/* * %CopyrightBegin% * * Copyright Ericsson AB 1996-2010. All Rights Reserved. * * The contents of this file are subject to the Erlang Public License, * Version 1.1, (the "License"); you may not use this file except in * compliance with the License. You should have received a copy of the * Erlang Public License along with this software. If not, it can be * retrieved online at http://www.erlang.org/. * * Software distributed under the License is distributed on an "AS IS" * basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See * the License for the specific language governing rights and limitations * under the License. * * %CopyrightEnd% */ #ifdef HAVE_CONFIG_H # include "config.h" #endif #include "sys.h" #include "erl_vm.h" #include "global.h" #include "erl_version.h" #include "erl_process.h" #include "error.h" #include "erl_driver.h" #include "bif.h" #include "external.h" #include "beam_load.h" #include "big.h" #include "erl_bits.h" #include "beam_catches.h" #include "erl_binary.h" #include "erl_zlib.h" #ifdef HIPE #include "hipe_bif0.h" #include "hipe_mode_switch.h" #include "hipe_arch.h" #endif ErlDrvBinary* erts_gzinflate_buffer(char*, int); #define MAX_OPARGS 8 #define CALLED 0 #define DEFINED 1 #define EXPORTED 2 #ifdef NO_JUMP_TABLE # define BeamOpCode(Op) ((BeamInstr)(Op)) #else # define BeamOpCode(Op) ((BeamInstr)beam_ops[Op]) #endif #if defined(WORDS_BIGENDIAN) # define NATIVE_ENDIAN(F) \ if ((F).val & BSF_NATIVE) { \ (F).val &= ~(BSF_LITTLE|BSF_NATIVE); \ } else {} #else # define NATIVE_ENDIAN(F) \ if ((F).val & BSF_NATIVE) { \ (F).val &= ~BSF_NATIVE; \ (F).val |= BSF_LITTLE; \ } else {} #endif /* * Errors returned from tranform_engine(). */ #define TE_OK 0 #define TE_FAIL (-1) #define TE_SHORT_WINDOW (-2) typedef struct { Uint value; /* Value of label (NULL if not known yet). */ Uint patches; /* Index (into code buffer) to first location * which must be patched with the value of this label. */ #ifdef ERTS_SMP Uint looprec_targeted; /* Non-zero if this label is the target of a loop_rec * instruction. */ #endif } Label; /* * Type for an operand for a generic instruction. */ typedef struct { unsigned type; /* Type of operand. */ BeamInstr val; /* Value of operand. */ } GenOpArg; /* * A generic operation. */ typedef struct genop { int op; /* Opcode. */ int arity; /* Number of arguments. */ GenOpArg def_args[MAX_OPARGS]; /* Default buffer for arguments. */ GenOpArg* a; /* The arguments. */ struct genop* next; /* Next genop. */ } GenOp; /* * The allocation unit for generic blocks. */ typedef struct genop_block { GenOp genop[32]; struct genop_block* next; } GenOpBlock; /* * This structure contains information for an imported function or BIF. */ typedef struct { Eterm module; /* Tagged atom for module. */ Eterm function; /* Tagged atom for function. */ int arity; /* Arity. */ Uint patches; /* Index to locations in code to * eventually patch with a pointer into * the export entry. */ BifFunction bf; /* Pointer to BIF function if BIF; * NULL otherwise. */ } ImportEntry; /* * This structure contains information for a function exported from a module. */ typedef struct { Eterm function; /* Tagged atom for function. */ int arity; /* Arity. */ BeamInstr* address; /* Address to function in code. */ } ExportEntry; #define MakeIffId(a, b, c, d) \ (((Uint) (a) << 24) | ((Uint) (b) << 16) | ((Uint) (c) << 8) | (Uint) (d)) #define ATOM_CHUNK 0 #define CODE_CHUNK 1 #define STR_CHUNK 2 #define IMP_CHUNK 3 #define EXP_CHUNK 4 #define NUM_MANDATORY 5 #define LAMBDA_CHUNK 5 #define LITERAL_CHUNK 6 #define ATTR_CHUNK 7 #define COMPILE_CHUNK 8 #define NUM_CHUNK_TYPES (sizeof(chunk_types)/sizeof(chunk_types[0])) /* * An array with all chunk types recognized by the loader. */ static Uint chunk_types[] = { /* * Mandatory chunk types -- these MUST be present. */ MakeIffId('A', 't', 'o', 'm'), /* 0 */ MakeIffId('C', 'o', 'd', 'e'), /* 1 */ MakeIffId('S', 't', 'r', 'T'), /* 2 */ MakeIffId('I', 'm', 'p', 'T'), /* 3 */ MakeIffId('E', 'x', 'p', 'T'), /* 4 */ /* * Optional chunk types -- the loader will use them if present. */ MakeIffId('F', 'u', 'n', 'T'), /* 5 */ MakeIffId('L', 'i', 't', 'T'), /* 6 */ MakeIffId('A', 't', 't', 'r'), /* 7 */ MakeIffId('C', 'I', 'n', 'f'), /* 8 */ }; /* * This structure keeps load-time information about a lambda. */ typedef struct { ErlFunEntry* fe; /* Entry in fun table. */ unsigned label; /* Label of function entry. */ Uint32 num_free; /* Number of free variables. */ Eterm function; /* Name of local function. */ int arity; /* Arity (including free variables). */ } Lambda; /* * This structure keeps load-time information about a literal. */ typedef struct { Eterm term; /* The tagged term (in the heap). */ Uint heap_size; /* (Exact) size on the heap. */ Uint offset; /* Offset from temporary location to final. */ Eterm* heap; /* Heap for term. */ } Literal; /* * This structure keeps information about an operand that needs to be * patched to contain the correct address of a literal when the code is * frozen. */ typedef struct literal_patch LiteralPatch; struct literal_patch { int pos; /* Position in code */ LiteralPatch* next; }; /* * This structure keeps information about an operand that needs to be * patched to contain the correct address for an address into the string table. */ typedef struct string_patch StringPatch; struct string_patch { int pos; /* Position in code */ StringPatch* next; }; /* * This structure contains all information about the module being loaded. */ typedef struct { /* * The current logical file within the binary. */ char* file_name; /* Name of file we are reading (usually chunk name). */ byte* file_p; /* Current pointer within file. */ unsigned file_left; /* Number of bytes left in file. */ /* * The following are used mainly for diagnostics. */ Eterm group_leader; /* Group leader (for diagnostics). */ Eterm module; /* Tagged atom for module name. */ Eterm function; /* Tagged atom for current function * (or 0 if none). */ unsigned arity; /* Arity for current function. */ /* * All found chunks. */ struct { byte* start; /* Start of chunk (in binary). */ unsigned size; /* Size of chunk. */ } chunks[NUM_CHUNK_TYPES]; /* * Used for code loading (mainly). */ byte* code_start; /* Start of code file. */ unsigned code_size; /* Size of code file. */ int specific_op; /* Specific opcode (-1 if not found). */ int num_functions; /* Number of functions in module. */ int num_labels; /* Number of labels. */ int code_buffer_size; /* Size of code buffer in words. */ BeamInstr* code; /* Loaded code. */ int ci; /* Current index into loaded code. */ Label* labels; BeamInstr new_bs_put_strings; /* Linked list of i_new_bs_put_string instructions. */ StringPatch* string_patches; /* Linked list of position into string table to patch. */ BeamInstr catches; /* Linked list of catch_yf instructions. */ unsigned loaded_size; /* Final size of code when loaded. */ byte mod_md5[16]; /* MD5 for module code. */ int may_load_nif; /* true if NIFs may later be loaded for this module */ int on_load; /* Index in the code for the on_load function * (or 0 if there is no on_load function) */ /* * Atom table. */ int num_atoms; /* Number of atoms in atom table. */ Eterm* atom; /* Atom table. */ int num_exps; /* Number of exports. */ ExportEntry* export; /* Pointer to export table. */ int num_imports; /* Number of imports. */ ImportEntry* import; /* Import entry (translated information). */ /* * Generic instructions. */ GenOp* genop; /* The last generic instruction seen. */ GenOp* free_genop; /* List of free genops. */ GenOpBlock* genop_blocks; /* List of all block of allocated genops. */ /* * Lambda table. */ int num_lambdas; /* Number of lambdas in table. */ int lambdas_allocated; /* Size of allocated lambda table. */ Lambda* lambdas; /* Pointer to lambdas. */ Lambda def_lambdas[16]; /* Default storage for lambda table. */ char* lambda_error; /* Delayed missing 'FunT' error. */ /* * Literals (constant pool). */ int num_literals; /* Number of literals in table. */ int allocated_literals; /* Number of literal entries allocated. */ Literal* literals; /* Array of literals. */ LiteralPatch* literal_patches; /* Operands that need to be patched. */ Uint total_literal_size; /* Total heap size for all literals. */ } LoaderState; typedef struct { unsigned num_functions; /* Number of functions. */ Eterm* func_tab[1]; /* Pointers to each function. */ } LoadedCode; #define GetTagAndValue(Stp, Tag, Val) \ do { \ BeamInstr __w; \ GetByte(Stp, __w); \ Tag = __w & 0x07; \ if ((__w & 0x08) == 0) { \ Val = __w >> 4; \ } else if ((__w & 0x10) == 0) { \ Val = ((__w >> 5) << 8); \ GetByte(Stp, __w); \ Val |= __w; \ } else { \ if (!get_int_val(Stp, __w, &(Val))) goto load_error; \ } \ } while (0) #define LoadError0(Stp, Fmt) \ do { \ load_printf(__LINE__, Stp, Fmt); \ goto load_error; \ } while (0) #define LoadError1(Stp, Fmt, Arg1) \ do { \ load_printf(__LINE__, stp, Fmt, Arg1); \ goto load_error; \ } while (0) #define LoadError2(Stp, Fmt, Arg1, Arg2) \ do { \ load_printf(__LINE__, Stp, Fmt, Arg1, Arg2); \ goto load_error; \ } while (0) #define LoadError3(Stp, Fmt, Arg1, Arg2, Arg3) \ do { \ load_printf(__LINE__, stp, Fmt, Arg1, Arg2, Arg3); \ goto load_error; \ } while (0) #define EndOfFile(Stp) (stp->file_left == 0) #define GetInt(Stp, N, Dest) \ if (Stp->file_left < (N)) { \ short_file(__LINE__, Stp, (N)); \ goto load_error; \ } else { \ int __n = (N); \ BeamInstr __result = 0; \ Stp->file_left -= (unsigned) __n; \ while (__n-- > 0) { \ __result = __result << 8 | *Stp->file_p++; \ } \ Dest = __result; \ } while (0) #define GetByte(Stp, Dest) \ if ((Stp)->file_left < 1) { \ short_file(__LINE__, (Stp), 1); \ goto load_error; \ } else { \ Dest = *(Stp)->file_p++; \ (Stp)->file_left--; \ } #define GetString(Stp, Dest, N) \ if (Stp->file_left < (N)) { \ short_file(__LINE__, Stp, (N)); \ goto load_error; \ } else { \ Dest = (Stp)->file_p; \ (Stp)->file_p += (N); \ (Stp)->file_left -= (N); \ } #define GetAtom(Stp, Index, Dest) \ if ((Index) == 0) { \ LoadError1((Stp), "bad atom index 0 ([]) in %s", stp->file_name); \ } else if ((Index) < (Stp)->num_atoms) { \ Dest = (Stp)->atom[(Index)]; \ } else { \ LoadError2((Stp), "bad atom index %d in %s", (Index), stp->file_name); \ } #ifdef DEBUG # define GARBAGE 0xCC # define DEBUG_INIT_GENOP(Dst) memset(Dst, GARBAGE, sizeof(GenOp)) #else # define DEBUG_INIT_GENOP(Dst) #endif #define NEW_GENOP(Stp, Dst) \ do { \ if ((Stp)->free_genop == NULL) { \ new_genop((Stp)); \ } \ Dst = (Stp)->free_genop; \ (Stp)->free_genop = (Stp)->free_genop->next; \ DEBUG_INIT_GENOP(Dst); \ (Dst)->a = (Dst)->def_args; \ } while (0) #define FREE_GENOP(Stp, Genop) \ do { \ if ((Genop)->a != (Genop)->def_args) { \ erts_free(ERTS_ALC_T_LOADER_TMP, (Genop)->a); \ } \ (Genop)->next = (Stp)->free_genop; \ (Stp)->free_genop = (Genop); \ } while (0) #define GENOP_ARITY(Genop, Arity) \ do { \ ASSERT((Genop)->a == (Genop)->def_args); \ (Genop)->arity = (Arity); \ (Genop)->a = erts_alloc(ERTS_ALC_T_LOADER_TMP, \ (Genop)->arity * sizeof(GenOpArg)); \ } while (0) static int bin_load(Process *c_p, ErtsProcLocks c_p_locks, Eterm group_leader, Eterm* modp, byte* bytes, int unloaded_size); static void init_state(LoaderState* stp); static int insert_new_code(Process *c_p, ErtsProcLocks c_p_locks, Eterm group_leader, Eterm module, BeamInstr* code, Uint size, BeamInstr catches); static int scan_iff_file(LoaderState* stp, Uint* chunk_types, Uint num_types, Uint num_mandatory); static int load_atom_table(LoaderState* stp); static int load_import_table(LoaderState* stp); static int read_export_table(LoaderState* stp); static int read_lambda_table(LoaderState* stp); static int read_literal_table(LoaderState* stp); static int read_code_header(LoaderState* stp); static int load_code(LoaderState* stp); static GenOp* gen_element(LoaderState* stp, GenOpArg Fail, GenOpArg Index, GenOpArg Tuple, GenOpArg Dst); static GenOp* gen_split_values(LoaderState* stp, GenOpArg S, GenOpArg TypeFail, GenOpArg Fail, GenOpArg Size, GenOpArg* Rest); static GenOp* gen_select_val(LoaderState* stp, GenOpArg S, GenOpArg Fail, GenOpArg Size, GenOpArg* Rest); static GenOp* gen_select_literals(LoaderState* stp, GenOpArg S, GenOpArg Fail, GenOpArg Size, GenOpArg* Rest); static GenOp* const_select_val(LoaderState* stp, GenOpArg S, GenOpArg Fail, GenOpArg Size, GenOpArg* Rest); static GenOp* gen_func_info(LoaderState* stp, GenOpArg mod, GenOpArg Func, GenOpArg arity, GenOpArg label); static int freeze_code(LoaderState* stp); static void final_touch(LoaderState* stp); static void short_file(int line, LoaderState* stp, unsigned needed); static void load_printf(int line, LoaderState* context, char *fmt, ...); static int transform_engine(LoaderState* st); static void id_to_string(Uint id, char* s); static void new_genop(LoaderState* stp); static int get_int_val(LoaderState* stp, Uint len_code, BeamInstr* result); static int get_erlang_integer(LoaderState* stp, Uint len_code, BeamInstr* result); static int new_label(LoaderState* stp); static void new_literal_patch(LoaderState* stp, int pos); static void new_string_patch(LoaderState* stp, int pos); static Uint new_literal(LoaderState* stp, Eterm** hpp, Uint heap_size); static int genopargcompare(GenOpArg* a, GenOpArg* b); static Eterm exported_from_module(Process* p, Eterm mod); static Eterm functions_in_module(Process* p, Eterm mod); static Eterm attributes_for_module(Process* p, Eterm mod); static Eterm compilation_info_for_module(Process* p, Eterm mod); static Eterm native_addresses(Process* p, Eterm mod); int patch_funentries(Eterm Patchlist); int patch(Eterm Addresses, Uint fe); static int safe_mul(UWord a, UWord b, UWord* resp); static int must_swap_floats; /* * The following variables keep a sorted list of address ranges for * each module. It allows us to quickly find a function given an * instruction pointer. */ Range* modules = NULL; /* Sorted lists of module addresses. */ int num_loaded_modules; /* Number of loaded modules. */ int allocated_modules; /* Number of slots allocated. */ Range* mid_module = NULL; /* Cached