/* * %CopyrightBegin% * * Copyright Ericsson AB 1997-2011. All Rights Reserved. * * The contents of this file are subject to the Erlang Public License, * Version 1.1, (the "License"); you may not use this file except in * compliance with the License. You should have received a copy of the * Erlang Public License along with this software. If not, it can be * retrieved online at http://www.erlang.org/. * * Software distributed under the License is distributed on an "AS IS" * basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See * the License for the specific language governing rights and limitations * under the License. * * %CopyrightEnd% */ #ifdef HAVE_CONFIG_H #include "config.h" #endif /* If we HAVE_SCTP_H and Solaris, we need to define the following in order to get SCTP working: */ #if (defined(HAVE_SCTP_H) && defined(__sun) && defined(__SVR4)) #define SOLARIS10 1 /* WARNING: This is not quite correct, it may also be Solaris 11! */ #define _XPG4_2 #define __EXTENSIONS__ #endif #include #include #include #include #include #define IDENTITY(c) c #define STRINGIFY_1(b) IDENTITY(#b) #define STRINGIFY(a) STRINGIFY_1(a) #ifdef HAVE_UNISTD_H #include #endif #ifdef HAVE_SYS_UIO_H #include #endif #ifdef HAVE_NET_IF_DL_H #include #endif #ifdef HAVE_IFADDRS_H #include #endif #ifdef HAVE_NETPACKET_PACKET_H #include #endif /* All platforms fail on malloc errors. */ #define FATAL_MALLOC #include "erl_driver.h" /* The IS_SOCKET_ERROR macro below is used for portability reasons. While POSIX specifies that errors from socket-related system calls should be indicated with a -1 return value, some users have experienced non-Windows OS kernels that return negative values other than -1. While one can argue that such kernels are technically broken, comparing against values less than 0 covers their out-of-spec return values without imposing incorrect semantics on systems that manage to correctly return -1 for errors, thus increasing Erlang's portability. */ #ifdef __WIN32__ #define IS_SOCKET_ERROR(val) ((val) == SOCKET_ERROR) #else #define IS_SOCKET_ERROR(val) ((val) < 0) #endif #ifdef __WIN32__ #define STRNCASECMP strncasecmp #define INCL_WINSOCK_API_TYPEDEFS 1 #ifndef WINDOWS_H_INCLUDES_WINSOCK2_H #include #endif #include #include /* NEED VC 6.0 or higher */ /* Visual studio 2008+: NTDDI_VERSION needs to be set for iphlpapi.h to define the right structures. It needs to be set to WINXP (or LONGHORN) for IPV6 to work and it's set lower by default, so we need to change it. */ #ifdef HAVE_SDKDDKVER_H # include # ifdef NTDDI_VERSION # undef NTDDI_VERSION # endif # define NTDDI_VERSION NTDDI_WINXP #endif #include #undef WANT_NONBLOCKING #include "sys.h" #undef EWOULDBLOCK #undef ETIMEDOUT #define HAVE_MULTICAST_SUPPORT #define ERRNO_BLOCK WSAEWOULDBLOCK #define EWOULDBLOCK WSAEWOULDBLOCK #define EINPROGRESS WSAEINPROGRESS #define EALREADY WSAEALREADY #define ENOTSOCK WSAENOTSOCK #define EDESTADDRREQ WSAEDESTADDRREQ #define EMSGSIZE WSAEMSGSIZE #define EPROTOTYPE WSAEPROTOTYPE #define ENOPROTOOPT WSAENOPROTOOPT #define EPROTONOSUPPORT WSAEPROTONOSUPPORT #define ESOCKTNOSUPPORT WSAESOCKTNOSUPPORT #define EOPNOTSUPP WSAEOPNOTSUPP #define EPFNOSUPPORT WSAEPFNOSUPPORT #define EAFNOSUPPORT WSAEAFNOSUPPORT #define EADDRINUSE WSAEADDRINUSE #define EADDRNOTAVAIL WSAEADDRNOTAVAIL #define ENETDOWN WSAENETDOWN #define ENETUNREACH WSAENETUNREACH #define ENETRESET WSAENETRESET #define ECONNABORTED WSAECONNABORTED #define ECONNRESET WSAECONNRESET #define ENOBUFS WSAENOBUFS #define EISCONN WSAEISCONN #define ENOTCONN WSAENOTCONN #define ESHUTDOWN WSAESHUTDOWN #define ETOOMANYREFS WSAETOOMANYREFS #define ETIMEDOUT WSAETIMEDOUT #define ECONNREFUSED WSAECONNREFUSED #define ELOOP WSAELOOP #undef ENAMETOOLONG #define ENAMETOOLONG WSAENAMETOOLONG #define EHOSTDOWN WSAEHOSTDOWN #define EHOSTUNREACH WSAEHOSTUNREACH #undef ENOTEMPTY #define ENOTEMPTY WSAENOTEMPTY #define EPROCLIM WSAEPROCLIM #define EUSERS WSAEUSERS #define EDQUOT WSAEDQUOT #define ESTALE WSAESTALE #define EREMOTE WSAEREMOTE #define