# # %CopyrightBegin% # # Copyright Ericsson AB 1997-2016. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # %CopyrightEnd% # # # The instructions that follows are only known by the loader and the emulator. # They can be changed without recompiling old Beam files. # # Instructions starting with a "i_" prefix are instructions produced by # instruction transformations; thus, they never occur in BEAM files. # # The too_old_compiler/0 instruction is specially handled in beam_load.c # to produce a user-friendly message informing the user that the module # needs to be re-compiled with a modern compiler. too_old_compiler/0 too_old_compiler | never() => # In R9C and earlier, the loader used to insert special instructions inside # the module_info/0,1 functions. (In R10B and later, the compiler inserts # an explicit call to an undocumented BIF, so that no loader trickery is # necessary.) Since the instructions don't work correctly in R12B, simply # refuse to load the module. func_info M=a a==am_module_info A=u==0 | label L | move n x==0 => too_old_compiler func_info M=a a==am_module_info A=u==1 | label L | move n x==0 => too_old_compiler # The undocumented and unsupported guard BIF is_constant/1 was removed # in R13. The is_constant/2 operation is marked as obsolete in genop.tab, # so the loader will automatically generate a too_old_compiler message # it is used, but we need to handle the is_constant/1 BIF specially here. bif1 Fail u$func:erlang:is_constant/1 Src Dst => too_old_compiler # Since the constant pool was introduced in R12B, empty tuples ({}) # are literals. Therefore we no longer need to allow put_tuple/2 # with a tuple size of zero. put_tuple u==0 d => too_old_compiler # # All the other instructions. # label L i_func_info I a a I int_code_end i_generic_breakpoint i_debug_breakpoint i_return_time_trace i_return_to_trace i_yield return # # To ensure that a "move Src x(0)" instruction can be combined # with the following call instruction, we need to make sure that # there is no line/1 instruction between the move and the call. # # A tail-recursive call to an external function (non-BIF) will # never be saved on the stack, so there is no reason to keep # the line instruction. (The compiler did not remove the line # instruction because it cannot tell the difference between # BIFs and ordinary Erlang functions.) # move S X0=x==0 | line Loc | call_ext Ar Func => \ line Loc | move S X0 | call_ext Ar Func move S X0=x==0 | line Loc | call_ext_last Ar Func=u$is_not_bif D => \ move S X0 | call_ext_last Ar Func D move S X0=x==0 | line Loc | call_ext_only Ar Func=u$is_not_bif => \ move S X0 | call_ext_only Ar Func move S X0=x==0 | line Loc | call Ar Func => \ line Loc | move S X0 | call Ar Func line Loc | func_info M F A => func_info M F A | line Loc line I %macro: allocate Allocate -pack %macro: allocate_zero AllocateZero -pack %macro: allocate_heap AllocateHeap -pack %macro: allocate_heap_zero AllocateHeapZero -pack %macro: test_heap TestHeap -pack allocate t t allocate_heap t I t deallocate I init y allocate_zero t t allocate_heap_zero t I t trim N Remaining => i_trim N i_trim I test_heap I t allocate_heap S u==0 R => allocate S R allocate_heap_zero S u==0 R => allocate_zero S R init2 y y init3 y y y init Y1 | init Y2 | init Y3 => init3 Y1 Y2 Y3 init Y1 | init Y2 => init2 Y1 Y2 %macro: init2 Init2 -pack %macro: init3 Init3 -pack # Selecting values select_val S=aiq Fail=f Size=u Rest=* => const_select_val(S, Fail, Size, Rest) select_val S=s Fail=f Size=u Rest=* | use_jump_tab(Size, Rest) => \ gen_jump_tab(S, Fail, Size, Rest) is_integer Fail=f S | select_val S=s Fail=f Size=u Rest=* | use_jump_tab(Size, Rest) => \ gen_jump_tab(S, Fail, Size, Rest) is_integer TypeFail=f S | select_val S=s Fail=f Size=u Rest=* | \ mixed_types(Size, Rest) => \ gen_split_values(S, TypeFail, Fail, Size, Rest) select_val S=s Fail=f Size=u Rest=* | mixed_types(Size, Rest) => \ gen_split_values(S, Fail, Fail, Size, Rest) is_integer Fail=f S | select_val S=d Fail=f Size=u Rest=* | \ fixed_size_values(Size, Rest) => gen_select_val(S, Fail, Size, Rest) is_atom Fail=f S | select_val S=d Fail=f Size=u Rest=* | \ fixed_size_values(Size, Rest) => gen_select_val(S, Fail, Size, Rest) select_val S=s Fail=f Size=u Rest=* | floats_or_bignums(Size, Rest) => \ gen_select_literals(S, Fail, Size, Rest) select_val S=d Fail=f Size=u Rest=* | fixed_size_values(Size, Rest) => \ gen_select_val(S, Fail, Size, Rest) is_tuple Fail=f S | select_tuple_arity S=d Fail=f Size=u Rest=* => \ gen_select_tuple_arity(S, Fail, Size, Rest) select_tuple_arity S=d Fail=f Size=u Rest=* => \ gen_select_tuple_arity(S, Fail, Size, Rest) i_select_val_bins x f I i_select_val_bins y f I i_select_val_lins x f I i_select_val_lins y f I i_select_val2 x f c c f f i_select_val2 y f c c f f i_select_tuple_arity x f I i_select_tuple_arity y f I i_select_tuple_arity2 x f A A f f i_select_tuple_arity2 y f A A f f i_jump_on_val_zero x f I i_jump_on_val_zero y f I i_jump_on_val x f I I i_jump_on_val y f I I %macro: get_list GetList -pack get_list x x x get_list x x y get_list x y x get_list x y y get_list y x x get_list y x y get_list y y x get_list y y y # The following get_list instructions using x(0) are frequently used. get_list r x x get_list r r y get_list x r x get_list r x y get_list r y r get_list r x r # Old-style catch. catch y f catch_end