<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE chapter SYSTEM "chapter.dtd">

<chapter>
  <header>
    <copyright>
      <year>2001</year><year>2013</year>
      <holder>Ericsson AB. All Rights Reserved.</holder>
    </copyright>
    <legalnotice>
      The contents of this file are subject to the Erlang Public License,
      Version 1.1, (the "License"); you may not use this file except in
      compliance with the License. You should have received a copy of the
      Erlang Public License along with this software. If not, it can be
      retrieved online at http://www.erlang.org/.

      Software distributed under the License is distributed on an "AS IS"
      basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
      the License for the specific language governing rights and limitations
      under the License.

    </legalnotice>

    <title>How to implement a driver</title>
    <prepared>Jakob C</prepared>
    <docno></docno>
    <date>2000-11-28</date>
    <rev>PA1</rev>
    <file>driver.xml</file>
  </header>

  <note><p>This document was written a long time ago. A lot of it is still
           interesting since it explains important concepts, but it was
	   written for an older driver interface so the examples do not
	   work anymore. The reader is encouraged to read
	   <seealso marker="erl_driver">erl_driver</seealso> and the
	   <seealso marker="driver_entry">driver_entry</seealso> documentation.
   </p></note>

  <section>
    <title>Introduction</title>
    <p>This chapter tells you how to build your own driver for erlang.</p>
    <p>A driver in Erlang is a library written in C, that is linked to
      the Erlang emulator and called from erlang. Drivers can be used
      when C is more suitable than Erlang, to speed things up, or to
      provide access to OS resources not directly accessible from
      Erlang.</p>
    <p>A driver can be dynamically loaded, as a shared library (known as
      a DLL on windows), or statically loaded, linked with the emulator
      when it is compiled and linked. Only dynamically loaded drivers
      are described here, statically linked drivers are beyond the scope
      of this chapter.</p>
    <p>When a driver is loaded it is executed in the context of the
      emulator, shares the same memory and the same thread. This means
      that all operations in the driver must be non-blocking, and that
      any crash in the driver will bring the whole emulator down. In
      short: you have to be extremely careful!</p>
    <p></p>
  </section>

  <section>
    <title>Sample driver</title>
    <p>This is a simple driver for accessing a postgres
      database using the libpq C client library. Postgres
      is used because it's free and open source. For information
      on postgres, refer to the website
      <url href="http://www.postgres.org">www.postgres.org</url>.</p>
    <p>The driver is synchronous, it uses the synchronous calls of
      the client library. This is only for simplicity, and is
      generally not good, since it will
      halt the emulator while waiting for the database.
      This will be improved on below with an asynchronous
      sample driver.</p>
    <p>The code is quite straight-forward: all
      communication between Erlang and the driver
      is done with <c><![CDATA[port_control/3]]></c>, and the
      driver returns data back using the <c><![CDATA[rbuf]]></c>.</p>
    <p>An Erlang driver only exports one function: the driver
      entry function. This is defined with a macro,
      <c><![CDATA[DRIVER_INIT]]></c>, and returns a pointer to a
      C <c><![CDATA[struct]]></c> containing the entry points that are
      called from the emulator. The <c><![CDATA[struct]]></c> defines the
      entries that the emulator calls to call the driver, with
      a <c><![CDATA[NULL]]></c> pointer for entries that are not defined
      and used by the driver.</p>
    <p>The <c><![CDATA[start]]></c> entry is called when the driver
      is opened as a port with <c><![CDATA[open_port/2]]></c>. Here
      we allocate memory for a user data structure.
      This user data will be passed every time the emulator
      calls us. First we store the driver handle, because it
      is needed in subsequent calls. We allocate memory for
      the connection handle that is used by LibPQ. We also
      set the port to return allocated driver binaries, by
      setting the flag <c><![CDATA[PORT_CONTROL_FLAG_BINARY]]></c>, calling
      <c><![CDATA[set_port_control_flags]]></c>. (This is because
      we don't know whether our data will fit in the
      result buffer of <c><![CDATA[control]]></c>, which has a default size
      set up by the emulator, currently 64 bytes.)</p>
    <p>There is an entry <c><![CDATA[init]]></c> which is called when
      the driver is loaded, but we don't use this, since
      it is executed only once, and we want to have the
      possibility of several instances of the driver.</p>
    <p>The <c><![CDATA[stop]]></c> entry is called when the port
      is closed.</p>
    <p>The <c><![CDATA[control]]></c> entry is called from the emulator
      when the Erlang code calls <c><![CDATA[port_control/3]]></c>,
      to do the actual work. We have defined a simple set of
      commands: <c><![CDATA[connect]]></c> to login to the database, <c><![CDATA[disconnect]]></c>
      to log out and <c><![CDATA[select]]></c> to send a SQL-query and get the result.
      All results are returned through <c><![CDATA[rbuf]]></c>.
      The library <c><![CDATA[ei]]></c> in <c><![CDATA[erl_interface]]></c> is used
      to encode data in binary term format. The result is returned
      to the emulator as binary terms, so <c><![CDATA[binary_to_term]]></c>
      is called in Erlang to convert the result to term form.</p>
    <p>The code is available in <c><![CDATA[pg_sync.c]]></c> in the <c><![CDATA[sample]]></c>
      directory of <c><![CDATA[erts]]></c>.</p>
    <p>The driver entry contains the functions that
      will be called by the emulator. In our simple
      example, we only provide <c><![CDATA[start]]></c>, <c><![CDATA[stop]]></c>
      and <c><![CDATA[control]]></c>.</p>
    <code type="none"><![CDATA[
/* Driver interface declarations */
static ErlDrvData start(ErlDrvPort port, char *command);
static void stop(ErlDrvData drv_data);
static int control(ErlDrvData drv_data, unsigned int command, char *buf, 
                   int len, char **rbuf, int rlen); 