INVALID_EVENT WSA_INVALID_EVENT static BOOL (WINAPI *fpSetHandleInformation)(HANDLE,DWORD,DWORD); #define sock_open(af, type, proto) \ make_noninheritable_handle(socket((af), (type), (proto))) #define sock_close(s) closesocket((s)) #define sock_shutdown(s, how) shutdown((s), (how)) #define sock_accept(s, addr, len) \ make_noninheritable_handle(accept((s), (addr), (len))) #define sock_connect(s, addr, len) connect((s), (addr), (len)) #define sock_listen(s, b) listen((s), (b)) #define sock_bind(s, addr, len) bind((s), (addr), (len)) #define sock_getopt(s,t,n,v,l) getsockopt((s),(t),(n),(v),(l)) #define sock_setopt(s,t,n,v,l) setsockopt((s),(t),(n),(v),(l)) #define sock_name(s, addr, len) getsockname((s), (addr), (len)) #define sock_peer(s, addr, len) getpeername((s), (addr), (len)) #define sock_ntohs(x) ntohs((x)) #define sock_ntohl(x) ntohl((x)) #define sock_htons(x) htons((x)) #define sock_htonl(x) htonl((x)) #define sock_send(s,buf,len,flag) send((s),(buf),(len),(flag)) #define sock_sendv(s, vec, size, np, flag) \ WSASend((s),(WSABUF*)(vec),\ (size),(np),(flag),NULL,NULL) #define sock_recv(s,buf,len,flag) recv((s),(buf),(len),(flag)) #define sock_recvfrom(s,buf,blen,flag,addr,alen) \ recvfrom((s),(buf),(blen),(flag),(addr),(alen)) #define sock_sendto(s,buf,blen,flag,addr,alen) \ sendto((s),(buf),(blen),(flag),(addr),(alen)) #define sock_hostname(buf, len) gethostname((buf), (len)) #define sock_getservbyname(name,proto) getservbyname((name),(proto)) #define sock_getservbyport(port,proto) getservbyport((port),(proto)) #define sock_errno() WSAGetLastError() #define sock_create_event(d) WSACreateEvent() #define sock_close_event(e) WSACloseEvent(e) #define sock_select(D, Flags, OnOff) winsock_event_select(D, Flags, OnOff) #define SET_BLOCKING(s) ioctlsocket(s, FIONBIO, &zero_value) #define SET_NONBLOCKING(s) ioctlsocket(s, FIONBIO, &one_value) static unsigned long zero_value = 0; static unsigned long one_value = 1; #else #ifdef VXWORKS #include #include #include #include #include #include #else #include #ifdef NETDB_H_NEEDS_IN_H #include #endif #include #endif #include #include #ifdef VXWORKS #include #endif #ifdef DEF_INADDR_LOOPBACK_IN_RPC_TYPES_H #include #endif #include #include #if (!defined(VXWORKS)) #include #ifdef HAVE_ARPA_NAMESER_H #include #endif #endif #ifdef HAVE_SYS_SOCKIO_H #include #endif #ifdef HAVE_SYS_IOCTL_H #include #endif #include /* SCTP support -- currently for UNIX platforms only: */ #undef HAVE_SCTP #if (!defined(VXWORKS) && !defined(__WIN32__) && defined(HAVE_SCTP_H)) #include /* SCTP Socket API Draft from version 11 on specifies that netinet/sctp.h must explicitly define HAVE_SCTP in case when SCTP is supported, but Solaris 10 still apparently uses Draft 10, and does not define that symbol, so we have to define it explicitly: */ #ifndef HAVE_SCTP # define HAVE_SCTP #endif /* These changed in draft 11, so SOLARIS10 uses the old MSG_* */ #if ! HAVE_DECL_SCTP_UNORDERED # define SCTP_UNORDERED MSG_UNORDERED #endif #if ! HAVE_DECL_SCTP_ADDR_OVER # define SCTP_ADDR_OVER MSG_ADDR_OVER #endif #if ! HAVE_DECL_SCTP_ABORT # define SCTP_ABORT MSG_ABORT #endif #if ! HAVE_DECL_SCTP_EOF # define SCTP_EOF MSG_EOF #endif /* New spelling in lksctp 2.6.22 or maybe even earlier: * adaption -> adaptation */ #if !defined(SCTP_ADAPTATION_LAYER) && defined (SCTP_ADAPTION_LAYER) # define SCTP_ADAPTATION_LAYER SCTP_ADAPTION_LAYER # define SCTP_ADAPTATION_INDICATION SCTP_ADAPTION_INDICATION # define sctp_adaptation_event sctp_adaption_event # define sctp_setadaptation sctp_setadaption # define sn_adaptation_event sn_adaption_event # define sai_adaptation_ind sai_adaption_ind # define ssb_adaptation_ind ssb_adaption_ind # define sctp_adaptation_layer_event sctp_adaption_layer_event #endif static void *h_libsctp = NULL; #ifdef __GNUC__ static typeof(sctp_bindx) *p_sctp_bindx = NULL; #else static int (*p_sctp_bindx)(int sd, struct sockaddr *addrs, int addrcnt, int flags) = NULL; #endif #endif /* SCTP supported */ #ifndef WANT_NONBLOCKING #define WANT_NONBLOCKING #endif #include "sys.h" /* #define INET_DRV_DEBUG 1 */ #ifdef INET_DRV_DEBUG #define DEBUG 1 #undef DEBUGF #define DEBUGF(X) printf X #endif #if !defined(HAVE_STRNCASECMP) #define STRNCASECMP my_strncasecmp static int my_strncasecmp(const char *s1, const char *s2, size_t n) { int i; for (i=0;is) /* return file descriptor */ #define sock_close_event(e) /* do nothing */ #define inet_driver_select(port, e, mode, on) \ driver_select(port, e, mode | (on?ERL_DRV_USE:0), on) #define sock_select(d, flags, onoff) do { \ (d)->event_mask = (onoff) ? \ ((d)->event_mask | (flags)) : \ ((d)->event_mask & ~(flags)); \ DEBUGF(("sock_select(%ld): flags=%02X, onoff=%d, event_mask=%02lX\r\n", \ (long) (d)->port, (flags), (onoff), (unsigned long) (d)->event_mask)); \ inet_driver_select((d)->port, (ErlDrvEvent)(long)(d)->event, (flags), (onoff)); \ } while(0) #endif /* __WIN32__ */ #include "packet_parser.h" #define get_int24(s) ((((unsigned char*) (s))[0] << 16) | \ (((unsigned char*) (s))[1] << 8) | \ (((unsigned char*) (s))[2])) #define get_little_int32(s) ((((unsigned char*) (s))[3] << 24) | \ (((unsigned char*) (s))[2] << 16) | \ (((unsigned char*) (s))[1] << 8) | \ (((unsigned char*) (s))[0])) /*---------------------------------------------------------------------------- ** Interface constants. ** ** This section must be "identical" to the corresponding inet_int.hrl */ /* general address encode/decode tag */ #define INET_AF_INET 1 #define INET_AF_INET6 2 #define INET_AF_ANY 3 /* INADDR_ANY or IN6ADDR_ANY_INIT */ #define INET_AF_LOOPBACK 4 /* INADDR_LOOPBACK or IN6ADDR_LOOPBACK_INIT */ /* INET_REQ_GETTYPE enumeration */ #define INET_TYPE_STREAM 1 #define INET_TYPE_DGRAM 2 #define INET_TYPE_SEQPACKET 3 /* INET_LOPT_MODE options */ #define INET_MODE_LIST 0 #define INET_MODE_BINARY 1 /* INET_LOPT_DELIVER options */ #define INET_DELIVER_PORT 0 #define INET_DELIVER_TERM 1 /* INET_LOPT_ACTIVE options */ #define INET_PASSIVE 0 /* false */ #define INET_ACTIVE 1 /* true */ #define INET_ONCE 2 /* true; active once then passive */ /* INET_REQ_GETSTATUS enumeration */ #define INET_F_OPEN 0x0001 #define INET_F_BOUND 0x0002 #define INET_F_ACTIVE 0x0004 #define INET_F_LISTEN 0x0008 #define INET_F_CON 0x0010 #define INET_F_ACC 0x0020 #define INET_F_LST 0x0040 #define INET_F_BUSY 0x0080 #define INET_F_MULTI_CLIENT 0x0100 /* Multiple clients for one descriptor, i.e. multi-accept */ /* One numberspace for *_REC_* so if an e.g UDP request is issued ** for a TCP socket, the driver can protest. */ #define INET_REQ_OPEN 1 #define INET_REQ_CLOSE 2 #define INET_REQ_CONNECT 3 #define INET_REQ_PEER 4 #define INET_REQ_NAME 5 #define INET_REQ_BIND 6 #define INET_REQ_SETOPTS 7 #define INET_REQ_GETOPTS 8 /* #define INET_REQ_GETIX 9 NOT USED ANY MORE */ /* #define INET_REQ_GETIF 10 REPLACE BY NEW STUFF */ #define INET_REQ_GETSTAT 11 #define INET_REQ_GETHOSTNAME 12 #define INET_REQ_FDOPEN 13 #define INET_REQ_GETFD 14 #define INET_REQ_GETTYPE 15 #define INET_REQ_GETSTATUS 16 #define INET_REQ_GETSERVBYNAME 17 #define INET_REQ_GETSERVBYPORT 18 #define INET_REQ_SETNAME 19 #define INET_REQ_SETPEER 20 #define INET_REQ_GETIFLIST 21 #define INET_REQ_IFGET 22 #define INET_REQ_IFSET 23 #define INET_REQ_SUBSCRIBE 24 #define INET_REQ_GETIFADDRS 25 #define INET_REQ_ACCEPT 26 #define INET_REQ_LISTEN 27 /* TCP requests */ /* #define TCP_REQ_ACCEPT 40 MOVED */ /* #define TCP_REQ_LISTEN 41 MERGED */ #define TCP_REQ_RECV 42 #define TCP_REQ_UNRECV 43 #define TCP_REQ_SHUTDOWN 44 /* UDP and SCTP requests */ #define PACKET_REQ_RECV 60 /* Common for UDP and SCTP */ /* #define SCTP_REQ_LISTEN 61 MERGED Different from TCP; not for UDP */ #define SCTP_REQ_BINDX 62 /* Multi-home SCTP bind */ /* INET_REQ_SUBSCRIBE sub-requests */ #define INET_SUBS_EMPTY_OUT_Q 1 /* TCP additional flags */ #define TCP_ADDF_DELAY_SEND 1 #define TCP_ADDF_CLOSE_SENT 2 /* Close sent (active mode only) */ #define TCP_ADDF_DELAYED_CLOSE_RECV 4 /* If receive fails, report {error,closed} (passive mode) */ #define TCP_ADDF_DELAYED_CLOSE_SEND 8 /* If send fails, report {error,closed} (passive mode) */ /* *_REQ_* replies */ #define INET_REP_ERROR 0 #define INET_REP_OK 1 #define INET_REP_SCTP 2 /* INET_REQ_SETOPTS and INET_REQ_GETOPTS options */ #define INET_OPT_REUSEADDR 0 /* enable/disable local address reuse */ #define INET_OPT_KEEPALIVE 1 /* enable/disable keep connections alive */ #define INET_OPT_DONTROUTE 2 /* enable/disable routing for messages */ #define INET_OPT_LINGER 3 /* linger on close if data is present */ #define INET_OPT_BROADCAST 4 /* enable/disable transmission of broadcast */ #define INET_OPT_OOBINLINE 5 /* enable/disable out-of-band data in band */ #define INET_OPT_SNDBUF 6 /* set send buffer size */ #define INET_OPT_RCVBUF 7 /* set receive buffer size */ #define INET_OPT_PRIORITY 8 /* set priority */ #define INET_OPT_TOS 9 /* Set type of service */ #define TCP_OPT_NODELAY 10 /* don't delay send to coalesce packets */ #define UDP_OPT_MULTICAST_IF 11 /* set/get IP multicast interface */ #define UDP_OPT_MULTICAST_TTL 12 /* set/get IP multicast timetolive */ #define UDP_OPT_MULTICAST_LOOP 13 /* set/get IP multicast loopback */ #define UDP_OPT_ADD_MEMBERSHIP 14 /* add an IP group membership */ #define UDP_OPT_DROP_MEMBERSHIP 15 /* drop an IP group membership */ /* LOPT is local options */ #define INET_LOPT_BUFFER 20 /* min buffer size hint */ #define INET_LOPT_HEADER 21 /* list header size */ #define INET_LOPT_ACTIVE 22 /* enable/disable active receive */ #define INET_LOPT_PACKET 23 /* packet header type (TCP) */ #define INET_LOPT_MODE 24 /* list or binary mode */ #define INET_LOPT_DELIVER 25 /* port or term delivery */ #define INET_LOPT_EXITONCLOSE 26 /* exit port on active close or not ! */ #define INET_LOPT_TCP_HIWTRMRK 27 /* set local high watermark */ #define INET_LOPT_TCP_LOWTRMRK 28 /* set local low watermark */ #define INET_LOPT_BIT8 29 /* set 8 bit detection */ #define INET_LOPT_TCP_SEND_TIMEOUT 30 /* set send timeout */ #define INET_LOPT_TCP_DELAY_SEND 31 /* Delay sends until next poll */ #define INET_LOPT_PACKET_SIZE 32 /* Max packet size */ #define INET_LOPT_UDP_READ_PACKETS 33 /* Number of packets to read */ #define INET_OPT_RAW 34 /* Raw socket options */ #define INET_LOPT_TCP_SEND_TIMEOUT_CLOSE 35 /* auto-close on send timeout or not */ /* SCTP options: a separate range, from 100: */ #define SCTP_OPT_RTOINFO 100 #define SCTP_OPT_ASSOCINFO 101 #define SCTP_OPT_INITMSG 102 #define SCTP_OPT_AUTOCLOSE 103 #define SCTP_OPT_NODELAY 104 #define SCTP_OPT_DISABLE_FRAGMENTS 105 #define SCTP_OPT_I_WANT_MAPPED_V4_ADDR 106 #define SCTP_OPT_MAXSEG 107 #define SCTP_OPT_SET_PEER_PRIMARY_ADDR 108 #define SCTP_OPT_PRIMARY_ADDR 109 #define SCTP_OPT_ADAPTATION_LAYER 110 #define SCTP_OPT_PEER_ADDR_PARAMS 111 #define SCTP_OPT_DEFAULT_SEND_PARAM 112 #define SCTP_OPT_EVENTS 113 #define SCTP_OPT_DELAYED_ACK_TIME 114 #define SCTP_OPT_STATUS 115 #define SCTP_OPT_GET_PEER_ADDR_INFO 116 /* INET_REQ_IFGET and INET_REQ_IFSET options */ #define INET_IFOPT_ADDR 1 #define INET_IFOPT_BROADADDR 2 #define INET_IFOPT_DSTADDR 3 #define INET_IFOPT_MTU 4 #define INET_IFOPT_NETMASK 5 #define INET_IFOPT_FLAGS 6 #define INET_IFOPT_HWADDR 7 /* INET_LOPT_BIT8 options */ #define INET_BIT8_CLEAR 0 #define INET_BIT8_SET 1 #define INET_BIT8_ON 2 #define INET_BIT8_OFF 3 /* INET_REQ_GETSTAT enumeration */ #define INET_STAT_RECV_CNT 1 #define INET_STAT_RECV_MAX 2 #define INET_STAT_RECV_AVG 3 #define INET_STAT_RECV_DVI 4 #define INET_STAT_SEND_CNT 5 #define INET_STAT_SEND_MAX 6 #define INET_STAT_SEND_AVG 7 #define INET_STAT_SEND_PND 8 #define INET_STAT_RECV_OCT 9 /* received octets */ #define INET_STAT_SEND_OCT 10 /* sent octets */ /* INET_IFOPT_FLAGS enumeration */ #define INET_IFF_UP 0x0001 #define INET_IFF_BROADCAST 0x0002 #define INET_IFF_LOOPBACK 0x0004 #define INET_IFF_POINTTOPOINT 0x0008 #define INET_IFF_RUNNING 0x0010 #define INET_IFF_MULTICAST 0x0020 /* Complement flags for turning them off */ #define INET_IFF_DOWN 0x0100 #define INET_IFF_NBROADCAST 0x0200 /* #define INET_IFF_NLOOPBACK 0x0400 */ #define INET_IFF_NPOINTTOPOINT 0x0800 /* #define