y # Try/catch. try Y F => catch Y F try_case Y => try_end Y try_end y try_case_end s # Destructive set tuple element set_tuple_element s d P # Get tuple element %macro: i_get_tuple_element GetTupleElement -pack i_get_tuple_element x P x i_get_tuple_element y P x %cold i_get_tuple_element x P y i_get_tuple_element y P y %hot %macro: i_get_tuple_element2 GetTupleElement2 -pack i_get_tuple_element2 x P x %macro: i_get_tuple_element2y GetTupleElement2Y -pack i_get_tuple_element2y x P y y %macro: i_get_tuple_element3 GetTupleElement3 -pack i_get_tuple_element3 x P x %macro: is_number IsNumber -fail_action %cold is_number f x is_number f y %hot is_number Fail=f i => is_number Fail=f na => jump Fail is_number Fail Literal=q => move Literal x | is_number Fail x jump f case_end NotInX=cy => move NotInX x | case_end x badmatch NotInX=cy => move NotInX x | badmatch x case_end x badmatch x if_end # Operands for raise/2 are almost always in x(2) and x(1). # Optimize for that case. raise x==2 x==1 => i_raise raise Trace=y Value=y => move Trace x=2 | move Value x=1 | i_raise raise Trace Value => move Trace x=3 | move Value x=1 | move x=3 x=2 | i_raise i_raise # Internal now, but could be useful to make known to the compiler. badarg j system_limit j move C=cxy x==0 | jump Lbl => move_jump Lbl C %macro: move_jump MoveJump -nonext move_jump f n move_jump f c move_jump f x move_jump f y # Movement to and from the stack is common # Try to pack as much as we can into one instruction # Window move move_window/5 move_window/6 # x -> y move X1=x Y1=y | move X2=x Y2=y | move X3=x Y3=y | succ(Y1,Y2) | succ(Y2,Y3) => \ move_window X1 X2 X3 Y1 Y3 move_window X1=x X2=x X3=x Y1=y Y3=y | move X4=x Y4=y | succ(Y3,Y4) => \ move_window X1 X2 X3 X4 Y1 Y4 move_window X1=x X2=x X3=x X4=x Y1=y Y4=y | move X5=x Y5=y | succ(Y4,Y5) => \ move_window5 X1 X2 X3 X4 X5 Y1 move_window X1=x X2=x X3=x Y1=y Y3=y => move_window3 X1 X2 X3 Y1 move_window X1=x X2=x X3=x X4=x Y1=y Y4=y => move_window4 X1 X2 X3 X4 Y1 %macro: move_window3 MoveWindow3 -pack %macro: move_window4 MoveWindow4 -pack %macro: move_window5 MoveWindow5 -pack move_window3 x x x y move_window4 x x x x y move_window5 x x x x x y # Swap registers. move R1=x Tmp=x | move R2=xy R1 | move Tmp R2 => swap_temp R1 R2 Tmp swap_temp R1 R2 Tmp | line Loc | apply Live | is_killed_apply(Tmp, Live) => \ swap R1 R2 | line Loc | apply Live swap_temp R1 R2 Tmp | line Loc | call Live Addr | is_killed(Tmp, Live) => \ swap R1 R2 | line Loc | call Live Addr swap_temp R1 R2 Tmp | call_only Live Addr | \ is_killed(Tmp, Live) => swap R1 R2 | call_only Live Addr swap_temp R1 R2 Tmp | call_last Live Addr D | \ is_killed(Tmp, Live) => swap R1 R2 | call_last Live Addr D swap_temp R1 R2 Tmp | line Loc | call_ext Live Addr | is_killed(Tmp, Live) => \ swap R1 R2 | line Loc | call_ext Live Addr swap_temp R1 R2 Tmp | line Loc | call_ext_only Live Addr | \ is_killed(Tmp, Live) => swap R1 R2 | line Loc | call_ext_only Live Addr swap_temp R1 R2 Tmp | line Loc | call_ext_last Live Addr D | \ is_killed(Tmp, Live) => swap R1 R2 | line Loc | call_ext_last Live Addr D %macro: swap_temp SwapTemp -pack swap_temp x x x swap_temp x y x %macro: swap Swap -pack swap x x swap x y move Src=x D1=x | move Src=x D2=x => move_dup Src D1 D2 move Src=x SD=x | move SD=x D=x => move_dup Src SD D move Src=x D1=x | move Src=x D2=y => move_dup Src D1 D2 move Src=y SD=x | move SD=x D=y => move_dup Src SD D move Src=x SD=x | move SD=x D=y => move_dup Src SD D move Src=y SD=x | move SD=x D=x => move_dup Src SD D move SD=x D=x | move Src=xy SD=x => move_shift Src SD D move SD=y D=x | move Src=x SD=y => move_shift Src SD D move SD=x D=y | move Src=x SD=x => move_shift Src SD D # The transformations above guarantee that the source for # the second move is not the same as the destination for # the first move. That means that we can do the moves in # parallel (fetch both values, then store them) which could # be faster. move X1=x Y1=y | move X2=x Y2=y => move2_par X1 Y1 X2 Y2 move Y1=y X1=x | move Y2=y X2=x => move2_par Y1 X1 Y2 X2 move X1=x X2=x | move X3=x X4=x => move2_par X1 X2 X3 X4 move X1=x X2=x | move X3=x Y1=y => move2_par X1 X2 X3 Y1 move S1=x S2=x | move X1=x Y1=y => move2_par S1 S2 X1 Y1 move S1=y S2=x | move X1=x Y1=y => move2_par S1 S2 X1 Y1 move Y1=y X1=x | move S1=x D1=x => move2_par Y1 X1 S1 D1 move S1=x D1=x | move Y1=y X1=x => move2_par S1 D1 Y1 X1 move2_par X1=x Y1=y X2=x Y2=y | move X3=x Y3=y => move3 X1 Y1 X2 Y2 X3 Y3 move2_par Y1=y X1=x Y2=y X2=x | move Y3=y X3=x => move3 Y1 X1 Y2 X2 Y3 X3 move2_par X1=x X2=x X3=x X4=x | move X5=x X6=x => move3 X1 X2 X3 X4 X5 X6 move C=aiq X=x==1 => move_x1 C move C=aiq X=x==2 => move_x2 C move_x1 c move_x2 c %macro: move_shift MoveShift -pack move_shift x x x move_shift y x x move_shift x y x move_shift x x y %macro: move_dup MoveDup -pack move_dup x x x move_dup x x y move_dup y x x move_dup y x y %macro: move2_par Move2Par -pack move2_par x y x y move2_par y x y x move2_par x x x x move2_par x x x y move2_par y x x y move2_par x x y x move2_par y x x x %macro: move3 Move3 -pack move3 x y x y x y move3 y x y x y x move3 x x x x x x # The compiler almost never generates a "move Literal y(Y)" instruction, # so let's cheat if we encounter one. move S=n D=y => init D move S=c D=y => move S x | move x D %macro:move Move -pack -gen_dest move x x move x y