static ErlDrvEntry pq_driver_entry = {
    NULL,                        /* init */
    start, 
    stop, 
    NULL,                        /* output */
    NULL,                        /* ready_input */
    NULL,                        /* ready_output */ 
    "pg_sync",                   /* the name of the driver */
    NULL,                        /* finish */
    NULL,                        /* handle */
    control, 
    NULL,                        /* timeout */
    NULL,                        /* outputv */
    NULL,                        /* ready_async */
    NULL,                        /* flush */
    NULL,                        /* call */
    NULL                         /* event */
};
    ]]></code>
    <p>We have a structure to store state needed by the driver,
      in this case we only need to keep the database connection.</p>
    <code type="none"><![CDATA[
typedef struct our_data_s {
    PGconn* conn;
} our_data_t;
    ]]></code>
    <p>These are control codes we have defined.</p>
    <code type="none"><![CDATA[
/* Keep the following definitions in alignment with the
 * defines in erl_pq_sync.erl
 */

#define DRV_CONNECT             'C'
#define DRV_DISCONNECT          'D'
#define DRV_SELECT              'S'
    ]]></code>
    <p>This just returns the driver structure. The macro
      <c><![CDATA[DRIVER_INIT]]></c> defines the only exported function.
      All the other functions are static, and will not be exported
      from the library.</p>
    <code type="none"><![CDATA[
/* INITIALIZATION AFTER LOADING */

/* 
 * This is the init function called after this driver has been loaded.
 * It must *not* be declared static. Must return the address to 
 * the driver entry.
 */

DRIVER_INIT(pq_drv)
{
    return &pq_driver_entry;
}
    ]]></code>
    <p>Here we do some initialization, <c><![CDATA[start]]></c> is called from
      <c><![CDATA[open_port]]></c>. The data will be passed to <c><![CDATA[control]]></c>
      and <c><![CDATA[stop]]></c>.</p>
    <code type="none"><![CDATA[
/* DRIVER INTERFACE */
static ErlDrvData start(ErlDrvPort port, char *command)
{ 
    our_data_t* data;

    data = (our_data_t*)driver_alloc(sizeof(our_data_t));
    data->conn = NULL;
    set_port_control_flags(port, PORT_CONTROL_FLAG_BINARY);
    return (ErlDrvData)data;
}
    ]]></code>
    <p>We call disconnect to log out from the database.
      (This should have been done from Erlang, but just in case.)</p>
    <code type="none"><![CDATA[
static int do_disconnect(our_data_t* data, ei_x_buff* x);

