From 34e02fed50bbaa2af7b1828968b6ec02a54e98c8 Mon Sep 17 00:00:00 2001 From: Hans Bolinder Date: Wed, 20 Jan 2016 09:54:00 +0100 Subject: erts: Improve the documentation of the abstract format --- erts/doc/src/absform.xml | 240 ++++++++++++++++++++++++++--------------------- 1 file changed, 131 insertions(+), 109 deletions(-) (limited to 'erts') diff --git a/erts/doc/src/absform.xml b/erts/doc/src/absform.xml index 1c0c3e1319..3f47b3061b 100644 --- a/erts/doc/src/absform.xml +++ b/erts/doc/src/absform.xml @@ -4,7 +4,7 @@
- 20012015 + 20012016 Ericsson AB. All Rights Reserved. @@ -80,12 +80,15 @@ Rep(F) = {attribute,LINE,import,{Mod,[{Fun_1,A_1}, ..., {Fun_k,A_k}]}}. If F is an attribute -export_type([Type_1/A_1, ..., Type_k/A_k]), then Rep(F) = {attribute,LINE,export_type,[{Type_1,A_1}, ..., {Type_k,A_k}]}. + If F is an attribute -optional_callbacks([Fun_1/A_1, ..., Fun_k/A_k]), then + Rep(F) = {attribute,LINE,optional_callbacks,[{Fun_1,A_1}, ..., {Fun_k,A_k}]}. If F is an attribute -compile(Options), then Rep(F) = {attribute,LINE,compile,Options}. If F is an attribute -file(File,Line), then Rep(F) = {attribute,LINE,file,{File,Line}}. If F is a record declaration - -record(Name,{V_1, ..., V_k}), then Rep(F) = + -record(Name,{V_1, ..., V_k}), + where each V_i is a record field, then Rep(F) = {attribute,LINE,record,{Name,[Rep(V_1), ..., Rep(V_k)]}}. For Rep(V), see below. If F is a type declaration @@ -173,12 +176,12 @@
Patterns -

If Ps is a sequence of patterns P_1, ..., P_k, then +

If Ps is a sequence of patterns P_1, ..., P_k, then Rep(Ps) = [Rep(P_1), ..., Rep(P_k)]. Such sequences occur as the list of arguments to a function or fun.

Individual patterns are represented as follows:

- If P is an atomic literal L, then Rep(P) = Rep(L). + If P is an atomic literal L, then Rep(P) = Rep(L). If P is a compound pattern P_1 = P_2, then Rep(P) = {match,LINE,Rep(P_1),Rep(P_2)}. If P is a variable pattern V, then @@ -211,6 +214,10 @@ {record,LINE,Name,[{record_field,LINE,Rep(Field_1),Rep(P_1)}, ..., {record_field,LINE,Rep(Field_k),Rep(P_k)}]}. If P is #Name.Field, then Rep(P) = {record_index,LINE,Name,Rep(Field)}. + If P is a map pattern #{A_1, ..., A_k}, where each + A_i is an association P_i_1 := P_i_2, then Rep(P) = + {map,LINE,[Rep(A_1), ..., Rep(A_k)]}. For Rep(A), see + below. If P is ( P_0 ), then Rep(P) = Rep(P_0), that is, patterns cannot be distinguished from their bodies. @@ -221,11 +228,11 @@
Expressions -

A body B is a sequence of expressions E_1, ..., E_k, and - Rep(B) = [Rep(E_1), ..., Rep(E_k)].

+

A body B is a nonempty sequence of expressions E_1, ..., E_k, + and Rep(B) = [Rep(E_1), ..., Rep(E_k)].

An expression E is one of the following alternatives:

- If P is an atomic literal L, then Rep(P) = Rep(L). + If E is an atomic literal L, then Rep(E) = Rep(L). If E is P = E_0, then Rep(E) = {match,LINE,Rep(P),Rep(E_0)}. If E is a variable V, then Rep(E) = {var,LINE,A}, @@ -256,14 +263,16 @@ Rep(E) = {record_index,LINE,Name,Rep(Field)}. If E is E_0#Name.Field, then Rep(E) = {record_field,LINE,Rep(E_0),Name,Rep(Field)}. - If E is #{W_1, ..., W_k} where each - W_i is a map assoc or exact field, then Rep(E) = - {map,LINE,[Rep(W_1), ..., Rep(W_k)]}. For Rep(W), see + If E is a map creation #{A_1, ..., A_k}, + where each A_i is an association E_i_1 => E_i_2 + or E_i_1 := E_i_2, then Rep(E) = + {map,LINE,[Rep(A_1), ..., Rep(A_k)]}. For Rep(A), see below. - If E is E_0#{W_1, ..., W_k} where - W_i is a map assoc or exact field, then Rep(E) = - {map,LINE,Rep(E_0),[Rep(W_1), ..., Rep(W_k)]}. - For Rep(W), see below. + If E is a map update E_0#{A_1, ..., A_k}, + where each A_i is an association E_i_1 => E_i_2 + or E_i_1 := E_i_2, then Rep(E) = + {map,LINE,Rep(E_0),[Rep(A_1), ..., Rep(A_k)]}. + For Rep(A), see below. If E is catch E_0, then Rep(E) = {'catch',LINE,Rep(E_0)}. If E is E_0(E_1, ..., E_k), then @@ -271,15 +280,15 @@ If E is E_m:E_0(E_1, ..., E_k), then Rep(E) = {call,LINE,{remote,LINE,Rep(E_m),Rep(E_0)},[Rep(E_1), ..., Rep(E_k)]}. - If E is a list comprehension [E_0 || W_1, ..., W_k], - where each W_i is a generator or a filter, then Rep(E) = - {lc,LINE,Rep(E_0),[Rep(W_1), ..., Rep(W_k)]}. For Rep(W), see + If E is a list comprehension [E_0 || Q_1, ..., Q_k], + where each Q_i is a qualifier, then Rep(E) = + {lc,LINE,Rep(E_0),[Rep(Q_1), ..., Rep(Q_k)]}. For Rep(Q), see below. If E is a binary comprehension - <<E_0 || W_1, ..., W_k>>, - where each W_i is a generator or a filter, then - Rep(E) = {bc,LINE,Rep(E_0),[Rep(W_1), ..., Rep(W_k)]}. - For Rep(W), see below. + <<E_0 || Q_1, ..., Q_k>>, + where each Q_i is a qualifier, then + Rep(E) = {bc,LINE,Rep(E_0),[Rep(Q_1), ..., Rep(Q_k)]}. + For Rep(Q), see below. If E is begin B end, where B is a body, then Rep(E) = {block,LINE,Rep(B)}. If E is if Ic_1 ; ... ; Ic_k end, @@ -311,7 +320,7 @@ {'try',LINE,Rep(B),[],[Rep(Tc_1), ..., Rep(Tc_k)],Rep(A)}. If E is try B of Cc_1 ; ... ; Cc_k catch Tc_1 ; ... ; Tc_n after A end, where B and A are a bodies, - each Cc_i is a case clause and + each Cc_i is a case clause, and each Tc_j is a catch clause then Rep(E) = {'try',LINE,Rep(B),[Rep(Cc_1), ..., Rep(Cc_k)],[Rep(Tc_1), ..., Rep(Tc_n)],Rep(A)}. @@ -328,10 +337,10 @@ {'fun',LINE,{function,Rep(Module),Rep(Name),Rep(Arity)}}. (Before the R15 release: Rep(E) = {'fun',LINE,{function,Module,Name,Arity}}.) - If E is fun Fc_1 ; ... ; Fc_k end + If E is fun Fc_1 ; ... ; Fc_k end, where each Fc_i is a function clause then Rep(E) = {'fun',LINE,{clauses,[Rep(Fc_1), ..., Rep(Fc_k)]}}. - If E is fun Name Fc_1 ; ... ; Name Fc_k end + If E is fun Name Fc_1 ; ... ; Name Fc_k end, where Name is a variable and each Fc_i is a function clause then Rep(E) = {named_fun,LINE,Name,[Rep(Fc_1), ..., Rep(Fc_k)]}. @@ -342,46 +351,43 @@
- Generators and Filters -

