/* * %CopyrightBegin% * * Copyright Ericsson AB 2000-2009. All Rights Reserved. * * The contents of this file are subject to the Erlang Public License, * Version 1.1, (the "License"); you may not use this file except in * compliance with the License. You should have received a copy of the * Erlang Public License along with this software. If not, it can be * retrieved online at http://www.erlang.org/. * * Software distributed under the License is distributed on an "AS IS" * basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See * the License for the specific language governing rights and limitations * under the License. * * %CopyrightEnd% */ #ifdef HAVE_CONFIG_H # include "config.h" #endif #include "sys.h" #include "erl_vm.h" #include "global.h" #include "erl_process.h" #include "beam_load.h" #include "bif.h" #include "error.h" #include "erl_binary.h" #include "beam_bp.h" /* ************************************************************************* ** Macros */ /* ** Memory allocation macros */ /* Breakpoint data */ #define Alloc(SZ) erts_alloc(ERTS_ALC_T_BPD, (SZ)) #define ReAlloc(P, SIZ) erts_realloc(ERTS_ALC_T_BPD, (P), (SZ)) #define Free(P) erts_free(ERTS_ALC_T_BPD, (P)) /* ** Doubly linked ring macros */ #define BpInit(a,i) \ do { \ (a)->orig_instr = (i); \ (a)->next = (a); \ (a)->prev = (a); \ } while (0) #define BpSpliceNext(a,b) \ do { \ register BpData *c = (a), *d = (b), *e; \ e = c->next->prev; \ c->next->prev = d->next->prev; \ d->next->prev = e; \ e = c->next; \ c->next = d->next; \ d->next = e; \ } while (0) #define BpSplicePrev(a,b) \ do { \ register BpData *c = (a), *d = (b), *e; \ e = c->prev->next; \ c->prev->next = d->prev->next; \ d->prev->next = e; \ e = c->prev; \ c->prev = d->prev; \ d->prev = e; \ } while (0) #ifdef DEBUG # define BpSingleton(a) ((a)->next == (a) && (a)->prev == (a)) #else # define BpSingleton(a) ((a)->next == (a)) #endif #define BpInitAndSpliceNext(a,i,b) \ do { \ (a)->orig_instr = (i); \ (a)->prev = (b); \ (b)->next->prev = (a); \ (a)->next = (b)->next; \ (b)->next = (a); \ } while (0) #define BpInitAndSplicePrev(a,i,b) \ do { \ (a)->orig_instr = (i); \ (a)->next = (b); \ (b)->prev->next = (a); \ (a)->prev = (b)->prev; \ (b)->prev = (a); \ } while (0) /* ************************************************************************* ** Local prototypes */ /* ** Helpers */ static int set_break(Eterm mfa[3], int specified, Binary *match_spec, Uint break_op, enum erts_break_op count_op, Eterm tracer_pid); static int set_module_break(Module *modp, Eterm mfa[3], int specified, Binary *match_spec, Uint break_op, enum erts_break_op count_op, Eterm tracer_pid); static int set_function_break(Module *modp, Uint *pc, Binary *match_spec, Uint break_op, enum erts_break_op count_op, Eterm tracer_pid); static int clear_break(Eterm mfa[3], int specified, Uint break_op); static int clear_module_break(Module *modp, Eterm mfa[3], int specified, Uint break_op); static int clear_function_break(Module *modp, Uint *pc, Uint