search start point */ Uint erts_total_code_size; /**********************************************************************/ void init_load(void) { FloatDef f; erts_total_code_size = 0; beam_catches_init(); f.fd = 1.0; must_swap_floats = (f.fw[0] == 0); allocated_modules = 128; modules = (Range *) erts_alloc(ERTS_ALC_T_MODULE_REFS, allocated_modules*sizeof(Range)); mid_module = modules; num_loaded_modules = 0; } static void define_file(LoaderState* stp, char* name, int idx) { stp->file_name = name; stp->file_p = stp->chunks[idx].start; stp->file_left = stp->chunks[idx].size; } int erts_load_module(Process *c_p, ErtsProcLocks c_p_locks, Eterm group_leader, /* Group leader or NIL if none. */ Eterm* modp, /* * Module name as an atom (NIL to not check). * On return, contains the actual module name. */ byte* code, /* Points to the code to load */ int size) /* Size of code to load. */ { ErlDrvBinary* bin; int result; if (size >= 4 && code[0] == 'F' && code[1] == 'O' && code[2] == 'R' && code[3] == '1') { /* * The BEAM module is not compressed. */ result = bin_load(c_p, c_p_locks, group_leader, modp, code, size); } else { /* * The BEAM module is compressed (or possibly invalid/corrupted). */ if ((bin = (ErlDrvBinary *) erts_gzinflate_buffer((char*)code, size)) == NULL) { return -1; } result = bin_load(c_p, c_p_locks, group_leader, modp, (byte*)bin->orig_bytes, bin->orig_size); driver_free_binary(bin); } return result; } /* #define LOAD_MEMORY_HARD_DEBUG 1*/ #if defined(LOAD_MEMORY_HARD_DEBUG) && defined(DEBUG) /* Requires allocators ERTS_ALLOC_UTIL_HARD_DEBUG also set in erl_alloc_util.h */ extern void check_allocators(void); extern void check_allocated_block(Uint type, void *blk); #define CHKALLOC() check_allocators() #define CHKBLK(TYPE,BLK) if ((BLK) != NULL) check_allocated_block((TYPE),(BLK)) #else #define CHKALLOC() /* nothing */ #define CHKBLK(TYPE,BLK) /* nothing */ #endif static int bin_load(Process *c_p, ErtsProcLocks c_p_locks, Eterm group_leader, Eterm* modp, byte* bytes, int unloaded_size) { LoaderState state; int rval = -1; init_state(&state); state.module = *modp; state.group_leader = group_leader; /* * Scan the IFF file. */ #if defined(LOAD_MEMORY_HARD_DEBUG) && defined(DEBUG) erts_fprintf(stderr,"Loading a module\n"); #endif CHKALLOC(); CHKBLK(ERTS_ALC_T_CODE,state.code); state.file_name = "IFF header for Beam file"; state.file_p = bytes; state.file_left = unloaded_size; if (!scan_iff_file(&state, chunk_types, NUM_CHUNK_TYPES, NUM_MANDATORY)) { goto load_error; } /* * Read the header for the code chunk. */ CHKBLK(ERTS_ALC_T_CODE,state.code); define_file(&state, "code chunk header", CODE_CHUNK); if (!read_code_header(&state)) { goto load_error; } /* * Read the atom table. */ CHKBLK(ERTS_ALC_T_CODE,state.code); define_file(&state, "atom table", ATOM_CHUNK); if (!load_atom_table(&state)) { goto load_error; } /* * Read the import table. */ CHKBLK(ERTS_ALC_T_CODE,state.code); define_file(&state, "import table", IMP_CHUNK); if (!load_import_table(&state)) { goto load_error; } /* * Read the lambda (fun) table. */ CHKBLK(ERTS_ALC_T_CODE,state.code); if (state.chunks[LAMBDA_CHUNK].size > 0) { define_file(&state, "lambda (fun) table", LAMBDA_CHUNK); if (!read_lambda_table(&state)) { goto load_error; } } /* * Read the literal table. */ CHKBLK(ERTS_ALC_T_CODE,state.code); if (state.chunks[LITERAL_CHUNK].size > 0) { define_file(&state, "literals table (constant pool)", LITERAL_CHUNK); if (!read_literal_table(&state)) { goto load_error; } } /* * Load the code chunk. */ CHKBLK(ERTS_ALC_T_CODE,state.code); state.file_name = "code chunk"; state.file_p = state.code_start; state.file_left = state.code_size; if (!load_code(&state)) { goto load_error; } CHKBLK(ERTS_ALC_T_CODE,state.code); if (!freeze_code(&state)) { goto load_error; } /* * Read and validate the export table. (This must be done after * loading the code, because it contains labels.) */ CHKBLK(ERTS_ALC_T_CODE,state.code); define_file(&state, "export table", EXP_CHUNK); if (!read_export_table(&state)) { goto load_error; } /* * Ready for the final touch: fixing the export table entries for * exported and imported functions. This can't fail. */ CHKBLK(ERTS_ALC_T_CODE,state.code); rval = insert_new_code(c_p, c_p_locks, state.group_leader, state.module, state.code, state.loaded_size, state.catches); if (rval < 0) { goto load_error; } CHKBLK(ERTS_ALC_T_CODE,state.code); final_touch(&state); /* * Loading succeded. */ CHKBLK(ERTS_ALC_T_CODE,state.code); #if defined(LOAD_MEMORY_HARD_DEBUG) && defined(DEBUG) erts_fprintf(stderr,"Loaded %T\n",*modp); #if 0 debug_dump_code(state.code,state.ci); #endif #endif rval = 0; state.code = NULL; /* Prevent code from being freed. */ *modp = state.module; /* * If there is an on_load function, signal an error to * indicate that the on_load function must be run. */ if (state.on_load) { rval = -5; } load_error: if (state.code != 0) { erts_free(ERTS_ALC_T_CODE, state.code); } if (state.labels != NULL) { erts_free(ERTS_ALC_T_LOADER_TMP, (void *) state.labels); } if (state.atom != NULL) { erts_free(ERTS_ALC_T_LOADER_TMP, (void *) state.atom); } if (state.import != NULL) { erts_free(ERTS_ALC_T_LOADER_TMP, (void *) state.import); } if (state.export != NULL) { erts_free(ERTS_ALC_T_LOADER_TMP, (void *) state.export); } if (state.lambdas != state.def_lambdas) { erts_free(ERTS_ALC_T_LOADER_TMP, (void *) state.lambdas); } if (state.literals != NULL) { int i; for (i = 0; i < state.num_literals; i++) { if (state.literals[i].heap != NULL) { erts_free(ERTS_ALC_T_LOADER_TMP, (void *) state.literals[i].heap); } } erts_free(ERTS_ALC_T_LOADER_TMP, (void *) state.literals); } while (state.literal_patches != NULL) { LiteralPatch* next = state.literal_patches->next; erts_free(ERTS_ALC_T_LOADER_TMP, (void *) state.literal_patches); state.literal_patches = next; } while (state.string_patches != NULL) { StringPatch* next = state.string_patches->next; erts_free(ERTS_ALC_T_LOADER_TMP, (void *) state.string_patches); state.string_patches = next; } while (state.genop_blocks) { GenOpBlock* next = state.genop_blocks->next; erts_free(ERTS_ALC_T_LOADER_TMP, (void *) state.genop_blocks); state.genop_blocks = next; } return rval; } static void init_state(LoaderState* stp) { stp->function = THE_NON_VALUE; /* Function not known yet */ stp->arity = 0; stp->specific_op = -1; stp->genop = NULL; stp->atom = NULL; stp->code = NULL; stp->labels = NULL; stp->import = NULL; stp->export = NULL; stp->free_genop = NULL; stp->genop_blocks = NULL; stp->num_lambdas = 0; stp->lambdas_allocated = sizeof(stp->def_lambdas)/sizeof(Lambda); stp->lambdas = stp->def_lambdas; stp->lambda_error = NULL; stp->num_literals = 0; stp->allocated_literals = 0; stp->literals = 0; stp->total_literal_size = 0; stp->literal_patches = 0; stp->string_patches = 0; stp->may_load_nif = 0; stp->on_load = 0; } static int insert_new_code(Process *c_p, ErtsProcLocks c_p_locks, Eterm group_leader, Eterm module, BeamInstr* code, Uint size, BeamInstr catches) { Module* modp; int rval; int i; if ((rval = beam_make_current_old(c_p, c_p_locks, module)) < 0) { erts_dsprintf_buf_t *dsbufp = erts_create_logger_dsbuf(); erts_dsprintf(dsbufp, "Module %T must be purged before loading\n", module); erts_send_error_to_logger(group_leader, dsbufp); return rval; } /* * Update module table. */ erts_total_code_size += size; modp = erts_put_module(module); modp->code = code; modp->code_length = size; modp->catches = catches; /* * Update address table (used for finding a function from a PC value). */ if (num_loaded_modules == allocated_modules) { allocated_modules *= 2; modules = (Range *) erts_realloc(ERTS_ALC_T_MODULE_REFS, (void *) modules, allocated_modules * sizeof(Range)); } for (i = num_loaded_modules; i > 0; i--) { if (code > modules[i-1].start) { break; } modules[i] = modules[i-1]; } modules[i].start = code; modules[i].end = (BeamInstr *) (((byte *)code) + size); num_loaded_modules++; mid_module = &modules[num_loaded_modules/2]; return 0; } static int scan_iff_file(LoaderState* stp, Uint* chunk_types, Uint num_types, Uint num_mandatory) { MD5_CTX context; Uint id; Uint count; int i; /* * The binary must start with an IFF 'FOR1' chunk. */ GetInt(stp, 4, id); if (id != MakeIffId('F', 'O', 'R', '1')) { LoadError0(stp, "not a BEAM file: no IFF 'FOR1' chunk"); } /* * Retrieve the chunk size and verify it. If the size is equal to * or less than the size of the binary, it is ok and we will use it * as the limit for the logical file size. */ GetInt(stp, 4, count); if (count > stp->file_left) { LoadError2(stp, "form size %ld greater than size %ld of binary", count, stp->file_left); } stp->file_left = count; /* * Verify that this is a BEAM file. */ GetInt(stp, 4, id); if (id != MakeIffId('B', 'E', 'A', 'M')) { LoadError0(stp, "not a BEAM file: IFF form type is not 'BEAM'"); } /* * Initialize the chunks[] array in the state. */ for (i = 0; i < num_types; i++) { stp->chunks[i].start = NULL; stp->chunks[i].size = 0; } /* * Now we can go ahead and read all chunks in the BEAM form. */ while (!EndOfFile(stp)) { /* * Read the chunk id and verify that it contains ASCII characters. */ GetInt(stp, 4, id); for (i = 0; i < 4; i++) { unsigned c = (id >> i*8) & 0xff; if (c < ' ' || c > 0x7E) { LoadError1(stp, "non-ascii garbage '%lx' instead of chunk type id", id); } } /* * Read the count and verify it. */ GetInt(stp, 4, count); if (count > stp->file_left) { LoadError2(stp, "chunk size %ld for '%lx' greater than size %ld of binary", count, stp->file_left); } /* * See if the chunk is useful for the loader. */ for (i = 0; i < num_types; i++) { if (chunk_types[i] == id) { stp->chunks[i].start = stp->file_p; stp->chunks[i].size = count; break; } } /* * Go on to the next chunk. */ count = 4*((count+3)/4); stp->file_p += count; stp->file_left -= count; } /* * At this point, we have read the entire IFF file, and we * know that it is syntactically correct. * * Now check that it contains all mandatory chunks. At the * same time calculate the MD5 for the module. */ MD5Init(&context); for (i = 0; i < num_mandatory; i++) { if (stp->chunks[i].start != NULL) { MD5Update(&context, stp->chunks[i].start, stp->chunks[i].size); } else { char sbuf[5]; id_to_string(chunk_types[i], sbuf); LoadError1(stp, "mandatory chunk of type '%s' not found\n", sbuf); } } if (LITERAL_CHUNK < num_types) { if (stp->chunks[LAMBDA_CHUNK].start != 0) { byte* start = stp->chunks[LAMBDA_CHUNK].start; Uint left = stp->chunks[LAMBDA_CHUNK].size; /* * The idea here is to ignore the OldUniq field for the fun; it is * based on the old broken hash function, which can be different * on little endian and big endian machines. */ if (left >= 4) { static byte zero[4]; MD5Update(&context, start, 4); start += 4; left -= 4; while (left >= 24) { /* Include: Function Arity Index NumFree */ MD5Update(&context, start, 20); /* Set to zero: OldUniq */ MD5Update(&context, zero, 4); start += 24; left -= 24; } } /* Can't happen for a correct 'FunT' chunk */ if (left > 0) { MD5Update(&context, start, left); } } if (stp->chunks[LITERAL_CHUNK].start != 0) { MD5Update(&context, stp->chunks[LITERAL_CHUNK].start, stp->chunks[LITERAL_CHUNK].size); } } MD5Final(stp->mod_md5, &context); return 1; load_error: return 0; } static int load_atom_table(LoaderState* stp) { int i; GetInt(stp, 4, stp->num_atoms); stp->num_atoms++; stp->atom = erts_alloc(ERTS_ALC_T_LOADER_TMP, erts_next_heap_size((stp->num_atoms*sizeof(Eterm)), 0)); /* * Read all atoms. */ for (i = 1; i < stp->num_atoms; i++) { byte* atom; Uint n; GetByte(stp, n); GetString(stp, atom, n); stp->atom[i] = am_atom_put((char*)atom, n); } /* * Check the module name if a module name was given. */ if (is_nil(stp->module)) { stp->module = stp->atom[1]; } else if (stp->atom[1] != stp->module) { char sbuf[256]; Atom* ap; ap = atom_tab(atom_val(stp->atom[1])); memcpy(sbuf, ap->name, ap->len); sbuf[ap->len] = '\0'; LoadError1(stp, "module name in object code is %s", sbuf); } return 1; load_error: return 0; } static int load_import_table(LoaderState* stp) { int i; GetInt(stp, 4, stp->num_imports); stp->import = erts_alloc(ERTS_ALC_T_LOADER_TMP, erts_next_heap_size((stp->num_imports * sizeof(ImportEntry)), 0)); for (i = 0; i < stp->num_imports; i++) { int n; Eterm mod; Eterm func; Uint arity; Export* e; GetInt(stp, 4, n); if (n >= stp->num_atoms) { LoadError2(stp, "import entry %d: invalid atom number %d", i, n); } mod = stp->import[i].module = stp->atom[n]; GetInt(stp, 4, n); if (n >= stp->num_atoms) { LoadError2(stp, "import entry %d: invalid atom number %d", i, n); } func = stp->import[i].function = stp->atom[n]; GetInt(stp, 4, arity); if (arity > MAX_REG) { LoadError2(stp, "import entry %d: invalid arity %d", i, arity); } stp->import[i].arity = arity; stp->import[i].patches = 0; stp->import[i].bf = NULL; /* * If the export entry refers to a BIF, get the pointer to * the BIF function. */ if ((e = erts_find_export_entry(mod, func, arity)) != NULL) { if (e->code[3] == (BeamInstr) em_apply_bif) { stp->import[i].bf = (BifFunction) e->code[4]; if (func == am_load_nif && mod == am_erlang && arity == 2) { stp->may_load_nif = 1; } } } } return 1; load_error: return 0; } static int read_export_table(LoaderState* stp) { static struct { Eterm mod; Eterm func; int arity; } allow_redef[] = { /* The BIFs that are allowed to be redefined by Erlang code */ {am_erlang,am_apply,2}, {am_erlang,am_apply,3}, }; int i; GetInt(stp, 4, stp->num_exps); if (stp->num_exps > stp->num_functions) { LoadError2(stp, "%d functions exported; only %d functions defined", stp->num_exps, stp->num_functions); } stp->export = (ExportEntry *) erts_alloc(ERTS_ALC_T_LOADER_TMP, (stp->num_exps * sizeof(ExportEntry))); for (i = 0; i < stp->num_exps; i++) { Uint n; Uint value; Eterm func; Uint arity; Export* e; GetInt(stp, 4, n); GetAtom(stp, n, func); stp->export[i].function = func; GetInt(stp, 4, arity); if (arity > MAX_REG) { LoadError2(stp, "export table entry %d: absurdly high arity %d", i, arity); } stp->export[i].arity = arity; GetInt(stp, 4, n); if (n >= stp->num_labels) { LoadError3(stp, "export