When W is a generator or a filter (in the body of a list or - binary comprehension), then:

+ Qualifiers +

A qualifier Q is one of the following alternatives:

- If W is a generator P <- E, where P is + If Q is a generator P <- E, where P is a pattern and E is an expression, then - Rep(W) = {generate,LINE,Rep(P),Rep(E)}. - If W is a generator P <= E, where P is + Rep(Q) = {generate,LINE,Rep(P),Rep(E)}. + If Q is a generator P <= E, where P is a pattern and E is an expression, then - Rep(W) = {b_generate,LINE,Rep(P),Rep(E)}. - If W is a filter E, which is an expression, then - Rep(W) = Rep(E). + Rep(Q) = {b_generate,LINE,Rep(P),Rep(E)}. + If Q is a filter E, where E is an expression, then + Rep(Q) = Rep(E).
Binary Element Type Specifiers

A type specifier list TSL for a binary element is a sequence of type - specifiers TS_1 - ... - TS_k. + specifiers TS_1 - ... - TS_k, and Rep(TSL) = [Rep(TS_1), ..., Rep(TS_k)].

-

When TS is a type specifier for a binary element, then:

- If TS is an atom A, then Rep(TS) = A. - If TS is a couple A:Value where A is an atom - and Value is an integer, then Rep(TS) = - {A,Value}. + If TS is a type specifier A, where A is an atom, + then Rep(TS) = A. + If TS is a type specifier A:Value, + where A is an atom and Value is an integer, + then Rep(TS) = {A,Value}.
- Map Assoc and Exact Fields -

When W is an assoc or exact field (in the body of a map), then:

+ Associations +

An association A is one of the following alternatives:

- If W is an assoc field K => V, where - K and V are both expressions, - then Rep(W) = {map_field_assoc,LINE,Rep(K),Rep(V)}. + If A is an association K => V, + then Rep(A) = {map_field_assoc,LINE,Rep(K),Rep(V)}. - If W is an exact field K := V, where - K and V are both expressions, - then Rep(W) = {map_field_exact,LINE,Rep(K),Rep(V)}. + If A is an association K := V, + then Rep(A) = {map_field_exact,LINE,Rep(K),Rep(V)}.
@@ -393,37 +399,37 @@ and catch clauses.

A clause C is one of the following alternatives:

- If C is a function clause ( Ps ) -> B + If C is a function clause ( Ps ) -> B, where Ps is a pattern sequence and B is a body, then Rep(C) = {clause,LINE,Rep(Ps),[],Rep(B)}. - If C is a function clause ( Ps ) when Gs -> B + If C is a function clause ( Ps ) when Gs -> B, where Ps is a pattern sequence, Gs is a guard sequence and B is a body, then Rep(C) = {clause,LINE,Rep(Ps),Rep(Gs),Rep(B)}. - If C is an if clause Gs -> B + If C is an if clause Gs -> B, where Gs is a guard sequence and B is a body, then Rep(C) = {clause,LINE,[],Rep(Gs),Rep(B)}. - If C is a case clause P -> B + If C is a case clause P -> B, where P is a pattern and B is a body, then Rep(C) = {clause,LINE,[Rep(P)],[],Rep(B)}. - If C is a case clause P when Gs -> B + If C is a case clause P when Gs -> B, where P is a pattern, Gs is a guard sequence and B is a body, then Rep(C) = {clause,LINE,[Rep(P)],Rep(Gs),Rep(B)}. - If C is a catch clause P -> B + If C is a catch clause P -> B, where P is a pattern and B is a body, then Rep(C) = {clause,LINE,[Rep({throw,P,_})],[],Rep(B)}. - If C is a catch clause X : P -> B + If C is a catch clause X : P -> B, where X is an atomic literal or a variable pattern, - P is a pattern and B is a body, then + P is a pattern, and B is a body, then Rep(C) = {clause,LINE,[Rep({X,P,_})],[],Rep(B)}. - If C is a catch clause P when Gs -> B - where P is a pattern, Gs is a guard sequence + If C is a catch clause P when Gs -> B, + where P is a pattern, Gs is a guard sequence, and B is a body, then Rep(C) = {clause,LINE,[Rep({throw,P,_})],Rep(Gs),Rep(B)}. - If C is a catch clause X : P when Gs -> B + If C is a catch clause X : P when Gs -> B, where X is an atomic literal or a variable pattern, - P is a pattern, Gs is a guard sequence + P is a pattern, Gs is a guard sequence, and B is a body, then Rep(C) = {clause,LINE,[Rep({X,P,_})],Rep(Gs),Rep(B)}. @@ -439,7 +445,7 @@ [Rep(Gt_1), ..., Rep(Gt_k)].