break_op); static BpData *is_break(Uint *pc, Uint break_op); /* ************************************************************************* ** External interfaces */ erts_smp_spinlock_t erts_bp_lock; void erts_bp_init(void) { erts_smp_spinlock_init(&erts_bp_lock, "breakpoints"); } int erts_set_trace_break(Eterm mfa[3], int specified, Binary *match_spec, Eterm tracer_pid) { ERTS_SMP_LC_ASSERT(erts_smp_is_system_blocked(0)); return set_break(mfa, specified, match_spec, (Uint) BeamOp(op_i_trace_breakpoint), 0, tracer_pid); } int erts_set_mtrace_break(Eterm mfa[3], int specified, Binary *match_spec, Eterm tracer_pid) { ERTS_SMP_LC_ASSERT(erts_smp_is_system_blocked(0)); return set_break(mfa, specified, match_spec, (Uint) BeamOp(op_i_mtrace_breakpoint), 0, tracer_pid); } void erts_set_mtrace_bif(Uint *pc, Binary *match_spec, Eterm tracer_pid) { BpDataTrace *bdt; ERTS_SMP_LC_ASSERT(erts_smp_is_system_blocked(0)); bdt = (BpDataTrace *) pc[-4]; if (bdt) { MatchSetUnref(bdt->match_spec); MatchSetRef(match_spec); bdt->match_spec = match_spec; bdt->tracer_pid = tracer_pid; } else { bdt = Alloc(sizeof(BpDataTrace)); BpInit((BpData *) bdt, 0); MatchSetRef(match_spec); bdt->match_spec = match_spec; bdt->tracer_pid = tracer_pid; pc[-4] = (Uint) bdt; } } int erts_set_debug_break(Eterm mfa[3], int specified) { ERTS_SMP_LC_ASSERT(erts_smp_is_system_blocked(0)); return set_break(mfa, specified, NULL, (Uint) BeamOp(op_i_debug_breakpoint), 0, NIL); } int erts_set_count_break(Eterm mfa[3], int specified, enum erts_break_op count_op) { ERTS_SMP_LC_ASSERT(erts_smp_is_system_blocked(0)); return set_break(mfa, specified, NULL, (Uint) BeamOp(op_i_count_breakpoint), count_op, NIL); } int erts_clear_trace_break(Eterm mfa[3], int specified) { ERTS_SMP_LC_ASSERT(erts_smp_is_system_blocked(0)); return clear_break(mfa, specified, (Uint) BeamOp(op_i_trace_breakpoint)); } int erts_clear_mtrace_break(Eterm mfa[3], int specified) { ERTS_SMP_LC_ASSERT(erts_smp_is_system_blocked(0)); return clear_break(mfa, specified, (Uint) BeamOp(op_i_mtrace_breakpoint)); } void erts_clear_mtrace_bif(Uint *pc) { BpDataTrace *bdt; ERTS_SMP_LC_ASSERT(erts_smp_is_system_blocked(0)); bdt = (BpDataTrace *) pc[-4]; if (bdt) { if (bdt->match_spec) { MatchSetUnref(bdt->match_spec); } Free(bdt); } pc[-4] = (Uint) NULL; } int erts_clear_debug_break(Eterm mfa[3], int specified) { ERTS_SMP_LC_ASSERT(erts_smp_is_system_blocked(0)); return clear_break(mfa, specified, (Uint) BeamOp(op_i_debug_breakpoint)); } int erts_clear_count_break(Eterm mfa[3], int specified) { ERTS_SMP_LC_ASSERT(erts_smp_is_system_blocked(0)); return clear_break(mfa, specified, (Uint) BeamOp(op_i_count_breakpoint)); } int erts_clear_break(Eterm mfa[3], int specified) { ERTS_SMP_LC_ASSERT(erts_smp_is_system_blocked(0)); return clear_break(mfa, specified, 0); } int erts_clear_module_break(Module *modp) { ERTS_SMP_LC_ASSERT(erts_smp_is_system_blocked(0)); ASSERT(modp); return clear_module_break(modp, NULL, 0, 0); } int erts_clear_function_break(Module *modp, Uint *pc) { ERTS_SMP_LC_ASSERT(erts_smp_is_system_blocked(0)); ASSERT(modp); return clear_function_break(modp, pc, 0); } /* * SMP NOTE: Process p may have become exiting on return! */ Uint erts_trace_break(Process *p, Uint *pc, Eterm *args, Uint32 *ret_flags, Eterm *tracer_pid) { Eterm tpid1, tpid2; BpDataTrace *bdt = (BpDataTrace *) pc[-4]; ASSERT(pc[-5] == (Uint) BeamOp(op_i_func_info_IaaI)); ASSERT(bdt); bdt = (BpDataTrace *) bdt->next; ASSERT(bdt); ASSERT(ret_flags); ASSERT(tracer_pid); ErtsSmpBPLock(bdt); tpid1 = tpid2 = bdt->tracer_pid; ErtsSmpBPUnlock(bdt); *ret_flags = erts_call_trace(p, pc-3/*mfa*/, bdt->match_spec, args, 1, &tpid2); *tracer_pid = tpid2; if (tpid1 != tpid2) { ErtsSmpBPLock(bdt); bdt->tracer_pid = tpid2; ErtsSmpBPUnlock(bdt); } pc[-4] = (Uint) bdt; return bdt->orig_instr; } /* * SMP NOTE: Process p may have become exiting on return! */ Uint32 erts_bif_mtrace(Process *p, Uint *pc, Eterm *args, int local, Eterm *tracer_pid) { BpDataTrace *bdt = (BpDataTrace *) pc[-4]; ASSERT(tracer_pid); if (bdt) { Eterm tpid1, tpid2; Uint32 flags; ErtsSmpBPLock(bdt); tpid1 = tpid2 = bdt->tracer_pid; ErtsSmpBPUnlock(bdt); flags = erts_call_trace(p, pc-3/*mfa*/, bdt->match_spec, args, local, &tpid2); *tracer_pid = tpid2; if (tpid1 != tpid2) { ErtsSmpBPLock(bdt); bdt->tracer_pid = tpid2; ErtsSmpBPUnlock(bdt); } return flags; } *tracer_pid = NIL; return 0; } int erts_is_trace_break(Uint *pc, Binary **match_spec_ret, Eterm *tracer_pid_ret) { BpDataTrace *bdt = (BpDataTrace *) is_break(pc, (Uint) BeamOp(op_i_trace_breakpoint)); if (bdt) { if (match_spec_ret) { *match_spec_ret = bdt->match_spec; } if (tracer_pid_ret) { ErtsSmpBPLock(bdt); *tracer_pid_ret = bdt->tracer_pid; ErtsSmpBPUnlock(bdt); } return !0; } return 0; } int erts_is_mtrace_break(Uint *pc, Binary **match_spec_ret, Eterm *tracer_pid_ret) { BpDataTrace *bdt = (BpDataTrace *) is_break(pc, (Uint) BeamOp(op_i_mtrace_breakpoint)); if (bdt) { if (match_spec_ret) { *match_spec_ret = bdt->match_spec; } if (tracer_pid_ret) { ErtsSmpBPLock(bdt); *tracer_pid_ret = bdt->tracer_pid; ErtsSmpBPUnlock(bdt); } return !0; } return 0; } int erts_is_mtrace_bif(Uint *pc, Binary **match_spec_ret, Eterm *tracer_pid_ret) { BpDataTrace *bdt = (BpDataTrace *) pc[-4]; if (bdt) { if (match_spec_ret) { *match_spec_ret = bdt->match_spec; } if (tracer_pid_ret) { ErtsSmpBPLock(bdt); *tracer_pid_ret = bdt->tracer_pid; ErtsSmpBPUnlock(bdt); } return !0; } return 0; } int erts_is_native_break(Uint *pc) { #ifdef HIPE ASSERT(pc[-5] == (Uint) BeamOp(op_i_func_info_IaaI)); return pc[0] == (Uint) BeamOp(op_hipe_trap_call) || pc[0] == (Uint) BeamOp(op_hipe_trap_call_closure); #else return 0; #endif } int erts_is_count_break(Uint *pc, Sint *count_ret) { BpDataCount *bdc = (BpDataCount *) is_break(pc, (Uint) BeamOp(op_i_count_breakpoint)); if (bdc) { if (count_ret) { ErtsSmpBPLock(bdc); *count_ret = bdc->count; ErtsSmpBPUnlock(bdc); } return !0; } return 0; } Uint * erts_find_local_func(Eterm