From 76ca320fd37cecdcf225ddcc094bc72a607b0453 Mon Sep 17 00:00:00 2001 From: Hans Bolinder Date: Fri, 6 May 2011 15:11:15 +0200 Subject: Types and specifications have been modified and added --- lib/stdlib/src/lists.erl | 425 +++++++++++++++++++++++++++++++++++++++-------- 1 file changed, 356 insertions(+), 69 deletions(-) (limited to 'lib/stdlib/src/lists.erl') diff --git a/lib/stdlib/src/lists.erl b/lib/stdlib/src/lists.erl index c669c1f7c1..bba46e4cb6 100644 --- a/lib/stdlib/src/lists.erl +++ b/lib/stdlib/src/lists.erl @@ -1,7 +1,7 @@ %% %% %CopyrightBegin% %% -%% Copyright Ericsson AB 1996-2010. All Rights Reserved. +%% Copyright Ericsson AB 1996-2011. All Rights Reserved. %% %% The contents of this file are subject to the Erlang Public License, %% Version 1.1, (the "License"); you may not use this file except in @@ -54,13 +54,21 @@ %% append(X, Y) appends lists X and Y --spec append([T], [T]) -> [T]. +-spec append(List1, List2) -> List3 when + List1 :: [T], + List2 :: [T], + List3 :: [T], + T :: term(). append(L1, L2) -> L1 ++ L2. %% append(L) appends the list of lists L --spec append([[T]]) -> [T]. +-spec append(ListOfLists) -> List1 when + ListOfLists :: [List], + List :: [T], + List1 :: [T], + T :: term(). append([E]) -> E; append([H|T]) -> H ++ append(T); @@ -68,13 +76,20 @@ append([]) -> []. %% subtract(List1, List2) subtract elements in List2 form List1. --spec subtract([T], [T]) -> [T]. +-spec subtract(List1, List2) -> List3 when + List1 :: [T], + List2 :: [T], + List3 :: [T], + T :: term(). subtract(L1, L2) -> L1 -- L2. %% reverse(L) reverse all elements in the list L. Is now a BIF! --spec reverse([T]) -> [T]. +-spec reverse(List1) -> List2 when + List1 :: [T], + List2 :: [T], + T :: term(). reverse([] = L) -> L; @@ -93,13 +108,21 @@ reverse([A, B | L]) -> %% nth(N, L) returns the N`th element of the list L %% nthtail(N, L) returns the N`th tail of the list L --spec nth(pos_integer(), [T,...]) -> T. +-spec nth(N, List) -> Elem when + N :: pos_integer(), + List :: [T,...], + Elem :: T, + T :: term(). nth(1, [H|_]) -> H; nth(N, [_|T]) when N > 1 -> nth(N - 1, T). --spec nthtail(non_neg_integer(), [T,...]) -> [T]. +-spec nthtail(N, List) -> Tail when + N :: non_neg_integer(), + List :: [T,...], + Tail :: [T], + T :: term(). nthtail(1, [_|T]) -> T; nthtail(N, [_|T]) when N > 1 -> @@ -108,7 +131,10 @@ nthtail(0, L) when is_list(L) -> L. %% prefix(Prefix, List) -> (true | false) --spec prefix([T], [T]) -> boolean(). +-spec prefix(List1, List2) -> boolean() when + List1 :: [T], + List2 :: [T], + T :: term(). prefix([X|PreTail], [X|Tail]) -> prefix(PreTail, Tail); @@ -117,7 +143,10 @@ prefix([_|_], List) when is_list(List) -> false. %% suffix(Suffix, List) -> (true | false) --spec suffix([T], [T]) -> boolean(). +-spec suffix(List1, List2) -> boolean() when + List1 :: [T], + List2 :: [T], + T :: term(). suffix(Suffix, List) -> Delta = length(List) - length(Suffix), @@ -125,7 +154,10 @@ suffix(Suffix, List) -> %% last(List) returns the last element in a list. --spec last([T,...]) -> T. +-spec last(List) -> Last when + List :: [T,...], + Last :: T, + T :: term(). last([E|Es]) -> last(E, Es). @@ -137,7 +169,10 @@ last(E, []) -> E. %% returns the sequence Min..Max %% Min <= Max and Min and Max must be integers --spec seq(integer(), integer()) -> [integer()]. +-spec seq(From, To) -> Seq when + From :: integer(), + To :: integer(), + Seq :: [integer()]. seq(First, Last) when is_integer(First), is_integer(Last), First-1 =< Last -> @@ -152,7 +187,11 @@ seq_loop(1, X, L) -> seq_loop(0, _, L) -> L. --spec seq(integer(), integer(), integer()) -> [integer()]. +-spec seq(From, To, Incr) -> Seq when + From :: integer(), + To :: integer(), + Incr :: integer(), + Seq :: [integer()]. seq(First, Last, Inc) when is_integer(First), is_integer(Last), is_integer(Inc) -> @@ -178,7 +217,8 @@ seq_loop(0, _, _, L) -> %% sum(L) returns the sum of the elements in L --spec sum([number()]) -> number(). +-spec sum(List) -> number() when + List :: [number()]. sum(L) -> sum(L, 0). @@ -188,7 +228,11 @@ sum([], Sum) -> Sum. %% duplicate(N, X) -> [X,X,X,.....,X] (N times) %% return N copies of X --spec duplicate(non_neg_integer(), T) -> [T]. +-spec duplicate(N, Elem) -> List when + N :: non_neg_integer(), + Elem :: T, + List :: [T], + T :: term(). duplicate(N, X) when is_integer(N), N >= 0 -> duplicate(N, X, []). @@ -197,7 +241,10 @@ duplicate(N, X, L) -> duplicate(N-1, X, [X|L]). %% min(L) -> returns the minimum element of the list L --spec min([T,...]) -> T. +-spec min(List) -> Min when + List :: [T,...], + Min :: T, + T :: term(). min([H|T]) -> min(T, H). @@ -207,7 +254,10 @@ min([], Min) -> Min. %% max(L) -> returns the maximum element of the list L --spec max([T,...]) -> T. +-spec max(List) -> Max when + List :: [T,...], + Max :: T, + T :: term(). max([H|T]) -> max(T, H). @@ -218,12 +268,21 @@ max([], Max) -> Max. %% sublist(List, Start, Length) %% Returns the sub-list starting at Start of length Length. --spec sublist([T], pos_integer(), non_neg_integer()) -> [T]. +-spec sublist(List1, Start, Len) -> List2 when + List1 :: [T], + List2 :: [T], + Start :: pos_integer(), + Len :: non_neg_integer(), + T :: term(). sublist(List, S, L) when is_integer(L), L >= 0 -> sublist(nthtail(S-1, List), L). --spec sublist([T], non_neg_integer()) -> [T]. +-spec sublist(List1, Len) -> List2 when + List1 :: [T], + List2 :: [T], + Len :: non_neg_integer(), + T :: term(). sublist(List, L) when is_integer(L), is_list(List) -> sublist_2(List, L). @@ -238,7 +297,11 @@ sublist_2(List, L) when is_list(List), L > 0 -> %% delete(Item, List) -> List' %% Delete the first occurrence of Item from the list L. --spec delete(T, [T]) -> [T]. +-spec delete(Elem, List1) -> List2 when + Elem :: T, + List1 :: [T], + List2 :: [T], + T :: term(). delete(Item, [Item|Rest]) -> Rest; delete(Item, [H|Rest]) -> @@ -248,7 +311,12 @@ delete(_, []) -> []. %% Return [{X0, Y0}, {X1, Y1}, ..., {Xn, Yn}] for lists [X0, X1, ..., %% Xn] and [Y0, Y1, ..., Yn]. --spec zip([A], [B]) -> [{A, B}]. +-spec zip(List1, List2) -> List3 when + List1 :: [A], + List2 :: [B], + List3 :: [{A, B}], + A :: term(), + B :: term(). zip([X | Xs], [Y | Ys]) -> [{X, Y} | zip(Xs, Ys)]; zip([], []) -> []. @@ -256,7 +324,12 @@ zip([], []) -> []. %% Return {[X0, X1, ..., Xn], [Y0, Y1, ..., Yn]}, for a list [{X0, Y0}, %% {X1, Y1}, ..., {Xn, Yn}]. --spec unzip([{A, B}]) -> {[A], [B]}. +-spec unzip(List1) -> {List2, List3} when + List1 :: [{A, B}], + List2 :: [A], + List3 :: [B], + A :: term(), + B :: term(). unzip(Ts) -> unzip(Ts, [], []). @@ -266,7 +339,14 @@ unzip([], Xs, Ys) -> {reverse(Xs), reverse(Ys)}. %% Return [{X0, Y0, Z0}, {X1, Y1, Z1}, ..., {Xn, Yn, Zn}] for lists [X0, %% X1, ..., Xn], [Y0, Y1, ..., Yn] and [Z0, Z1, ..., Zn]. --spec zip3([A], [B], [C]) -> [{A, B, C}]. +-spec zip3(List1, List2, List3) -> List4 when + List1 :: [A], + List2 :: [B], + List3 :: [C], + List4 :: [{A, B, C}], + A :: term(), + B :: term(), + C :: term(). zip3([X | Xs], [Y | Ys], [Z | Zs]) -> [{X, Y, Z} | zip3(Xs, Ys, Zs)]; zip3([], [], []) -> []. @@ -274,7 +354,14 @@ zip3([], [], []) -> []. %% Return {[X0, X1, ..., Xn], [Y0, Y1, ..., Yn], [Z0, Z1, ..., Zn]}, for %% a list [{X0, Y0, Z0}, {X1, Y1, Z1}, ..., {Xn, Yn, Zn}]. --spec unzip3([{A, B, C}]) -> {[A], [B], [C]}. +-spec unzip3(List1) -> {List2, List3, List4} when + List1 :: [{A, B, C}], + List2 :: [A], + List3 :: [B], + List4 :: [C], + A :: term(), + B :: term(), + C :: term(). unzip3(Ts) -> unzip3(Ts, [], [], []). @@ -286,7 +373,14 @@ unzip3([], Xs, Ys, Zs) -> %% Return [F(X0, Y0), F(X1, Y1), ..., F(Xn, Yn)] for lists [X0, X1, ..., %% Xn] and [Y0, Y1, ..., Yn]. --spec zipwith(fun((X, Y) -> R), [X], [Y]) -> [R]. +-spec zipwith(Combine, List1, List2) -> List3 when + Combine :: fun((X, Y) -> T), + List1 :: [X], + List2 :: [Y], + List3 :: [T], + X :: term(), + Y :: term(), + T :: term(). zipwith(F, [X | Xs], [Y | Ys]) -> [F(X, Y) | zipwith(F, Xs, Ys)]; zipwith(F, [], []) when is_function(F, 2) -> []. @@ -294,7 +388,16 @@ zipwith(F, [], []) when is_function(F, 2) -> []. %% Return [F(X0, Y0, Z0), F(X1, Y1, Z1), ..., F(Xn, Yn, Zn)] for lists %% [X0, X1, ..., Xn], [Y0, Y1, ..., Yn] and [Z0, Z1, ..., Zn]. --spec zipwith3(fun((X, Y, Z) -> R), [X], [Y], [Z]) -> [R]. +-spec zipwith3(Combine, List1, List2, List3) -> List4 when + Combine :: fun((X, Y, Z) -> T), + List1 :: [X], + List2 :: [Y], + List3 :: [Z], + List4 :: [T], + X :: term(), + Y :: term(), + Z :: term(), + T :: term(). zipwith3(F, [X | Xs], [Y | Ys], [Z | Zs]) -> [F(X, Y, Z) | zipwith3(F, Xs, Ys, Zs)]; @@ -303,7 +406,10 @@ zipwith3(F, [], [], []) when is_function(F, 3) -> []. %% sort(List) -> L %% sorts the list L --spec sort([T]) -> [T]. +-spec sort(List1) -> List2 when + List1 :: [T], + List2 :: [T], + T :: term(). sort([X, Y | L] = L0) when X =< Y -> case L of @@ -350,7 +456,11 @@ sort_1(X, [], R) -> %% merge(List) -> L %% merges a list of sorted lists --spec merge([[T]]) -> [T]. +-spec merge(ListOfLists) -> List1 when + ListOfLists :: [List], + List :: [T], + List1 :: [T], + T :: term(). merge(L) -> mergel(L, []). @@ -358,7 +468,14 @@ merge(L) -> %% merge3(X, Y, Z) -> L %% merges three sorted lists X, Y and Z --spec merge3([X], [Y], [Z]) -> [(X | Y | Z)]. +-spec merge3(List1, List2, List3) -> List4 when + List1 :: [X], + List2 :: [Y], + List3 :: [Z], + List4 :: [(X | Y | Z)], + X :: term(), + Y :: term(), + Z :: term(). merge3(L1, [], L3) -> merge(L1, L3); @@ -382,7 +499,12 @@ rmerge3(L1, [H2 | T2], [H3 | T3]) -> %% merge(X, Y) -> L %% merges two sorted lists X and Y --spec merge([X], [Y]) -> [(X | Y)]. +-spec merge(List1, List2) -> List3 when + List1 :: [X], + List2 :: [Y], + List3 :: [(X | Y)], + X :: term(), + Y :: term(). merge(T1, []) -> T1; @@ -405,8 +527,9 @@ rmerge(T1, [H2 | T2]) -> %% in L - the elements in L can be atoms, numbers of strings. %% Returns a list of characters. --type concat_thing() :: atom() | integer() | float() | string(). --spec concat([concat_thing()]) -> string(). +-spec concat(Things) -> string() when + Things :: [Thing], + Thing :: atom() | integer() | float() | string(). concat(List) -> flatmap(fun thing_to_list/1, List). @@ -420,12 +543,17 @@ thing_to_list(X) when is_list(X) -> X. %Assumed to be a string %% flatten(List, Tail) %% Flatten a list, adding optional tail. --spec flatten([term()]) -> [term()]. +-spec flatten(DeepList) -> List when + DeepList :: [term() | DeepList], + List :: [term()]. flatten(List) when is_list(List) -> do_flatten(List, []). --spec flatten([term()], [term()]) -> [term()]. +-spec flatten(DeepList, Tail) -> List when + DeepList :: [term() | DeepList], + Tail :: [term()], + List :: [term()]. flatten(List, Tail) when is_list(List), is_list(Tail) -> do_flatten(List, Tail). @@ -440,7 +568,8 @@ do_flatten([], Tail) -> %% flatlength(List) %% Calculate the length of a list of lists. --spec flatlength([term()]) -> non_neg_integer(). +-spec flatlength(DeepList) -> non_neg_integer() when + DeepList :: [term() | DeepList]. flatlength(List) -> flatlength(List, 0). @@ -481,7 +610,12 @@ flatlength([], L) -> L. % keysearch3(Key, N, T); %keysearch3(Key, N, []) -> false. --spec keydelete(term(), pos_integer(), [T]) -> [T] when T :: tuple(). +-spec keydelete(Key, N, TupleList1) -> TupleList2 when + Key :: term(), + N :: pos_integer(), + TupleList1 :: [Tuple], + TupleList2 :: [Tuple], + Tuple :: tuple(). keydelete(K, N, L) when is_integer(N), N > 0 -> keydelete3(K, N, L). @@ -491,7 +625,12 @@ keydelete3(Key, N, [H|T]) -> [H|keydelete3(Key, N, T)]; keydelete3(_, _, []) -> []. --spec keyreplace(term(), pos_integer(), [tuple()], tuple()) -> [tuple()]. +-spec keyreplace(Key, N, TupleList1, NewTuple) -> TupleList2 