A guard test Gt is one of the following alternatives:

- If Gt is an atomic literal L, then Rep(Gt) = Rep(L). + If Gt is an atomic literal L, then Rep(Gt) = Rep(L). If Gt is a variable pattern V, then Rep(Gt) = {var,LINE,A}, where A is an atom with a printname consisting of the same characters as V. @@ -467,15 +473,21 @@ Rep(Gt) = {record_index,LINE,Name,Rep(Field)}. If Gt is Gt_0#Name.Field, then Rep(Gt) = {record_field,LINE,Rep(Gt_0),Name,Rep(Field)}. + If Gt is a map creation #{A_1, ..., A_k}, + where each A_i is an association Gt_i_1 => Gt_i_2 + or Gt_i_1 := Gt_i_2, then Rep(Gt) = + {map,LINE,[Rep(A_1), ..., Rep(A_k)]}. For Rep(A), see + above. + If Gt is a map update Gt_0#{A_1, ..., A_k}, where each + A_i is an association Gt_i_1 => Gt_i_2 + or Gt_i_1 := Gt_i_2, then Rep(Gt) = + {map,LINE,Rep(Gt_0),[Rep(A_1), ..., Rep(A_k)]}. + For Rep(A), see above. If Gt is A(Gt_1, ..., Gt_k), where A is an atom, then Rep(Gt) = {call,LINE,Rep(A),[Rep(Gt_1), ..., Rep(Gt_k)]}. If Gt is A_m:A(Gt_1, ..., Gt_k), where A_m is the atom erlang and A is an atom or an operator, then Rep(Gt) = {call,LINE,{remote,LINE,Rep(A_m),Rep(A)},[Rep(Gt_1), ..., Rep(Gt_k)]}. - If Gt is {A_m,A}(Gt_1, ..., Gt_k), where A_m is - the atom erlang and A is an atom or an operator, then - Rep(Gt) = {call,LINE,Rep({A_m,A}),[Rep(Gt_1), ..., Rep(Gt_k)]}. - If Gt is ( Gt_0 ), then Rep(Gt) = Rep(Gt_0), that is, parenthesized guard tests cannot be distinguished from their bodies. @@ -487,21 +499,20 @@
Types - If T is an annotated type Anno :: Type, - where Anno is a variable and - Type is a type, then Rep(T) = - {ann_type,LINE,[Rep(Anno),Rep(Type)]}. + If T is an annotated type A :: T_0, + where A is a variable, then Rep(T) = + {ann_type,LINE,[Rep(A),Rep(T_0)]}. If T is an atom or integer literal L, then Rep(T) = Rep(L). - If T is L Op R, - where Op is a binary operator and L and R - are types (this is an occurrence of an expression that can be - evaluated to an integer at compile time), then - Rep(T) = {op,LINE,Op,Rep(L),Rep(R)}. - If T is Op A, where Op is a - unary operator and A is a type (this is an occurrence of + If T is an operator type T_1 Op T_2, + where Op is a binary operator (this is an occurrence of + an expression that can be evaluated to an integer at compile + time), then + Rep(T) = {op,LINE,Op,Rep(T_1),Rep(T_2)}. + If T is an operator type Op T_0, where Op is a + unary operator (this is an occurrence of an expression that can be evaluated to an integer at compile time), - then Rep(T) = {op,LINE,Op,Rep(A)}. + then Rep(T) = {op,LINE,Op,Rep(T_0)}. If T is a bitstring type <<_:M,_:_*N>>, where M and N are singleton integer types, then Rep(T) = {type,LINE,binary,[Rep(M),Rep(N)]}. @@ -509,53 +520,44 @@ {type,Line,nil,[]}. If T is a fun type fun(), then Rep(T) = {type,LINE,'fun',[]}. - If T is a fun type fun((...) -> B), - where B is a type, then - Rep(T) = {type,LINE,'fun',[{type,LINE,any},Rep(B)]}. + If T is a fun type fun((...) -> T_0), then + Rep(T) = {type,LINE,'fun',[{type,LINE,any},Rep(T_0)]}. If T is a fun type fun(Ft), where Ft is a function type, - then Rep(T) = Rep(Ft). + then Rep(T) = Rep(Ft). For Rep(Ft), see below. If T is an integer range type L .. H, where L and H are singleton integer types, then Rep(T) = {type,LINE,range,[Rep(L),Rep(H)]}. If T is a map type map(), then Rep(T) = {type,LINE,map,any}. - If T is a map type #{P_1, ..., P_k}, where each - P_i is a map pair type, then Rep(T) = - {type,LINE,map,[Rep(P_1), ..., Rep(P_k)]}. - If T is a map pair type K => V, where - K and V are types, then Rep(T) = - {type,LINE,map_field_assoc,[Rep(K),Rep(V)]}. - If T is a predefined (or built-in) type N(A_1, ..., A_k), - where each A_i is a type, then Rep(T) = - {type,LINE,N,[Rep(A_1), ..., Rep(A_k)]}. + If T is a map type #{A_1, ..., A_k}, where each + A_i is an association type, then Rep(T) = + {type,LINE,map,[Rep(A_1), ..., Rep(A_k)]}. + For Rep(A), see below. + If T is a predefined (or built-in) type N(T_1, ..., T_k), + then Rep(T) = + {type,LINE,N,[Rep(T_1), ..., Rep(T_k)]}. If T is a record type #Name{F_1, ..., F_k}, where each F_i is a record field type, then Rep(T) = {type,LINE,record,[Rep(Name),Rep(F_1), ..., Rep(F_k)]}. - - If T is a record field type Name :: Type, - where Type is a type, then Rep(T) = - {type,LINE,field_type,[Rep(Name),Rep(Type)]}. - If T is a remote type M:N(A_1, ..., A_k), where - each A_i is a type, then Rep(T) = - {remote_type,LINE,[Rep(M),Rep(N),[Rep(A_1), ..., Rep(A_k)]]}. + For Rep(F), see below. + If T is a remote type M:N(T_1, ..., T_k), then Rep(T) = + {remote_type,LINE,[Rep(M),Rep(N),[Rep(T_1), ..., Rep(T_k)]]}. If T is a tuple type tuple(), then Rep(T) = {type,LINE,tuple,any}. - If T is a tuple type {A_1, ..., A_k}, where - each A_i is a type, then Rep(T) = - {type,LINE,tuple,[Rep(A_1), ..., Rep(A_k)]}. - If T is a type union T_1 | ... | T_k, - where each T_i is a type, then Rep(T) = + If T is a tuple type {T_1, ..., T_k}, then Rep(T) = + {type,LINE,tuple,[Rep(T_1), ..., Rep(T_k)]}. + If T is a type union T_1 | ... | T_k, then Rep(T) = {type,LINE,union,[Rep(T_1), ..., Rep(T_k)]}. If T is a type variable V, then Rep(T) = {var,LINE,A}, where A is an atom with a printname consisting of the same characters as V. A type variable is any variable except underscore (_). - If T is a user-defined type N(A_1, ..., A_k), - where each A_i is a type, then Rep(T) = - {user_type,LINE,N,[Rep(A_1), ..., Rep(A_k)]}. + If T is a user-defined type N(T_1, ..., T_k), + then Rep(T) = + {user_type,LINE,N,[Rep(T_1), ..., Rep(T_k)]}. If T is ( T_0 ), then Rep(T) = Rep(T_0), that is, parenthesized types cannot be distinguished from their bodies. @@ -563,15 +565,17 @@
Function Types +

A function type Ft is one of the following alternatives:

If Ft is a constrained function type Ft_1 when Fc, where Ft_1 is a function type and Fc is a function constraint, then Rep(T) = - {type,LINE,bounded_fun,[Rep(Ft_1),Rep(Fc)]}. - If Ft is a function type (A_1, ..., A_n) -> B, - where each A_i and B are types, then - Rep(Ft) = {type,LINE,'fun',[{type,LINE,product,[Rep(A_1), - ..., Rep(A_n)]},Rep(B)]}. + {type,LINE,bounded_fun,[Rep(Ft_1),Rep(Fc)]}. + For Rep(Fc), see below. + If Ft is a function type (T_1, ..., T_n) -> T_0, + where each T_i is a type, then + Rep(Ft) = {type,LINE,'fun',[{type,LINE,product,[Rep(T_1), + ..., Rep(T_n)]},Rep(T_0)]}.
@@ -587,6 +591,24 @@
+ +
+ Association Types + + If A is an association type K => V, where + K and V are types, then Rep(A) = + {type,LINE,map_field_assoc,[Rep(K),Rep(V)]}. + +
+ +
+ Record Field Types + + If F is a record field type Name :: Type, + where Type is a type, then Rep(F) = + {type,LINE,field_type,[Rep(Name),Rep(Type)]}. + +
-- cgit v1.2.3 From 6e2d941bf278191c11f6d1cebdfab5e51419d734 Mon Sep 17 00:00:00 2001 From: Hans Bolinder Date: Wed, 20 Jan 2016 09:55:21 +0100 Subject: erts: Improve readability of The Abstract Format More verbose, but hopefully more readable than before. --- erts/doc/src/absform.xml | 420 +++++++++++++++++++++++++---------------------- 1 file changed, 228 insertions(+), 192 deletions(-) (limited to 'erts') diff --git a/erts/doc/src/absform.xml b/erts/doc/src/absform.xml index 3f47b3061b..ccdecf44ec 100644 --- a/erts/doc/src/absform.xml +++ b/erts/doc/src/absform.xml @@ -68,34 +68,29 @@ If D is a module declaration consisting of the forms F_1, ..., F_k, then Rep(D) = [Rep(F_1), ..., Rep(F_k)]. - If F is an attribute -module(Mod), then - Rep(F) = {attribute,LINE,module,Mod}. If F is an attribute -behavior(Behavior), then Rep(F) = {attribute,LINE,behavior,Behavior}. If F is an attribute -behaviour(Behaviour), then Rep(F) = {attribute,LINE,behaviour,Behaviour}. + If F is an attribute -compile(Options), then + Rep(F) = {attribute,LINE,compile,Options}. If F is an attribute -export([Fun_1/A_1, ..., Fun_k/A_k]), then Rep(F) = {attribute,LINE,export,[{Fun_1,A_1}, ..., {Fun_k,A_k}]}. - If F is an attribute -import(Mod,[Fun_1/A_1, ..., Fun_k/A_k]), then - Rep(F) = {attribute,LINE,import,{Mod,[{Fun_1,A_1}, ..., {Fun_k,A_k}]}}. If F is an attribute -export_type([Type_1/A_1, ..., Type_k/A_k]), then Rep(F) = {attribute,LINE,export_type,[{Type_1,A_1}, ..., {Type_k,A_k}]}. + If F is an attribute -import(Mod,[Fun_1/A_1, ..., Fun_k/A_k]), then + Rep(F) = {attribute,LINE,import,{Mod,[{Fun_1,A_1}, ..., {Fun_k,A_k}]}}. + If F is an attribute -module(Mod), then + Rep(F) = {attribute,LINE,module,Mod}. If F is an attribute -optional_callbacks([Fun_1/A_1, ..., Fun_k/A_k]), then Rep(F) = {attribute,LINE,optional_callbacks,[{Fun_1,A_1}, ..., {Fun_k,A_k}]}. - If F is an attribute -compile(Options), then - Rep(F) = {attribute,LINE,compile,Options}. If F is an attribute -file(File,Line), then Rep(F) = {attribute,LINE,file,{File,Line}}. - If F is a record declaration - -record(Name,{V_1, ..., V_k}), - where each V_i is a record field, then Rep(F) = - {attribute,LINE,record,{Name,[Rep(V_1), ..., Rep(V_k)]}}. - For Rep(V), see below. - If F is a type declaration - -Type Name(V_1, ..., V_k) :: T, where - Type is either the atom type or the atom opaque, - each V_i is a variable, and T is a type, then Rep(F) = - {attribute,LINE,Type,{Name,Rep(T),[Rep(V_1), ..., Rep(V_k)]}}. + If F is a function declaration + Name Fc_1 ; ... ; Name Fc_k, + where each Fc_i is a function clause with a + pattern sequence of the same length Arity, then + Rep(F) = {function,LINE,Name,Arity,[Rep(Fc_1), ...,Rep(Fc_k)]}. If F is a function specification -Spec Name Ft_1; ...; Ft_k, @@ -112,15 +107,20 @@ Arity, then Rep(F) = {attribute,Line,spec,{{Mod,Name,Arity},[Rep(Ft_1), ..., Rep(Ft_k)]}}. + If F is a record declaration + -record(Name,{V_1, ..., V_k}), + where each V_i is a record field, then Rep(F) = + {attribute,LINE,record,{Name,[Rep(V_1), ..., Rep(V_k)]}}. + For Rep(V), see below. + If F is a type declaration + -Type Name(V_1, ..., V_k) :: T, where + Type is either the atom type or the atom opaque, + each V_i is a variable, and T is a type, then Rep(F) = + {attribute,LINE,Type,{Name,Rep(T),[Rep(V_1), ..., Rep(V_k)]}}. + If F is a wild attribute -A(T), then Rep(F) = {attribute,LINE,A,T}.

- If F is a function declaration - Name Fc_1 ; ... ; Name Fc_k, - where each Fc_i is a function clause with a - pattern sequence of the same length Arity, then - Rep(F) = {function,LINE,Name,Arity,[Rep(Fc_1), ...,Rep(Fc_k)]}. -
@@ -160,15 +160,15 @@

There are five kinds of atomic literals, which are represented in the same way in patterns, expressions and guards:

- If L is an integer or character literal, then - Rep(L) = {integer,LINE,L}. + If L is an atom literal, then + Rep(L) = {atom,LINE,L}. If L is a float literal, then Rep(L) = {float,LINE,L}. + If L is an integer or character literal, then + Rep(L) = {integer,LINE,L}. If L is a string literal consisting of the characters C_1, ..., C_k, then Rep(L) = {string,LINE,[C_1, ..., C_k]}. - If L is an atom literal, then - Rep(L) = {atom,LINE,L}.

Note that negative integer and float literals do not occur as such; they are parsed as an application of the unary negation operator.