INET_IFF_NRUNNING 0x1000 */ /* #define INET_IFF_NMULTICAST 0x2000 */ /* Flags for "sctp_sndrcvinfo". Used in a bitmask -- must be powers of 2: ** INET_REQ_SETOPTS:SCTP_OPT_DEFAULT_SEND_PARAM */ #define SCTP_FLAG_UNORDERED (1 /* am_unordered */) #define SCTP_FLAG_ADDR_OVER (2 /* am_addr_over */) #define SCTP_FLAG_ABORT (4 /* am_abort */) #define SCTP_FLAG_EOF (8 /* am_eof */) #define SCTP_FLAG_SNDALL (16 /* am_sndall, NOT YET IMPLEMENTED */) /* Flags for "sctp_set_opts" (actually for SCTP_OPT_PEER_ADDR_PARAMS). ** These flags are also used in a bitmask, so they must be powers of 2: */ #define SCTP_FLAG_HB_ENABLE (1 /* am_hb_enable */) #define SCTP_FLAG_HB_DISABLE (2 /* am_hb_disable */) #define SCTP_FLAG_HB_DEMAND (4 /* am_hb_demand */) #define SCTP_FLAG_PMTUD_ENABLE (8 /* am_pmtud_enable */) #define SCTP_FLAG_PMTUD_DISABLE (16 /* am_pmtud_disable */) #define SCTP_FLAG_SACDELAY_ENABLE (32 /* am_sackdelay_enable */) #define SCTP_FLAG_SACDELAY_DISABLE (64 /* am_sackdelay_disable */) /* ** End of interface constants. **--------------------------------------------------------------------------*/ #define INET_STATE_CLOSED (0) #define INET_STATE_OPEN (INET_F_OPEN) #define INET_STATE_BOUND (INET_STATE_OPEN | INET_F_BOUND) #define INET_STATE_CONNECTED (INET_STATE_BOUND | INET_F_ACTIVE) #define INET_STATE_LISTENING (INET_STATE_BOUND | INET_F_LISTEN) #define INET_STATE_CONNECTING (INET_STATE_BOUND | INET_F_CON) #define INET_STATE_ACCEPTING (INET_STATE_LISTENING | INET_F_ACC) #define INET_STATE_MULTI_ACCEPTING (INET_STATE_ACCEPTING | INET_F_MULTI_CLIENT) #define IS_OPEN(d) \ (((d)->state & INET_F_OPEN) == INET_F_OPEN) #define IS_BOUND(d) \ (((d)->state & INET_F_BOUND) == INET_F_BOUND) #define IS_CONNECTED(d) \ (((d)->state & INET_STATE_CONNECTED) == INET_STATE_CONNECTED) #define IS_CONNECTING(d) \ (((d)->state & INET_F_CON) == INET_F_CON) #define IS_BUSY(d) \ (((d)->state & INET_F_BUSY) == INET_F_BUSY) #define INET_MAX_OPT_BUFFER (64*1024) #define INET_DEF_BUFFER 1460 /* default buffer size */ #define INET_MIN_BUFFER 1 /* internal min buffer */ #define INET_HIGH_WATERMARK (1024*8) /* 8k pending high => busy */ #define INET_LOW_WATERMARK (1024*4) /* 4k pending => allow more */ #define INET_INFINITY 0xffffffff /* infinity value */ #define INET_MAX_ASYNC 1 /* max number of async queue ops */ /* INET_LOPT_UDP_PACKETS */ #define INET_PACKET_POLL 5 /* maximum number of packets to poll */ /* Max interface name */ #define INET_IFNAMSIZ 16 /* Max length of Erlang Term Buffer (for outputting structured terms): */ #ifdef HAVE_SCTP #define PACKET_ERL_DRV_TERM_DATA_LEN 512 #else #define PACKET_ERL_DRV_TERM_DATA_LEN 32 #endif #define BIN_REALLOC_LIMIT(x) (((x)*3)/4) /* 75% */ /* The general purpose sockaddr */ typedef union { struct sockaddr sa; struct sockaddr_in sai; #ifdef HAVE_IN6 struct sockaddr_in6 sai6; #endif } inet_address; /* for AF_INET & AF_INET6 */ #define inet_address_port(x) ((x)->sai.sin_port) #if defined(HAVE_IN6) && defined(AF_INET6) #define addrlen(family) \ ((family == AF_INET) ? sizeof(struct in_addr) : \ ((family == AF_INET6) ? sizeof(struct in6_addr) : 0)) #else #define addrlen(family) \ ((family == AF_INET) ? sizeof(struct in_addr) : 0) #endif typedef struct _multi_timer_data { ErlDrvNowData when; ErlDrvTermData caller; void (*timeout_function)(ErlDrvData drv_data, ErlDrvTermData caller); struct _multi_timer_data *next; struct _multi_timer_data *prev; } MultiTimerData; static MultiTimerData *add_multi_timer(MultiTimerData **first, ErlDrvPort port, ErlDrvTermData caller, unsigned timeout, void (*timeout_fun)(ErlDrvData drv_data, ErlDrvTermData caller)); static void fire_multi_timers(MultiTimerData **first, ErlDrvPort port, ErlDrvData data); static void remove_multi_timer(MultiTimerData **first, ErlDrvPort port, MultiTimerData *p); static void tcp_inet_multi_timeout(ErlDrvData e, ErlDrvTermData caller); static void clean_multi_timers(MultiTimerData **first, ErlDrvPort port); typedef struct { int id; /* id used to identify reply */ ErlDrvTermData caller; /* recipient