move y x move c x move n x move y y # The following move instructions using x(0) are frequently used. move x r move r x move y r move c r move r y # Receive operations. loop_rec Fail x==0 | smp_mark_target_label(Fail) => i_loop_rec Fail label L | wait_timeout Fail Src | smp_already_locked(L) => label L | i_wait_timeout_locked Fail Src wait_timeout Fail Src => i_wait_timeout Fail Src i_wait_timeout Fail Src=aiq => gen_literal_timeout(Fail, Src) i_wait_timeout_locked Fail Src=aiq => gen_literal_timeout_locked(Fail, Src) label L | wait Fail | smp_already_locked(L) => label L | wait_locked Fail wait Fail | smp() => wait_unlocked Fail label L | timeout | smp_already_locked(L) => label L | timeout_locked remove_message timeout timeout_locked i_loop_rec f loop_rec_end f wait f wait_locked f wait_unlocked f i_wait_timeout f I i_wait_timeout f s i_wait_timeout_locked f I i_wait_timeout_locked f s i_wait_error i_wait_error_locked send # # Optimized comparisons with one immediate/literal operand. # is_eq_exact Lbl R=xy C=ian => i_is_eq_exact_immed Lbl R C is_eq_exact Lbl R=xy C=q => i_is_eq_exact_literal Lbl R C is_ne_exact Lbl R=xy C=ian => i_is_ne_exact_immed Lbl R C is_ne_exact Lbl R=xy C=q => i_is_ne_exact_literal Lbl R C %macro: i_is_eq_exact_immed EqualImmed -fail_action i_is_eq_exact_immed f r c i_is_eq_exact_immed f x c i_is_eq_exact_immed f y c i_is_eq_exact_literal f x c i_is_eq_exact_literal f y c %macro: i_is_ne_exact_immed NotEqualImmed -fail_action i_is_ne_exact_immed f x c i_is_ne_exact_immed f y c i_is_ne_exact_literal f x c i_is_ne_exact_literal f y c is_eq_exact Lbl Y=y X=x => is_eq_exact Lbl X Y %macro: is_eq_exact EqualExact -fail_action -pack is_eq_exact f x x is_eq_exact f x y is_eq_exact f s s %macro: is_lt IsLessThan -fail_action is_lt f x x is_lt f x c is_lt f c x %cold is_lt f s s %hot %macro: is_ge IsGreaterEqual -fail_action is_ge f x x is_ge f x c is_ge f c x %cold is_ge f s s %hot %macro: is_ne_exact NotEqualExact -fail_action is_ne_exact f s s %macro: is_eq Equal -fail_action is_eq f s s %macro: is_ne NotEqual -fail_action is_ne f s s # # Putting things. # put_tuple Arity Dst => i_put_tuple Dst u i_put_tuple Dst Arity Puts=* | put S1 | put S2 | \ put S3 | put S4 | put S5 => \ tuple_append_put5(Arity, Dst, Puts, S1, S2, S3, S4, S5) i_put_tuple Dst Arity Puts=* | put S => \ tuple_append_put(Arity, Dst, Puts, S) i_put_tuple/2 %macro:i_put_tuple PutTuple -pack -goto:do_put_tuple i_put_tuple x I i_put_tuple y I # # The instruction "put_list Const [] Dst" were generated in rare # circumstances up to and including OTP 18. Starting with OTP 19, # AFAIK, it should never be generated. # put_list Const=c n Dst => move Const x | put_list x n Dst %macro:put_list PutList -pack -gen_dest put_list x n x put_list y n x put_list x x x put_list y x x put_list y y x put_list x y x put_list y x x # put_list SrcReg Constant Dst put_list x c x put_list x c y put_list y c x # put_list Constant SrcReg Dst put_list c x x put_list c y x # The following put_list instructions using x(0) are frequently used. put_list y r r put_list x r r put_list r n r put_list r n x put_list r x x put_list r x r put_list x x r %cold put_list s s d %hot # # Some more only used by the emulator # normal_exit continue_exit apply_bif call_nif call_error_handler error_action_code return_trace # # Instruction transformations & folded instructions. # # Note: There is no 'move_return y r', since there never are any y registers # when we do move_return (if we have y registers, we must do move_deallocate_return). move S x==0 | return => move_return S %macro: move_return MoveReturn -nonext move_return x move_return c move_return n move S x==0 | deallocate D | return => move_deallocate_return S D %macro: move_deallocate_return MoveDeallocateReturn -pack -nonext move_deallocate_return x Q move_deallocate_return y Q move_deallocate_return c Q move_deallocate_return n Q deallocate D | return => deallocate_return D %macro: deallocate_return DeallocateReturn -nonext deallocate_return Q test_heap Need u==1 | put_list Y=y x==0 x==0 => test_heap_1_put_list Need Y %macro: test_heap_1_put_list TestHeapPutList -pack test_heap_1_put_list I y # Test tuple & arity (head) is_tuple Fail Literal=q => move Literal x | is_tuple Fail x is_tuple Fail=f c => jump Fail is_tuple Fail=f S=xy | test_arity Fail=f S=xy Arity => is_tuple_of_arity Fail S Arity %macro:is_tuple_of_arity IsTupleOfArity -fail_action is_tuple_of_arity f r A is_tuple_of_arity f x A is_tuple_of_arity f y A %macro: is_tuple IsTuple -fail_action is_tuple f r is_tuple f x is_tuple f y test_arity Fail Literal=q Arity => move Literal x | test_arity Fail x Arity test_arity Fail=f c Arity => jump Fail %macro: test_arity IsArity -fail_action test_arity f x A test_arity f y A get_tuple_element Reg=x P1 D1=x | get_tuple_element Reg=x P2 D2=x | \ get_tuple_element Reg=x P3 D3=x | \ succ(P1, P2) | succ(P2, P3) | \ succ(D1, D2) | succ(D2, D3) => i_get_tuple_element3 Reg P1 D1 get_tuple_element Reg=x P1 D1=x | get_tuple_element Reg=x P2 D2=x | \ succ(P1, P2) | succ(D1, D2) => i_get_tuple_element2 Reg P1 D1 get_tuple_element Reg=x P1 D1=y | get_tuple_element Reg=x P2 D2=y | \ succ(P1, P2) => i_get_tuple_element2y Reg P1 D1 D2 get_tuple_element Reg P Dst => i_get_tuple_element Reg P Dst is_integer Fail=f i => is_integer Fail=f an => jump Fail is_integer Fail Literal=q => move Literal x | is_integer Fail x is_integer Fail=f S=x | allocate Need Regs => is_integer_allocate Fail S Need Regs %macro: is_integer_allocate IsIntegerAllocate -fail_action is_integer_allocate f x I I %macro: is_integer IsInteger -fail_action is_integer f x is_integer f y is_list Fail=f n => is_list Fail Literal=q => move Literal x | is_list Fail x is_list Fail=f c => jump Fail %macro: is_list IsList -fail_action is_list f x %cold is_list f y %hot is_nonempty_list Fail=f S=x | allocate Need Rs => is_nonempty_list_allocate Fail S Need Rs %macro:is_nonempty_list_allocate IsNonemptyListAllocate -fail_action -pack is_nonempty_list_allocate f r I t is_nonempty_list_allocate f x I t is_nonempty_list F=f x==0 | test_heap I1 I2 => is_non_empty_list_test_heap F I1 I2 %macro: is_non_empty_list_test_heap IsNonemptyListTestHeap -fail_action -pack is_non_empty_list_test_heap f I t is_nonempty_list Fail=f S=x | get_list S D1=x D2=x => \ is_nonempty_list_get_list Fail S D1 D2 %macro: is_nonempty_list_get_list IsNonemptyListGetList -fail_action -pack is_nonempty_list_get_list f r x x is_nonempty_list_get_list f x x x %macro: is_nonempty_list IsNonemptyList -fail_action is_nonempty_list f x is_nonempty_list f y %macro: is_atom IsAtom -fail_action is_atom f x %cold is_atom f y %hot is_atom Fail=f a => is_atom Fail=f niq => jump Fail %macro: is_float IsFloat -fail_action is_float f x %cold is_float f y %hot is_float Fail=f nai => jump Fail is_float Fail Literal=q => move Literal x | is_float Fail x is_nil Fail=f n => is_nil Fail=f qia => jump Fail %macro: is_nil IsNil -fail_action is_nil f x is_nil f y is_binary Fail Literal=q => move Literal x | is_binary Fail x is_binary Fail=f c => jump Fail %macro: is_binary IsBinary -fail_action is_binary f x %cold is_binary f y %hot # XXX Deprecated. is_bitstr Fail Term => is_bitstring Fail Term is_bitstring Fail Literal=q => move Literal x | is_bitstring Fail x is_bitstring Fail=f c => jump Fail %macro: is_bitstring IsBitstring -fail_action is_bitstring f x %cold is_bitstring f y %hot is_reference Fail=f cq => jump Fail %macro: is_reference IsRef -fail_action is_reference f x %cold is_reference f y %hot is_pid Fail=f cq => jump Fail %macro: is_pid IsPid -fail_action is_pid f x %cold is_pid f y %hot is_port Fail=f cq => jump Fail %macro: is_port IsPort -fail_action is_port f x %cold is_port f y %hot is_boolean Fail=f a==am_true => is_boolean Fail=f a==am_false => is_boolean Fail=f ac => jump Fail %cold %macro: is_boolean IsBoolean -fail_action is_boolean f x is_boolean f y %hot is_function2 Fail=f acq Arity => jump Fail is_function2 Fail=f Fun a => jump Fail is_function2 f s s %macro: is_function2 IsFunction2 -fail_action # Allocating & initializing. allocate Need Regs | init Y => allocate_init Need Regs Y init Y1 | init Y2 => init2 Y1 Y2 %macro: allocate_init AllocateInit -pack allocate_init t I y ################################################################# # External function and bif calls. ################################################################# # # The BIFs erts_internal:check_process_code/2 must be called like a function, # to ensure that c_p->i (program counter) is set correctly (an ordinary # BIF call doesn't set it). # call_ext u==2 Bif=u$bif:erts_internal:check_process_code/2 => i_call_ext Bif call_ext_last u==2 Bif=u$bif:erts_internal:check_process_code/2 D => i_call_ext_last Bif D call_ext_only u==2 Bif=u$bif:erts_internal:check_process_code/2 => i_call_ext_only Bif # # The BIFs erlang:garbage_collect/0 must be called like a function, # to allow them to invoke the garbage collector. (The stack pointer must # be saved and p->arity must be zeroed, which is not done on ordinary BIF calls.) # call_ext u==0 Bif=u$bif:erlang:garbage_collect/0 => i_call_ext Bif call_ext_last u==0 Bif=u$bif:erlang:garbage_collect/0 D => i_call_ext_last Bif D call_ext_only u==0 Bif=u$bif:erlang:garbage_collect/0 => i_call_ext_only Bif # # put/2 and erase/1 must be able to do garbage collection, so we must call # them like functions. # call_ext u==2 Bif=u$bif:erlang:put/2 => i_call_ext Bif call_ext_last u==2 Bif=u$bif:erlang:put/2 D => i_call_ext_last Bif D call_ext_only u==2 Bif=u$bif:erlang:put/2 => i_call_ext_only Bif call_ext u==1 Bif=u$bif:erlang:erase/1 => i_call_ext Bif call_ext_last u==1 Bif=u$bif:erlang:erase/1 D => i_call_ext_last Bif D call_ext_only u==1 Bif=u$bif:erlang:erase/1 => i_call_ext_only Bif # # The process_info/1,2 BIF should be called like a function, to force # the emulator to set c_p->current before calling it (a BIF call doesn't # set it). # # In addition, we force the use of a non-tail-recursive call. This will ensure # that c_p->cp points into the function making the call. # call_ext u==1 Bif=u$bif:erlang:process_info/1 => i_call_ext Bif call_ext_last u==1 Bif=u$bif:erlang:process_info/1 D => i_call_ext Bif | deallocate_return D call_ext_only Ar=u==1 Bif=u$bif:erlang:process_info/1 => allocate u Ar | i_call_ext Bif | deallocate_return u call_ext u==2 Bif=u$bif:erlang:process_info/2 => i_call_ext Bif call_ext_last u==2 Bif=u$bif:erlang:process_info/2 D => i_call_ext Bif | deallocate_return D call_ext_only Ar=u==2 Bif=u$bif:erlang:process_info/2 => allocate u Ar | i_call_ext Bif | deallocate_return u # # load_nif/2 also needs to know calling function like process_info # call_ext u==2 Bif=u$bif:erlang:load_nif/2 => i_call_ext Bif call_ext_last u==2 Bif=u$bif:erlang:load_nif/2 D => i_call_ext Bif | deallocate_return D call_ext_only Ar=u==2 Bif=u$bif:erlang:load_nif/2 => allocate u Ar | i_call_ext Bif | deallocate_return u # # apply/2 is an instruction, not a BIF. # call_ext u==2 u$func:erlang:apply/2 => i_apply_fun call_ext_last u==2 u$func:erlang:apply/2 D => i_apply_fun_last D call_ext_only u==2 u$func:erlang:apply/2 => i_apply_fun_only # # The apply/3 BIF is an instruction. # call_ext u==3 u$bif:erlang:apply/3 => i_apply call_ext_last u==3 u$bif:erlang:apply/3 D => i_apply_last D call_ext_only u==3 u$bif:erlang:apply/3 => i_apply_only # # The exit/1 and throw/1 BIFs never execute the instruction following them; # thus there is no need to generate any return instruction. # call_ext_last u==1 Bif=u$bif:erlang:exit/1 D => call_bif Bif call_ext_last u==1 Bif=u$bif:erlang:throw/1 D => call_bif Bif call_ext_only u==1 Bif=u$bif:erlang:exit/1 => call_bif Bif call_ext_only u==1 Bif=u$bif:erlang:throw/1 => call_bif Bif # # The error/1 and error/2 BIFs never execute the instruction following them; # thus there is no need to generate any return instruction. # However, they generate stack backtraces, so if the call instruction # is call_ext_only/2 instruction, we explicitly do an allocate/2 to store # the continuation pointer on the stack. # call_ext_last u==1 Bif=u$bif:erlang:error/1 D => call_bif Bif call_ext_last u==2 Bif=u$bif:erlang:error/2 D => call_bif Bif call_ext_only Ar=u==1 Bif=u$bif:erlang:error/1 => \ allocate u Ar | call_bif Bif call_ext_only Ar=u==2 Bif=u$bif:erlang:error/2 => \ allocate u Ar | call_bif Bif # # The yield/0 BIF is an instruction # call_ext u==0 u$func:erlang:yield/0 => i_yield call_ext_last u==0 u$func:erlang:yield/0 D => i_yield | deallocate_return D call_ext_only u==0 u$func:erlang:yield/0 => i_yield | return # # The hibernate/3 BIF is an instruction. # call_ext u==3 u$func:erlang:hibernate/3 => i_hibernate call_ext_last u==3 u$func:erlang:hibernate/3 D => i_hibernate call_ext_only u==3 u$func:erlang:hibernate/3 => i_hibernate # # If VM probes are not enabled, we want to short-circult calls to # the dt tag BIFs to make them as cheap as possible. # %unless USE_VM_PROBES call_ext Arity u$func:erlang:dt_get_tag/0 => \ move a=am_undefined x=0 call_ext_last Arity u$func:erlang:dt_get_tag/0 D => \ move a=am_undefined x=0 | deallocate D | return call_ext_only Arity u$func:erlang:dt_get_tag/0 => \ move a=am_undefined x=0 | return move Any x==0 | call_ext Arity u$func:erlang:dt_put_tag/1 => \ move a=am_undefined x=0 move Any x==0 | call_ext_last Arity u$func:erlang:dt_put_tag/1 D => \ move a=am_undefined x=0 | deallocate D | return move Any x==0 | call_ext_only Arity u$func:erlang:dt_put_tag/1 => \ move a=am_undefined x=0 | return call_ext Arity u$func:erlang:dt_put_tag/1 => \ move a=am_undefined x=0 call_ext_last Arity u$func:erlang:dt_put_tag/1 D => \ move a=am_undefined x=0 | deallocate D | return call_ext_only Arity u$func:erlang:dt_put_tag/1 => \ move a=am_undefined x=0 | return call_ext Arity u$func:erlang:dt_get_tag_data/0 => \ move a=am_undefined x=0 call_ext_last Arity u$func:erlang:dt_get_tag_data/0 D => \ move a=am_undefined x=0 | deallocate D | return call_ext_only Arity u$func:erlang:dt_get_tag_data/0 => \ move a=am_undefined x=0 | return move Any x==0 | call_ext Arity u$func:erlang:dt_spread_tag/1 => \ move a=am_true x=0 move Any x==0 | call_ext_last Arity u$func:erlang:dt_spread_tag/1 D => \ move a=am_true x=0 | deallocate D | return move Any x==0 | call_ext_only Arity u$func:erlang:dt_spread_tag/1 => \ move a=am_true x=0 | return call_ext Arity u$func:erlang:dt_spread_tag/1 => \ move a=am_true x=0 call_ext_last Arity u$func:erlang:dt_spread_tag/1 D => \ move a=am_true x=0 | deallocate D | return call_ext_only Arity u$func:erlang:dt_spread_tag/1 => \ move a=am_true x=0 | return move Any x==0 | call_ext Arity u$func:erlang:dt_restore_tag/1 => \ move a=am_true x=0 move Any x==0 | call_ext_last Arity u$func:erlang:dt_restore_tag/1 D => \ move a=am_true x=0 | deallocate D | return move Any x==0 | call_ext_only Arity u$func:erlang:dt_restore_tag/1 => \ move a=am_true x=0 | return call_ext Arity u$func:erlang:dt_restore_tag/1 => \ move a=am_true x=0 call_ext_last Arity u$func:erlang:dt_restore_tag/1 D => \ move a=am_true x=0 | deallocate D | return call_ext_only Arity u$func:erlang:dt_restore_tag/1 => \ move a=am_true x=0 | return move Any x==0 | call_ext Arity u$func:erlang:dt_prepend_vm_tag_data/1 => \ move Any x=0 move Any x==0 | call_ext_last Arity u$func:erlang:dt_prepend_vm_tag_data/1 D => \ move Any x=0 | deallocate D | return move Any x==0 | call_ext_only Arity u$func:erlang:dt_prepend_vm_tag_data/1 => \ move Any x=0 | return call_ext Arity u$func:erlang:dt_prepend_vm_tag_data/1 => call_ext_last Arity u$func:erlang:dt_prepend_vm_tag_data/1 D => \ deallocate D | return call_ext_only Arity u$func:erlang:dt_prepend_vm_tag_data/1 => \ return move Any x==0 | call_ext Arity u$func:erlang:dt_append_vm_tag_data/1 => \ move Any x=0 move Any x==0 | call_ext_last Arity u$func:erlang:dt_append_vm_tag_data/1 D => \ move Any x=0 | deallocate D | return move Any x==0 | call_ext_only Arity u$func:erlang:dt_append_vm_tag_data/1 => \ move Any x=0 | return call_ext Arity u$func:erlang:dt_append_vm_tag_data/1 => call_ext_last Arity u$func:erlang:dt_append_vm_tag_data/1 