table entry %d: invalid label %d (highest defined label is %d)", i, n, stp->num_labels); } value = stp->labels[n].value; if (value == 0) { LoadError2(stp, "export table entry %d: label %d not resolved", i, n); } stp->export[i].address = stp->code + value; /* * Check that we are not redefining a BIF (except the ones allowed to * redefine). */ if ((e = erts_find_export_entry(stp->module, func, arity)) != NULL) { if (e->code[3] == (BeamInstr) em_apply_bif) { int j; for (j = 0; j < sizeof(allow_redef)/sizeof(allow_redef[0]); j++) { if (stp->module == allow_redef[j].mod && func == allow_redef[j].func && arity == allow_redef[j].arity) { break; } } if (j == sizeof(allow_redef)/sizeof(allow_redef[0])) { LoadError2(stp, "exported function %T/%d redefines BIF", func, arity); } } } } return 1; load_error: return 0; } static int read_lambda_table(LoaderState* stp) { int i; GetInt(stp, 4, stp->num_lambdas); stp->lambdas_allocated = stp->num_lambdas; stp->lambdas = (Lambda *) erts_alloc(ERTS_ALC_T_LOADER_TMP, stp->num_lambdas * sizeof(Lambda)); for (i = 0; i < stp->num_lambdas; i++) { Uint n; Uint32 Index; Uint32 OldUniq; ErlFunEntry* fe; Uint arity; GetInt(stp, 4, n); /* Function. */ GetAtom(stp, n, stp->lambdas[i].function); GetInt(stp, 4, arity); if (arity > MAX_REG) { LoadError2(stp, "lambda entry %d: absurdly high arity %d", i, arity); } stp->lambdas[i].arity = arity; GetInt(stp, 4, n); if (n >= stp->num_labels) { LoadError3(stp, "lambda entry %d: invalid label %d (highest defined label is %d)", i, n, stp->num_labels); } stp->lambdas[i].label = n; GetInt(stp, 4, Index); GetInt(stp, 4, stp->lambdas[i].num_free); GetInt(stp, 4, OldUniq); fe = erts_put_fun_entry2(stp->module, OldUniq, i, stp->mod_md5, Index, arity-stp->lambdas[i].num_free); stp->lambdas[i].fe = fe; } return 1; load_error: return 0; } static int read_literal_table(LoaderState* stp) { int i; BeamInstr uncompressed_sz; byte* uncompressed = 0; GetInt(stp, 4, uncompressed_sz); uncompressed = erts_alloc(ERTS_ALC_T_TMP, uncompressed_sz); if (erl_zlib_uncompress(uncompressed, &uncompressed_sz, stp->file_p, stp->file_left) != Z_OK) { LoadError0(stp, "failed to uncompress literal table (constant pool)"); } stp->file_p = uncompressed; stp->file_left = uncompressed_sz; GetInt(stp, 4, stp->num_literals); stp->literals = (Literal *) erts_alloc(ERTS_ALC_T_LOADER_TMP, stp->num_literals * sizeof(Literal)); stp->allocated_literals = stp->num_literals; for (i = 0; i < stp->num_literals; i++) { stp->literals[i].heap = 0; } for (i = 0; i < stp->num_literals; i++) { int sz; Sint heap_size; byte* p; Eterm val; Eterm* hp; GetInt(stp, 4, sz); /* Size of external term format. */ GetString(stp, p, sz); if ((heap_size = erts_decode_ext_size(p, sz, 1)) < 0) { LoadError1(stp, "literal %d: bad external format", i); } hp = stp->literals[i].heap = erts_alloc(ERTS_ALC_T_LOADER_TMP, heap_size*sizeof(Eterm)); val = erts_decode_ext(&hp, NULL, &p); stp->literals[i].heap_size = hp - stp->literals[i].heap; if (stp->literals[i].heap_size > heap_size) { erl_exit(1, "overrun by %d word(s) for literal heap, term %d", stp->literals[i].heap_size - heap_size, i); } if (is_non_value(val)) { LoadError1(stp, "literal %d: bad external format", i); } stp->literals[i].term = val; stp->total_literal_size += stp->literals[i].heap_size; } erts_free(ERTS_ALC_T_TMP, uncompressed); return 1; load_error: if (uncompressed) { erts_free(ERTS_ALC_T_TMP, uncompressed); } return 0; } static int read_code_header(LoaderState* stp) { unsigned head_size; unsigned version; unsigned opcode_max; int i; /* * Read size of sub-header for code information and from it calculate * where the code begins. Also, use the size to limit the file size * for header reading, so that we automatically get an error if the * size is set too small. */ GetInt(stp, 4, head_size); stp->code_start = stp->file_p + head_size; stp->code_size = stp->file_left - head_size; stp->file_left = head_size; /* * Get and verify version of instruction set. */ GetInt(stp, 4, version); if (version != BEAM_FORMAT_NUMBER) { LoadError2(stp, "wrong instruction set %d; expected %d", version, BEAM_FORMAT_NUMBER); } /* * Verify the number of the highest opcode used. */ GetInt(stp, 4, opcode_max); if (opcode_max > MAX_GENERIC_OPCODE) { LoadError2(stp, "use of opcode %d; this emulator supports only up to %d", opcode_max, MAX_GENERIC_OPCODE); } GetInt(stp, 4, stp->num_labels); GetInt(stp, 4, stp->num_functions); /* * Initialize label table. */ stp->labels = (Label *) erts_alloc(ERTS_ALC_T_LOADER_TMP, stp->num_labels * sizeof(Label)); for (i = 0; i < stp->num_labels; i++) { stp->labels[i].value = 0; stp->labels[i].patches = 0; #ifdef ERTS_SMP stp->labels[i].looprec_targeted = 0; #endif } /* * Initialize code area. */ stp->code_buffer_size = erts_next_heap_size(2048 + stp->num_functions, 0); stp->code = (BeamInstr *) erts_alloc(ERTS_ALC_T_CODE, sizeof(BeamInstr) * stp->code_buffer_size); stp->code[MI_NUM_FUNCTIONS] = stp->num_functions; stp->ci = MI_FUNCTIONS + stp->num_functions + 1; stp->code[MI_ATTR_PTR] = 0; stp->code[MI_ATTR_SIZE] = 0; stp->code[MI_ATTR_SIZE_ON_HEAP] = 0; stp->code[MI_COMPILE_PTR] = 0; stp->code[MI_COMPILE_SIZE] = 0; stp->code[MI_COMPILE_SIZE_ON_HEAP] = 0; stp->code[MI_NUM_BREAKPOINTS] = 0; stp->new_bs_put_strings = 0; stp->catches = 0; return 1; load_error: return 0; } #define VerifyTag(Stp, Actual, Expected) \ if (Actual != Expected) { \ LoadError2(Stp, "bad tag %d; expected %d", Actual, Expected); \ } else {} #define CodeNeed(w) do { \ ASSERT(ci <= code_buffer_size); \ if (code_buffer_size < ci+(w)) { \ code_buffer_size = erts_next_heap_size(ci+(w), 0); \ stp->code = code \ = (BeamInstr *) erts_realloc(ERTS_ALC_T_CODE, \ (void *) code, \ code_buffer_size * sizeof(BeamInstr)); \ } \ } while (0) #define TermWords(t) (((t) / (sizeof(BeamInstr)/sizeof(Eterm))) + !!((t) % (sizeof(BeamInstr)/sizeof(Eterm)))) static int load_code(LoaderState* stp) { int i; int tmp; int ci; int last_func_start = 0; char* sign; int arg; /* Number of current argument. */ int num_specific; /* Number of specific ops for current. */ BeamInstr* code; int code_buffer_size; int specific; Uint last_label = 0; /* Number of last label. */ Uint function_number = 0; GenOp* last_op = NULL; GenOp** last_op_next = NULL; int arity; code = stp->code; code_buffer_size = stp->code_buffer_size; ci = stp->ci; for (;;) { int new_op; GenOp* tmp_op; ASSERT(ci <= code_buffer_size); get_next_instr: GetByte(stp, new_op); if (new_op >= NUM_GENERIC_OPS) { LoadError1(stp, "invalid opcode %d", new_op); } if (gen_opc[new_op].name[0] == '\0') { LoadError1(stp, "invalid opcode %d", new_op); } /* * Create a new generic operation and put it last in the chain. */ if (last_op_next == NULL) { last_op_next = &(stp->genop); while (*last_op_next != NULL) { last_op_next = &(*last_op_next)->next; } } NEW_GENOP(stp, last_op); last_op->next = NULL; last_op->op = new_op; *last_op_next = last_op; last_op_next = &(last_op->next); stp->specific_op = -1; /* * Read all arguments for the current operation. */ arity = gen_opc[last_op->op].arity; last_op->arity = 0; ASSERT(arity <= MAX_OPARGS); #define GetValue(Stp, First, Val) \ do { \ if (((First) & 0x08) == 0) { \ Val = (First) >> 4; \ } else if (((First) & 0x10) == 0) { \ BeamInstr __w; \ GetByte(Stp, __w); \ Val = (((First) >> 5) << 8) | __w; \ } else { \ if (!get_int_val(Stp, (First), &(Val))) goto load_error; \ } \ } while (0) for (arg = 0; arg < arity; arg++) { BeamInstr first; GetByte(stp, first); last_op->a[arg].type = first & 0x07; switch (last_op->a[arg].type) { case TAG_i: if ((first & 0x08) == 0) { last_op->a[arg].val = first >> 4; } else if ((first & 0x10) == 0) { BeamInstr w; GetByte(stp, w); ASSERT(first < 0x800); last_op->a[arg].val = ((first >> 5) << 8) | w; } else { int i = get_erlang_integer(stp, first, &(last_op->a[arg].val)); if (i < 0) { goto load_error; } last_op->a[arg].type = i; } break; case TAG_u: GetValue(stp, first, last_op->a[arg].val); break; case TAG_x: GetValue(stp, first, last_op->a[arg].val); if (last_op->a[arg].val == 0) { last_op->a[arg].type = TAG_r; } else if (last_op->a[arg].val >= MAX_REG) { LoadError1(stp, "invalid x register number: %u", last_op->a[arg].val); } break; case TAG_y: GetValue(stp, first, last_op->a[arg].val); if (last_op->a[arg].val >= MAX_REG) { LoadError1(stp, "invalid y register number: %u", last_op->a[arg].val); } last_op->a[arg].val += CP_SIZE; break; case TAG_a: GetValue(stp, first, last_op->a[arg].val); if (last_op->a[arg].val == 0) { last_op->a[arg].type = TAG_n; } else if (last_op->a[arg].val >= stp->num_atoms) { LoadError1(stp, "bad atom index: %d", last_op->a[arg].val); } else { last_op->a[arg].val = stp->atom[last_op->a[arg].val]; } break; case TAG_f: GetValue(stp, first, last_op->a[arg].val); if (last_op->a[arg].val == 0) { last_op->a[arg].type = TAG_p; } else if (last_op->a[arg].val >= stp->num_labels) { LoadError1(stp, "bad label: %d", last_op->a[arg].val); } break; case TAG_h: GetValue(stp, first, last_op->a[arg].val); if (last_op->a[arg].val > 65535) { LoadError1(stp, "invalid range for character data type: %u", last_op->a[arg].val); } break; case TAG_z: { BeamInstr ext_tag; unsigned tag; GetValue(stp, first, ext_tag); switch (ext_tag) { case 0: /* Floating point number */ { Eterm* hp; /* XXX:PaN - Halfword should use ARCH_64 variant instead */ #if !defined(ARCH_64) || HALFWORD_HEAP Uint high, low; # endif last_op->a[arg].val = new_literal(stp, &hp, FLOAT_SIZE_OBJECT); hp[0] = HEADER_FLONUM; last_op->a[arg].type = TAG_q; #if defined(ARCH_64) && !HALFWORD_HEAP GetInt(stp, 8, hp[1]); # else GetInt(stp, 4, high); GetInt(stp, 4, low); if (must_swap_floats) { Uint t = high; high = low; low = t; } hp[1] = high; hp[2] = low; # endif } break; case 1: /* List. */ if (arg+1 != arity) { LoadError0(stp, "list argument must be the last argument"); } GetTagAndValue(stp, tag, last_op->a[arg].val); VerifyTag(stp, tag, TAG_u); last_op->a[arg].type = TAG_u; last_op->a = erts_alloc(ERTS_ALC_T_LOADER_TMP, (arity+last_op->a[arg].val) *sizeof(GenOpArg)); memcpy(last_op->a, last_op->def_args, arity*sizeof(GenOpArg)); arity += last_op->a[arg].val; break; case 2: /* Float register. */ GetTagAndValue(stp, tag, last_op->a[arg].val); VerifyTag(stp, tag, TAG_u); last_op->a[arg].type = TAG_l; break; case 3: /* Allocation list. */ { BeamInstr n; BeamInstr type; BeamInstr val; BeamInstr words = 0; GetTagAndValue(stp, tag, n); VerifyTag(stp, tag, TAG_u); while (n-- > 0) { GetTagAndValue(stp, tag, type); VerifyTag(stp, tag, TAG_u); GetTagAndValue(stp, tag, val); VerifyTag(stp, tag, TAG_u); switch (type) { case 0: /* Heap words */ words += val; break; case 1: words += FLOAT_SIZE_OBJECT*val; break; default: LoadError1(stp, "alloc list: bad allocation " "descriptor %d", type); break; } } last_op->a[arg].type = TAG_u; last_op->a[arg].val = words; break; } case 4: /* Literal. */ { BeamInstr val; GetTagAndValue(stp, tag, val); VerifyTag(stp, tag, TAG_u); if (val >= stp->num_literals) { LoadError1(stp, "bad literal index %d", val); } last_op->a[arg].type = TAG_q; last_op->a[arg].val = val; break; } default: LoadError1(stp, "invalid extended tag %d", ext_tag); break; } } break; default: LoadError1(stp, "bad tag %d", last_op->a[arg].type); break; } last_op->arity++; } #undef GetValue ASSERT(arity == last_op->arity); do_transform: if (stp->genop == NULL) { last_op_next = NULL; goto get_next_instr; } if (gen_opc[stp->genop->op].transform != -1) { int need; tmp_op = stp->genop; for (need = gen_opc[stp->genop->op].min_window-1; need > 0; need--) { if (tmp_op == NULL) { goto get_next_instr; } tmp_op = tmp_op->next; } switch (transform_engine(stp)) { case TE_FAIL: last_op_next = NULL; last_op = NULL; break; case TE_OK: last_op_next = NULL; last_op = NULL; goto do_transform; case TE_SHORT_WINDOW: last_op_next = NULL; last_op = NULL; goto get_next_instr; } } if (stp->genop == NULL) { last_op_next = NULL; goto get_next_instr; } /* * Special error message instruction. */ if (stp->genop->op == genop_too_old_compiler_0) { LoadError0(stp, "please re-compile this module with an " ERLANG_OTP_RELEASE " compiler"); } /* * From the collected generic instruction, find the specific * instruction. */ { Uint32 mask[3] = {0, 0, 0}; tmp_op = stp->genop; arity = gen_opc[tmp_op->op].arity; if (arity > 6) { LoadError0(stp, "no specific operation found (arity > 6)"); } for (arg = 0; arg < arity; arg++) { mask[arg/2] |= ((Uint32)1 << (tmp_op->a[arg].type)) << ((arg%2)*16); } specific = gen_opc[tmp_op->op].specific; num_specific = gen_opc[tmp_op->op].num_specific; for (i = 0; i < num_specific; i++) { if (((opc[specific].mask[0] & mask[0]) == mask[0]) && ((opc[specific].mask[1] & mask[1]) == mask[1]) && ((opc[specific].mask[2] & mask[2]) == mask[2])) { break; } specific++; } /* * No specific operation found. */ if (i == num_specific) { stp->specific_op = -1; for (arg = 0; arg < tmp_op->arity; arg++) { /* * We'll give the error message here (instead of earlier) * to get a printout of the offending operation. */ if (tmp_op->a[arg].type == TAG_h) { LoadError0(stp, "the character data type not supported"); } } /* * No specific operations and no transformations means that * the instruction is obsolete. */ if (num_specific == 0 && gen_opc[tmp_op->op].transform == -1) { LoadError0(stp, "please re-compile this module with an " ERLANG_OTP_RELEASE " compiler "); } LoadError0(stp, "no specific operation found"); } stp->specific_op = specific; CodeNeed(opc[stp->specific_op].sz+16); /* Extra margin for packing */ code[ci++] = BeamOpCode(stp->specific_op); } /* * Load the found specific operation. */ sign = opc[stp->specific_op].sign; ASSERT(sign != NULL); arg = 0; while (*sign) { Uint tag; ASSERT(arg < stp->genop->arity); tag = stp->genop->a[arg].type; switch (*sign) { case 'r': /* x(0) */ case 'n': /* Nil */ VerifyTag(stp, tag_to_letter[tag], *sign); break; case 'x': /* x(N) */ case 'y': /* y(N) */ VerifyTag(stp, tag_to_letter[tag], *sign); code[ci++] = tmp_op->a[arg].val * sizeof(Eterm); break; case 'a': /* Tagged atom */ VerifyTag(stp, tag_to_letter[tag], *sign); code[ci++] = tmp_op->a[arg].val; break; case 