of async reply */ int req; /* Request id (CONNECT/ACCEPT/RECV) */ union { unsigned value; /* Request timeout (since op issued,not started) */ MultiTimerData *mtd; } tmo; ErlDrvMonitor monitor; } inet_async_op; typedef struct inet_async_multi_op_ { inet_async_op op; struct inet_async_multi_op_ *next; } inet_async_multi_op; typedef struct subs_list_ { ErlDrvTermData subscriber; struct subs_list_ *next; } subs_list; #define NO_PROCESS 0 #define NO_SUBSCRIBERS(SLP) ((SLP)->subscriber == NO_PROCESS) static void send_to_subscribers(ErlDrvPort, subs_list *, int, ErlDrvTermData [], int); static void free_subscribers(subs_list*); static int save_subscriber(subs_list *, ErlDrvTermData); typedef struct { SOCKET s; /* the socket or INVALID_SOCKET if not open */ HANDLE event; /* Event handle (same as s in unix) */ long event_mask; /* current FD events */ #ifdef __WIN32__ long forced_events; /* Mask of events that are forcefully signalled on windows see winsock_event_select for details */ int send_would_block; /* Last send attempt failed with "WOULDBLOCK" */ #endif ErlDrvPort port; /* the port identifier */ ErlDrvTermData dport; /* the port identifier as DriverTermData */ int state; /* status */ int prebound; /* only set when opened with inet_fdopen */ int mode; /* BINARY | LIST (affect how to interpret hsz) */ int exitf; /* exit port on close or not */ int bit8f; /* check if data has bit number 7 set */ int deliver; /* Delivery mode, TERM or PORT */ ErlDrvTermData caller; /* recipient of sync reply */ ErlDrvTermData busy_caller; /* recipient of sync reply when caller busy. * Only valid while INET_F_BUSY. */ inet_async_op* oph; /* queue head or NULL */ inet_async_op* opt; /* queue tail or NULL */ inet_async_op op_queue[INET_MAX_ASYNC]; /* call queue */ int active; /* 0 = passive, 1 = active, 2 = active once */ int stype; /* socket type: SOCK_STREAM/SOCK_DGRAM/SOCK_SEQPACKET */ int sprotocol; /* socket protocol: IPPROTO_TCP|IPPROTO_UDP|IPPROTO_SCTP */ int sfamily; /* address family */ enum PacketParseType htype; /* header type (TCP only?) */ unsigned int psize; /* max packet size (TCP only?) */ int bit8; /* set if bit8f==true and data some data seen had the 7th bit set */ inet_address remote; /* remote address for connected sockets */ inet_address peer_addr; /* fake peer address */ inet_address name_addr; /* fake local address */ inet_address* peer_ptr; /* fake peername or NULL */ inet_address* name_ptr; /* fake sockname or NULL */ int bufsz; /* minimum buffer constraint */ unsigned int hsz; /* the list header size, -1 is large !!! */ /* statistics */ unsigned long recv_oct[2]; /* number of received octets >= 64 bits */ unsigned long recv_cnt; /* number of packets received */ unsigned long recv_max; /* maximum packet size received */ double recv_avg; /* average packet size received */ double recv_dvi; /* avarage deviation from avg_size */ unsigned long send_oct[2]; /* number of octets sent >= 64 bits */ unsigned long send_cnt; /* number of packets sent */ unsigned long send_max; /* maximum packet send */ double send_avg; /* average packet size sent */ subs_list empty_out_q_subs; /* Empty out queue subscribers */ } inet_descriptor; #define TCP_MAX_PACKET_SIZE 0x4000000 /* 64 M */ #define MAX_VSIZE 16 /* Max number of entries allowed in an I/O * vector sock_sendv(). */ static int tcp_inet_init(void); static void tcp_inet_stop(ErlDrvData); static void tcp_inet_command(ErlDrvData, char*, int); static void tcp_inet_commandv(ErlDrvData, ErlIOVec*); static void tcp_inet_flush(ErlDrvData drv_data); static void tcp_inet_drv_input(ErlDrvData, ErlDrvEvent); static void tcp_inet_drv_output(ErlDrvData data, ErlDrvEvent event); static ErlDrvData tcp_inet_start(ErlDrvPort, char* command); static int tcp_inet_ctl(ErlDrvData, unsigned int, char*, int, char**, int); static void tcp_inet_timeout(ErlDrvData); static void tcp_inet_process_exit(ErlDrvData, ErlDrvMonitor *); static void inet_stop_select(ErlDrvEvent, void*); #ifdef __WIN32__ static void tcp_inet_event(ErlDrvData, ErlDrvEvent); static