D => \ deallocate D | return call_ext_only Arity u$func:erlang:dt_append_vm_tag_data/1 => \ return # Can happen after one of the transformations above. move Discarded x==0 | move Something x==0 => move Something x=0 %endif call_ext u==0 u$func:os:perf_counter/0 => \ i_perf_counter call_ext_last u==0 u$func:os:perf_counter/0 D => \ i_perf_counter | deallocate_return D call_ext_only u==0 u$func:os:perf_counter/0 => \ i_perf_counter | return # # The general case for BIFs that have no special instructions. # A BIF used in the tail must be followed by a return instruction. # # To make trapping and stack backtraces work correctly, we make sure that # the continuation pointer is always stored on the stack. call_ext u Bif=u$is_bif => call_bif Bif call_ext_last u Bif=u$is_bif D => call_bif Bif | deallocate_return D call_ext_only Ar=u Bif=u$is_bif => \ allocate u Ar | call_bif Bif | deallocate_return u # # Any remaining calls are calls to Erlang functions, not BIFs. # We rename the instructions to internal names. This is necessary, # to avoid an end-less loop, because we want to call a few BIFs # with call instructions. # move S=c x==0 | call_ext Ar=u Func=u$is_not_bif => i_move_call_ext S Func move S=c x==0 | call_ext_last Ar=u Func=u$is_not_bif D => i_move_call_ext_last Func D S move S=c x==0 | call_ext_only Ar=u Func=u$is_not_bif => i_move_call_ext_only Func S call_ext Ar Func => i_call_ext Func call_ext_last Ar Func D => i_call_ext_last Func D call_ext_only Ar Func => i_call_ext_only Func i_apply i_apply_last P i_apply_only i_apply_fun i_apply_fun_last P i_apply_fun_only i_hibernate i_perf_counter call_bif e # # Calls to non-building and guard BIFs. # bif0 u$bif:erlang:self/0 Dst=d => self Dst bif0 u$bif:erlang:node/0 Dst=d => node Dst bif1 Fail Bif=u$bif:erlang:get/1 Src=s Dst=d => gen_get(Src, Dst) bif2 Jump=j u$bif:erlang:element/2 S1=s S2=xy Dst=d => gen_element(Jump, S1, S2, Dst) bif1 p Bif S1 Dst => bif1_body Bif S1 Dst bif2 p Bif S1 S2 Dst => i_bif2_body Bif S1 S2 Dst bif2 Fail Bif S1 S2 Dst => i_bif2 Fail Bif S1 S2 Dst i_get_hash c I d i_get s d %macro: self Self self x self y %macro: node Node node x %cold node y %hot i_fast_element j x I d i_fast_element j y I d i_element j x s d i_element j y s d bif1 f b s d bif1_body b s d i_bif2 f b s s d i_bif2_body b s s d # # Internal calls. # move S=c x==0 | call Ar P=f => i_move_call S P move S=s x==0 | call Ar P=f => move_call S P i_move_call c f %macro:move_call MoveCall -arg_f -size -nonext move_call/2 move_call x f move_call y f move S=c x==0 | call_last Ar P=f D => i_move_call_last P D S move S x==0 | call_last Ar P=f D => move_call_last S P D i_move_call_last f P c %macro:move_call_last MoveCallLast -arg_f -nonext -pack move_call_last/3 move_call_last x f Q move_call_last y f Q move S=c x==0 | call_only Ar P=f => i_move_call_only P S move S=x x==0 | call_only Ar P=f => move_call_only S P i_move_call_only f c %macro:move_call_only MoveCallOnly -arg_f -nonext move_call_only/2 move_call_only x f call Ar Func => i_call Func call_last Ar Func D => i_call_last Func D call_only Ar Func => i_call_only Func i_call f i_call_last f P i_call_only f i_call_ext e i_call_ext_last e P i_call_ext_only e i_move_call_ext c e i_move_call_ext_last e P c i_move_call_ext_only e c # Fun calls. call_fun Arity | deallocate D | return => i_call_fun_last Arity D call_fun Arity => i_call_fun Arity i_call_fun I i_call_fun_last I P make_fun2 OldIndex=u => gen_make_fun2(OldIndex) %macro: i_make_fun MakeFun -pack %cold i_make_fun I t %hot %macro: is_function IsFunction -fail_action is_function f x is_function f y is_function Fail=f c => jump Fail func_info M F A => i_func_info u M F A # ================================================================ # New bit syntax matching (R11B). # ================================================================ %cold bs_start_match2 Fail=f ica X Y D => jump Fail bs_start_match2 Fail Bin X Y D => i_bs_start_match2 Bin Fail X Y D i_bs_start_match2 x f I I d i_bs_start_match2 y f I I d bs_save2 Reg Index => gen_bs_save(Reg, Index) i_bs_save2 x I bs_restore2 Reg Index => gen_bs_restore(Reg, Index) i_bs_restore2 x I # Matching integers bs_match_string Fail Ms Bits Val => i_bs_match_string Ms Fail Bits Val i_bs_match_string x f I I # Fetching integers from binaries. bs_get_integer2 Fail=f Ms=x Live=u Sz=sq Unit=u Flags=u Dst=d => \ gen_get_integer2(Fail, Ms, Live, Sz, Unit, Flags, Dst) i_bs_get_integer_small_imm x I f I d i_bs_get_integer_imm x I I f I d i_bs_get_integer f I I s s d i_bs_get_integer_8 x f d i_bs_get_integer_16 x f d i_bs_get_integer_32 x f I d # Fetching binaries from binaries. bs_get_binary2 Fail=f Ms=x Live=u Sz=sq Unit=u Flags=u Dst=d => \ gen_get_binary2(Fail, Ms, Live, Sz, Unit, Flags, Dst) %macro: i_bs_get_binary_imm2 BsGetBinaryImm_2 -fail_action -gen_dest %macro: i_bs_get_binary2 BsGetBinary_2 -fail_action -gen_dest %macro: i_bs_get_binary_all2 BsGetBinaryAll_2 -fail_action -gen_dest i_bs_get_binary_imm2 f x I I I d i_bs_get_binary2 f x I s I d i_bs_get_binary_all2 f x I I d i_bs_get_binary_all_reuse x f I # Fetching float from binaries. bs_get_float2 Fail=f Ms=x Live=u Sz=s Unit=u Flags=u Dst=d => \ gen_get_float2(Fail, Ms, Live, Sz, Unit, Flags, Dst) bs_get_float2 Fail=f Ms=x Live=u Sz=q Unit=u Flags=u Dst=d => jump Fail %macro: i_bs_get_float2 BsGetFloat2 -fail_action -gen_dest i_bs_get_float2 f x I s I d # Miscellanous bs_skip_bits2 Fail=f Ms=x Sz=sq Unit=u Flags=u => \ gen_skip_bits2(Fail, Ms, Sz, Unit, Flags) %macro: i_bs_skip_bits_imm2 BsSkipBitsImm2 -fail_action i_bs_skip_bits_imm2 f x I %macro: i_bs_skip_bits2 BsSkipBits2 -fail_action i_bs_skip_bits2 f x x I i_bs_skip_bits2 f x y I %macro: i_bs_skip_bits_all2 BsSkipBitsAll2 -fail_action i_bs_skip_bits_all2 f x I bs_test_tail2 Fail=f Ms=x Bits=u==0 => bs_test_zero_tail2 Fail Ms bs_test_tail2 Fail=f Ms=x Bits=u => bs_test_tail_imm2 Fail Ms Bits bs_test_zero_tail2 f x bs_test_tail_imm2 f x I bs_test_unit F Ms Unit=u==8 => bs_test_unit8 F Ms bs_test_unit f x I bs_test_unit8 f x # An y register operand for bs_context_to_binary is rare, # but can happen because of inlining. bs_context_to_binary Y=y => move Y x | bs_context_to_binary x bs_context_to_binary x # # Utf8/utf16/utf32 support. (R12B-5) # bs_get_utf8 Fail=f Ms=x u u Dst=d => i_bs_get_utf8 Ms Fail Dst i_bs_get_utf8 x f d bs_skip_utf8 Fail=f Ms=x u u => i_bs_get_utf8 Ms Fail x bs_get_utf16 Fail=f Ms=x u Flags=u Dst=d => i_bs_get_utf16 Ms Fail Flags Dst bs_skip_utf16 Fail=f Ms=x u Flags=u => i_bs_get_utf16 Ms Fail Flags x i_bs_get_utf16 x f I d bs_get_utf32 Fail=f Ms=x Live=u Flags=u Dst=d => \ bs_get_integer2 Fail Ms Live i=32 u=1 Flags Dst | \ i_bs_validate_unicode_retract Fail Dst Ms bs_skip_utf32 Fail=f Ms=x Live=u Flags=u => \ bs_get_integer2 Fail Ms Live i=32 u=1 Flags x | \ i_bs_validate_unicode_retract Fail x Ms i_bs_validate_unicode_retract j s s %hot # # Constructing binaries # %cold bs_init2 Fail Sz Words Regs Flags Dst | binary_too_big(Sz) => system_limit Fail bs_init2 Fail Sz=u Words=u==0 Regs Flags Dst | should_gen_heap_bin(Sz) => \ i_bs_init_heap_bin Sz Regs Dst bs_init2 Fail Sz=u Words=u==0 Regs Flags Dst => i_bs_init Sz Regs Dst bs_init2 Fail Sz=u Words Regs Flags Dst | should_gen_heap_bin(Sz) => \ i_bs_init_heap_bin_heap Sz Words Regs Dst bs_init2 Fail Sz=u Words Regs Flags Dst => \ i_bs_init_heap Sz Words Regs Dst bs_init2 Fail Sz Words=u==0 Regs Flags Dst => \ i_bs_init_fail Sz Fail Regs Dst bs_init2 Fail Sz Words Regs Flags Dst => \ i_bs_init_fail_heap Sz Words Fail Regs Dst i_bs_init_fail x j I d i_bs_init_fail y j I d i_bs_init_fail_heap s I j I d i_bs_init I I d i_bs_init_heap_bin I I d i_bs_init_heap I I I d i_bs_init_heap_bin_heap I I I d bs_init_bits Fail Sz=o Words Regs Flags Dst => system_limit Fail bs_init_bits Fail Sz=u Words=u==0 Regs Flags Dst => i_bs_init_bits Sz Regs Dst bs_init_bits Fail Sz=u Words Regs Flags Dst => i_bs_init_bits_heap Sz Words Regs Dst bs_init_bits Fail Sz Words=u==0 Regs Flags Dst => \ i_bs_init_bits_fail Sz Fail Regs Dst bs_init_bits Fail Sz Words Regs Flags Dst => \ i_bs_init_bits_fail_heap Sz Words Fail Regs Dst i_bs_init_bits_fail x j I d i_bs_init_bits_fail y j I d i_bs_init_bits_fail_heap s I j I d i_bs_init_bits I I d i_bs_init_bits_heap I I I d bs_add Fail S1=i==0 S2 Unit=u==1 D => move S2 D bs_add j s s I d bs_append Fail Size Extra Live Unit Bin Flags Dst => \ move Bin x | i_bs_append Fail Extra Live Unit Size Dst bs_private_append Fail Size Unit Bin Flags Dst => \ i_bs_private_append Fail Unit Size Bin Dst bs_init_writable i_bs_append j I I I s d i_bs_private_append j I s s d # # Storing integers into binaries. # bs_put_integer Fail=j Sz=sq Unit=u Flags=u Src=s => \ gen_put_integer(Fail, Sz, Unit, Flags, Src) %macro: i_new_bs_put_integer NewBsPutInteger %macro: i_new_bs_put_integer_imm NewBsPutIntegerImm i_new_bs_put_integer j s I s i_new_bs_put_integer_imm j I I s # # Utf8/utf16/utf32 support. (R12B-5) # bs_utf8_size j Src=s Dst=d => i_bs_utf8_size Src Dst i_bs_utf8_size s d bs_utf16_size j Src=s Dst=d => i_bs_utf16_size Src Dst i_bs_utf16_size s d bs_put_utf8 Fail u Src=s => i_bs_put_utf8 Fail Src i_bs_put_utf8 j s bs_put_utf16 j I s bs_put_utf32 Fail=j Flags=u Src=s => \ i_bs_validate_unicode Fail Src | bs_put_integer Fail i=32 u=1 Flags Src i_bs_validate_unicode j s # # Storing floats into binaries. # bs_put_float Fail Sz=q Unit Flags Val => badarg Fail bs_put_float Fail=j Sz=s Unit=u Flags=u Src=s => \ gen_put_float(Fail, Sz, Unit, Flags, Src) %macro: i_new_bs_put_float NewBsPutFloat %macro: i_new_bs_put_float_imm NewBsPutFloatImm i_new_bs_put_float j s I s i_new_bs_put_float_imm j I I s # # Storing binaries into binaries. # bs_put_binary Fail=j Sz=s Unit=u Flags=u Src=s => \ gen_put_binary(Fail, Sz, Unit, Flags, Src) %macro: i_new_bs_put_binary NewBsPutBinary i_new_bs_put_binary j s I s %macro: i_new_bs_put_binary_imm NewBsPutBinaryImm i_new_bs_put_binary_imm j I s %macro: i_new_bs_put_binary_all NewBsPutBinaryAll i_new_bs_put_binary_all j s I # # Warning: The i_bs_put_string and i_new_bs_put_string instructions # are specially treated in the loader. # Don't change the instruction format unless you change the loader too. # bs_put_string I I %hot # # New floating point instructions (R8). # fadd p FR1 FR2 FR3 => i_fadd FR1 FR2 FR3 fsub p FR1 FR2 FR3 => i_fsub FR1 FR2 FR3 fmul p FR1 FR2 FR3 => i_fmul FR1 FR2 FR3 fdiv p FR1 FR2 FR3 => i_fdiv FR1 FR2 FR3 fnegate p FR1 FR2 => i_fnegate FR1 FR2 fconv Arg=iqan Dst=l => move Arg x | fconv x Dst fmove q l fmove d l fmove l d fconv d l i_fadd l l l i_fsub l l l i_fmul l l l i_fdiv l l l i_fnegate l l fclearerror | no_fpe_signals() => fcheckerror p | no_fpe_signals() => fcheckerror p => i_fcheckerror i_fcheckerror