static void stop(ErlDrvData drv_data)
{
    our_data_t* data = (our_data_t*)drv_data;

    do_disconnect(data, NULL);
    driver_free(data);
}
    ]]></code>
    <p>We use the binary format only to return data to the emulator;
      input data is a string paramater for <c><![CDATA[connect]]></c> and
      <c><![CDATA[select]]></c>. The returned data consists of Erlang terms.</p>
    <p>The functions <c><![CDATA[get_s]]></c> and <c><![CDATA[ei_x_to_new_binary]]></c> are
      utilities that are used to make the code shorter. <c><![CDATA[get_s]]></c>
      duplicates the string and zero-terminates it, since the
      postgres client library wants that. <c><![CDATA[ei_x_to_new_binary]]></c>
      takes an <c><![CDATA[ei_x_buff]]></c> buffer and allocates a binary and
      copies the data there. This binary is returned in <c><![CDATA[*rbuf]]></c>.
      (Note that this binary is freed by the emulator, not by us.)</p>
    <code type="none"><![CDATA[
static char* get_s(const char* buf, int len);
static int do_connect(const char *s, our_data_t* data, ei_x_buff* x);
static int do_select(const char* s, our_data_t* data, ei_x_buff* x);

/* Since we are operating in binary mode, the return value from control
 * is irrelevant, as long as it is not negative.
 */
static int control(ErlDrvData drv_data, unsigned int command, char *buf, 
                   int len, char **rbuf, int rlen)
{
    int r;
    ei_x_buff x;
    our_data_t* data = (our_data_t*)drv_data;
    char* s = get_s(buf, len);
    ei_x_new_with_version(&x);
    switch (command) {
        case DRV_CONNECT:    r = do_connect(s, data, &x);  break;
        case DRV_DISCONNECT: r = do_disconnect(data, &x);  break;
        case DRV_SELECT:     r = do_select(s, data, &x);   break;
        default:             r = -1;        break;
    }
    *rbuf = (char*)ei_x_to_new_binary(&x);
    ei_x_free(&x);
    driver_free(s);
    return r;
}
    ]]></code>
    <p><c><![CDATA[do_connect]]></c> is where we log in to the database. If the connection
      was successful we store the connection handle in our driver
      data, and return ok. Otherwise, we return the error message
      from postgres, and store <c><![CDATA[NULL]]></c> in the driver data.</p>
    <code type="none"><![CDATA[
static int do_connect(const char *s, our_data_t* data, ei_x_buff* x)
{
    PGconn* conn = PQconnectdb(s);
    if (PQstatus(conn) != CONNECTION_OK) {
        encode_error(x, conn);
        PQfinish(conn);
        conn = NULL;
    } else {
        encode_ok(x);
    }
    data->conn = conn;
    return 0;
}
    ]]></code>
    <p>If we are connected (if the connection handle is not <c><![CDATA[NULL]]></c>),
      we log out from the database. We need to check if we should
      encode an ok, since we might get here from the <c><![CDATA[stop]]></c>
      function, which doesn't return data to the emulator.</p>
    <code type="none"><![CDATA[
static int do_disconnect(our_data_t* data, ei_x_buff* x)
{
    if (data->conn == NULL)
        return 0;
    PQfinish(data->conn);
    data->conn = NULL;
    if (x != NULL)
        encode_ok(x);
    return 0;
}
    ]]></code>
    <p>We execute a query and encode the result. Encoding is done
      in another C module, <c><![CDATA[pg_encode.c]]></c> which is also provided
      as sample code.</p>
    <code type="none"><![CDATA[
static int do_select(const char* s, our_data_t* data, ei_x_buff* x)
{
   PGresult* res = PQexec(data->conn, s);
    encode_result(x, res, data->conn);
    PQclear(res);
    return 0;
}
    ]]></code>
    <p>Here we simply check the result from postgres, and
      if it's data we encode it as lists of lists with
      column data. Everything from postgres is C strings,
      so we just use <c><![CDATA[ei_x_encode_string]]></c> to send
      the result as strings to Erlang. (The head of the list
      contains the column names.)</p>
    <code type="none"><![CDATA[
void encode_result(ei_x_buff* x, PGresult* res, PGconn* conn)
{
    int row, n_rows, col, n_cols;
    switch (PQresultStatus(res)) {
    case PGRES_TUPLES_OK: 
        n_rows = PQntuples(res); 
        n_cols = PQnfields(res); 
        ei_x_encode_tuple_header(x, 2);
        encode_ok(x);
        ei_x_encode_list_header(x, n_rows+1);
        ei_x_encode_list_header(x, n_cols);
        for (col = 0; col < n_cols; ++col) {
            ei_x_encode_string(x, PQfname(res, col));
        }
        ei_x_encode_empty_list(x); 
        for (row = 0; row < n_rows; ++row) {
            ei_x_encode_list_header(x, n_cols);
            for (col = 0; col < n_cols; ++col) {
                ei_x_encode_string(x, PQgetvalue(res, row, col));
            }
            ei_x_encode_empty_list(x);
        }
        ei_x_encode_empty_list(x); 
        break; 
    case PGRES_COMMAND_OK:
        ei_x_encode_tuple_header(x, 2);
        encode_ok(x);
        ei_x_encode_string(x, PQcmdTuples(res));
        break;
    default:
        encode_error(x, conn);
        break;
    }
}
    ]]></code>
  </section>

