rep(T) = {type,LINE,binary,[Rep(M),Rep(N)]}. @@ -535,6 +562,18 @@ A_i is an association type, then Rep(T) = {type,LINE,map,[Rep(A_1), ..., Rep(A_k)]}. For Rep(A), see below. + If T is an operator type T_1 Op T_2, + where Op is a binary operator (this is an occurrence of + an expression that can be evaluated to an integer at compile + time), then + Rep(T) = {op,LINE,Op,Rep(T_1),Rep(T_2)}. + If T is an operator type Op T_0, where Op is a + unary operator (this is an occurrence of + an expression that can be evaluated to an integer at compile time), + then Rep(T) = {op,LINE,Op,Rep(T_0)}. + If T is ( T_0 ), then Rep(T) = Rep(T_0), + that is, parenthesized types cannot be distinguished from their + bodies. If T is a predefined (or built-in) type N(T_1, ..., T_k), then Rep(T) = {type,LINE,N,[Rep(T_1), ..., Rep(T_k)]}. @@ -558,9 +597,6 @@ If T is a user-defined type N(T_1, ..., T_k), then Rep(T) = {user_type,LINE,N,[Rep(T_1), ..., Rep(T_k)]}. - If T is ( T_0 ), then Rep(T) = Rep(T_0), - that is, parenthesized types cannot be distinguished from their - bodies.
-- cgit v1.2.3