@@ -182,45 +182,53 @@

Individual patterns are represented as follows:

If P is an atomic literal L, then Rep(P) = Rep(L). + If P is a binary pattern + <<P_1:Size_1/TSL_1, ..., P_k:Size_k/TSL_k>>, where each + Size_i is an expression that can be evaluated to an integer + and each TSL_i is a type specificer list, then + Rep(P) = {bin,LINE,[{bin_element,LINE,Rep(P_1),Rep(Size_1),Rep(TSL_1)}, ..., {bin_element,LINE,Rep(P_k),Rep(Size_k),Rep(TSL_k)}]}. + For Rep(TSL), see below. + An omitted Size_i is represented by default. + An omitted TSL_i is represented by default. If P is a compound pattern P_1 = P_2, then Rep(P) = {match,LINE,Rep(P_1),Rep(P_2)}. - If P is a variable pattern V, then - Rep(P) = {var,LINE,A}, - where A is an atom with a printname consisting of the same characters as - V. - If P is a universal pattern _, then - Rep(P) = {var,LINE,'_'}. - If P is a tuple pattern {P_1, ..., P_k}, then - Rep(P) = {tuple,LINE,[Rep(P_1), ..., Rep(P_k)]}. - If P is a nil pattern [], then - Rep(P) = {nil,LINE}. If P is a cons pattern [P_h | P_t], then Rep(P) = {cons,LINE,Rep(P_h),Rep(P_t)}. - If E is a binary pattern <<P_1:Size_1/TSL_1, ..., P_k:Size_k/TSL_k>>, then - Rep(E) = {bin,LINE,[{bin_element,LINE,Rep(P_1),Rep(Size_1),Rep(TSL_1)}, ..., {bin_element,LINE,Rep(P_k),Rep(Size_k),Rep(TSL_k)}]}. - For Rep(TSL), see below. - An omitted Size is represented by default. An omitted TSL - (type specifier list) is represented by default. - If P is P_1 Op P_2, where Op is a binary operator (this - is either an occurrence of ++ applied to a literal string or character - list, or an occurrence of an expression that can be evaluated to a number - at compile time), - then Rep(P) = {op,LINE,Op,Rep(P_1),Rep(P_2)}. - If P is Op P_0, where Op is a unary operator (this is an - occurrence of an expression that can be evaluated to a number at compile - time), then Rep(P) = {op,LINE,Op,Rep(P_0)}. - If P is a record pattern #Name{Field_1=P_1, ..., Field_k=P_k}, - then Rep(P) = - {record,LINE,Name,[{record_field,LINE,Rep(Field_1),Rep(P_1)}, ..., {record_field,LINE,Rep(Field_k),Rep(P_k)}]}. - If P is #Name.Field, then - Rep(P) = {record_index,LINE,Name,Rep(Field)}. If P is a map pattern #{A_1, ..., A_k}, where each A_i is an association P_i_1 := P_i_2, then Rep(P) = {map,LINE,[Rep(A_1), ..., Rep(A_k)]}. For Rep(A), see below. - If P is ( P_0 ), then + If P is a nil pattern [], then + Rep(P) = {nil,LINE}. + If P is an operator pattern P_1 Op P_2, + where Op is a binary operator (this is either an occurrence + of ++ applied to a literal string or character + list, or an occurrence of an expression that can be evaluated to a number + at compile time), + then Rep(P) = {op,LINE,Op,Rep(P_1),Rep(P_2)}. + If P is an operator pattern Op P_0, + where Op is a unary operator (this is an occurrence of + an expression that can be evaluated to a number at compile + time), then Rep(P) = {op,LINE,Op,Rep(P_0)}. + If P is a parenthesized pattern ( P_0 ), then Rep(P) = Rep(P_0), - that is, patterns cannot be distinguished from their bodies. + that is, parenthesized patterns cannot be distinguished from their + bodies. + If P is a record field index pattern #Name.Field, + where Field is an atom, then + Rep(P) = {record_index,LINE,Name,Rep(Field)}. + If P is a record pattern + #Name{Field_1=P_1, ..., Field_k=P_k}, + where each Field_i is an atom or _, then Rep(P) = + {record,LINE,Name,[{record_field,LINE,Rep(Field_1),Rep(P_1)}, ..., {record_field,LINE,Rep(Field_k),Rep(P_k)}]}. + If P is a tuple pattern {P_1, ..., P_k}, then + Rep(P) = {tuple,LINE,[Rep(P_1), ..., Rep(P_k)]}. + If P is a universal pattern _, then + Rep(P) = {var,LINE,'_'}. + If P is a variable pattern V, then + Rep(P) = {var,LINE,A}, + where A is an atom with a printname consisting of the same characters as + V.

Note that every pattern has the same source form as some expression, and is represented the same way as the corresponding expression.

@@ -233,36 +241,58 @@

An expression E is one of the following alternatives:

If E is an atomic literal L, then Rep(E) = Rep(L). - If E is P = E_0, then - Rep(E) = {match,LINE,Rep(P),Rep(E_0)}. - If E is a variable V, then Rep(E) = {var,LINE,A}, - where A is an atom with a printname consisting of the same - characters as V. - If E is a tuple skeleton {E_1, ..., E_k}, then - Rep(E) = {tuple,LINE,[Rep(E_1), ..., Rep(E_k)]}. - If E is [], then - Rep(E) = {nil,LINE}. + If E is a binary comprehension + <<E_0 || Q_1, ..., Q_k>>, + where each Q_i is a qualifier, then + Rep(E) = {bc,LINE,Rep(E_0),[Rep(Q_1), ..., Rep(Q_k)]}. + For Rep(Q), see below. + If E is a binary constructor <<E_1:Size_1/TSL_1, ..., E_k:Size_k/TSL_k>>, + where each Size_i is an expression and each + TSL_i is a type specificer list, then Rep(E) = + {bin,LINE,[{bin_element,LINE,Rep(E_1),Rep(Size_1),Rep(TSL_1)}, ..., {bin_element,LINE,Rep(E_k),Rep(Size_k),Rep(TSL_k)}]}. + For Rep(TSL), see below. + An omitted Size_i is represented by default. + An omitted TSL_i is represented by default. + If E is a block expression begin B end, + where B is a body, then + Rep(E) = {block,LINE,Rep(B)}. + If E is a case expression case E_0 of Cc_1 ; ... ; Cc_k end, + where E_0 is an expression and each Cc_i is a + case clause then Rep(E) = + {'case',LINE,Rep(E_0),[Rep(Cc_1), ..., Rep(Cc_k)]}. + If E is a catch expression catch E_0, then + Rep(E) = {'catch',LINE,Rep(E_0)}. If E is a cons skeleton [E_h | E_t], then Rep(E) = {cons,LINE,Rep(E_h),Rep(E_t)}. - If E is a binary constructor <<V_1:Size_1/TSL_1, ..., V_k:Size_k/TSL_k>>, then Rep(E) = - {bin,LINE,[{bin_element,LINE,Rep(V_1),Rep(Size_1),Rep(TSL_1)}, ..., {bin_element,LINE,Rep(V_k),Rep(Size_k),Rep(TSL_k)}]}. - For Rep(TSL), see below. - An omitted Size is represented by default. An omitted TSL - (type specifier list) is represented by default. - If E is E_1 Op E_2, where Op is a binary operator, - then Rep(E) = {op,LINE,Op,Rep(E_1),Rep(E_2)}. - If E is Op E_0, where Op is a unary operator, then - Rep(E) = {op,LINE,Op,Rep(E_0)}. - If E is #Name{Field_1=E_1, ..., Field_k=E_k}, + If E is a fun expression fun Name/Arity, then + Rep(E) = {'fun',LINE,{function,Name,Arity}}. + If E is a fun expression + fun Module:Name/Arity, then Rep(E) = + {'fun',LINE,{function,Rep(Module),Rep(Name),Rep(Arity)}}. + (Before the R15 release: Rep(E) = + {'fun',LINE,{function,Module,Name,Arity}}.) + If E is a fun expression fun Fc_1 ; ... ; Fc_k end, + where each Fc_i is a function clause then Rep(E) = + {'fun',LINE,{clauses,[Rep(Fc_1), ..., Rep(Fc_k)]}}. + If E is a fun expression + fun Name Fc_1 ; ... ; Name Fc_k end, + where Name is a variable and each + Fc_i is a function clause then Rep(E) = + {named_fun,LINE,Name,[Rep(Fc_1), ..., Rep(Fc_k)]}. + + If E is a function call E_0(E_1, ..., E_k), then + Rep(E) = {call,LINE,Rep(E_0),[Rep(E_1), ..., Rep(E_k)]}. + If E is a function call E_m:E_0(E_1, ..., E_k), then Rep(E) = - {record,LINE,Name,[{record_field,LINE,Rep(Field_1),Rep(E_1)}, ..., {record_field,LINE,Rep(Field_k),Rep(E_k)}]}. - If E is E_0#Name{Field_1=E_1, ..., Field_k=E_k}, then - Rep(E) = - {record,LINE,Rep(E_0),Name,[{record_field,LINE,Rep(Field_1),Rep(E_1)}, ..., {record_field,LINE,Rep(Field_k),Rep(E_k)}]}. - If E is #Name.Field, then - Rep(E) = {record_index,LINE,Name,Rep(Field)}. - If E is E_0#Name.Field, then - Rep(E) = {record_field,LINE,Rep(E_0),Name,Rep(Field)}. + {call,LINE,{remote,LINE,Rep(E_m),Rep(E_0)},[Rep(E_1), ..., Rep(E_k)]}. + + If E is an if expression if Ic_1 ; ... ; Ic_k end, + where each Ic_i is an if clause then Rep(E) = + {'if',LINE,[Rep(Ic_1), ..., Rep(Ic_k)]}. + If E is a list comprehension [E_0 || Q_1, ..., Q_k], + where each Q_i is a qualifier, then Rep(E) = + {lc,LINE,Rep(E_0),[Rep(Q_1), ..., Rep(Q_k)]}. For Rep(Q), see + below. If E is a map creation #{A_1, ..., A_k}, where each A_i is an association E_i_1 => E_i_2 or E_i_1 := E_i_2, then Rep(E) = @@ -273,95 +303,92 @@ or E_i_1 := E_i_2, then Rep(E) = {map,LINE,Rep(E_0),[Rep(A_1), ..., Rep(A_k)]}. For Rep(A), see below. - If E is catch E_0, then - Rep(E) = {'catch',LINE,Rep(E_0)}. - If E is E_0(E_1, ..., E_k), then - Rep(E) = {call,LINE,Rep(E_0),[Rep(E_1), ..., Rep(E_k)]}. - If E is E_m:E_0(E_1, ..., E_k), then Rep(E) = - {call,LINE,{remote,LINE,Rep(E_m),Rep(E_0)},[Rep(E_1), ..., Rep(E_k)]}. - - If E is a list comprehension [E_0 || Q_1, ..., Q_k], - where each Q_i is a qualifier, then Rep(E) = - {lc,LINE,Rep(E_0),[Rep(Q_1), ..., Rep(Q_k)]}. For Rep(Q), see - below. - If E is a binary comprehension - <<E_0 || Q_1, ..., Q_k>>, - where each Q_i is a qualifier, then - Rep(E) = {bc,LINE,Rep(E_0),[Rep(Q_1), ..., Rep(Q_k)]}. - For Rep(Q), see below. - If E is begin B end, where B is a body, then - Rep(E) = {block,LINE,Rep(B)}. - If E is if Ic_1 ; ... ; Ic_k end, - where each Ic_i is an if clause then Rep(E) = - {'if',LINE,[Rep(Ic_1), ..., Rep(Ic_k)]}. - If E is case E_0 of Cc_1 ; ... ; Cc_k end, - where E_0 is an expression and each Cc_i is a - case clause then Rep(E) = - {'case',LINE,Rep(E_0),[Rep(Cc_1), ..., Rep(Cc_k)]}. - If E is try B catch Tc_1 ; ... ; Tc_k end, + If E is a match operator expression P = E_0, + where P is a pattern, then + Rep(E) = {match,LINE,Rep(P),Rep(E_0)}. + If E is nil, [], then + Rep(E) = {nil,LINE}. + If E is an operator expression E_1 Op E_2, + where Op is a binary operator other than the match + operator =, then + Rep(E) = {op,LINE,Op,Rep(E_1),Rep(E_2)}. + If E is an operator expression Op E_0, + where Op is a unary operator, then + Rep(E) = {op,LINE,Op,Rep(E_0)}. + If E is a parenthesized expression ( E_0 ), then + Rep(E) = Rep(E_0), that is, parenthesized + expressions cannot be distinguished from their bodies. + If E is a receive expression receive Cc_1 ; ... ; Cc_k end, + where each Cc_i is a case clause then Rep(E) = + {'receive',LINE,[Rep(Cc_1), ..., Rep(Cc_k)]}. + If E is a receive expression + receive Cc_1 ; ... ; Cc_k after E_0 -> B_t end, + where each Cc_i is a case clause, + E_0 is an expression and B_t is a body, then Rep(E) = + {'receive',LINE,[Rep(Cc_1), ..., Rep(Cc_k)],Rep(E_0),Rep(B_t)}. + If E is a record creation + #Name{Field_1=E_1, ..., Field_k=E_k}, + where each Field_i is an atom or _, then Rep(E) = + {record,LINE,Name,[{record_field,LINE,Rep(Field_1),Rep(E_1)}, ..., {record_field,LINE,Rep(Field_k),Rep(E_k)}]}. + If E is a record field access E_0#Name.Field, + where Field is an atom, then + Rep(E) = {record_field,LINE,Rep(E_0),Name,Rep(Field)}. + If E is a record field index #Name.Field, + where Field is an atom, then + Rep(E) = {record_index,LINE,Name,Rep(Field)}. + If E is a record update + E_0#Name{Field_1=E_1, ..., Field_k=E_k}, + where each Field_i is an atom, then Rep(E) = + {record,LINE,Rep(E_0),Name,[{record_field,LINE,Rep(Field_1),Rep(E_1)}, ..., {record_field,LINE,Rep(Field_k),Rep(E_k)}]}. + If E is a tuple skeleton {E_1, ..., E_k}, then + Rep(E) = {tuple,LINE,[Rep(E_1), ..., Rep(E_k)]}. + If E is a try expression try B catch Tc_1 ; ... ; Tc_k end, where B is a body and each Tc_i is a catch clause then Rep(E) = {'try',LINE,Rep(B),[],[Rep(Tc_1), ..., Rep(Tc_k)],[]}. - If E is try B of Cc_1 ; ... ; Cc_k catch Tc_1 ; ... ; Tc_n end, + If E is a try expression + try B of Cc_1 ; ... ; Cc_k catch Tc_1 ; ... ; Tc_n end, where B is a body, each Cc_i is a case clause and each Tc_j is a catch clause then Rep(E) = {'try',LINE,Rep(B),[Rep(Cc_1), ..., Rep(Cc_k)],[Rep(Tc_1), ..., Rep(Tc_n)],[]}. - If E is try B after A end, + If E is a try expression try B after A end, where B and A are bodies then Rep(E) = {'try',LINE,Rep(B),[],[],Rep(A)}. - If E is try B of Cc_1 ; ... ; Cc_k after A end, + If E is a try expression + try B of Cc_1 ; ... ; Cc_k after A end, where B and A are a bodies and each Cc_i is a case clause then Rep(E) = {'try',LINE,Rep(B),[Rep(Cc_1), ..., Rep(Cc_k)],[],Rep(A)}. - If E is try B catch Tc_1 ; ... ; Tc_k after A end, + If E is a try expression + try B catch Tc_1 ; ... ; Tc_k after A end, where B and A are bodies and each Tc_i is a catch clause then Rep(E) = {'try',LINE,Rep(B),[],[Rep(Tc_1), ..., Rep(Tc_k)],Rep(A)}. - If E is try B of Cc_1 ; ... ; Cc_k catch Tc_1 ; ... ; Tc_n after A end, + If E is a try expression + try B of Cc_1 ; ... ; Cc_k catch Tc_1 ; ... ; Tc_n after A end, where B and A are a bodies, each Cc_i is a case clause, and each Tc_j is a catch clause then Rep(E) = {'try',LINE,Rep(B),[Rep(Cc_1), ..., Rep(Cc_k)],[Rep(Tc_1), ..., Rep(Tc_n)],Rep(A)}. - If E is receive Cc_1 ; ... ; Cc_k end, - where each Cc_i is a case clause then Rep(E) = - {'receive',LINE,[Rep(Cc_1), ..., Rep(Cc_k)]}. - If E is receive Cc_1 ; ... ; Cc_k after E_0 -> B_t end, - where each Cc_i is a case clause, - E_0 is an expression and B_t is a body, then Rep(E) = - {'receive',LINE,[Rep(Cc_1), ..., Rep(Cc_k)],Rep(E_0),Rep(B_t)}. - If E is fun Name / Arity, then - Rep(E) = {'fun',LINE,{function,Name,Arity}}. - If E is fun Module:Name/Arity, then Rep(E) = - {'fun',LINE,{function,Rep(Module),Rep(Name),Rep(Arity)}}. - (Before the R15 release: Rep(E) = - {'fun',LINE,{function,Module,Name,Arity}}.) - If E is fun Fc_1 ; ... ; Fc_k end, - where each Fc_i is a function clause then Rep(E) = - {'fun',LINE,{clauses,[Rep(Fc_1), ..., Rep(Fc_k)]}}. - If E is fun Name Fc_1 ; ... ; Name Fc_k end, - where Name is a variable and each - Fc_i is a function clause then Rep(E) = - {named_fun,LINE,Name,[Rep(Fc_1), ..., Rep(Fc_k)]}. - - If E is ( E_0 ), then - Rep(E) = Rep(E_0), that is, parenthesized - expressions cannot be distinguished from their bodies. + If E is a variable V, then Rep(E) = {var,LINE,A}, + where A is an atom with a printname consisting of the same + characters as V.
Qualifiers