'i': /* Tagged integer */ ASSERT(is_small(tmp_op->a[arg].val)); VerifyTag(stp, tag_to_letter[tag], *sign); code[ci++] = tmp_op->a[arg].val; break; case 'c': /* Tagged constant */ switch (tag) { case TAG_i: code[ci++] = (BeamInstr) make_small((Uint) tmp_op->a[arg].val); break; case TAG_a: code[ci++] = tmp_op->a[arg].val; break; case TAG_n: code[ci++] = NIL; break; case TAG_q: new_literal_patch(stp, ci); code[ci++] = tmp_op->a[arg].val; break; default: LoadError1(stp, "bad tag %d for tagged constant", tmp_op->a[arg].type); break; } break; case 's': /* Any source (tagged constant or register) */ switch (tag) { case TAG_r: code[ci++] = make_rreg(); break; case TAG_x: code[ci++] = make_xreg(tmp_op->a[arg].val); break; case TAG_y: code[ci++] = make_yreg(tmp_op->a[arg].val); break; case TAG_i: code[ci++] = (BeamInstr) make_small((Uint)tmp_op->a[arg].val); break; case TAG_a: code[ci++] = tmp_op->a[arg].val; break; case TAG_n: code[ci++] = NIL; break; default: LoadError1(stp, "bad tag %d for general source", tmp_op->a[arg].type); break; } break; case 'd': /* Destination (x(0), x(N), y(N) */ switch (tag) { case TAG_r: code[ci++] = make_rreg(); break; case TAG_x: code[ci++] = make_xreg(tmp_op->a[arg].val); break; case TAG_y: code[ci++] = make_yreg(tmp_op->a[arg].val); break; default: LoadError1(stp, "bad tag %d for destination", tmp_op->a[arg].type); break; } break; case 'I': /* Untagged integer (or pointer). */ VerifyTag(stp, tag, TAG_u); code[ci++] = tmp_op->a[arg].val; break; case 't': /* Small untagged integer -- can be packed. */ VerifyTag(stp, tag, TAG_u); code[ci++] = tmp_op->a[arg].val; break; case 'A': /* Arity value. */ VerifyTag(stp, tag, TAG_u); code[ci++] = make_arityval(tmp_op->a[arg].val); break; case 'f': /* Destination label */ VerifyTag(stp, tag_to_letter[tag], *sign); code[ci] = stp->labels[tmp_op->a[arg].val].patches; stp->labels[tmp_op->a[arg].val].patches = ci; ci++; break; case 'j': /* 'f' or 'p' */ if (tag == TAG_p) { code[ci] = 0; } else if (tag == TAG_f) { code[ci] = stp->labels[tmp_op->a[arg].val].patches; stp->labels[tmp_op->a[arg].val].patches = ci; } else { LoadError3(stp, "bad tag %d; expected %d or %d", tag, TAG_f, TAG_p); } ci++; break; case 'L': /* Define label */ ci--; /* Remove label from loaded code */ ASSERT(stp->specific_op == op_label_L); VerifyTag(stp, tag, TAG_u); last_label = tmp_op->a[arg].val; if (!(0 < last_label && last_label < stp->num_labels)) { LoadError2(stp, "invalid label num %d (0 < label < %d)", tmp_op->a[arg].val, stp->num_labels); } if (stp->labels[last_label].value != 0) { LoadError1(stp, "label %d defined more than once", last_label); } stp->labels[last_label].value = ci; ASSERT(stp->labels[last_label].patches < ci); break; case 'e': /* Export entry */ VerifyTag(stp, tag, TAG_u); if (tmp_op->a[arg].val >= stp->num_imports) { LoadError1(stp, "invalid import table index %d", tmp_op->a[arg].val); } code[ci] = stp->import[tmp_op->a[arg].val].patches; stp->import[tmp_op->a[arg].val].patches = ci; ci++; break; case 'b': VerifyTag(stp, tag, TAG_u); i = tmp_op->a[arg].val; if (i >= stp->num_imports) { LoadError1(stp, "invalid import table index %d", i); } if (stp->import[i].bf == NULL) { LoadError1(stp, "not a BIF: import table index %d", i); } code[ci++] = (BeamInstr) stp->import[i].bf; break; case 'P': /* Byte offset into tuple or stack */ case 'Q': /* Like 'P', but packable */ VerifyTag(stp, tag, TAG_u); tmp = tmp_op->a[arg].val; code[ci++] = (BeamInstr) ((tmp_op->a[arg].val+1) * sizeof(Eterm)); break; case 'l': /* Floating point register. */ VerifyTag(stp, tag_to_letter[tag], *sign); code[ci++] = tmp_op->a[arg].val * sizeof(FloatDef); break; case 'q': /* Literal */ new_literal_patch(stp, ci); code[ci++] = tmp_op->a[arg].val; break; default: LoadError1(stp, "bad argument tag: %d", *sign); } sign++; arg++; } /* * Load any list arguments using the primitive tags. */ for ( ; arg < tmp_op->arity; arg++) { switch (tmp_op->a[arg].type) { case TAG_i: CodeNeed(1); code[ci++] = make_small(tmp_op->a[arg].val); break; case TAG_u: case TAG_a: case TAG_v: CodeNeed(1); code[ci++] = tmp_op->a[arg].val; break; case TAG_f: CodeNeed(1); code[ci] = stp->labels[tmp_op->a[arg].val].patches; stp->labels[tmp_op->a[arg].val].patches = ci; ci++; break; default: LoadError1(stp, "unsupported primitive type '%c'", tag_to_letter[tmp_op->a[arg].type]); } } /* * The packing engine. */ if (opc[stp->specific_op].pack[0]) { char* prog; /* Program for packing engine. */ BeamInstr stack[8]; /* Stack. */ BeamInstr* sp = stack; /* Points to next free position. */ BeamInstr packed = 0; /* Accumulator for packed operations. */ for (prog = opc[stp->specific_op].pack; *prog; prog++) { switch (*prog) { case 'g': /* Get instruction; push on stack. */ *sp++ = code[--ci]; break; case 'i': /* Initialize packing accumulator. */ packed = code[--ci]; break; case '0': /* Tight shift */ packed = (packed << BEAM_TIGHT_SHIFT) | code[--ci]; break; case '6': /* Shift 16 steps */ packed = (packed << BEAM_LOOSE_SHIFT) | code[--ci]; break; case 'p': /* Put instruction (from stack). */ code[ci++] = *--sp; break; case 'P': /* Put packed operands. */ *sp++ = packed; packed = 0; break; default: ASSERT(0); } } ASSERT(sp == stack); /* Incorrect program? */ } /* * Handle a few special cases. */ switch (stp->specific_op) { case op_i_func_info_IaaI: { Uint offset; enum { FINFO_SZ = 5 }; if (function_number >= stp->num_functions) { LoadError1(stp, "too many functions in module (header said %d)", stp->num_functions); } if (stp->may_load_nif) { const int finfo_ix = ci - FINFO_SZ; enum { MIN_FUNC_SZ = 3 }; if (finfo_ix - last_func_start < MIN_FUNC_SZ && last_func_start) { /* Must make room for call_nif op */ int pad = MIN_FUNC_SZ - (finfo_ix - last_func_start); ASSERT(pad > 0 && pad < MIN_FUNC_SZ); CodeNeed(pad); sys_memmove(&code[finfo_ix+pad], &code[finfo_ix], FINFO_SZ*sizeof(BeamInstr)); sys_memset(&code[finfo_ix], 0, pad*sizeof(BeamInstr)); ci += pad; stp->labels[last_label].value += pad; } } last_func_start = ci; /* * Save context for error messages. */ stp->function = code[ci-2]; stp->arity = code[ci-1]; ASSERT(stp->labels[last_label].value == ci - FINFO_SZ); offset = MI_FUNCTIONS + function_number; code[offset] = stp->labels[last_label].patches; stp->labels[last_label].patches = offset; function_number++; if (stp->arity > MAX_ARG) { LoadError1(stp, "too many arguments: %d", stp->arity); } #ifdef DEBUG ASSERT(stp->labels[0].patches == 0); /* Should not be referenced. */ for (i = 1; i < stp->num_labels; i++) { ASSERT(stp->labels[i].patches < ci); } #endif } break; case op_on_load: ci--; /* Get rid of the instruction */ /* Remember offset for the on_load function. */ stp->on_load = ci; break; case op_bs_put_string_II: { /* * At entry: * * code[ci-3] &&lb_i_new_bs_put_string_II * code[ci-2] length of string * code[ci-1] offset into string table * * Since we don't know the address of the string table yet, * just check the offset and length for validity, and use * the instruction field as a link field to link all put_string * instructions into a single linked list. At exit: * * code[ci-3] pointer to next i_new_bs_put_string instruction (or 0 * if this is the last) */ Uint offset = code[ci-1]; Uint len = code[ci-2]; unsigned strtab_size = stp->chunks[STR_CHUNK].size; if (offset > strtab_size || offset + len > strtab_size) { LoadError2(stp, "invalid string reference %d, size %d", offset, len); } code[ci-3] = stp->new_bs_put_strings; stp->new_bs_put_strings = ci - 3; } break; case op_i_bs_match_string_rfII: case op_i_bs_match_string_xfII: new_string_patch(stp, ci-1); break; case op_catch_yf: /* code[ci-3] &&lb_catch_yf * code[ci-2] y-register offset in E * code[ci-1] label; index tagged as CATCH at runtime */ code[ci-3] = stp->catches; stp->catches = ci-3; break; /* * End of code found. */ case op_int_code_end: stp->code_buffer_size = code_buffer_size; stp->ci = ci; return 1; } /* * Delete the generic instruction just loaded. */ { GenOp* next = stp->genop->next; FREE_GENOP(stp, stp->genop); stp->genop = next; goto do_transform; } } load_error: return 0; } #define succ(St, X, Y) ((X).type == (Y).type && (X).val + 1 == (Y).val) #define succ2(St, X, Y) ((X).type == (Y).type && (X).val + 2 == (Y).val) #define succ3(St, X, Y) ((X).type == (Y).type && (X).val + 3 == (Y).val) #ifdef NO_FPE_SIGNALS #define no_fpe_signals(St) 1 #else #define no_fpe_signals(St) 0 #endif /* * Predicate that tests whether a jump table can be used. */ static int use_jump_tab(LoaderState* stp, GenOpArg Size, GenOpArg* Rest) { Sint min, max; Sint i; if (Size.val < 2 || Size.val % 2 != 0) { return 0; } /* we may be called with sequences of tagged fixnums or atoms; return early in latter case, before we access the values */ if (Rest[0].type != TAG_i || Rest[1].type != TAG_f) return 0; min = max = Rest[0].val; for (i = 2; i < Size.val; i += 2) { if (Rest[i].type != TAG_i || Rest[i+1].type != TAG_f) { return 0; } if (Rest[i].val < min) { min = Rest[i].val; } else if (max < Rest[i].val) { max = Rest[i].val; } } return max - min <= Size.val; } /* * Predicate to test whether all values in a table are either * floats or bignums. */ static int floats_or_bignums(LoaderState* stp, GenOpArg Size, GenOpArg* Rest) { int i; if (Size.val < 2 || Size.val % 2 != 0) { return 0; } for (i = 0; i < Size.val; i += 2) { if (Rest[i].type != TAG_q) { return 0; } if (Rest[i+1].type != TAG_f) { return 0; } } return 1; } /* * Predicate to test whether all values in a table have a fixed size. */ static int fixed_size_values(LoaderState* stp, GenOpArg Size, GenOpArg* Rest) { int i; if (Size.val < 2 || Size.val % 2 != 0) { return 0; } for (i = 0; i < Size.val; i += 2) { if (Rest[i+1].type != TAG_f) return 0; switch (Rest[i].type) { case TAG_a: case TAG_i: case TAG_v: break; case TAG_q: return is_float(stp->literals[Rest[i].val].term); default: return 0; } } return 1; } static int mixed_types(LoaderState* stp, GenOpArg Size, GenOpArg* Rest) { int i; Uint type; if (Size.val < 2 || Size.val % 2 != 0) { return 0; } type = Rest[0].type; for (i = 0; i < Size.val; i += 2) { if (Rest[i].type != type) return 1; } return 0; } static int same_label(LoaderState* stp, GenOpArg Target, GenOpArg Label) { return Target.type = TAG_f && Label.type == TAG_u && Target.val == Label.val; } /* * Generate an instruction for element/2. */ static GenOp* gen_element(LoaderState* stp, GenOpArg Fail, GenOpArg Index, GenOpArg Tuple, GenOpArg Dst) { GenOp* op; NEW_GENOP(stp, op); op->op = genop_i_element_4; op->arity = 4; op->a[0] = Fail; op->a[1] = Index; op->a[2] = Tuple; op->a[3] = Dst; op->next = NULL; /* * If safe, generate a faster instruction. */ if (Index.type == TAG_i && Index.val > 0 && (Tuple.type == TAG_r || Tuple.type == TAG_x || Tuple.type == TAG_y)) { op->op = genop_i_fast_element_4; op->a[1].type = TAG_u; op->a[1].val = Index.val; } return op; } static GenOp* gen_bs_save(LoaderState* stp, GenOpArg Reg, GenOpArg Index) { GenOp* op; NEW_GENOP(stp, op); op->op = genop_i_bs_save2_2; op->arity = 2; op->a[0] = Reg; op->a[1] = Index; if (Index.type == TAG_u) { op->a[1].val = Index.val+1; } else if (Index.type == TAG_a && Index.val == am_start) { op->a[1].type = TAG_u; op->a[1].val = 0; } op->next = NULL; return op; } static GenOp* gen_bs_restore(LoaderState* stp, GenOpArg Reg, GenOpArg Index) { GenOp* op; NEW_GENOP(stp, op); op->op = genop_i_bs_restore2_2; op->arity = 2; op->a[0] = Reg; op->a[1] = Index; if (Index.type == TAG_u) { op->a[1].val = Index.val+1; } else if (Index.type == TAG_a && Index.val == am_start) { op->a[1].type = TAG_u; op->a[1].val = 0; } op->next = NULL; return op; } /* * Generate the fastest instruction to fetch an integer from a binary. */ static GenOp* gen_get_integer2(LoaderState* stp, GenOpArg Fail, GenOpArg Ms, GenOpArg Live, GenOpArg Size, GenOpArg Unit, GenOpArg Flags, GenOpArg Dst) { GenOp* op; UWord bits; NEW_GENOP(stp, op); NATIVE_ENDIAN(Flags); if (Size.type == TAG_i) { if (!safe_mul(Size.val, Unit.val, &bits)) { goto error; } else if ((Flags.val & BSF_SIGNED) != 0) { goto generic; } else if (bits == 8) { op->op = genop_i_bs_get_integer_8_3; op->arity = 3; op->a[0] = Ms; op->a[1] = Fail; op->a[2] = Dst; } else if (bits == 16 && (Flags.val & BSF_LITTLE) == 0) { op->op = genop_i_bs_get_integer_16_3; op->arity = 3; op->a[0] = Ms; op->a[1] = Fail; op->a[2] = Dst; } else if (bits == 32 && (Flags.val & BSF_LITTLE) == 0) { op->op = genop_i_bs_get_integer_32_4; op->arity = 4; op->a[0] = Ms; op->a[1] = Fail; op->a[2] = Live; op->a[3] = Dst; } else { generic: if (bits < SMALL_BITS) { op->op = genop_i_bs_get_integer_small_imm_5; op->arity = 5; op->a[0] = Ms; op->a[1].type = TAG_u; op->a[1].val = bits; op->a[2] = Fail; op->a[3] = Flags; op->a[4] = Dst; } else { op->op = genop_i_bs_get_integer_imm_6; op->arity = 6; op->a[0] = Ms; op->a[1].type = TAG_u; op->a[1].val = bits; op->a[2] = Live; op->a[3] = Fail; op->a[4] = Flags; op->a[5] = Dst; } } } else if (Size.type == TAG_q) { Eterm big = stp->literals[Size.val].term; Uint bigval; if (!term_to_Uint(big, &bigval)) { error: op->op = genop_jump_1; op->arity = 1; op->a[0] = Fail; } else { if (!safe_mul(bigval, Unit.val, &bits)) { goto error; } goto generic; } } else { GenOp* op2; NEW_GENOP(stp, op2); op->op = genop_i_fetch_2; op->arity = 2; op->a[0] = Ms; op->a[1] = Size; op->next = op2; op2->op = genop_i_bs_get_integer_4; op2->arity = 4; op2->a[0] = Fail; op2->a[1] = Live; op2->a[2].type = TAG_u; op2->a[2].val = (Unit.val << 3) | Flags.val; op2->a[3] = Dst; op2->next = NULL; return op; } op->next = NULL; return op; } /* * Generate the fastest instruction to fetch a binary from a binary. */ static GenOp* gen_get_binary2(LoaderState* stp, GenOpArg Fail, GenOpArg Ms, GenOpArg Live, GenOpArg Size, GenOpArg Unit, GenOpArg Flags, GenOpArg Dst) { GenOp* op; NEW_GENOP(stp, op); NATIVE_ENDIAN(Flags); if (Size.type == TAG_a && Size.val == am_all) { if (Ms.type == Dst.type && Ms.val == Dst.val) { op->op = genop_i_bs_get_binary_all_reuse_3; op->arity = 3; op->a[0] = Ms; op->a[1] = Fail; op->a[2] = Unit; } else { op->op = genop_i_bs_get_binary_all2_5; op->arity = 5; op->a[0] = Fail; op->a[1] = Ms; op->a[2] = Live; op->a[3] = Unit; op->a[4] = Dst; } } else if (Size.type == TAG_i) { op->op = genop_i_bs_get_binary_imm2_6; op->arity = 6; op->a[0] = Fail; op->a[1] = Ms; op->a[2] = Live; op->a[3].type = TAG_u; if (!safe_mul(Size.val, Unit.val, &op->a[3].val)) { goto error; } op->a[4] = Flags; op->a[5] = Dst; } else if (Size.type == TAG_q) { Eterm big = stp->literals[Size.val].term; Uint bigval; if (!term_to_Uint(big, &bigval)) { error: op->op = genop_jump_1; op->arity = 1; op->a[0] = Fail; } else { op->op = genop_i_bs_get_binary_imm2_6; op->arity = 6; op->a[0] = Fail; op->a[1] = Ms; op->a[2] = Live; op->a[3].type = TAG_u; if (!safe_mul(bigval, Unit.val, &op->a[3].val)) { goto error; } op->a[4] = Flags; op->a[5] = Dst; } } else { op->op = genop_i_bs_get_binary2_6; op->arity = 6; op->a[0] = Fail; op->a[1] = Ms; op->a[2] = Live; op->a[3] = Size; op->a[4].type = TAG_u; op->a[4].val = (Unit.val << 3) | Flags.val; op->a[5] = Dst; } op->next = NULL; return op; } /* * Predicate to test whether a heap binary should be generated. */ static int should_gen_heap_bin(LoaderState* stp, GenOpArg Src) { return Src.val <= ERL_ONHEAP_BIN_LIMIT; } /* * Predicate to test whether a binary construction is too big. */ static int binary_too_big(LoaderState* stp, GenOpArg Size) { return Size.type == TAG_u && ((Size.val >> (8*sizeof(Uint)-3)) != 0); } static int binary_too_big_bits(LoaderState* stp, GenOpArg Size) { return Size.type == TAG_u && (((Size.val+7)/8) >> (8*sizeof(Uint)-3) != 0); } static GenOp* gen_put_binary(LoaderState* stp, GenOpArg Fail,GenOpArg Size, GenOpArg Unit, GenOpArg Flags, GenOpArg Src) { GenOp* op; NEW_GENOP(stp, op); NATIVE_ENDIAN(Flags); if (Size.type == TAG_a && Size.val == am_all) { op->op = genop_i_new_bs_put_binary_all_3; op->arity = 3; op->a[0] = Fail; op->a[1] = Src; op->a[2] = Unit; } else if (Size.type == TAG_i) { op->op = genop_i_new_bs_put_binary_imm_3; op->arity = 3; op->a[0] = Fail; op->a[1].type = TAG_u; if (safe_mul(Size.val, Unit.val, &op->a[1].val)) { op->a[2] = Src; } else { op->op = genop_badarg_1; op->arity = 1; op->a[0] = Fail; } } else { op->op = genop_i_new_bs_put_binary_4; op->arity = 4; op->a[0] = Fail; op->a[1] = Size; op->a[2].type = TAG_u; op->a[2].val = (Unit.val << 3) | (Flags.val & 7); op->a[3] = Src; } op->next = NULL; return op; } static GenOp* gen_put_integer(LoaderState* stp, GenOpArg Fail, GenOpArg Size, GenOpArg Unit, GenOpArg Flags, GenOpArg Src) { GenOp* op; NEW_GENOP(stp, op); NATIVE_ENDIAN(Flags); if (Size.type == TAG_i && Size.val < 0) { error: /* Negative size must fail */ op->op = genop_badarg_1; op->arity = 1; op->a[0] = Fail; } else if (Size.type == TAG_i) { op->op = genop_i_new_bs_put_integer_imm_4; op->arity = 4; op->a[0] = Fail; op->a[1].type = TAG_u; if (!safe_mul(Size.val, Unit.val, &op->a[1].val)) { goto error; } op->a[1].val = Size.val * Unit.val; op->a[2].type = Flags.type; op->a[2].val = (Flags.val & 7); op->a[3] = Src; } else if (Size.type == TAG_q) { Eterm big = stp->literals[Size.val].term; Uint bigval; if (!term_to_Uint(big, &bigval)) { goto error; } else { op->op = genop_i_new_bs_put_integer_imm_4; op->arity = 4; op->a[0] = Fail; op->a[1].type = TAG_u; op->a[1].val = bigval * Unit.val; op->a[2].type = Flags.type; op->a[2].val = (Flags.val & 7); op->a[3] = Src; } } else { op->op = genop_i_new_bs_put_integer_4; op->arity = 4; op->a[0] = Fail; op->a[1] = Size; op->a[2].type = TAG_u; op->a[2].val = (Unit.val << 3) | (Flags.val & 7); op->a[3] = Src; } op->next = NULL; return op; } static GenOp* gen_put_float(LoaderState* stp, GenOpArg Fail, GenOpArg Size, GenOpArg Unit, GenOpArg Flags, GenOpArg Src) { GenOp* op; NEW_GENOP(stp, op); NATIVE_ENDIAN(Flags); if (Size.type == TAG_i) { op->op = genop_i_new_bs_put_float_imm_4; op->arity = 4; op->a[0] = Fail; op->a[1].type = TAG_u; if (!safe_mul(Size.val, Unit.val, &op->a[1].val)) { op->op = genop_badarg_1; op->arity = 1; op->a[0] = Fail; } else { op->a[2] = Flags; op->a[3] = Src; } } else { op->op = genop_i_new_bs_put_float_4; op->arity = 4; op->a[0] = Fail; op->a[1] = Size; op->a[2].type = TAG_u; op->a[2].val = (Unit.val << 3) | (Flags.val & 7); op->a[3] = Src; } op->next = NULL; return op; } /* * Generate an instruction to fetch a float from a binary. */ static GenOp* gen_get_float2(LoaderState* stp, GenOpArg Fail, GenOpArg Ms, GenOpArg Live, GenOpArg Size, GenOpArg Unit, GenOpArg Flags, GenOpArg Dst) { GenOp* op; NEW_GENOP(stp, op); NATIVE_ENDIAN(Flags); op->op = genop_i_bs_get_float2_6; op->arity = 6; op->a[0] = Fail; op->a[1] = Ms; op->a[2] = Live; op->a[3] = Size; op->a[4].type = TAG_u; op->a[4].val = (Unit.val << 3) | Flags.val; op->a[5] = Dst; op->next = NULL; return op; } /* * Generate the fastest instruction for bs_skip_bits. */ static GenOp* gen_skip_bits2(LoaderState* stp, GenOpArg Fail, GenOpArg Ms, GenOpArg Size, GenOpArg Unit, GenOpArg Flags) { GenOp* op; NATIVE_ENDIAN(Flags); NEW_GENOP(stp, op); if (Size.type == TAG_a && Size.val == am_all) { op->op = genop_i_bs_skip_bits_all2_3; op->arity = 3; op->a[0] = Fail; op->a[1] = Ms; op->a[2] = Unit; } else if (Size.type == TAG_i) { op->op = genop_i_bs_skip_bits_imm2_3; op->arity = 3; op->a[0] = Fail; op->a[1] = Ms; op->a[2].type = TAG_u; if (!safe_mul(Size.val, Unit.val, &op->a[2].val)) { goto error; } } else if (Size.type == TAG_q) { Eterm big = stp->literals[Size.val].term; Uint bigval; if (!term_to_Uint(big, &bigval)) { error: op->op = genop_jump_1; op->arity = 1; op->a[0] = Fail; } else { op->op = genop_i_bs_skip_bits_imm2_3; op->arity = 3; op->a[0] = Fail; op->a[1] = Ms; op->a[2].type = TAG_u; if (!safe_mul(bigval, Unit.val, &op->a[2].val)) { goto error; } } } else { op->op = genop_i_bs_skip_bits2_4; op->arity = 4; op->a[0] = Fail; op->a[1] = Ms; op->a[2] = Size; op->a[3] = Unit; } op->next = NULL; return op; } static int smp(LoaderState* stp) { #ifdef ERTS_SMP return 1; #else return 0; #endif } /* * Mark this label. */ static int smp_mark_target_label(LoaderState* stp, GenOpArg L) { #ifdef ERTS_SMP ASSERT(L.type == TAG_f); stp->labels[L.val].looprec_targeted = 1; #endif return 1; } /* * Test whether this label was targeted by a loop_rec/2 instruction. */ static int smp_already_locked(LoaderState* stp, GenOpArg L) { #ifdef ERTS_SMP ASSERT(L.type == TAG_u); return stp->labels[L.val].looprec_targeted; #else return 0; #endif } /* * Generate a timeout instruction for a literal timeout. */ static GenOp* gen_literal_timeout(LoaderState* stp, GenOpArg Fail, GenOpArg Time) { GenOp* op; Sint timeout; NEW_GENOP(stp, op); op->op = genop_i_wait_timeout_2; op->next = NULL; op->arity = 2; op->a[0] = Fail; op->a[1].type = TAG_u; if (Time.type == TAG_i && (timeout = Time.val) >= 0 && #if defined(ARCH_64) && !HALFWORD_HEAP (timeout >> 32) == 0 #else 1 #endif ) { op->a[1].val = timeout; #if !defined(ARCH_64) || HALFWORD_HEAP } else if (Time.type == TAG_q) { Eterm big; big = stp->literals[Time.val].term; if (is_not_big(big)) { goto error; } if (big_arity(big) > 1 || big_sign(big)) { goto error; } else { Uint u; (void) term_to_Uint(big, &u); op->a[1].val = (BeamInstr) u; } #endif } else { #if !defined(ARCH_64) || HALFWORD_HEAP error: #endif op->op = genop_i_wait_error_0; op->arity = 0; } return op; } static GenOp* gen_literal_timeout_locked(LoaderState* stp, GenOpArg Fail, GenOpArg Time) { GenOp* op; Sint timeout; NEW_GENOP(stp, op); op->op = genop_i_wait_timeout_locked_2; op->next = NULL; op->arity = 2; op->a[0] = Fail; op->a[1].type = TAG_u; if (Time.type == TAG_i && (timeout = Time.val) >= 0 && #if defined(ARCH_64) && !HALFWORD_HEAP (timeout >> 32) == 0 #else 1 #endif ) { op->a[1].val = timeout; #if !defined(ARCH_64) || HALFWORD_HEAP } else if (Time.type == TAG_q) { Eterm big; big = stp->literals[Time.val].term; if (is_not_big(big)) { goto error; } if (big_arity(big) > 1 || big_sign(big)) { goto error; } else { Uint u; (void) term_to_Uint(big, &u); op->a[1].val = (BeamInstr) u; } #endif } else { #if !defined(ARCH_64) || HALFWORD_HEAP error: #endif op->op = genop_i_wait_error_locked_0; op->arity = 0; } return op; } /* * Tag the list of values with tuple arity tags. */ static GenOp* gen_select_tuple_arity(LoaderState* stp, GenOpArg S, GenOpArg Fail, GenOpArg Size, GenOpArg* Rest) { GenOp* op; int arity = Size.val + 3; int size = Size.val / 2; int i; /* * Verify the validity of the list. */ if (Size.val % 2 != 0) return NULL; for (i = 0; i < Size.val; i += 2) { if (Rest[i].type != TAG_u || Rest[i+1].type != TAG_f) { return NULL; } } /* * Generate the generic instruction. */ NEW_GENOP(stp, op); op->next = NULL; op->op = genop_i_select_tuple_arity_3; GENOP_ARITY(op, arity); op->a[0] = S; op->a[1] = Fail; op->a[2].type = TAG_u; op->a[2].val = Size.val / 2; for (i = 0; i < Size.val; i += 2) { op->a[i+3].type = TAG_v; op->a[i+3].val = make_arityval(Rest[i].val); op->a[i+4] = Rest[i+1]; } /* * Sort the values to make them useful for a binary search. */ qsort(op->a+3, size, 2*sizeof(GenOpArg), (int (*)(const void *, const void *)) genopargcompare); #ifdef DEBUG for (i = 3; i < arity-2; i += 2) { ASSERT(op->a[i].val < op->a[i+2].val); } #endif return op; } /* * Split a list consisting of both small and bignumbers into two * select_val instructions. */ static GenOp* gen_split_values(LoaderState* stp, GenOpArg S, GenOpArg TypeFail, GenOpArg Fail, GenOpArg Size, GenOpArg* Rest) { GenOp* op1; GenOp* op2; GenOp* label; GenOp* is_integer; int i; ASSERT(Size.val >= 2 && Size.val % 2 == 0); NEW_GENOP(stp, is_integer); is_integer->op = genop_is_integer_2; is_integer->arity = 2; is_integer->a[0] = TypeFail; is_integer->a[1] = S; NEW_GENOP(stp, label); label->op = genop_label_1; label->arity = 1; label->a[0].type = TAG_u; label->a[0].val = new_label(stp); NEW_GENOP(stp, op1); op1->op = genop_select_val_3; GENOP_ARITY(op1, 3 + Size.val); op1->arity = 3; op1->a[0] = S; op1->a[1].type = TAG_f; op1->a[1].val = label->a[0].val; op1->a[2].type = TAG_u; op1->a[2].val = 0; NEW_GENOP(stp, op2); op2->op = genop_select_val_3; GENOP_ARITY(op2, 3 + Size.val); op2->arity = 3; op2->a[0] = S; op2->a[1] = Fail; op2->a[2].type = TAG_u; op2->a[2].val = 0; /* * Split the list. */ ASSERT(Size.type == TAG_u); for (i = 0; i < Size.val; i += 2) { GenOp* op = (Rest[i].type == TAG_q) ? op2 : op1; int dst = 3 + op->a[2].val; ASSERT(Rest[i+1].type == TAG_f); op->a[dst] = Rest[i]; op->a[dst+1] = Rest[i+1]; op->arity += 2; op->a[2].val += 2; } ASSERT(op1->a[2].val > 0); ASSERT(op2->a[2].val > 0); /* * Order the instruction sequence appropriately. */ if (TypeFail.val == Fail.val) { /* * select_val L1 S ... (small numbers) * label L1 * is_integer Fail S * select_val Fail S ... (bignums) */ op1->next = label; label->next = is_integer; is_integer->next = op2; } else { /* * is_integer TypeFail S * select_val L1 S ... (small numbers) * label L1 * select_val Fail S ... (bignums) */ is_integer->next = op1; op1->next = label; label->next = op2; op1 = is_integer; } op2->next = NULL; return op1; } /* * Generate a jump table. */ static GenOp* gen_jump_tab(LoaderState* stp, GenOpArg S, GenOpArg Fail, GenOpArg Size, GenOpArg* Rest) { Sint min, max; Sint i; Sint size; Sint arity; int fixed_args; GenOp* op; ASSERT(Size.val >= 2 && Size.val % 2 == 0); /* * Calculate the minimum and maximum values and size of jump table. */ ASSERT(Rest[0].type == TAG_i); min = max = Rest[0].val; for (i = 2; i < Size.val; i += 2) { ASSERT(Rest[i].type == TAG_i && Rest[i+1].type == TAG_f); if (Rest[i].val < min) { min = Rest[i].val; } else if (max < Rest[i].val) { max = Rest[i].val; } } size = max - min + 1; /* * Allocate structure and fill in the fixed fields. */ NEW_GENOP(stp, op); op->next = NULL; if (min == 0) { op->op = genop_i_jump_on_val_zero_3; fixed_args = 3; } else { op->op = genop_i_jump_on_val_4; fixed_args = 4; } arity = fixed_args + size; GENOP_ARITY(op, arity); op->a[0] = S; op->a[1] = Fail; op->a[2].type = TAG_u; op->a[2].val = size; op->a[3].type = TAG_u; op->a[3].val = min; /* * Fill in the jump table. */ for (i = fixed_args; i < arity; i++) { op->a[i] = Fail; } for (i = 0; i < Size.val; i += 2) { int index; index = fixed_args+Rest[i].val-min; ASSERT(fixed_args <= index && index < arity); op->a[index] = Rest[i+1]; } return op; } /* * Compare function for qsort(). */ static int genopargcompare(GenOpArg* a, GenOpArg* b) { if (a->val < b->val) return -1; else if (a->val == b->val) return 0; else return 1; } /* * Generate a select_val instruction. We know that a jump table * is not suitable, and that all values are of the same type * (integer or atoms). */ static GenOp* gen_select_val(LoaderState* stp, GenOpArg S, GenOpArg Fail, GenOpArg Size, GenOpArg* Rest) { GenOp* op; int arity = Size.val + 3; int size = Size.val / 2; int i; NEW_GENOP(stp, op); op->next = NULL; op->op = genop_i_select_val_3; GENOP_ARITY(op, arity); op->a[0] = S; op->a[1] = Fail; op->a[2].type = TAG_u; op->a[2].val = size; for (i = 3; i < arity; i++) { op->a[i] = Rest[i-3]; } /* * Sort the values to make them useful for a binary search. */ qsort(op->a+3, size, 2*sizeof(GenOpArg), (int (*)(const void *, const void *)) genopargcompare); #ifdef DEBUG for (i = 3; i < arity-2; i += 2) { ASSERT(op->a[i].val < op->a[i+2].val); } #endif return op; } /* * Generate a select_val instruction for big numbers. */ static GenOp* gen_select_literals(LoaderState* stp, GenOpArg S, GenOpArg Fail, GenOpArg Size, GenOpArg* Rest) { GenOp* op; GenOp* jump; GenOp** prev_next = &op; int i; for (i = 0; i < Size.val; i += 2) { GenOp* op; ASSERT(Rest[i].type == TAG_q); NEW_GENOP(stp, op); op->op = genop_is_ne_exact_3; op->arity = 3; op->a[0] = Rest[i+1]; op->a[1] = S; op->a[2] = Rest[i]; *prev_next = op; prev_next = &op->next; } NEW_GENOP(stp, jump); jump->next = NULL; jump->op = genop_jump_1; jump->arity = 1; jump->a[0] = Fail; *prev_next = jump; return op; } /* * Replace a select_val instruction with a constant controlling expression * with a jump instruction. */ static GenOp* const_select_val(LoaderState* stp, GenOpArg S, GenOpArg Fail, GenOpArg Size, GenOpArg* Rest) { GenOp* op; int i; ASSERT(Size.type == TAG_u); ASSERT(S.type == TAG_q); NEW_GENOP(stp, op); op->next = NULL; op->op = genop_jump_1; op->arity = 1; /* * Search for a literal matching the controlling expression. */ if (S.type == TAG_q) { Eterm expr = stp->literals[S.val].term; for (i = 0; i < Size.val; i += 2) { if (Rest[i].type == TAG_q) { Eterm term = stp->literals[Rest[i].val].term; if (eq(term, expr)) { ASSERT(Rest[i+1].type == TAG_f); op->a[0] = Rest[i+1]; return op; } } } } /* * No match. Use the failure label. */ op->a[0] = Fail; return op; } static GenOp* gen_func_info(LoaderState* stp, GenOpArg mod, GenOpArg func, GenOpArg arity, GenOpArg label) { GenOp* fi; GenOp* op; NEW_GENOP(stp, fi); fi->op = genop_i_func_info_4; fi->arity = 4; fi->a[0].type = TAG_u; /* untagged Zero */ fi->a[0].val = 0; fi->a[1] = mod; fi->a[2] = func; fi->a[3] = arity; NEW_GENOP(stp, op); op->op = genop_label_1; op->arity = 1; op->a[0] = label; fi->next = op; op->next = NULL; return fi; } static GenOp* gen_make_fun2(LoaderState* stp, GenOpArg idx) { ErlFunEntry* fe; GenOp* op; if (idx.val >= stp->num_lambdas) { stp->lambda_error = "missing or short chunk 'FunT'"; fe = 0; } else { fe = stp->lambdas[idx.val].fe; } NEW_GENOP(stp, op); op->op = genop_i_make_fun_2; op->arity = 2; op->a[0].type = TAG_u; op->a[0].val = (BeamInstr) fe; op->a[1].type = TAG_u; op->a[1].val = stp->lambdas[idx.val].num_free; op->next = NULL; return op; } /* * Rewrite gc_bifs with one parameter (the common case). Utilized * in ops.tab to rewrite instructions calling bif's in guards * to use a garbage collecting implementation. The instructions * are sometimes once again rewritten to handle literals (putting the * parameter in the mostly unused r[0] before the instruction is executed). */ static GenOp* gen_guard_bif1(LoaderState* stp, GenOpArg Fail, GenOpArg Live, GenOpArg Bif, GenOpArg Src, GenOpArg Dst) { GenOp* op; BifFunction bf; NEW_GENOP(stp, op); op->op = genop_i_gc_bif1_5; op->arity = 5; op->a[0] = Fail; op->a[1].type = TAG_u; bf = stp->import[Bif.val].bf; /* The translations here need to have a reverse counterpart in beam_emu.c:translate_gc_bif for error handling to work properly. */ if (bf == length_1) { op->a[1].val = (BeamInstr) (void *) erts_gc_length_1; } else if (bf == size_1) { op->a[1].val = (BeamInstr) (void *) erts_gc_size_1; } else if (bf == bit_size_1) { op->a[1].val = (BeamInstr) (void *) erts_gc_bit_size_1; } else if (bf == byte_size_1) { op->a[1].val = (BeamInstr) (void *) erts_gc_byte_size_1; } else if (bf == abs_1) { op->a[1].val = (BeamInstr) (void *) erts_gc_abs_1; } else if (bf == float_1) { op->a[1].val = (BeamInstr) (void *) erts_gc_float_1; } else if (bf == round_1) { op->a[1].val = (BeamInstr) (void *) erts_gc_round_1; } else if (bf == trunc_1) { op->a[1].val = (BeamInstr) (void *) erts_gc_trunc_1; } else { abort(); } op->a[2] = Src; op->a[3] = Live; op->a[4] = Dst; op->next = NULL; return op; } /* * This is used by the ops.tab rule that rewrites gc_bifs with two parameters * The instruction returned is then again rewritten to an i_load instruction * folowed by i_gc_bif2_jIId, to handle literals properly. * As opposed to the i_gc_bif1_jIsId, the instruction i_gc_bif2_jIId is * always rewritten, regardless of if there actually are any literals. */ static GenOp* gen_guard_bif2(LoaderState* stp, GenOpArg Fail, GenOpArg Live, GenOpArg Bif, GenOpArg S1, GenOpArg S2, GenOpArg Dst) { GenOp* op; BifFunction bf; NEW_GENOP(stp, op); op->op = genop_ii_gc_bif2_6; op->arity = 6; op->a[0] = Fail; op->a[1].type = TAG_u; bf = stp->import[Bif.val].bf; /* The translations here need to have a reverse counterpart in beam_emu.c:translate_gc_bif for error handling to work properly. */ if (bf == binary_part_2) { op->a[1].val = (BeamInstr) (void *) erts_gc_binary_part_2; } else { abort(); } op->a[2] = S1; op->a[3] = S2; op->a[4] = Live; op->a[5] = Dst; op->next = NULL; return op; } /* * This is used by the ops.tab rule that rewrites gc_bifs with three parameters * The instruction returned is then again rewritten to a move instruction that * uses r[0] for temp storage, followed by an i_load instruction, * folowed by i_gc_bif3_jIsId, to handle literals properly. Rewriting * always occur, as with the gc_bif2 counterpart. */ static GenOp* gen_guard_bif3(LoaderState* stp, GenOpArg Fail, GenOpArg Live, GenOpArg Bif, GenOpArg S1, GenOpArg S2, GenOpArg S3, GenOpArg Dst) { GenOp* op; BifFunction bf; NEW_GENOP(stp, op); op->op = genop_ii_gc_bif3_7; op->arity = 7; op->a[0] = Fail; op->a[1].type = TAG_u; bf = stp->import[Bif.val].bf; /* The translations here need to have a reverse counterpart in beam_emu.c:translate_gc_bif for error handling to work properly. */ if (bf == binary_part_3) { op->a[1].val = (BeamInstr) (void *) erts_gc_binary_part_3; } else { abort(); } op->a[2] = S1; op->a[3] = S2; op->a[4] = S3; op->a[5] = Live; op->a[6] = Dst; op->next = NULL; return op; } /* * Freeze the code in memory, move the string table into place, * resolve all labels. */ static int freeze_code(LoaderState* stp) { BeamInstr* code = stp->code; Uint *literal_end = NULL; Uint index; int i; byte* str_table; unsigned strtab_size = stp->chunks[STR_CHUNK].size; unsigned attr_size = stp->chunks[ATTR_CHUNK].size; unsigned compile_size = stp->chunks[COMPILE_CHUNK].size; Uint size; unsigned catches; Sint decoded_size; /* * Verify that there was a correct 'FunT' chunk if there were * make_fun2 instructions in the file. */ if (stp->lambda_error != NULL) { LoadError0(stp, stp->lambda_error); } /* * Calculate the final size of the code. */ size = (stp->ci * sizeof(BeamInstr)) + (stp->total_literal_size * sizeof(Eterm)) + strtab_size + attr_size + compile_size; /* * Move the code to its final location. */ code = (BeamInstr *) erts_realloc(ERTS_ALC_T_CODE, (void *) code, size); CHKBLK(ERTS_ALC_T_CODE,code); /* * Place a pointer to the op_int_code_end instruction in the * function table in the beginning of the file. */ code[MI_FUNCTIONS+stp->num_functions] = (BeamInstr) (code + stp->ci - 1); CHKBLK(ERTS_ALC_T_CODE,code); /* * Store the pointer to the on_load function. */ if (stp->on_load) { code[MI_ON_LOAD_FUNCTION_PTR] = (BeamInstr) (code + stp->on_load); } else { code[MI_ON_LOAD_FUNCTION_PTR] = 0; } CHKBLK(ERTS_ALC_T_CODE,code); literal_end = (Uint *) (code+stp->ci); /* * Place the literal heap directly after the code and fix up all * instructions that refer to it. */ { Uint* ptr; Uint* low; Uint* high; LiteralPatch* lp; low = (Uint *) (code+stp->ci); high = low + stp->total_literal_size; code[MI_LITERALS_START] = (BeamInstr) low; code[MI_LITERALS_END] = (BeamInstr) high; ptr = low; for (i = 0; i < stp->num_literals; i++) { Uint offset; sys_memcpy(ptr, stp->literals[i].heap, stp->literals[i].heap_size*sizeof(Eterm)); offset = ptr - stp->literals[i].heap; stp->literals[i].offset = offset; high = ptr + stp->literals[i].heap_size; while (ptr < high) { Eterm val = *ptr; switch (primary_tag(val)) { case TAG_PRIMARY_LIST: case TAG_PRIMARY_BOXED: *ptr++ = offset_ptr(val, offset); break; case TAG_PRIMARY_HEADER: ptr++; if (header_is_thing(val)) { ptr += thing_arityval(val); } break; default: ptr++; break; } } ASSERT(ptr == high); } lp = stp->literal_patches; while (lp != 0) { BeamInstr* op_ptr; Uint literal; Literal* lit; op_ptr = code + lp->pos; lit = &stp->literals[op_ptr[0]]; literal = lit->term; if (is_boxed(literal) || is_list(literal)) { literal = offset_ptr(literal, lit->offset); } op_ptr[0] = literal; lp = lp->next; } literal_end += stp->total_literal_size; } /* * Place the string table and, optionally, attributes, after the literal heap. */ CHKBLK(ERTS_ALC_T_CODE,code); sys_memcpy(literal_end, stp->chunks[STR_CHUNK].start, strtab_size); CHKBLK(ERTS_ALC_T_CODE,code); str_table = (byte *) literal_end; if (attr_size) { byte* attr = str_table + strtab_size; sys_memcpy(attr, stp->chunks[ATTR_CHUNK].start, stp->chunks[ATTR_CHUNK].size); code[MI_ATTR_PTR] = (BeamInstr) attr; code[MI_ATTR_SIZE] = (BeamInstr) stp->chunks[ATTR_CHUNK].size; decoded_size = erts_decode_ext_size(attr, attr_size, 0); if (decoded_size < 0) { LoadError0(stp, "bad external term representation of module attributes"); } code[MI_ATTR_SIZE_ON_HEAP] = decoded_size; } CHKBLK(ERTS_ALC_T_CODE,code); if (compile_size) { byte* compile_info = str_table + strtab_size + attr_size; CHKBLK(ERTS_ALC_T_CODE,code); sys_memcpy(compile_info, stp->chunks[COMPILE_CHUNK].start, stp->chunks[COMPILE_CHUNK].size); CHKBLK(ERTS_ALC_T_CODE,code); code[MI_COMPILE_PTR] = (BeamInstr) compile_info; CHKBLK(ERTS_ALC_T_CODE,code); code[MI_COMPILE_SIZE] = (BeamInstr) stp->chunks[COMPILE_CHUNK].size; CHKBLK(ERTS_ALC_T_CODE,code); decoded_size = erts_decode_ext_size(compile_info, compile_size, 0); CHKBLK(ERTS_ALC_T_CODE,code); if (decoded_size < 0) { LoadError0(stp, "bad external term representation of compilation information"); } CHKBLK(ERTS_ALC_T_CODE,code); code[MI_COMPILE_SIZE_ON_HEAP] = decoded_size; } CHKBLK(ERTS_ALC_T_CODE,code); /* * Go through all i_new_bs_put_strings instructions, restore the pointer to * the instruction and convert string offsets to pointers (to the * FIRST character). */ index = stp->new_bs_put_strings; while (index != 0) { Uint next = code[index]; code[index] = BeamOpCode(op_bs_put_string_II); code[index+2] = (BeamInstr) (str_table + code[index+2]); index = next; } CHKBLK(ERTS_ALC_T_CODE,code); { StringPatch* sp = stp->string_patches; while (sp != 0) { BeamInstr* op_ptr; byte* strp; op_ptr = code + sp->pos; strp = str_table + op_ptr[0]; op_ptr[0] = (BeamInstr) strp; sp = sp->next; } } CHKBLK(ERTS_ALC_T_CODE,code); /* * Resolve all labels. */ for (i = 0; i < stp->num_labels; i++) { Uint this_patch; Uint next_patch; Uint value = stp->labels[i].value; if (value == 0 && stp->labels[i].patches != 0) { LoadError1(stp, "label %d not resolved", i); } ASSERT(value < stp->ci); this_patch = stp->labels[i].patches; while (this_patch != 0) { ASSERT(this_patch < stp->ci); next_patch = code[this_patch]; ASSERT(next_patch < stp->ci); code[this_patch] = (BeamInstr) (code + value); this_patch = next_patch; } } CHKBLK(ERTS_ALC_T_CODE,code); /* * Fix all catch_yf instructions. */ index = stp->catches; catches = BEAM_CATCHES_NIL; while (index != 0) { BeamInstr next = code[index]; code[index] = BeamOpCode(op_catch_yf); catches = beam_catches_cons((BeamInstr *)code[index+2], catches); code[index+2] = make_catch(catches); index = next; } stp->catches = catches; CHKBLK(ERTS_ALC_T_CODE,code); /* * Save the updated code pointer and code size. */ stp->code = code; stp->loaded_size = size; CHKBLK(ERTS_ALC_T_CODE,code); return 1; load_error: /* * Make sure that the caller frees the newly reallocated block, and * not the old one (in case it has moved). */ stp->code = code; return 0; } static void final_touch(LoaderState* stp) { int i; int on_load = stp->on_load; /* * Export functions. */ for (i = 0; i < stp->num_exps; i++) { Export* ep = erts_export_put(stp->module, stp->export[i].function, stp->export[i].arity); if (!on_load) { ep->address = stp->export[i].address; } else { /* * Don't make any of the exported functions * callable yet. */ ep->address = ep->code+3; ep->code[4] = (BeamInstr) stp->export[i].address; } } /* * Import functions and patch all callers. */ for (i = 0; i < stp->num_imports; i++) { Eterm mod; Eterm func; Uint arity; BeamInstr import; Uint current; Uint next; mod = stp->import[i].module; func = stp->import[i].function; arity = stp->import[i].arity; import = (BeamInstr) erts_export_put(mod, func, arity); current = stp->import[i].patches; while (current != 0) { ASSERT(current < stp->ci); next = stp->code[current]; stp->code[current] = import; current = next; } } /* * Fix all funs. */ if (stp->num_lambdas > 0) { for (i = 0; i < stp->num_lambdas; i++) { unsigned entry_label = stp->lambdas[i].label; ErlFunEntry* fe = stp->lambdas[i].fe; BeamInstr* code_ptr = (BeamInstr *) (stp->code + stp->labels[entry_label].value); if (fe->address[0] != 0) { /* * We are hiding a pointer into older code. */ erts_refc_dec(&fe->refc, 1); } fe->address = code_ptr; #ifdef HIPE hipe_set_closure_stub(fe, stp->lambdas[i].num_free); #endif } } } static int transform_engine(LoaderState* st) { Uint op; int ap; /* Current argument. */ Uint* restart; /* Where to restart if current match fails. */ GenOpArg def_vars[TE_MAX_VARS]; /* Default buffer for variables. */ GenOpArg* var = def_vars; int i; /* General index. */ Uint mask; GenOp* instr; Uint* pc; int rval; ASSERT(gen_opc[st->genop->op].transform != -1); pc = op_transform + gen_opc[st->genop->op].transform; restart = pc; restart: if (var != def_vars) { erts_free(ERTS_ALC_T_LOADER_TMP, (void *) var); var = def_vars; } ASSERT(restart != NULL); pc = restart; ASSERT(*pc < NUM_TOPS); /* Valid instruction? */ ASSERT(*pc == TOP_try_me_else || *pc == TOP_fail); instr = st->genop; #define RETURN(r) rval = (r); goto do_return; #ifdef DEBUG restart = NULL; #endif ap = 0; for (;;) { op = *pc++; switch (op) { case TOP_is_op: if (instr == NULL) { /* * We'll need at least one more instruction to decide whether * this combination matches or not. */ RETURN(TE_SHORT_WINDOW); } if (*pc++ != instr->op) goto restart; break; case TOP_is_type: mask = *pc++; ASSERT(ap < instr->arity); ASSERT(instr->a[ap].type < BEAM_NUM_TAGS); if (((1 << instr->a[ap].type) & mask) == 0) goto restart; break; case TOP_pred: i = *pc++; switch (i) { #define RVAL i #include "beam_pred_funcs.h" #undef RVAL default: ASSERT(0); } if (i == 0) goto restart; break; #if defined(TOP_is_eq) case TOP_is_eq: ASSERT(ap < instr->arity); if (*pc++ != instr->a[ap].val) goto restart; break; #endif case TOP_is_type_eq: mask = *pc++; ASSERT(ap < instr->arity); ASSERT(instr->a[ap].type < BEAM_NUM_TAGS); if (((1 << instr->a[ap].type) & mask) == 0) goto restart; if (*pc++ != instr->a[ap].val) goto restart; break; case TOP_is_same_var: ASSERT(ap < instr->arity); i = *pc++; ASSERT(i < TE_MAX_VARS); if (var[i].type != instr->a[ap].type) goto restart; switch (var[i].type) { case TAG_r: case TAG_n: break; default: if (var[i].val != instr->a[ap].val) goto restart; } break; #if defined(TOP_is_bif) case TOP_is_bif: { int