  <section>
    <title>Compiling and linking the sample driver</title>
    <p>The driver should be compiled and linked to a shared
      library (DLL on windows). With gcc this is done
      with the link flags <c><![CDATA[-shared]]></c> and <c><![CDATA[-fpic]]></c>.
      Since we use the <c><![CDATA[ei]]></c> library we should include
      it too. There are several versions of <c><![CDATA[ei]]></c>, compiled
      for debug or non-debug and multi-threaded or single-threaded.
      In the makefile for the samples the <c><![CDATA[obj]]></c> directory
      is used for the <c><![CDATA[ei]]></c> library, meaning that we use
      the non-debug, single-threaded version.</p>
  </section>

  <section>
    <title>Calling a driver as a port in Erlang</title>
    <p>Before a driver can be called from Erlang, it must be
      loaded and opened. Loading is done using the <c><![CDATA[erl_ddll]]></c>
      module (the <c><![CDATA[erl_ddll]]></c> driver that loads dynamic
      driver, is actually a driver itself). If loading is ok
      the port can be opened with <c><![CDATA[open_port/2]]></c>. The port
      name must match the name of the shared library and
      the name in the driver entry structure.</p>
    <p>When the port has been opened, the driver can be called. In
      the <c><![CDATA[pg_sync]]></c> example, we don't have any data from
      the port, only the return value from the
      <c><![CDATA[port_control]]></c>.</p>
    <p>The following code is the Erlang part of the synchronous
      postgres driver, <c><![CDATA[pg_sync.erl]]></c>.</p>
    <code type="none"><![CDATA[
-module(pg_sync).

-define(DRV_CONNECT, 1).
-define(DRV_DISCONNECT, 2).
-define(DRV_SELECT, 3).

-export([connect/1, disconnect/1, select/2]).

connect(ConnectStr) ->
    case erl_ddll:load_driver(".", "pg_sync") of
        ok -> ok;
        {error, already_loaded} -> ok;
        E -> exit({error, E})
    end,
    Port = open_port({spawn, ?MODULE}, []),
    case binary_to_term(port_control(Port, ?DRV_CONNECT, ConnectStr)) of
        ok -> {ok, Port};
        Error -> Error
    end.

disconnect(Port) ->
    R = binary_to_term(port_control(Port, ?DRV_DISCONNECT, "")),
    port_close(Port),
    R.