void find_dynamic_functions(void); #endif static struct erl_drv_entry tcp_inet_driver_entry = { tcp_inet_init, /* inet_init will add this driver !! */ tcp_inet_start, tcp_inet_stop, tcp_inet_command, #ifdef __WIN32__ tcp_inet_event, NULL, #else tcp_inet_drv_input, tcp_inet_drv_output, #endif "tcp_inet", NULL, NULL, tcp_inet_ctl, tcp_inet_timeout, tcp_inet_commandv, NULL, tcp_inet_flush, NULL, NULL, ERL_DRV_EXTENDED_MARKER, ERL_DRV_EXTENDED_MAJOR_VERSION, ERL_DRV_EXTENDED_MINOR_VERSION, ERL_DRV_FLAG_USE_PORT_LOCKING|ERL_DRV_FLAG_SOFT_BUSY, NULL, tcp_inet_process_exit, inet_stop_select }; static int packet_inet_init(void); static void packet_inet_stop(ErlDrvData); static void packet_inet_command(ErlDrvData, char*, int); static void packet_inet_drv_input(ErlDrvData data, ErlDrvEvent event); static void packet_inet_drv_output(ErlDrvData data, ErlDrvEvent event); static ErlDrvData udp_inet_start(ErlDrvPort, char* command); #ifdef HAVE_SCTP static ErlDrvData sctp_inet_start(ErlDrvPort, char* command); #endif static int packet_inet_ctl(ErlDrvData, unsigned int, char*, int, char**, int); static void packet_inet_timeout(ErlDrvData); #ifdef __WIN32__ static void packet_inet_event(ErlDrvData, ErlDrvEvent); static SOCKET make_noninheritable_handle(SOCKET s); static int winsock_event_select(inet_descriptor *, int, int); #endif static struct erl_drv_entry udp_inet_driver_entry = { packet_inet_init, /* inet_init will add this driver !! */ udp_inet_start, packet_inet_stop, packet_inet_command, #ifdef __WIN32__ packet_inet_event, NULL, #else packet_inet_drv_input, packet_inet_drv_output, #endif "udp_inet", NULL, NULL, packet_inet_ctl, packet_inet_timeout, NULL, NULL, NULL, NULL, NULL, ERL_DRV_EXTENDED_MARKER, ERL_DRV_EXTENDED_MAJOR_VERSION, ERL_DRV_EXTENDED_MINOR_VERSION, ERL_DRV_FLAG_USE_PORT_LOCKING, NULL, NULL, inet_stop_select }; #ifdef HAVE_SCTP static struct erl_drv_entry sctp_inet_driver_entry = { packet_inet_init, /* inet_init will add this driver !! */ sctp_inet_start, packet_inet_stop, packet_inet_command, #ifdef __WIN32__ packet_inet_event, NULL, #else packet_inet_drv_input, packet_inet_drv_output, #endif "sctp_inet", NULL, NULL, packet_inet_ctl, packet_inet_timeout, NULL, NULL, NULL, NULL, NULL, ERL_DRV_EXTENDED_MARKER, ERL_DRV_EXTENDED_MAJOR_VERSION, ERL_DRV_EXTENDED_MINOR_VERSION, ERL_DRV_FLAG_USE_PORT_LOCKING, NULL, NULL, /* process_exit */ inet_stop_select }; #endif typedef struct { inet_descriptor inet; /* common data structure (DON'T MOVE) */ int high; /* high watermark */ int low; /* low watermark */ int send_timeout; /* timeout to use in send */ int send_timeout_close; /* auto-close socket on send_timeout */ int busy_on_send; /* busy on send with timeout! */ int i_bufsz; /* current input buffer size (<= bufsz) */ ErlDrvBinary* i_buf; /* current binary buffer */ char* i_ptr; /* current pos in buf */ char* i_ptr_start; /* packet start pos in buf */ int i_remain; /* remaining chars to read */ int tcp_add_flags;/* Additional TCP descriptor flags */ int http_state; /* 0 = response|request 1=headers fields */ inet_async_multi_op *multi_first;/* NULL == no multi-accept-queue, op is in ordinary queue */ inet_async_multi_op *multi_last; MultiTimerData *mtd; /* Timer structures for multiple accept */ } tcp_descriptor; /* send function */ static int tcp_send(tcp_descriptor* desc, char* ptr, int len); static int tcp_sendv(tcp_descriptor* desc, ErlIOVec* ev); static int tcp_recv(tcp_descriptor* desc, int request_len); static int tcp_deliver(tcp_descriptor* desc, int len); static int tcp_inet_output(tcp_descriptor* desc, HANDLE event); static int tcp_inet_input(tcp_descriptor* desc, HANDLE event); typedef struct { inet_descriptor inet; /* common data structure (DON'T MOVE) */ int read_packets; /* Number of packets to read per invocation */ } udp_descriptor; static int packet_inet_input(udp_descriptor* udesc, HANDLE event); static int packet_inet_output(udp_descriptor* udesc, HANDLE event); /* convert descriptor poiner to inet_descriptor pointer */ #define