mfa[3]) { Module *modp; Uint** code_base; Uint* code_ptr; Uint i,n; if ((modp = erts_get_module(mfa[0])) == NULL) return NULL; if ((code_base = (Uint **) modp->code) == NULL) return NULL; n = (Uint) code_base[MI_NUM_FUNCTIONS]; for (i = 0; i < n; ++i) { code_ptr = code_base[MI_FUNCTIONS+i]; ASSERT(((Uint) BeamOp(op_i_func_info_IaaI)) == code_ptr[0]); ASSERT(mfa[0] == ((Eterm) code_ptr[2])); if (mfa[1] == ((Eterm) code_ptr[3]) && ((Uint) mfa[2]) == code_ptr[4]) { return code_ptr + 5; } } return NULL; } /* ************************************************************************* ** Local helpers */ static int set_break(Eterm mfa[3], int specified, Binary *match_spec, Eterm break_op, enum erts_break_op count_op, Eterm tracer_pid) { Module *modp; int num_processed = 0; if (!specified) { /* Find and process all modules in the system... */ int current; int last = module_code_size(); for (current = 0; current < last; current++) { modp = module_code(current); ASSERT(modp != NULL); num_processed += set_module_break(modp, mfa, specified, match_spec, break_op, count_op, tracer_pid); } } else { /* Process a single module */ if ((modp = erts_get_module(mfa[0])) != NULL) { num_processed += set_module_break(modp, mfa, specified, match_spec, break_op, count_op, tracer_pid); } } return num_processed; } static int set_module_break(Module *modp, Eterm mfa[3], int specified, Binary *match_spec, Uint break_op, enum erts_break_op count_op, Eterm tracer_pid) { Uint** code_base; Uint* code_ptr; int num_processed = 0; Uint i,n; ASSERT(break_op); ASSERT(modp); code_base = (Uint **) modp->code; if (code_base == NULL) { return 0; } n = (Uint) code_base[MI_NUM_FUNCTIONS]; for (i = 0; i < n; ++i) { code_ptr = code_base[MI_FUNCTIONS+i]; ASSERT(code_ptr[0] == (Uint) BeamOp(op_i_func_info_IaaI)); if ((specified < 2 || mfa[1] == ((Eterm) code_ptr[3])) && (specified < 3 || ((int) mfa[2]) == ((int) code_ptr[4]))) { Uint *pc = code_ptr+5; num_processed += set_function_break(modp, pc, match_spec, break_op, count_op, tracer_pid); } } return num_processed; } static int set_function_break(Module *modp, Uint *pc, Binary *match_spec, Uint break_op, enum erts_break_op count_op, Eterm tracer_pid) { BpData *bd, **r; size_t size; Uint **code_base = (Uint **)modp->code; ASSERT(code_base); ASSERT(code_base <= (Uint **)pc); ASSERT((Uint **)pc < code_base + (modp->code_length/sizeof(Uint *))); /* * Currently no trace support for native code. */ if (erts_is_native_break(pc)) { return 0; } /* Do not allow two breakpoints of the same kind */ if ( (bd = is_break(pc, break_op))) { if (break_op == (Uint) BeamOp(op_i_trace_breakpoint) || break_op == (Uint) BeamOp(op_i_mtrace_breakpoint)) { BpDataTrace *bdt = (BpDataTrace *) bd; Binary *old_match_spec; /* Update match spec and tracer */ MatchSetRef(match_spec); ErtsSmpBPLock(bdt); old_match_spec = bdt->match_spec; bdt->match_spec = match_spec; bdt->tracer_pid = tracer_pid; ErtsSmpBPUnlock(bdt); MatchSetUnref(old_match_spec); } else { ASSERT(! match_spec); ASSERT(is_nil(tracer_pid)); if (break_op == (Uint) BeamOp(op_i_count_breakpoint)) { BpDataCount *bdc = (BpDataCount *) bd; ErtsSmpBPLock(bdc); if (count_op == erts_break_stop) { if (bdc->count >= 0) { bdc->count = -bdc->count-1; /* Stop call counter */ } } else { bdc->count = 0; /* Reset call counter */ } ErtsSmpBPUnlock(bdc); } else { ASSERT (! count_op); } } return 1; } if (break_op == (Uint) BeamOp(op_i_trace_breakpoint) || break_op == (Uint) BeamOp(op_i_mtrace_breakpoint)) { size = sizeof(BpDataTrace); } else { ASSERT(! match_spec); ASSERT(is_nil(tracer_pid)); if (break_op == (Uint) BeamOp(op_i_count_breakpoint)) { if (count_op == erts_break_reset || count_op == erts_break_stop) { /* Do not insert a new breakpoint */ return 1; } size = sizeof(BpDataCount); } else { ASSERT(! count_op); ASSERT(break_op == (Uint) BeamOp(op_i_debug_breakpoint)); size = sizeof(BpDataDebug); } } r = (BpData **) (pc-4); if (! *r) { ASSERT(*pc != (Uint) BeamOp(op_i_trace_breakpoint)); ASSERT(*pc != (Uint) BeamOp(op_i_mtrace_breakpoint)); ASSERT(*pc != (Uint) BeamOp(op_i_debug_breakpoint)); ASSERT(*pc != (Uint) BeamOp(op_i_count_breakpoint)); /* First breakpoint; create singleton ring */ bd = Alloc(size); BpInit(bd, *pc); *pc = break_op; *r = bd; } else { ASSERT(*pc == (Uint) BeamOp(op_i_trace_breakpoint) || *pc == (Uint) BeamOp(op_i_mtrace_breakpoint) || *pc == (Uint) BeamOp(op_i_debug_breakpoint) || *pc == (Uint) BeamOp(op_i_count_breakpoint)); if (*pc == (Uint) BeamOp(op_i_debug_breakpoint)) { /* Debug bp must be last, so if it is also first; * it must be singleton. */ ASSERT(BpSingleton(*r)); /* Insert new bp first in the ring, i.e second to last. */ bd = Alloc(size); BpInitAndSpliceNext(bd, *pc, *r); *pc = break_op; } else if ((*r)->prev->orig_instr == (Uint) BeamOp(op_i_debug_breakpoint)) { /* Debug bp last in the ring; insert new second to last. */ bd = Alloc(size); BpInitAndSplicePrev(bd, (*r)->prev->orig_instr, *r); (*r)->prev->orig_instr = break_op; } else { /* Just insert last in the ring */ bd = Alloc(size); BpInitAndSpliceNext(bd, (*r)->orig_instr, *r); (*r)->orig_instr = break_op; *r = bd; } } /* Init the bp type specific data */ if (break_op == (Uint) BeamOp(op_i_trace_breakpoint) || break_op == (Uint) BeamOp(op_i_mtrace_breakpoint)) { BpDataTrace *bdt = (BpDataTrace *) bd; MatchSetRef(match_spec); bdt->match_spec = match_spec; bdt->tracer_pid = tracer_pid; } else if (break_op == (Uint) BeamOp(op_i_count_breakpoint)) { BpDataCount *bdc = (BpDataCount *) bd; bdc->count = 0; } ++(*(Uint*)&code_base[MI_NUM_BREAKPOINTS]); return 1; } static int clear_break(Eterm mfa[3], int specified, Uint break_op) { int num_processed = 0; Module *modp; if (!specified) { /* Iterate over all modules */ int current; int last = module_code_size(); for (current = 0; current < last; current++) { modp = module_code(current); ASSERT(modp != NULL); num_processed += clear_module_break(modp, mfa, specified, break_op); } } else { /* Process a single module */ if ((modp = erts_get_module(mfa[0])) != NULL) { num_processed += clear_module_break(modp, mfa, specified, break_op); } } return num_processed; } static int clear_module_break(Module *m, Eterm mfa[3], int specified, Uint break_op) { Uint** code_base; Uint* code_ptr; int num_processed = 0; Uint i,n; ASSERT(m); code_base = (Uint **) m->code; if (code_base == NULL) { return 0; } n = (Uint) code_base[MI_NUM_FUNCTIONS]; for (i = 0; i < n; ++i) { code_ptr = code_base[MI_FUNCTIONS+i]; if ((specified < 2 || mfa[1] == ((Eterm) code_ptr[3])) && (specified < 3 || ((int) mfa[2]) == ((int) code_ptr[4]))) { Uint *pc = code_ptr + 5; num_processed += clear_function_break(m, pc, break_op); } } return num_processed; } static int clear_function_break(Module *m, Uint *pc, Uint break_op) { BpData *bd; Uint **code_base = (Uint **)m->code; ASSERT(code_base); ASSERT(code_base <= (Uint **)pc); ASSERT((Uint **)pc < code_base + (m->code_length/sizeof(Uint *))); /* * Currently no trace support for native code. */ if (erts_is_native_break(pc)) { return 0; } while ( (bd = is_break(pc, break_op))) { /* Remove all breakpoints of this type. * There should be only one of each type, * but break_op may be 0 which matches any type. */ Uint op; BpData **r = (BpData **) (pc-4); ASSERT(*r); /* Find opcode for this breakpoint */ if (break_op) { op = break_op; } else { if (bd == (*r)->next) { /* First breakpoint in ring */ op = *pc; } else { op = bd->prev->orig_instr; } } if (BpSingleton(bd)) { ASSERT(*r == bd); /* Only one breakpoint to remove */ *r = NULL; *pc = bd->orig_instr; } else { BpData *bd_prev = bd->prev; BpSpliceNext(bd, bd_prev); ASSERT(BpSingleton(bd)); if (bd == *r) { /* We removed the last breakpoint in the ring */ *r = bd_prev; bd_prev->orig_instr = bd->orig_instr; } else if (bd_prev == *r) { /* We removed the first breakpoint in the ring */ *pc = bd->orig_instr; } else { bd_prev->orig_instr = bd->orig_instr; } } if (op == (Uint) BeamOp(op_i_trace_breakpoint) || op == (Uint) BeamOp(op_i_mtrace_breakpoint)) { BpDataTrace *bdt = (BpDataTrace *) bd; MatchSetUnref(bdt->match_spec); } Free(bd); ASSERT(((Uint) code_base[MI_NUM_BREAKPOINTS]) > 0); --(*(Uint*)&code_base[MI_NUM_BREAKPOINTS]); } return 1; } /* ** Searches (linear forward) the breakpoint ring for a specified opcode ** and returns a pointer to the breakpoint data structure or NULL if ** not found. If the specified opcode is 0, the last breakpoint is ** returned. The program counter must point to the first executable ** (breakpoint) instruction of the function. */ static BpData *is_break(Uint *pc, Uint break_op) { ASSERT(pc[-5] == (Uint) BeamOp(op_i_func_info_IaaI)); if (! erts_is_native_break(pc)) { BpData *bd = (BpData *) pc[-4]; if (break_op == 0) { return bd; } if (*pc == break_op) { ASSERT(bd); return bd->next; } if (! bd){ return NULL; } bd = bd->next; while (bd != (BpData *) pc[-4]) { ASSERT(bd); if (bd->orig_instr == break_op) { bd = bd->next; ASSERT(bd); return bd; } else { bd = bd->next; } } } return NULL; }