select(Port, Query) ->
    binary_to_term(port_control(Port, ?DRV_SELECT, Query)).
    ]]></code>
    <p>The API is simple: <c><![CDATA[connect/1]]></c> loads the driver, opens it
      and logs on to the database, returning the Erlang port
      if successful, <c><![CDATA[select/2]]></c> sends a query to the driver,
      and returns the result, <c><![CDATA[disconnect/1]]></c> closes the
      database connection and the driver. (It does not unload it,
      however.) The connection string should be a connection
      string for postgres.</p>
    <p>The driver is loaded with <c><![CDATA[erl_ddll:load_driver/2]]></c>,
      and if this is successful, or if it's already loaded,
      it is opened. This will call the <c><![CDATA[start]]></c> function
      in the driver.</p>
    <p>We use the <c><![CDATA[port_control/3]]></c> function for all
      calls into the driver, the result from the driver is
      returned immediately, and converted to terms by calling
      <c><![CDATA[binary_to_term/1]]></c>. (We trust that the terms returned
      from the driver are well-formed, otherwise the
      <c><![CDATA[binary_to_term]]></c> calls could be contained in a
      <c><![CDATA[catch]]></c>.)</p>
  </section>

  <section>
    <title>Sample asynchronous driver</title>
    <p>Sometimes database queries can take long time to
      complete, in our <c><![CDATA[pg_sync]]></c> driver, the emulator
      halts while the driver is doing its job. This is
      often not acceptable, since no other Erlang process
      gets a chance to do anything. To improve on our
      postgres driver, we reimplement it using the asynchronous
      calls in LibPQ.</p>
    <p>The asynchronous version of the driver is in the
      sample files <c><![CDATA[pg_async.c]]></c> and <c><![CDATA[pg_asyng.erl]]></c>.</p>
    <code type="none"><![CDATA[
/* Driver interface declarations */
static ErlDrvData start(ErlDrvPort port, char *command);
static void stop(ErlDrvData drv_data);
static int control(ErlDrvData drv_data, unsigned int command, char *buf, 
                   int len, char **rbuf, int rlen); 
static void ready_io(ErlDrvData drv_data, ErlDrvEvent event);

static ErlDrvEntry pq_driver_entry = {
    NULL,                     /* init */
    start, 
    stop, 
    NULL,                     /* output */
    ready_io,                 /* ready_input */
    ready_io,                 /* ready_output */ 
    "pg_async",               /* the name of the driver */
    NULL,                     /* finish */
    NULL,                     /* handle */
    control, 
    NULL,                     /* timeout */
    NULL,                     /* outputv */
    NULL,                     /* ready_async */
    NULL,                     /* flush */
    NULL,                     /* call */
    NULL                      /* event */
};