bif_number = *pc++; /* * In debug build, the type must be 'u'. * In a real build, don't match. (I.e. retain the original * call instruction, this will work, but it will be a * slight performance loss.) */ ASSERT(instr->a[ap].type == TAG_u); if (instr->a[ap].type != TAG_u) goto restart; /* * In debug build, the assertion will catch invalid indexes * immediately. In a real build, the loader will issue * an diagnostic later when the instruction is loaded. */ i = instr->a[ap].val; ASSERT(i < st->num_imports); if (i >= st->num_imports || st->import[i].bf == NULL) goto restart; if (bif_number != -1 && bif_export[bif_number]->code[4] != (BeamInstr) st->import[i].bf) { goto restart; } } break; #endif #if defined(TOP_is_not_bif) case TOP_is_not_bif: { pc++; /* * In debug build, the type must be 'u'. */ ASSERT(instr->a[ap].type == TAG_u); if (instr->a[ap].type != TAG_u) { goto restart; } i = instr->a[ap].val; /* * erlang:apply/2,3 are strange. They exist as (dummy) BIFs * so that they are included in the export table before * the erlang module is loaded. They also exist in the erlang * module as functions. When used in code, a special Beam * instruction is used. * * Below we specially recognize erlang:apply/2,3 as special. * This is necessary because after setting a trace pattern on * them, you cannot no longer see from the export entry that * they are special. */ if (i < st->num_imports) { if (st->import[i].bf != NULL || (st->import[i].module == am_erlang && st->import[i].function == am_apply && (st->import[i].arity == 2 || st->import[i].arity == 3))) { goto restart; } } } break; #endif #if defined(TOP_is_func) case TOP_is_func: { Eterm mod = *pc++; Eterm func = *pc++; int arity = *pc++; ASSERT(instr->a[ap].type == TAG_u); if (instr->a[ap].type != TAG_u) { goto restart; } i = instr->a[ap].val; ASSERT(i < st->num_imports); if (i >= st->num_imports || st->import[i].module != mod || st->import[i].function != func || (arity < MAX_ARG && st->import[i].arity != arity)) { goto restart; } } break; #endif case TOP_set_var_next_arg: ASSERT(ap < instr->arity); i = *pc++; ASSERT(i < TE_MAX_VARS); var[i].type = instr->a[ap].type; var[i].val = instr->a[ap].val; ap++; break; #if defined(TOP_rest_args) case TOP_rest_args: { int n = *pc++; int formal_arity = gen_opc[instr->op].arity; int num_vars = n + (instr->arity - formal_arity); int j = formal_arity; var = erts_alloc(ERTS_ALC_T_LOADER_TMP, num_vars * sizeof(GenOpArg)); for (i = 0; i < n; i++) { var[i] = def_vars[i]; } while (i < num_vars) { var[i++] = instr->a[j++]; } } break; #endif case TOP_next_arg: ap++; break; case TOP_next_instr: instr = instr->next; ap = 0; break; case TOP_commit: instr = instr->next; /* The next_instr was optimized away. */ /* * The left-hand side of this transformation matched. * Delete all matched instructions. */ while (st->genop != instr) { GenOp* next = st->genop->next; FREE_GENOP(st, st->genop); st->genop = next; } #ifdef DEBUG instr = 0; #endif break; #if defined(TOP_call) case TOP_call: { GenOp** lastp; GenOp* new_instr; i = *pc++; switch (i) { #define RVAL new_instr #include "beam_tr_funcs.h" #undef RVAL default: new_instr = NULL; /* Silence compiler warning. */ ASSERT(0); } if (new_instr == NULL) { goto restart; } lastp = &new_instr; while (*lastp != NULL) { lastp = &((*lastp)->next); } instr = instr->next; /* The next_instr was optimized away. */ /* * The left-hand side of this transformation matched. * Delete all matched instructions. */ while (st->genop != instr) { GenOp* next = st->genop->next; FREE_GENOP(st, st->genop); st->genop = next; } *lastp = st->genop; st->genop = new_instr; } break; #endif case TOP_new_instr: /* * Note that the instructions are generated in reverse order. */ NEW_GENOP(st, instr); instr->next = st->genop; st->genop = instr; ap = 0; break; case TOP_store_op: instr->op = *pc++; instr->arity = *pc++; break; case TOP_store_type: i = *pc++; instr->a[ap].type = i; instr->a[ap].val = 0; break; case TOP_store_val: i = *pc++; instr->a[ap].val = i; break; case TOP_store_var: i = *pc++; ASSERT(i < TE_MAX_VARS); instr->a[ap].type = var[i].type; instr->a[ap].val = var[i].val; break; case TOP_try_me_else: restart = pc + 1; restart += *pc++; ASSERT(*pc < NUM_TOPS); /* Valid instruction? */ break; case TOP_end: RETURN(TE_OK); case TOP_fail: RETURN(TE_FAIL) default: ASSERT(0); } } #undef RETURN do_return: if (var != def_vars) { erts_free(ERTS_ALC_T_LOADER_TMP, (void *) var); } return rval; } static void short_file(int line, LoaderState* stp, unsigned needed) { load_printf(line, stp, "unexpected end of %s when reading %d byte(s)", stp->file_name, needed); } static void load_printf(int line, LoaderState* context, char *fmt,...) { erts_dsprintf_buf_t *dsbufp; va_list va; if (is_non_value(context->module)) { /* Suppressed by code:get_chunk/2 */ return; } dsbufp = erts_create_logger_dsbuf(); erts_dsprintf(dsbufp, "%s(%d): Error loading ", __FILE__, line); if (is_atom(context->function)) erts_dsprintf(dsbufp, "function %T:%T/%d", context->module, context->function, context->arity); else erts_dsprintf(dsbufp, "module %T", context->module); if (context->genop) erts_dsprintf(dsbufp, ": op %s", gen_opc[context->genop->op].name); if (context->specific_op != -1) erts_dsprintf(dsbufp, ": %s", opc[context->specific_op].sign); else if (context->genop) { int i; for (i = 0; i < context->genop->arity; i++) erts_dsprintf(dsbufp, " %c", tag_to_letter[context->genop->a[i].type]); } erts_dsprintf(dsbufp, ":\n "); va_start(va, fmt); erts_vdsprintf(dsbufp, fmt, va); va_end(va); erts_dsprintf(dsbufp, "\n"); #ifdef DEBUG erts_fprintf(stderr, "%s", dsbufp->str); #endif erts_send_error_to_logger(context->group_leader, dsbufp); } static int get_int_val(LoaderState* stp, Uint len_code, BeamInstr* result) { Uint count; Uint val; len_code >>= 5; ASSERT(len_code < 8); if (len_code == 7) { LoadError0(stp, "can't load integers bigger than 8 bytes yet\n"); } count = len_code + 2; if (count == 5) { Uint msb; GetByte(stp, msb); if (msb == 0) { count--; } GetInt(stp, 4, *result); } else if (count <= 4) { GetInt(stp, count, val); *result = ((val << 8*(sizeof(val)-count)) >> 8*(sizeof(val)-count)); } else { LoadError1(stp, "too big integer; %d bytes\n", count); } return 1; load_error: return 0; } static int get_erlang_integer(LoaderState* stp, Uint len_code, BeamInstr* result) { Uint count; Sint val; byte default_buf[128]; byte* bigbuf = default_buf; byte* s; int i; int neg = 0; Uint arity; Eterm* hp; /* * Retrieve the size of the value in bytes. */ len_code >>= 5; if (len_code < 7) { count = len_code + 2; } else { Uint tag; UWord len_word; ASSERT(len_code == 7); GetTagAndValue(stp, tag, len_word); VerifyTag(stp, TAG_u, tag); count = len_word + 9; } /* * Handle values up to the size of an int, meaning either a small or bignum. */ if (count <= sizeof(val)) { GetInt(stp, count, val); val = ((val << 8*(sizeof(val)-count)) >> 8*(sizeof(val)-count)); if (IS_SSMALL(val)) { *result = val; return TAG_i; } else { *result = new_literal(stp, &hp, BIG_UINT_HEAP_SIZE); (void) small_to_big(val, hp); return TAG_q; } } /* * Make sure that the number will fit in our temporary buffer * (including margin). */ if (count+8 > sizeof(default_buf)) { bigbuf = erts_alloc(ERTS_ALC_T_LOADER_TMP, count+8); } /* * Copy the number reversed to our temporary buffer. */ GetString(stp, s, count); for (i = 0; i < count; i++) { bigbuf[count-i-1] = *s++; } /* * Check if the number is negative, and negate it if so. */ if ((bigbuf[count-1] & 0x80) != 0) { unsigned carry = 1; neg = 1; for (i = 0; i < count; i++) { bigbuf[i] = ~bigbuf[i] + carry; carry = (bigbuf[i] == 0 && carry == 1); } ASSERT(carry == 0); } /* * Align to word boundary. */ if (bigbuf[count-1] == 0) { count--; } if (bigbuf[count-1] == 0) { LoadError0(stp, "bignum not normalized"); } while (count % sizeof(Eterm) != 0) { bigbuf[count++] = 0; } /* * Allocate heap space for the bignum and copy it. */ arity = count/sizeof(Eterm); *result = new_literal(stp, &hp, arity+1); (void) bytes_to_big(bigbuf, count, neg, hp); if (bigbuf != default_buf) { erts_free(ERTS_ALC_T_LOADER_TMP, (void *) bigbuf); } return TAG_q; load_error: if (bigbuf != default_buf) { erts_free(ERTS_ALC_T_LOADER_TMP, (void *) bigbuf); } return -1; } /* * Converts an IFF id to a printable string. */ static void id_to_string(Uint id, char* s) { int i; for (i = 3; i >= 0; i--) { *s++ = (id >> i*8) & 0xff; } *s++ = '\0'; } static void new_genop(LoaderState* stp) { GenOpBlock* p = (GenOpBlock *) erts_alloc(ERTS_ALC_T_LOADER_TMP, sizeof(GenOpBlock)); int i; p->next = stp->genop_blocks; stp->genop_blocks = p; for (i = 0; i < sizeof(p->genop)/sizeof(p->genop[0])-1; i++) { p->genop[i].next = p->genop + i + 1; } p->genop[i].next = NULL; stp->free_genop = p->genop; } static int new_label(LoaderState* stp) { int num = stp->num_labels; stp->num_labels++; stp->labels = (Label *) erts_realloc(ERTS_ALC_T_LOADER_TMP, (void *) stp->labels, stp->num_labels * sizeof(Label)); stp->labels[num].value = 0; stp->labels[num].patches = 0; return num; } static void new_literal_patch(LoaderState* stp, int pos) { LiteralPatch* p = erts_alloc(ERTS_ALC_T_LOADER_TMP, sizeof(LiteralPatch)); p->pos = pos; p->next = stp->literal_patches; stp->literal_patches = p; } static void new_string_patch(LoaderState* stp, int pos) { StringPatch* p = erts_alloc(ERTS_ALC_T_LOADER_TMP, sizeof(StringPatch)); p->pos = pos; p->next = stp->string_patches; stp->string_patches = p; } static Uint new_literal(LoaderState* stp, Eterm** hpp, Uint heap_size) { Literal* lit; if (stp->allocated_literals == 0) { Uint need; ASSERT(stp->literals == 0); ASSERT(stp->num_literals == 0); stp->allocated_literals = 8; need = stp->allocated_literals * sizeof(Literal); stp->literals = (Literal *) erts_alloc(ERTS_ALC_T_LOADER_TMP, need); } else if (stp->allocated_literals <= stp->num_literals) { Uint need; stp->allocated_literals *= 2; need = stp->allocated_literals * sizeof(Literal); stp->literals = (Literal *) erts_realloc(ERTS_ALC_T_LOADER_TMP, (void *) stp->literals, need); } stp->total_literal_size += heap_size; lit = stp->literals + stp->num_literals; lit->offset = 0; lit->heap_size = heap_size; lit->heap = erts_alloc(ERTS_ALC_T_LOADER_TMP, heap_size*sizeof(Eterm)); lit->term = make_boxed(lit->heap); *hpp = lit->heap; return stp->num_literals++; } Eterm erts_module_info_0(Process* p, Eterm module) { Eterm *hp; Eterm list = NIL; Eterm tup; if (is_not_atom(module)) { return THE_NON_VALUE; } if (erts_get_module(module) == NULL) { return THE_NON_VALUE; } #define BUILD_INFO(What) \ tup = erts_module_info_1(p, module, What); \ hp = HAlloc(p, 5); \ tup = TUPLE2(hp, What, tup); \ hp += 3; \ list = CONS(hp, tup, list) BUILD_INFO(am_compile); BUILD_INFO(am_attributes); BUILD_INFO(am_imports); BUILD_INFO(am_exports); #undef BUILD_INFO return list; } Eterm erts_module_info_1(Process* p, Eterm module, Eterm what) { if (what == am_module) { return module; } else if (what == am_imports) { return NIL; } else if (what == am_exports) { return exported_from_module(p, module); } else if (what == am_functions) { return functions_in_module(p, module); } else if (what == am_attributes) { return attributes_for_module(p, module); } else if (what == am_compile) { return compilation_info_for_module(p, module); } else if (what == am_native_addresses) { return native_addresses(p, module); } return THE_NON_VALUE; } /* * Builds a list of all functions in the given module: * [{Name, Arity},...] * * Returns a tagged term, or 0 on error. */ Eterm functions_in_module(Process* p, /* Process whose heap to use. */ Eterm mod) /* Tagged atom for module. */ { Module* modp; BeamInstr* code; int i; Uint num_functions; Eterm* hp; Eterm result = NIL; if (is_not_atom(mod)) { return THE_NON_VALUE; } modp = erts_get_module(mod); if (modp == NULL) { return THE_NON_VALUE; } code = modp->code; num_functions = code[MI_NUM_FUNCTIONS]; hp = HAlloc(p, 5*num_functions); for (i = num_functions-1; i >= 0 ; i--) { BeamInstr* func_info = (BeamInstr *) code[MI_FUNCTIONS+i]; Eterm name = (Eterm) func_info[3]; int arity = (int) func_info[4]; Eterm tuple; ASSERT(is_atom(name)); tuple = TUPLE2(hp, name, make_small(arity)); hp += 3; result = CONS(hp, tuple, result); hp += 2; } return result; } /* * Builds a list of all functions including native addresses. * [{Name,Arity,NativeAddress},...] * * Returns a tagged term, or 0 on error. */ static Eterm native_addresses(Process* p, Eterm mod) { Module* modp; BeamInstr* code; int i; Eterm* hp; Uint num_functions; Uint need; Eterm* hp_end; Eterm result = NIL; if (is_not_atom(mod)) { return THE_NON_VALUE; } modp = erts_get_module(mod); if (modp == NULL) { return THE_NON_VALUE; } code = modp->code; num_functions = code[MI_NUM_FUNCTIONS]; need = (6+BIG_UINT_HEAP_SIZE)*num_functions; hp = HAlloc(p, need); hp_end = hp + need; for (i = num_functions-1; i >= 0 ; i--) { BeamInstr* func_info = (BeamInstr *) code[MI_FUNCTIONS+i]; Eterm name = (Eterm) func_info[3]; int arity = (int) func_info[4]; Eterm tuple; ASSERT(is_atom(name)); if (func_info[1] != 0) { Eterm addr = erts_bld_uint(&hp, NULL, func_info[1]); tuple = erts_bld_tuple(&hp, NULL, 3, name, make_small(arity), addr); result = erts_bld_cons(&hp, NULL, tuple, result); } } HRelease(p, hp_end, hp); return result; } /* * Builds a list of all exported functions in the given module: * [{Name, Arity},...] * * Returns a tagged term, or 0 on error. */ Eterm exported_from_module(Process* p, /* Process whose heap to use. */ Eterm mod) /* Tagged atom for module. */ { int i; Eterm* hp = NULL; Eterm* hend = NULL; Eterm result = NIL; if (is_not_atom(mod)) { return THE_NON_VALUE; } for (i = 0; i < export_list_size(); i++) { Export* ep = export_list(i); if (ep->code[0] == mod) { Eterm tuple; if (ep->address == ep->code+3 && ep->code[3] == (BeamInstr) em_call_error_handler) { /* There is a call to the function, but it does not exist. */ continue; } if (hp == hend) { int need = 10 * 5; hp = HAlloc(p, need); hend = hp + need; } tuple = TUPLE2(hp, ep->code[1], make_small(ep->code[2])); hp += 3; result = CONS(hp, tuple, result); hp += 