A qualifier Q is one of the following alternatives:

+ If Q is a filter E, where E is an expression, then + Rep(Q) = Rep(E). If Q is a generator P <- E, where P is a pattern and E is an expression, then Rep(Q) = {generate,LINE,Rep(P),Rep(E)}. If Q is a generator P <= E, where P is a pattern and E is an expression, then Rep(Q) = {b_generate,LINE,Rep(P),Rep(E)}. - If Q is a filter E, where E is an expression, then - Rep(Q) = Rep(E).
@@ -399,16 +426,6 @@ and catch clauses.

A clause C is one of the following alternatives:

- If C is a function clause ( Ps ) -> B, - where Ps is a pattern sequence and B is a body, then - Rep(C) = {clause,LINE,Rep(Ps),[],Rep(B)}. - If C is a function clause ( Ps ) when Gs -> B, - where Ps is a pattern sequence, - Gs is a guard sequence and B is a body, then - Rep(C) = {clause,LINE,Rep(Ps),Rep(Gs),Rep(B)}. - If C is an if clause Gs -> B, - where Gs is a guard sequence and B is a body, then - Rep(C) = {clause,LINE,[],Rep(Gs),Rep(B)}. If C is a case clause P -> B, where P is a pattern and B is a body, then Rep(C) = {clause,LINE,[Rep(P)],[],Rep(B)}. @@ -432,6 +449,16 @@ P is a pattern, Gs is a guard sequence, and B is a body, then Rep(C) = {clause,LINE,[Rep({X,P,_})],Rep(Gs),Rep(B)}. + If C is a function clause ( Ps ) -> B, + where Ps is a pattern sequence and B is a body, then + Rep(C) = {clause,LINE,Rep(Ps),[],Rep(B)}. + If C is a function clause ( Ps ) when Gs -> B, + where Ps is a pattern sequence, + Gs is a guard sequence and B is a body, then + Rep(C) = {clause,LINE,Rep(Ps),Rep(Gs),Rep(B)}. + If C is an if clause Gs -> B, + where Gs is a guard sequence and B is a body, then + Rep(C) = {clause,LINE,[],Rep(Gs),Rep(B)}.
@@ -446,33 +473,23 @@

A guard test Gt is one of the following alternatives:

If Gt is an atomic literal L, then Rep(Gt) = Rep(L). - If Gt is a variable pattern V, then - Rep(Gt) = {var,LINE,A}, where A is an atom with - a printname consisting of the same characters as V. - If Gt is a tuple skeleton {Gt_1, ..., Gt_k}, then - Rep(Gt) = {tuple,LINE,[Rep(Gt_1), ..., Rep(Gt_k)]}. - If Gt is [], then Rep(Gt) = {nil,LINE}. - If Gt is a cons skeleton [Gt_h | Gt_t], then - Rep(Gt) = {cons,LINE,Rep(Gt_h),Rep(Gt_t)}. If Gt is a binary constructor - <<Gt_1:Size_1/TSL_1, ..., Gt_k:Size_k/TSL_k>>, then + <<Gt_1:Size_1/TSL_1, ..., Gt_k:Size_k/TSL_k>>, + where each Size_i is a guard test and each + TSL_i is a type specificer list, then Rep(Gt) = {bin,LINE,[{bin_element,LINE,Rep(Gt_1),Rep(Size_1),Rep(TSL_1)}, ..., {bin_element,LINE,Rep(Gt_k),Rep(Size_k),Rep(TSL_k)}]}. For Rep(TSL), see above. - An omitted Size is represented by default. - An omitted TSL (type specifier list) is represented - by default. - If Gt is Gt_1 Op Gt_2, where Op - is a binary operator, then Rep(Gt) = - {op,LINE,Op,Rep(Gt_1),Rep(Gt_2)}. - If Gt is Op Gt_0, where Op is a unary operator, then - Rep(Gt) = {op,LINE,Op,Rep(Gt_0)}. - If Gt is #Name{Field_1=Gt_1, ..., Field_k=Gt_k}, then - Rep(E) = - {record,LINE,Name,[{record_field,LINE,Rep(Field_1),Rep(Gt_1)}, ..., {record_field,LINE,Rep(Field_k),Rep(Gt_k)}]}. - If Gt is #Name.Field, then - Rep(Gt) = {record_index,LINE,Name,Rep(Field)}. - If Gt is Gt_0#Name.Field, then - Rep(Gt) = {record_field,LINE,Rep(Gt_0),Name,Rep(Field)}. + An omitted Size_i is represented by default. + An omitted TSL_i is represented by default.
+ If Gt is a cons skeleton [Gt_h | Gt_t], then + Rep(Gt) = {cons,LINE,Rep(Gt_h),Rep(Gt_t)}. + If Gt is a function call A(Gt_1, ..., Gt_k), + where A is an atom, then Rep(Gt) = + {call,LINE,Rep(A),[Rep(Gt_1), ..., Rep(Gt_k)]}. + If Gt is a function call A_m:A(Gt_1, ..., Gt_k), + where A_m is the atom erlang and A is + an atom or an operator, then Rep(Gt) = + {call,LINE,{remote,LINE,Rep(A_m),Rep(A)},[Rep(Gt_1), ..., Rep(Gt_k)]}. If Gt is a map creation #{A_1, ..., A_k}, where each A_i is an association Gt_i_1 => Gt_i_2 or Gt_i_1 := Gt_i_2, then Rep(Gt) = @@ -483,14 +500,33 @@ or Gt_i_1 := Gt_i_2, then Rep(Gt) = {map,LINE,Rep(Gt_0),[Rep(A_1), ..., Rep(A_k)]}. For Rep(A), see above. - If Gt is A(Gt_1, ..., Gt_k), where A is an atom, then - Rep(Gt) = {call,LINE,Rep(A),[Rep(Gt_1), ..., Rep(Gt_k)]}. - If Gt is A_m:A(Gt_1, ..., Gt_k), where A_m is - the atom erlang and A is an atom or an operator, then - Rep(Gt) = {call,LINE,{remote,LINE,Rep(A_m),Rep(A)},[Rep(Gt_1), ..., Rep(Gt_k)]}. - If Gt is ( Gt_0 ), then + If Gt is nil, [], + then Rep(Gt) = {nil,LINE}. + If Gt is an operator guard test Gt_1 Op Gt_2, + where Op is a binary operator other than the match + operator =, then + Rep(Gt) = {op,LINE,Op,Rep(Gt_1),Rep(Gt_2)}. + If Gt is an operator guard test Op Gt_0, + where Op is a unary operator, then + Rep(Gt) = {op,LINE,Op,Rep(Gt_0)}. + If Gt is a parenthesized guard test ( Gt_0 ), then Rep(Gt) = Rep(Gt_0), that is, parenthesized guard tests cannot be distinguished from their bodies. + If Gt is a record creation + #Name{Field_1=Gt_1, ..., Field_k=Gt_k}, + where each Field_i is an atom or _, then Rep(Gt) = + {record,LINE,Name,[{record_field,LINE,Rep(Field_1),Rep(Gt_1)}, ..., {record_field,LINE,Rep(Field_k),Rep(Gt_k)}]}. + If Gt is a record field access Gt_0#Name.Field, + where Field is an atom, then + Rep(Gt) = {record_field,LINE,Rep(Gt_0),Name,Rep(Field)}. + If Gt is a record field index #Name.Field, + where Field is an atom, then + Rep(Gt) = {record_index,LINE,Name,Rep(Field)}. + If Gt is a tuple skeleton {Gt_1, ..., Gt_k}, then + Rep(Gt) = {tuple,LINE,[Rep(Gt_1), ..., Rep(Gt_k)]}. + If Gt is a variable pattern V, then + Rep(Gt) = {var,LINE,A}, where A is an atom with + a printname consisting of the same characters as V.

Note that every guard test has the same source form as some expression, and is represented the same way as the corresponding expression.

@@ -504,15 +540,6 @@ {ann_type,LINE,[Rep(A),Rep(T_0)]}.
If T is an atom or integer literal L, then Rep(T) = Rep(L). - If T is an operator type T_1 Op T_2, - where Op is a binary operator (this is an occurrence of - an expression that can be evaluated to an integer at compile - time), then - Rep(T) = {op,LINE,Op,Rep(T_1),Rep(T_2)}. - If T is an operator type Op T_0, where Op is a - unary operator (this is an occurrence of - an expression that can be evaluated to an integer at compile time), - then Rep(T) = {op,LINE,Op,Rep(T_0)}. If T is a bitstring type <<_:M,_:_*N>>, where M and N are singleton integer types, then Rep(T) = {type,LINE,binary,[Rep(M),Rep(N)]}. @@ -535,6 +562,18 @@ A_i is an association type, then Rep(T) = {type,LINE,map,[Rep(A_1), ..., Rep(A_k)]}. For Rep(A), see below. + If T is an operator type T_1 Op T_2, + where Op is a binary operator (this is an occurrence of + an expression that can be evaluated to an integer at compile + time), then + Rep(T) = {op,LINE,Op,Rep(T_1),Rep(T_2)}. + If T is an operator type Op T_0, where Op is a + unary operator (this is an occurrence of + an expression that can be evaluated to an integer at compile time), + then Rep(T) = {op,LINE,Op,Rep(T_0)}. + If T is ( T_0 ), then Rep(T) = Rep(T_0), + that is, parenthesized types cannot be distinguished from their + bodies. If T is a predefined (or built-in) type N(T_1, ..., T_k), then Rep(T) = {type,LINE,N,[Rep(T_1), ..., Rep(T_k)]}. @@ -558,9 +597,6 @@ If T is a user-defined type N(T_1, ..., T_k), then Rep(T) = {user_type,LINE,N,[Rep(T_1), ..., Rep(T_k)]}. - If T is ( T_0 ), then Rep(T) = Rep(T_0), - that is, parenthesized types cannot be distinguished from their - bodies.
-- cgit v1.2.3