when + Key :: term(), + N :: pos_integer(), + TupleList1 :: [tuple()], + TupleList2 :: [tuple()], + NewTuple :: tuple(). keyreplace(K, N, L, New) when is_integer(N), N > 0, is_tuple(New) -> keyreplace3(K, N, L, New). @@ -502,8 +641,12 @@ keyreplace3(Key, Pos, [H|T], New) -> [H|keyreplace3(Key, Pos, T, New)]; keyreplace3(_, _, [], _) -> []. --spec keytake(term(), pos_integer(), [tuple()]) -> - {'value', tuple(), [tuple()]} | 'false'. +-spec keytake(Key, N, TupleList1) -> {value, Tuple, TupleList2} | false when + Key :: term(), + N :: pos_integer(), + TupleList1 :: [tuple()], + TupleList2 :: [tuple()], + Tuple :: tuple(). keytake(Key, N, L) when is_integer(N), N > 0 -> keytake(Key, N, L, []). @@ -514,7 +657,12 @@ keytake(Key, N, [H|T], L) -> keytake(Key, N, T, [H|L]); keytake(_K, _N, [], _L) -> false. --spec keystore(term(), pos_integer(), [tuple()], tuple()) -> [tuple(),...]. +-spec keystore(Key, N, TupleList1, NewTuple) -> TupleList2 when + Key :: term(), + N :: pos_integer(), + TupleList1 :: [tuple()], + TupleList2 :: [tuple(), ...], + NewTuple :: tuple(). keystore(K, N, L, New) when is_integer(N), N > 0, is_tuple(New) -> keystore2(K, N, L, New). @@ -526,7 +674,11 @@ keystore2(Key, N, [H|T], New) -> keystore2(_Key, _N, [], New) -> [New]. --spec keysort(pos_integer(), [T]) -> [T] when T :: tuple(). +-spec keysort(N, TupleList1) -> TupleList2 when + N :: pos_integer(), + TupleList1 :: [Tuple], + TupleList2 :: [Tuple], + Tuple :: tuple(). keysort(I, L) when is_integer(I), I > 0 -> case L of @@ -583,8 +735,13 @@ keysort_1(I, X, EX, [Y | L], R) -> keysort_1(_I, X, _EX, [], R) -> lists:reverse(R, [X]). --spec keymerge(pos_integer(), [X], [Y]) -> - [R] when X :: tuple(), Y :: tuple(), R :: tuple(). +-spec keymerge(N, TupleList1, TupleList2) -> TupleList3 when + N :: pos_integer(), + TupleList1 :: [T1], + TupleList2 :: [T2], + TupleList3 :: [(T1 | T2)], + T1 :: tuple(), + T2 :: tuple(). keymerge(Index, T1, L2) when is_integer(Index), Index > 0 -> case L2 of @@ -611,7 +768,11 @@ rkeymerge(Index, T1, L2) when is_integer(Index), Index > 0 -> lists:reverse(M, []) end. --spec ukeysort(pos_integer(), [T]) -> [T] when T :: tuple(). +-spec ukeysort(N, TupleList1) -> TupleList2 when + N :: pos_integer(), + TupleList1 :: [Tuple], + TupleList2 :: [Tuple], + Tuple :: tuple(). ukeysort(I, L) when is_integer(I), I > 0 -> case L of @@ -676,8 +837,13 @@ ukeysort_1(I, X, EX, [Y | L]) -> ukeysort_1(_I, X, _EX, []) -> [X]. --spec ukeymerge(pos_integer(), [X], [Y]) -> - [(X | Y)] when X :: tuple(), Y :: tuple(). +-spec ukeymerge(N, TupleList1, TupleList2) -> TupleList3 when + N :: pos_integer(), + TupleList1 :: [T1], + TupleList2 :: [T2], + TupleList3 :: [(T1 | T2)], + T1 :: tuple(), + T2 :: tuple(). ukeymerge(Index, L1, T2) when is_integer(Index), Index > 0 -> case L1 of @@ -704,7 +870,11 @@ rukeymerge(Index, T1, L2) when is_integer(Index), Index > 0 -> lists:reverse(M, []) end. --spec keymap(fun((term()) -> term()), pos_integer(), [tuple()]) -> [tuple()]. +-spec keymap(Fun, N, TupleList1) -> TupleList2 when + Fun :: fun((Term1 :: term()) -> Term2 :: term()), + N :: pos_integer(), + TupleList1 :: [tuple()], + TupleList2 :: [tuple()]. keymap(Fun, Index, [Tup|Tail]) -> [setelement(Index, Tup, Fun(element(Index, Tup)))|keymap(Fun, Index, Tail)]; @@ -713,7 +883,11 @@ keymap(Fun, Index, []) when is_integer(Index), Index >= 1, %%% Suggestion from OTP-2948: sort and merge with Fun. --spec sort(fun((T, T) -> boolean()), [T]) -> [T]. +-spec sort(Fun, List1) -> List2 when + Fun :: fun((A :: T, B :: T) -> boolean()), + List1 :: [T], + List2 :: [T], + T :: term(). sort(Fun, []) when is_function(Fun, 2) -> []; @@ -727,7 +901,13 @@ sort(Fun, [X, Y | T]) -> fsplit_2(Y, X, Fun, T, [], []) end. --spec merge(fun((X, Y) -> boolean()), [X], [Y]) -> [(X | Y)]. +-spec merge(Fun, List1, List2) -> List3 when + Fun :: fun((A, B) -> boolean()), + List1 :: [A], + List2 :: [B], + List3 :: [(A | B)], + A :: term(), + B :: term(). merge(Fun, T1, [H2 | T2]) when is_function(Fun, 2) -> lists:reverse(fmerge2_1(T1, H2, Fun, T2, []), []); @@ -743,7 +923,11 @@ rmerge(Fun, T1, [H2 | T2]) when is_function(Fun, 2) -> rmerge(Fun, T1, []) when is_function(Fun, 2) -> T1. --spec usort(fun((T, T) -> boolean()), [T]) -> [T]. +-spec usort(Fun, List1) -> List2 when + Fun :: fun((T, T) -> boolean()), + List1 :: [T], + List2 :: [T], + T :: term(). usort(Fun, [_] = L) when is_function(Fun, 2) -> L; @@ -770,7 +954,13 @@ usort_1(Fun, X, [Y | L]) -> ufsplit_2(Y, L, Fun, [X]) end. --spec umerge(fun((X, Y) -> boolean()), [X], [Y]) -> [(X | Y)]. +-spec umerge(Fun, List1, List2) -> List3 when + Fun :: fun((A, B) -> boolean()), + List1 :: [A], + List2 :: [B], + List3 :: [(A | B)], + A :: term(), + B :: term(). umerge(Fun, [], T2) when is_function(Fun, 2) -> T2; @@ -789,7 +979,10 @@ rumerge(Fun, T1, [H2 | T2]) when is_function(Fun, 2) -> %% usort(List) -> L %% sorts the list L, removes duplicates --spec usort([T]) -> [T]. +-spec usort(List1) -> List2 when + List1 :: [T], + List2 :: [T], + T :: term(). usort([X, Y | L] = L0) when X < Y -> case L of @@ -844,7 +1037,11 @@ usort_1(X, []) -> %% umerge(List) -> L %% merges a list of sorted lists without duplicates, removes duplicates --spec umerge([[T]]) -> [T]. +-spec umerge(ListOfLists) -> List1 when + ListOfLists :: [List], + List :: [T], + List1 :: [T], + T :: term(). umerge(L) -> umergel(L). @@ -853,7 +1050,14 @@ umerge(L) -> %% merges three sorted lists X, Y and Z without duplicates, %% removes duplicates --spec umerge3([X], [Y], [Z]) -> [(X | Y | Z)]. +-spec umerge3(List1, List2, List3) -> List4 when + List1 :: [X], + List2 :: [Y], + List3 :: [Z], + List4 :: [(X | Y | Z)], + X :: term(), + Y :: term(), + Z :: term(). umerge3(L1, [], L3) -> umerge(L1, L3); @@ -878,7 +1082,12 @@ rumerge3(L1, [H2 | T2], [H3 | T3]) -> %% umerge(X, Y) -> L %% merges two sorted lists X and Y without duplicates, removes duplicates --spec umerge([X], [Y]) -> [(X | Y)]. +-spec umerge(List1, List2) -> List3 when + List1 :: [X], + List2 :: [Y], + List3 :: [(X | Y)], + X :: term(), + Y :: term(). umerge([], T2) -> T2; @@ -924,7 +1133,10 @@ rumerge(T1, [H2 | T2]) -> %% There are also versions with an extra argument, ExtraArgs, which is a %% list of extra arguments to each call. --spec all(fun((T) -> boolean()), [T]) -> boolean(). +-spec all(Pred, List) -> boolean() when + Pred :: fun((Elem :: T) -> boolean()), + List :: [T], + T :: term(). all(Pred, [Hd|Tail]) -> case Pred(Hd) of @@ -933,7 +1145,10 @@ all(Pred, [Hd|Tail]) -> end; all(Pred, []) when is_function(Pred, 1) -> true. --spec any(fun((T) -> boolean()), [T]) -> boolean(). +-spec any(Pred, List) -> boolean() when + Pred :: fun((Elem :: T) -> boolean()), + List :: [T], + T :: term(). any(Pred, [Hd|Tail]) -> case Pred(Hd) of @@ -942,31 +1157,59 @@ any(Pred, [Hd|Tail]) -> end; any(Pred, []) when is_function(Pred, 1) -> false. --spec map(fun((D) -> R), [D]) -> [R]. +-spec map(Fun, List1) -> List2 when + Fun :: fun((A) -> B), + List1 :: [A], + List2 :: [B], + A :: term(), + B :: term(). map(F, [H|T]) -> [F(H)|map(F, T)]; map(F, []) when is_function(F, 1) -> []. --spec flatmap(fun((D) -> [R]), [D]) -> [R]. +-spec flatmap(Fun, List1) -> List2 when + Fun :: fun((A) -> [B]), + List1 :: [A], + List2 :: [B], + A :: term(), + B :: term(). flatmap(F, [Hd|Tail]) -> F(Hd) ++ flatmap(F, Tail); flatmap(F, []) when is_function(F, 1) -> []. --spec foldl(fun((T, term()) -> term()), term(), [T]) -> term(). +-spec foldl(Fun, Acc0, List) -> Acc1 when + Fun :: fun((Elem :: T, AccIn) -> AccOut), + Acc0 :: term(), + Acc1 :: term(), + AccIn :: term(), + AccOut :: term(), + List :: [T], + T :: term(). foldl(F, Accu, [Hd|Tail]) -> foldl(F, F(Hd, Accu), Tail); foldl(F, Accu, []) when is_function(F, 2) -> Accu. --spec foldr(fun((T, term()) -> term()), term(), [T]) -> term(). +-spec foldr(Fun, Acc0, List) -> Acc1 when + Fun :: fun((Elem :: T, AccIn) -> AccOut), + Acc0 :: term(), + Acc1 :: term(), + AccIn :: term(), + AccOut :: term(), + List :: [T], + T :: term(). foldr(F, Accu, [Hd|Tail]) -> F(Hd, foldr(F, Accu, Tail)); foldr(F, Accu, []) when is_function(F, 2) -> Accu. --spec filter(Pred :: fun((T) -> boolean()), List :: [T]) -> [T]. +-spec filter(Pred, List1) -> List2 when + Pred :: fun((Elem :: T) -> boolean()), + List1 :: [T], + List2 :: [T], + T :: term(). filter(Pred, List) when is_function(Pred, 1) -> [ E || E <- List, Pred(E) ]. @@ -974,7 +1217,12 @@ filter(Pred, List) when is_function(Pred, 1) -> %% Equivalent to {filter(F, L), filter(NotF, L)}, if NotF = 'fun(X) -> %% not F(X) end'. --spec partition(Pred :: fun((T) -> boolean()), List :: [T]) -> {[T], [T]}. +-spec partition(Pred, List) -> {Satisfying, NotSatisfying} when + Pred :: fun((Elem :: T) -> boolean()), + List :: [T], + Satisfying :: [T], + NotSatisfying :: [T], + T :: term(). partition(Pred, L) -> partition(Pred, L, [], []). @@ -1000,14 +1248,26 @@ zf(F, [Hd|Tail]) -> end; zf(F, []) when is_function(F, 1) -> []. --spec foreach(F :: fun((T) -> term()), List :: [T]) -> 'ok'. +-spec foreach(Fun, List) -> ok when + Fun :: fun((Elem :: T) -> term()), + List :: [T], + T :: term(). foreach(F, [Hd|Tail]) -> F(Hd), foreach(F, Tail); foreach(F, []) when is_function(F, 1) -> ok. --spec mapfoldl(fun((A, term()) -> {B, term()}), term(), [A]) -> {[B], term()}. +-spec mapfoldl(Fun, Acc0, List1) -> {List2, Acc1} when + Fun :: fun((A, AccIn) -> {B, AccOut}), + Acc0 :: term(), + Acc1 :: term(), + AccIn :: term(), + AccOut :: term(), + List1 :: [A], + List2 :: [B], + A :: term(), + B :: term(). mapfoldl(F, Accu0, [Hd|Tail]) -> {R,Accu1} = F(Hd, Accu0), @@ -1015,7 +1275,16 @@ mapfoldl(F, Accu0, [Hd|Tail]) -> {[R|Rs],Accu2}; mapfoldl(F, Accu, []) when is_function(F, 2) -> {[],Accu}. --spec mapfoldr(fun((A, term()) -> {B, term()}), term(), [A]) -> {[B], term()}. +-spec mapfoldr(Fun, Acc0, List1) -> {List2, Acc1} when + Fun :: fun((A, AccIn) -> {B, AccOut}), + Acc0 :: term(), + Acc1 :: term(), + AccIn :: term(), + AccOut :: term(), + List1 :: [A], + List2 :: [B], + A :: term(), + B :: term(). mapfoldr(F, Accu0, [Hd|Tail]) -> {Rs,Accu1} = mapfoldr(F, Accu0, Tail), @@ -1023,7 +1292,11 @@ mapfoldr(F, Accu0, [Hd|Tail]) -> {[R|Rs],Accu2}; mapfoldr(F, Accu, []) when is_function(F, 2) -> {[],Accu}. --spec takewhile(fun((T) -> boolean()), [T]) -> [T]. +-spec takewhile(Pred, List1) -> List2 when + Pred :: fun((Elem :: T) -> boolean()), + List1 :: [T], + List2 :: [T], + T :: term(). takewhile(Pred, [Hd|Tail]) -> case Pred(Hd) of @@ -1032,7 +1305,11 @@ takewhile(Pred, [Hd|Tail]) -> end; takewhile(Pred, []) when is_function(Pred, 1) -> []. --spec dropwhile(fun((T) -> boolean()), [T]) -> [T]. +-spec dropwhile(Pred, List1) -> List2 when + Pred :: fun((Elem :: T) -> boolean()), + List1 :: [T], + List2 :: [T], + T :: term(). dropwhile(Pred, [Hd|Tail]=Rest) -> case Pred(Hd) of @@ -1041,7 +1318,12 @@ dropwhile(Pred, [Hd|Tail]=Rest) -> end; dropwhile(Pred, []) when is_function(Pred, 1) -> []. --spec splitwith(fun((T) -> boolean()), [T]) -> {[T], [T]}. +-spec splitwith(Pred, List) -> {List1, List2} when + Pred :: fun((T) -> boolean()), + List :: [T], + List1 :: [T], + List2 :: [T], + T :: term(). splitwith(Pred, List) when is_function(Pred, 1) -> splitwith(Pred, List, []). @@ -1054,7 +1336,12 @@ splitwith(Pred, [Hd|Tail], Taken) -> splitwith(Pred, [], Taken) when is_function(Pred, 1) -> {reverse(Taken),[]}. --spec split(non_neg_integer(), [T]) -> {[T], [T]}. +-spec split(N, List1) -> {List2, List3} when + N :: non_neg_integer(), + List1 :: [T], + List2 :: [T], + List3 :: [T], + T :: term(). split(N, List) when is_integer(N), N >= 0, is_list(List) -> case split(N, List, []) of -- cgit v1.2.3