fclearerror # # New apply instructions in R10B. # apply I apply_last I P # # Map instructions in R17. # sorted_put_map_assoc/5 put_map_assoc F Map Dst Live Size Rest=* | map_key_sort(Size, Rest) => \ sorted_put_map_assoc F Map Dst Live Size Rest sorted_put_map_exact/5 put_map_exact F Map Dst Live Size Rest=* | map_key_sort(Size, Rest) => \ sorted_put_map_exact F Map Dst Live Size Rest sorted_put_map_assoc j Map Dst Live Size Rest=* | is_empty_map(Map) => \ new_map Dst Live Size Rest sorted_put_map_assoc F Src=s Dst Live Size Rest=* => \ update_map_assoc F Src Dst Live Size Rest sorted_put_map_assoc F Src Dst Live Size Rest=* => \ move Src x | update_map_assoc F x Dst Live Size Rest sorted_put_map_exact F Src=s Dst Live Size Rest=* => \ update_map_exact F Src Dst Live Size Rest sorted_put_map_exact F Src Dst Live Size Rest=* => \ move Src x | update_map_exact F x Dst Live Size Rest new_map d I I update_map_assoc j s d I I update_map_exact j s d I I is_map Fail Lit=q | literal_is_map(Lit) => is_map Fail cq => jump Fail %macro: is_map IsMap -fail_action is_map f x is_map f y ## Transform has_map_fields #{ K1 := _, K2 := _ } to has_map_elements has_map_fields Fail Src Size Rest=* => \ gen_has_map_fields(Fail, Src, Size, Rest) ## Transform get_map_elements(s) #{ K1 := V1, K2 := V2 } get_map_elements Fail Src=xy Size=u==2 Rest=* => \ gen_get_map_element(Fail, Src, Size, Rest) get_map_elements Fail Src Size Rest=* | map_key_sort(Size, Rest) => \ gen_get_map_elements(Fail, Src, Size, Rest) i_get_map_elements f s I i_get_map_element Fail Src=xy Key=y Dst => \ move Key x | i_get_map_element Fail Src x Dst %macro: i_get_map_element_hash GetMapElementHash -fail_action i_get_map_element_hash f x c I x i_get_map_element_hash f y c I x i_get_map_element_hash f x c I y i_get_map_element_hash f y c I y %macro: i_get_map_element GetMapElement -fail_action i_get_map_element f x x x i_get_map_element f y x x i_get_map_element f x x y i_get_map_element f y x y # # Convert the plus operations to a generic plus instruction. # gen_plus/5 gen_minus/5 gc_bif1 Fail Live u$bif:erlang:splus/1 Src Dst => \ gen_plus Fail Live Src i Dst gc_bif2 Fail Live u$bif:erlang:splus/2 S1 S2 Dst => \ gen_plus Fail Live S1 S2 Dst gc_bif1 Fail Live u$bif:erlang:sminus/1 Src Dst => \ gen_minus Fail Live i Src Dst gc_bif2 Fail Live u$bif:erlang:sminus/2 S1 S2 Dst => \ gen_minus Fail Live S1 S2 Dst # # Optimize addition and subtraction of small literals using # the i_increment/4 instruction (in bodies, not in guards). # gen_plus p Live Int=i Reg=d Dst => \ gen_increment(Reg, Int, Live, Dst) gen_plus p Live Reg=d Int=i Dst => \ gen_increment(Reg, Int, Live, Dst) gen_minus p Live Reg=d Int=i Dst | negation_is_small(Int) => \ gen_increment_from_minus(Reg, Int, Live, Dst) # # GCing arithmetic instructions. # gen_plus Fail Live S1 S2 Dst => i_plus Fail Live S1 S2 Dst gen_minus Fail Live S1 S2 Dst => i_minus Fail Live S1 S2 Dst gc_bif2 Fail Live u$bif:erlang:stimes/2 S1 S2 Dst => \ i_times Fail Live S1 S2 Dst gc_bif2 Fail Live u$bif:erlang:div/2 S1 S2 Dst => \ i_m_div Fail Live S1 S2 Dst gc_bif2 Fail Live u$bif:erlang:intdiv/2 S1 S2 Dst => \ i_int_div Fail Live S1 S2 Dst gc_bif2 Fail Live u$bif:erlang:rem/2 S1 S2 Dst => \ i_rem Fail Live S1 S2 Dst gc_bif2 Fail Live u$bif:erlang:bsl/2 S1 S2 Dst => \ i_bsl Fail Live S1 S2 Dst gc_bif2 Fail Live u$bif:erlang:bsr/2 S1 S2 Dst => \ i_bsr Fail Live S1 S2 Dst gc_bif2 Fail Live u$bif:erlang:band/2 S1 S2 Dst => \ i_band Fail Live S1 S2 Dst gc_bif2 Fail Live u$bif:erlang:bor/2 S1 S2 Dst => \ i_bor Fail Live S1 S2 Dst gc_bif2 Fail Live u$bif:erlang:bxor/2 S1 S2 Dst => \ i_bxor Fail Live S1 S2 Dst gc_bif1 Fail I u$bif:erlang:bnot/1 Src Dst=d => i_int_bnot Fail Src I Dst i_increment r I I d i_increment x I I d i_increment y I I d i_plus j I x x d i_plus j I x y d i_plus j I s s d i_minus j I x x d i_minus j I s s d i_times j I s s d i_m_div j I s s d i_int_div j I s s d i_rem j I x x d i_rem j I s s d i_bsl j I s s d i_bsr j I s s d i_band j I x c d i_band j I s s d i_bor j I s s d i_bxor j I s s d i_int_bnot j s I d # # Old guard BIFs that creates heap fragments are no longer allowed. # bif1 Fail u$bif:erlang:length/1 s d => too_old_compiler bif1 Fail u$bif:erlang:size/1 s d => too_old_compiler bif1 Fail u$bif:erlang:abs/1 s d => too_old_compiler bif1 Fail u$bif:erlang:float/1 s d => too_old_compiler bif1 Fail u$bif:erlang:round/1 s d => too_old_compiler bif1 Fail u$bif:erlang:trunc/1 s d => too_old_compiler # # Guard BIFs. # gc_bif1 Fail I Bif Src Dst => \ gen_guard_bif1(Fail, I, Bif, Src, Dst) gc_bif2 Fail I Bif S1 S2 Dst => \ gen_guard_bif2(Fail, I, Bif, S1, S2, Dst) gc_bif3 Fail I Bif S1 S2 S3 Dst => \ gen_guard_bif3(Fail, I, Bif, S1, S2, S3, Dst) i_gc_bif1 j I s I d i_gc_bif2 j I I s s d ii_gc_bif3/7 # A specific instruction can only have 6 operands, so we must # pass one of the arguments in an x register. ii_gc_bif3 Fail Bif Live S1 S2 S3 Dst => \ move S1 x | i_gc_bif3 Fail Bif Live S2 S3 Dst i_gc_bif3 j I I s s d # # The following instruction is specially handled in beam_load.c # to produce a user-friendly message if an unsupported guard BIF is # encountered. # unsupported_guard_bif/3 unsupported_guard_bif A B C | never() => # # R13B03 # on_load # # R14A. # recv_mark f recv_set Fail | label Lbl | loop_rec Lf Reg => \ i_recv_set | label Lbl | loop_rec Lf Reg i_recv_set