typedef struct our_data_t {
    PGconn* conn;
    ErlDrvPort port;
    int socket;
    int connecting;
} our_data_t;
    ]]></code>
    <p>Here some things have changed from <c><![CDATA[pg_sync.c]]></c>: we use the
      entry <c><![CDATA[ready_io]]></c> for <c><![CDATA[ready_input]]></c> and
      <c><![CDATA[ready_output]]></c> which will be called from the emulator only
      when there is input to be read from the socket. (Actually, the
      socket is used in a <c><![CDATA[select]]></c> function inside
      the emulator, and when the socket is signalled,
      indicating there is data to read, the <c><![CDATA[ready_input]]></c> entry
      is called. More on this below.)</p>
    <p>Our driver data is also extended, we keep track of the
      socket used for communication with postgres, and also
      the port, which is needed when we send data to the port with
      <c><![CDATA[driver_output]]></c>. We have a flag <c><![CDATA[connecting]]></c> to tell
      whether the driver is waiting for a connection or waiting
      for the result of a query. (This is needed since the entry
      <c><![CDATA[ready_io]]></c> will be called both when connecting and
      when there is a query result.)</p>
    <code type="none"><![CDATA[
static int do_connect(const char *s, our_data_t* data)
{
    PGconn* conn = PQconnectStart(s);
    if (PQstatus(conn) == CONNECTION_BAD) {
        ei_x_buff x;
        ei_x_new_with_version(&x);
        encode_error(&x, conn);
        PQfinish(conn);
        conn = NULL;
        driver_output(data->port, x.buff, x.index);
        ei_x_free(&x);
    }
    PQconnectPoll(conn);
    int socket = PQsocket(conn);
    data->socket = socket;
    driver_select(data->port, (ErlDrvEvent)socket, DO_READ, 1);
    driver_select(data->port, (ErlDrvEvent)socket, DO_WRITE, 1);
    data->conn = conn;
    data->connecting = 1;
    return 0;
}
    ]]></code>
    <p>The <c><![CDATA[connect]]></c> function looks a bit different too. We connect
      using the asynchronous <c><![CDATA[PQconnectStart]]></c> function. After the
      connection is started, we retrieve the socket for the connection
      with <c><![CDATA[PQsocket]]></c>. This socket is used with the
      <c><![CDATA[driver_select]]></c> function to wait for connection. When
      the socket is ready for input or for output, the <c><![CDATA[ready_io]]></c>
      function will be called.</p>
    <p>Note that we only return data (with <c><![CDATA[driver_output]]></c>) if there
      is an error here, otherwise we wait for the connection to be completed,
      in which case our <c><![CDATA[ready_io]]></c> function will be called.</p>
    <code type="none"><![CDATA[
static int do_select(const char* s, our_data_t* data)
{
    data->connecting = 0;
    PGconn* conn = data->conn;
    /* if there's an error return it now */
    if (PQsendQuery(conn, s) == 0) {
        ei_x_buff x;
        ei_x_new_with_version(&x);
        encode_error(&x, conn);
        driver_output(data->port, x.buff, x.index);
        ei_x_free(&x);
    }
    /* else wait for ready_output to get results */
    return 0;
}
    ]]></code>
    <p>The <c><![CDATA[do_select]]></c> function initiates a select, and returns
      if there is no immediate error. The actual result will be returned
      when <c><![CDATA[ready_io]]></c> is called.</p>
    <code type="none"><![CDATA[
static void ready_io(ErlDrvData drv_data, ErlDrvEvent event)
{
    PGresult* res = NULL;
    our_data_t* data = (our_data_t*)drv_data;
    PGconn* conn = data->conn;
    ei_x_buff x;
    ei_x_new_with_version(&x);
    if (data->connecting) {
        ConnStatusType status;
        PQconnectPoll(conn);
        status = PQstatus(conn);
        if (status == CONNECTION_OK)
            encode_ok(&x);
        else if (status == CONNECTION_BAD)
            encode_error(&x, conn);
    } else {
        PQconsumeInput(conn);
        if (PQisBusy(conn))
            return;
        res = PQgetResult(conn);
        encode_result(&x, res, conn);
        PQclear(res);
        for (;;) {
            res = PQgetResult(conn);
            if (res == NULL)
                break;
            PQclear(res);
        }
    }
    if (x.index > 1) {
        driver_output(data->port, x.buff, x.index);
        if (data->connecting) 
            driver_select(data->port, (ErlDrvEvent)data->socket, DO_WRITE, 0);
    }
    ei_x_free(&x);
}
    ]]></code>
    <p>The <c><![CDATA[ready_io]]></c> function will be called when the socket
      we got from postgres is ready for input or output. Here
      we first check if we are connecting to the database. In that
      case we check connection status and return ok if the 
      connection is successful, or error if it's not. If the
      connection is not yet established, we simply return; <c><![CDATA[ready_io]]></c>
      will be called again.</p>
    <p>If we have a result from a connect, indicated by having data in
      the <c><![CDATA[x]]></c> buffer, we no longer need to select on
      output (<c><![CDATA[ready_output]]></c>), so we remove this by calling
      <c><![CDATA[driver_select]]></c>.</p>
    <p>If we're not connecting, we're waiting for results from a
      <c><![CDATA[PQsendQuery]]></c>, so we get the result and return it. The
      encoding is done with the same functions as in the earlier
      example.</p>
    <p>We should add error handling here, for instance checking
      that the socket is still open, but this is just a simple
      example.</p>
    <p>The Erlang part of the asynchronous driver consists of the
      sample file <c><![CDATA[pg_async.erl]]></c>.</p>
    <code type="none"><![CDATA[
-module(pg_async).

-define(DRV_CONNECT, $C).
-define(DRV_DISCONNECT, $D).
-define(DRV_SELECT, $S).