2; } } HRelease(p,hend,hp); return result; } /* * Returns a list of all attributes for the module. * * Returns a tagged term, or 0 on error. */ Eterm attributes_for_module(Process* p, /* Process whose heap to use. */ Eterm mod) /* Tagged atom for module. */ { Module* modp; BeamInstr* code; Eterm* hp; byte* ext; Eterm result = NIL; Eterm* end; if (is_not_atom(mod) || (is_not_list(result) && is_not_nil(result))) { return THE_NON_VALUE; } modp = erts_get_module(mod); if (modp == NULL) { return THE_NON_VALUE; } code = modp->code; ext = (byte *) code[MI_ATTR_PTR]; if (ext != NULL) { hp = HAlloc(p, code[MI_ATTR_SIZE_ON_HEAP]); end = hp + code[MI_ATTR_SIZE_ON_HEAP]; result = erts_decode_ext(&hp, &MSO(p), &ext); if (is_value(result)) { ASSERT(hp <= end); } HRelease(p,end,hp); } return result; } /* * Returns a list containing compilation information. * * Returns a tagged term, or 0 on error. */ Eterm compilation_info_for_module(Process* p, /* Process whose heap to use. */ Eterm mod) /* Tagged atom for module. */ { Module* modp; BeamInstr* code; Eterm* hp; byte* ext; Eterm result = NIL; Eterm* end; if (is_not_atom(mod) || (is_not_list(result) && is_not_nil(result))) { return THE_NON_VALUE; } modp = erts_get_module(mod); if (modp == NULL) { return THE_NON_VALUE; } code = modp->code; ext = (byte *) code[MI_COMPILE_PTR]; if (ext != NULL) { hp = HAlloc(p, code[MI_COMPILE_SIZE_ON_HEAP]); end = hp + code[MI_COMPILE_SIZE_ON_HEAP]; result = erts_decode_ext(&hp, &MSO(p), &ext); if (is_value(result)) { ASSERT(hp <= end); } HRelease(p,end,hp); } return result; } /* * Returns a pointer to {module, function, arity}, or NULL if not found. */ BeamInstr * find_function_from_pc(BeamInstr* pc) { Range* low = modules; Range* high = low + num_loaded_modules; Range* mid = mid_module; while (low < high) { if (pc < mid->start) { high = mid; } else if (pc > mid->end) { low = mid + 1; } else { BeamInstr** low1 = (BeamInstr **) (mid->start + MI_FUNCTIONS); BeamInstr** high1 = low1 + mid->start[MI_NUM_FUNCTIONS]; BeamInstr** mid1; while (low1 < high1) { mid1 = low1 + (high1-low1) / 2; if (pc < mid1[0]) { high1 = mid1; } else if (pc < mid1[1]) { mid_module = mid; return mid1[0]+2; } else { low1 = mid1 + 1; } } return NULL; } mid = low + (high-low) / 2; } return NULL; } /* * Read a specific chunk from a Beam binary. */ Eterm code_get_chunk_2(Process* p, Eterm Bin, Eterm Chunk) { LoaderState state; Uint chunk = 0; ErlSubBin* sb; Uint offset; Uint bitoffs; Uint bitsize; byte* start; int i; Eterm res; Eterm real_bin; byte* temp_alloc = NULL; if ((start = erts_get_aligned_binary_bytes(Bin, &temp_alloc)) == NULL) { error: erts_free_aligned_binary_bytes(temp_alloc); BIF_ERROR(p, BADARG); } state.module = THE_NON_VALUE; /* Suppress diagnostiscs */ state.file_name = "IFF header for Beam file"; state.file_p = start; state.file_left = binary_size(Bin); for (i = 0; i < 4; i++) { Eterm* chunkp; Eterm num; if (is_not_list(Chunk)) { goto error; } chunkp = list_val(Chunk); num = CAR(chunkp); Chunk = CDR(chunkp); if (!is_byte(num)) { goto error; } chunk = chunk << 8 | unsigned_val(num); } if (is_not_nil(Chunk)) { goto error; } if (!scan_iff_file(&state, &chunk, 1, 1)) { erts_free_aligned_binary_bytes(temp_alloc); return am_undefined; } ERTS_GET_REAL_BIN(Bin, real_bin, offset, bitoffs, bitsize); if (bitoffs) { res = new_binary(p, state.chunks[0].start, state.chunks[0].size); } else { sb = (ErlSubBin *) HAlloc(p, ERL_SUB_BIN_SIZE); sb->thing_word = HEADER_SUB_BIN; sb->orig = real_bin; sb->size = state.chunks[0].size; sb->bitsize = 0; sb->bitoffs = 0; sb->offs = offset + (state.chunks[0].start - start); sb->is_writable = 0; res = make_binary(sb); } erts_free_aligned_binary_bytes(temp_alloc); return res; } /* * Calculate the MD5 for a module. */ Eterm code_module_md5_1(Process* p, Eterm Bin) { LoaderState state; byte* temp_alloc = NULL; if ((state.file_p = erts_get_aligned_binary_bytes(Bin, &temp_alloc)) == NULL) { BIF_ERROR(p, BADARG); } state.module = THE_NON_VALUE; /* Suppress diagnostiscs */ state.file_name = "IFF header for Beam file"; state.file_left = binary_size(Bin); if (!scan_iff_file(&state, chunk_types, NUM_CHUNK_TYPES, NUM_MANDATORY)) { return am_undefined; } erts_free_aligned_binary_bytes(temp_alloc); return new_binary(p, state.mod_md5, sizeof(state.mod_md5)); } #define WORDS_PER_FUNCTION 6 static BeamInstr* make_stub(BeamInstr* fp, Eterm mod, Eterm func, Uint arity, Uint native, BeamInstr OpCode) { fp[0] = (BeamInstr) BeamOp(op_i_func_info_IaaI); fp[1] = native; fp[2] = mod; fp[3] = func; fp[4] = arity; #ifdef HIPE if (native) { fp[5] = BeamOpCode(op_move_return_nr); hipe_mfa_save_orig_beam_op(mod, func, arity, fp+5); } #endif fp[5] = OpCode; return fp + WORDS_PER_FUNCTION; } static byte* stub_copy_info(LoaderState* stp, int chunk, /* Chunk: ATTR_CHUNK or COMPILE_CHUNK */ byte* info, /* Where to store info. */ BeamInstr* ptr_word, /* Where to store pointer into info. */ BeamInstr* size_word) /* Where to store size of info. */ { Sint decoded_size; Uint size = stp->chunks[chunk].size; if (size != 0) { memcpy(info, stp->chunks[chunk].start, size); *ptr_word = (BeamInstr) info; decoded_size = erts_decode_ext_size(info, size, 0); if (decoded_size < 0) { return 0; } *size_word = decoded_size; } return info + size; } static int stub_read_export_table(LoaderState* stp) { int i; GetInt(stp, 4, stp->num_exps); if (stp->num_exps > stp->num_functions) { LoadError2(stp, "%d functions exported; only %d functions defined", stp->num_exps, stp->num_functions); } stp->export = (ExportEntry *) erts_alloc(ERTS_ALC_T_LOADER_TMP, stp->num_exps * sizeof(ExportEntry)); for (i = 0; i < stp->num_exps; i++) { Uint n; GetInt(stp, 4, n); GetAtom(stp, n, stp->export[i].function); GetInt(stp, 4, n); if (n > MAX_REG) { LoadError2(stp, "export table entry %d: absurdly high arity %d", i, n); } stp->export[i].arity = n; GetInt(stp, 4, n); /* Ignore label */ } return 1; load_error: return 0; } static void stub_final_touch(LoaderState* stp, BeamInstr* fp) { int i; int n = stp->num_exps; Eterm function = fp[3]; int arity = fp[4]; #ifdef HIPE Lambda* lp; #endif /* * Test if the function should be exported. */ for (i = 0; i < n; i++) { if (stp->export[i].function == function && stp->export[i].arity == arity) { Export* ep = erts_export_put(fp[2], function, arity); ep->address = fp+5; return; } } /* * Must be a plain local function or a lambda local function. * Search the lambda table to find out which. */ #ifdef HIPE n = stp->num_lambdas; for (i = 0, lp = stp->lambdas; i < n; i++, lp++) { ErlFunEntry* fe = stp->lambdas[i].fe; if (lp->function == function && lp->arity == arity) { fp[5] = (Eterm) BeamOpCode(op_hipe_trap_call_closure); fe->address = &(fp[5]); } } #endif return; } /* Takes an erlang list of addresses: [{Adr, Patchtyppe} | Addresses] and the address of a fun_entry. */ int patch(Eterm Addresses, Uint fe) { #ifdef HIPE Eterm* listp; Eterm tuple; Eterm* tp; Eterm patchtype; Uint AddressToPatch; while (!is_nil(Addresses)) { listp = list_val(Addresses); tuple = CAR(listp); if (is_not_tuple(tuple)) { return 0; /* Signal error */ } tp = tuple_val(tuple); if (tp[0] != make_arityval(2)) { return 0; /* Signal error */ } if(term_to_Uint(tp[1], &AddressToPatch) == 0) { return 0; /* Signal error */ } patchtype = tp[2]; if (is_not_atom(patchtype)) { return 0; /* Signal error */ } hipe_patch_address((Uint *)AddressToPatch, patchtype, fe); Addresses = CDR(listp); } #endif return 1; } int patch_funentries(Eterm Patchlist) { #ifdef HIPE while (!is_nil(Patchlist)) { Eterm Info; Eterm MFA; Eterm Addresses; Eterm tuple; Eterm Mod; Eterm* listp; Eterm* tp; ErlFunEntry* fe; Uint index; Uint uniq; Uint native_address; listp = list_val(Patchlist); tuple = CAR(listp); Patchlist = CDR(listp); if (is_not_tuple(tuple)) { return 0; /* Signal error */ } tp = tuple_val(tuple); if (tp[0] != make_arityval(3)) { return 0; /* Signal error */ } Info = tp[1]; if (is_not_tuple(Info)) { return 0; /* Signal error */ } Addresses = tp[2]; if (is_not_list(Addresses)) { return 0; /* Signal error */ } if(term_to_Uint(tp[3], &native_address) == 0) { return 0; /* Signal error */ } tp = tuple_val(Info); if (tp[0] != make_arityval(3)) { return 0; /* Signal error */ } MFA = tp[1]; if (is_not_tuple(MFA)) { return 0; /* Signal error */ } if(term_to_Uint(tp[2], &uniq) == 0){ return 0; /* Signal error */ } if(term_to_Uint(tp[3], &index) == 0) { return 0; /* Signal error */ } tp = tuple_val(MFA); if (tp[0] != make_arityval(3)) { return 0; /* Signal error */ } Mod = tp[1]; if (is_not_atom(Mod)) { return 0; /* Signal error */ } fe = erts_get_fun_entry(Mod, uniq, index); fe->native_address = (Uint *)native_address; erts_refc_dec(&fe->refc, 1); if (!patch(Addresses, (Uint) fe)) return 0; } #endif return 1; /* Signal that all went well */ } /* * Do a dummy load of a module. No threaded code will be loaded. * Used for loading native code. * Will also patch all references to fun_entries to point to * the new fun_entries created. */ Eterm erts_make_stub_module(Process* p, Eterm Mod, Eterm Beam, Eterm Info) { LoaderState state; BeamInstr Funcs; BeamInstr Patchlist; Eterm* tp; BeamInstr* code = NULL; BeamInstr* ptrs; BeamInstr* fp; byte* info; Uint ci; int n; int code_size; int rval; int i; ErlDrvBinary* bin = NULL; byte* temp_alloc = NULL; byte* bytes; Uint size; /* * Must initialize state.lambdas here because the error handling code * at label 'error' uses it. */ init_state(&state); if (is_not_atom(Mod)) { goto error; } if (is_not_tuple(Info)) { goto error; } tp = tuple_val(Info); if (tp[0] != make_arityval(2)) { goto error; } Funcs = tp[1]; Patchlist = tp[2]; if ((n = list_length(Funcs)) < 0) { goto error; } if ((bytes = erts_get_aligned_binary_bytes(Beam, &temp_alloc)) == NULL) { goto error; } size = binary_size(Beam); /* * Uncompressed if needed. */ if (!(size >= 4 && bytes[0] == 'F' && bytes[1] == 'O' && bytes[2] == 'R' && bytes[3] == '1')) { bin = (ErlDrvBinary *) erts_gzinflate_buffer((char*)bytes, size); if (bin == NULL) { goto error; } bytes = (byte*)bin->orig_bytes; size = bin->orig_size; } /* * Scan the Beam binary and read the interesting sections. */ state.file_name = "IFF header for Beam file"; state.file_p = bytes; state.file_left = size; state.module = Mod; state.group_leader = p->group_leader; state.num_functions = n; if (!scan_iff_file(&state, chunk_types, NUM_CHUNK_TYPES, NUM_MANDATORY)) { goto error; } define_file(&state, "code chunk header", CODE_CHUNK); if (!read_code_header(&state)) { goto error; } define_file(&state, "atom table", ATOM_CHUNK); if (!load_atom_table(&state)) { goto error; } define_file(&state, "export table", EXP_CHUNK); if (!stub_read_export_table(&state)) { goto error; } if (state.chunks[LAMBDA_CHUNK].size > 0) { define_file(&state, "lambda (fun) table", LAMBDA_CHUNK); if (!read_lambda_table(&state)) { goto error; } } /* * Allocate memory for the stub module. */ code_size = ((WORDS_PER_FUNCTION+1)*n + MI_FUNCTIONS + 2) * sizeof(BeamInstr); code_size += state.chunks[ATTR_CHUNK].size; code_size += state.chunks[COMPILE_CHUNK].size; code = erts_alloc_fnf(ERTS_ALC_T_CODE, code_size); if (!code) { goto error; } /* * Initialize code area. */ code[MI_NUM_FUNCTIONS] = n; code[MI_ATTR_PTR] = 0; code[MI_ATTR_SIZE] = 0; code[MI_ATTR_SIZE_ON_HEAP] = 0; code[MI_COMPILE_PTR] = 0; code[MI_COMPILE_SIZE] = 0; code[MI_COMPILE_SIZE_ON_HEAP] = 0; code[MI_NUM_BREAKPOINTS] = 0; code[MI_ON_LOAD_FUNCTION_PTR] = 0; ci = MI_FUNCTIONS + n + 1; /* * Make stubs for all functions. */ ptrs = code + MI_FUNCTIONS; fp = code + ci; for (i = 0; i < n; i++) { Eterm* listp; Eterm tuple; Eterm* tp; Eterm func; Eterm arity_term; Uint arity; Uint native_address; Eterm op; if (is_nil(Funcs)) { break; } listp = list_val(Funcs); tuple = CAR(listp); Funcs = CDR(listp); /* Error checking */ if (is_not_tuple(tuple)) { goto error; } tp = tuple_val(tuple); if (tp[0] != make_arityval(3)) { goto error; } func = tp[1]; arity_term = tp[2]; if (is_not_atom(func) || is_not_small(arity_term)) { goto error; } arity = signed_val(arity_term); if (arity < 0) { goto error; } if (term_to_Uint(tp[3], &native_address) == 0) { goto error; } /* * Set the pointer and make the stub. Put a return instruction * as the body until we know what kind of trap we should put there. */ ptrs[i] = (BeamInstr) fp; #ifdef HIPE op = (Eterm) BeamOpCode(op_hipe_trap_call); /* Might be changed later. */ #else op = (Eterm) BeamOpCode(op_move_return_nr); #endif fp = make_stub(fp, Mod, func, arity, (Uint)native_address, op); } /* * Insert the last pointer and the int_code_end instruction. */ ptrs[i] = (BeamInstr) fp; *fp++ = (BeamInstr) BeamOp(op_int_code_end); /* * Copy attributes and compilation information. */ info = (byte *) fp; info = stub_copy_info(&state, ATTR_CHUNK, info, code+MI_ATTR_PTR, code+MI_ATTR_SIZE_ON_HEAP); if (info == NULL) { goto error; } info = stub_copy_info(&state, COMPILE_CHUNK, info, code+MI_COMPILE_PTR, code+MI_COMPILE_SIZE_ON_HEAP); if (info == NULL) { goto error; } /* * Insert the module in the module table. */ rval = insert_new_code(p, 0, p->group_leader, Mod, code, code_size, BEAM_CATCHES_NIL); if (rval < 0) { goto error; } /* * Export all stub functions and insert the correct type of HiPE trap. */ fp = code + ci; for (i = 0; i < n; i++) { stub_final_touch(&state, fp); fp += WORDS_PER_FUNCTION; } if (patch_funentries(Patchlist)) { erts_free_aligned_binary_bytes(temp_alloc); if (state.lambdas != state.def_lambdas) { erts_free(ERTS_ALC_T_LOADER_TMP, (void *) state.lambdas); } if (bin != NULL) { driver_free_binary(bin); } return Mod; } error: erts_free_aligned_binary_bytes(temp_alloc); if (code != NULL) { erts_free(ERTS_ALC_T_CODE, code); } if (state.lambdas != state.def_lambdas) { erts_free(ERTS_ALC_T_LOADER_TMP, (void *) state.lambdas); } if (bin != NULL) { driver_free_binary(bin); } BIF_ERROR(p, BADARG); } #undef WORDS_PER_FUNCTION static int safe_mul(UWord a, UWord b, UWord* resp) { Uint res = a * b; /* XXX:Pan - used in bit syntax, the multiplication has to be stored in Uint */ *resp = res; if (b == 0) { return 1; } else { return (res / b) == a; } }