-export([connect/1, disconnect/1, select/2]).

connect(ConnectStr) ->
    case erl_ddll:load_driver(".", "pg_async") of
        ok -> ok;
        {error, already_loaded} -> ok;
        _ -> exit({error, could_not_load_driver})
    end,
    Port = open_port({spawn, ?MODULE}, [binary]),
    port_control(Port, ?DRV_CONNECT, ConnectStr),
    case return_port_data(Port) of
        ok -> 
            {ok, Port};
        Error ->
            Error
    end.    

disconnect(Port) ->
    port_control(Port, ?DRV_DISCONNECT, ""),
    R = return_port_data(Port),
    port_close(Port),
    R.

select(Port, Query) ->
    port_control(Port, ?DRV_SELECT, Query),
    return_port_data(Port).

return_port_data(Port) ->
    receive
        {Port, {data, Data}} ->
            binary_to_term(Data)
    end.
    ]]></code>
    <p>The Erlang code is slightly different, this is because we
      don't return the result synchronously from <c><![CDATA[port_control]]></c>,
      instead we get it from <c><![CDATA[driver_output]]></c> as data in the
      message queue. The function <c><![CDATA[return_port_data]]></c> above
      receives data from the port. Since the data is in
      binary format, we use <c><![CDATA[binary_to_term/1]]></c> to convert
      it to an Erlang term. Note that the driver is opened in
      binary mode (<c><![CDATA[open_port/2]]></c> is called with the option
      <c><![CDATA[[binary]]]></c>). This means that data sent from the driver
      to the emulator is sent as binaries. Without the <c><![CDATA[binary]]></c>
      option, they would have been lists of integers.</p>
  </section>

  <section>
    <title>An asynchronous driver using driver_async</title>
    <p>As a final example we demonstrate the use of <c><![CDATA[driver_async]]></c>.
      We also use the driver term interface. The driver is written
      in C++. This enables us to use an algorithm from STL. We will
      use the <c><![CDATA[next_permutation]]></c> algorithm to get the next permutation
      of a list of integers. For large lists (more than 100000
      elements), this will take some time, so we will perform this
      as an asynchronous task.</p>
    <p>The asynchronous API for drivers is quite complicated. First
      of all, the work must be prepared. In our example we do this
      in <c><![CDATA[output]]></c>. We could have used <c><![CDATA[control]]></c> just as well,
      but we want some variation in our examples. In our driver, we allocate
      a structure that contains anything that's needed for the asynchronous task
      to do the work. This is done in the main emulator thread.
      Then the asynchronous function is called from a driver thread,
      separate from the main emulator thread. Note that the driver-functions
      are not reentrant, so they shouldn't be used.
      Finally, after the function is completed, the driver callback
      <c><![CDATA[ready_async]]></c> is called from the main emulator thread,
      this is where we return the result to Erlang. (We can't
      return the result from within the asynchronous function, since
      we can't call the driver-functions.)</p>
    <p>The code below is from the sample file <c><![CDATA[next_perm.cc]]></c>.</p>
    <p>The driver entry looks like before, but also contains the
      call-back <c><![CDATA[ready_async]]></c>.</p>
    <code type="none"><![CDATA[
static ErlDrvEntry next_perm_driver_entry = {
    NULL,                        /* init */
    start,
    NULL,                        /* stop */
    output,
    NULL,                        /* ready_input */
    NULL,                        /* ready_output */ 
    "next_perm",                 /* the name of the driver */
    NULL,                        /* finish */
    NULL,                        /* handle */
    NULL,                        /* control */
    NULL,                        /* timeout */
    NULL,                        /* outputv */
    ready_async,
    NULL,                        /* flush */
    NULL,                        /* call */
    NULL                         /* event */
};
    ]]></code>
    <p>The <c><![CDATA[output]]></c> function allocates the work-area of the
      asynchronous function. Since we use C++, we use a struct,
      and stuff the data in it. We have to copy the original data,
      it is not valid after we have returned from the <c><![CDATA[output]]></c>
      function, and the <c><![CDATA[do_perm]]></c> function will be called later,
      and from another thread. We return no data here, instead it will
      be sent later from the <c><![CDATA[ready_async]]></c> call-back.</p>
    <p>The <c><![CDATA[async_data]]></c> will be passed to the <c><![CDATA[do_perm]]></c> function.
      We do not use a <c><![CDATA[async_free]]></c> function (the last argument to
      <c><![CDATA[driver_async]]></c>), it's only used if the task is cancelled
      programmatically.</p>
    <code type="none"><![CDATA[
struct our_async_data {
    bool prev;
    vector<int> data;
    our_async_data(ErlDrvPort p, int command, const char* buf, int len);
};

our_async_data::our_async_data(ErlDrvPort p, int command,
                               const char* buf, int len)
    : prev(command == 2),
      data((int*)buf, (int*)buf + len / sizeof(int))
{
}

static void do_perm(void* async_data);

static void output(ErlDrvData drv_data, char *buf, int len)
{
    if (*buf < 1 || *buf > 2) return;
    ErlDrvPort port = reinterpret_cast<ErlDrvPort>(drv_data);
    void* async_data = new our_async_data(port, *buf, buf+1, len);
    driver_async(port, NULL, do_perm, async_data, do_free);
}
    ]]></code>
    <p>In the <c><![CDATA[do_perm]]></c> we simply do the work, operating
      on the structure that was allocated in <c><![CDATA[output]]></c>.</p>
    <code type="none"><![CDATA[
static void do_perm(void* async_data)
{
    our_async_data* d = reinterpret_cast<our_async_data*>(async_data);
    if (d->prev)
        prev_permutation(d->data.begin(), d->data.end());
    else
        next_permutation(d->data.begin(), d->data.end());
}
    ]]></code>
    <p>In the <c><![CDATA[ready_async]]></c> function, the output is sent back to the
      emulator. We use the driver term format instead of <c><![CDATA[ei]]></c>.
      This is the only way to send Erlang terms directly to a driver,
      without having the Erlang code to call <c><![CDATA[binary_to_term/1]]></c>. In
      our simple example this works well, and we don't need to use
      <c><![CDATA[ei]]></c> to handle the binary term format.</p>
    <p>When the data is returned we deallocate our data.</p>
    <code type="none"><![CDATA[
static void ready_async(ErlDrvData drv_data, ErlDrvThreadData async_data)
{
    ErlDrvPort port = reinterpret_cast<ErlDrvPort>(drv_data);
    our_async_data* d = reinterpret_cast<our_async_data*>(async_data);
    int n = d->data.size(), result_n = n*2 + 3;
    ErlDrvTermData *result = new ErlDrvTermData[result_n], *rp = result;
    for (vector<int>::iterator i = d->data.begin();
         i != d->data.end(); ++i) {
        *rp++ = ERL_DRV_INT;
        *rp++ = *i;
    }
    *rp++ = ERL_DRV_NIL;
    *rp++ = ERL_DRV_LIST;
    *rp++ = n+1;
    driver_output_term(port, result, result_n);    
    delete[] result;
    delete d;
}
    ]]></code>
    <p>This driver is called like the others from Erlang, however, since
      we use <c><![CDATA[driver_output_term]]></c>, there is no need to call
      binary_to_term. The Erlang code is in the sample file
      <c><![CDATA[next_perm.erl]]></c>.</p>
    <p>The input is changed into a list of integers and sent to
      the driver.</p>
    <code type="none"><![CDATA[
-module(next_perm).

-export([next_perm/1, prev_perm/1, load/0, all_perm/1]).

load() ->
    case whereis(next_perm) of
        undefined ->
            case erl_ddll:load_driver(".", "next_perm") of
                ok -> ok;
                {error, already_loaded} -> ok;
                E -> exit(E)
            end,
            Port = open_port({spawn, "next_perm"}, []),
            register(next_perm, Port);
        _ ->
            ok
    end.

list_to_integer_binaries(L) ->
    [<<I:32/integer-native>> || I <- L].

next_perm(L) ->
    next_perm(L, 1).

prev_perm(L) ->
    next_perm(L, 2).

next_perm(L, Nxt) ->
    load(),
    B = list_to_integer_binaries(L),
    port_control(next_perm, Nxt, B),
    receive
        Result ->
            Result
    end.

all_perm(L) ->
    New = prev_perm(L),
    all_perm(New, L, [New]).

all_perm(L, L, Acc) ->
    Acc;
all_perm(L, Orig, Acc) ->
    New = prev_perm(L),
    all_perm(New, Orig, [New | Acc]).
    ]]></code>
  </section>
</chapter>