INETP(d) (&(d)->inet) static int async_ref = 0; /* async reference id generator */ #define NEW_ASYNC_ID() ((async_ref++) & 0xffff) static ErlDrvTermData am_ok; static ErlDrvTermData am_tcp; static ErlDrvTermData am_udp; static ErlDrvTermData am_error; static ErlDrvTermData am_inet_async; static ErlDrvTermData am_inet_reply; static ErlDrvTermData am_timeout; static ErlDrvTermData am_closed; static ErlDrvTermData am_tcp_closed; static ErlDrvTermData am_tcp_error; static ErlDrvTermData am_udp_error; static ErlDrvTermData am_empty_out_q; static ErlDrvTermData am_ssl_tls; #ifdef HAVE_SCTP static ErlDrvTermData am_sctp; static ErlDrvTermData am_sctp_error; static ErlDrvTermData am_true; static ErlDrvTermData am_false; static ErlDrvTermData am_buffer; static ErlDrvTermData am_mode; static ErlDrvTermData am_list; static ErlDrvTermData am_binary; static ErlDrvTermData am_active; static ErlDrvTermData am_once; static ErlDrvTermData am_buffer; static ErlDrvTermData am_linger; static ErlDrvTermData am_recbuf; static ErlDrvTermData am_sndbuf; static ErlDrvTermData am_reuseaddr; static ErlDrvTermData am_dontroute; static ErlDrvTermData am_priority; static ErlDrvTermData am_tos; #endif /* speical errors for bad ports and sequences */ #define EXBADPORT "exbadport" #define EXBADSEQ "exbadseq" static int inet_init(void); static int ctl_reply(int, char*, int, char**, int); struct erl_drv_entry inet_driver_entry = { inet_init, /* inet_init will add TCP, UDP and SCTP drivers */ NULL, /* start */ NULL, /* stop */ NULL, /* output */ NULL, /* ready_input */ NULL, /* ready_output */ "inet" }; /* XXX: is this a driver interface function ??? */ void erl_exit(int n, char*, ...); /* * Malloc wrapper, * we would like to change the behaviour for different * systems here. */ #ifdef FATAL_MALLOC static void *alloc_wrapper(size_t size){ void *ret = driver_alloc(size); if(ret == NULL) erl_exit(1,"Out of virtual memory in malloc (%s)", __FILE__); return ret; } #define ALLOC(X) alloc_wrapper(X) static void *realloc_wrapper(void *current, size_t size){ void *ret = driver_realloc(current,size); if(ret == NULL) erl_exit(1,"Out of virtual memory in realloc (%s)", __FILE__); return ret; } #define REALLOC(X,Y) realloc_wrapper(X,Y) #define FREE(P) driver_free((P)) #else /* FATAL_MALLOC */ #define ALLOC(X) driver_alloc((X)) #define REALLOC(X,Y) driver_realloc((X), (Y)) #define FREE(P) driver_free((P)) #endif /* FATAL_MALLOC */ #define INIT_ATOM(NAME) am_ ## NAME = driver_mk_atom(#NAME) #define LOAD_ATOM_CNT 2 #define LOAD_ATOM(vec, i, atom) \ (((vec)[(i)] = ERL_DRV_ATOM), \ ((vec)[(i)+1] = (atom)), \ ((i)+LOAD_ATOM_CNT)) #define LOAD_INT_CNT 2 #define LOAD_INT(vec, i, val) \ (((vec)[(i)] = ERL_DRV_INT), \ ((vec)[(i)+1] = (ErlDrvTermData)(val)), \ ((i)+LOAD_INT_CNT)) #define LOAD_UINT_CNT 2 #define LOAD_UINT(vec, i, val) \ (((vec)[(i)] = ERL_DRV_UINT), \ ((vec)[(i)+1] = (ErlDrvTermData)(val)), \ ((i)+LOAD_UINT_CNT)) #define LOAD_PORT_CNT 2 #define LOAD_PORT(vec, i, port) \ (((vec)[(i)] = ERL_DRV_PORT), \ ((vec)[(i)+1] = (port)), \ ((i)+LOAD_PORT_CNT)) #define LOAD_PID_CNT 2 #define LOAD_PID(vec, i, pid) \ (((vec)[(i)] = ERL_DRV_PID), \ ((vec)[(i)+1] = (pid)), \ ((i)+LOAD_PID_CNT)) #define LOAD_BINARY_CNT 4 #define LOAD_BINARY(vec, i, bin, offs, len) \ (((vec)[(i)] = ERL_DRV_BINARY), \ ((vec)[(i)+1] = (ErlDrvTermData)(bin)), \ ((vec)[(i)+2] = (len)), \ ((vec)[(i)+3] = (offs)), \ ((i)+LOAD_BINARY_CNT)) #define LOAD_BUF2BINARY_CNT 3 #define LOAD_BUF2BINARY(vec, i, buf, len) \ (((vec)[(i)] = ERL_DRV_BUF2BINARY), \ ((vec)[(i)+1] = (ErlDrvTermData)(buf)), \ ((vec)[(i)+2] = (len)), \ ((i)+LOAD_BUF2BINARY_CNT)) #define LOAD_STRING_CNT 3 #define LOAD_STRING(vec, i, str, len) \ (((vec)[(i)] = ERL_DRV_STRING), \ ((vec)[(i)+1] = (ErlDrvTermData)(str)), \ ((vec)[(i)+2] = (len)), \ ((i)+LOAD_STRING_CNT)) #define LOAD_STRING_CONS_CNT 3 #define LOAD_STRING_CONS(vec, i, str, len) \ (((vec)[(i)] = ERL_DRV_STRING_CONS), \ ((vec)[(i)+1] = (ErlDrvTermData)(str)), \ ((vec)[(i)+2] = (len)), \ ((i)+LOAD_STRING_CONS_CNT)) #define LOAD_TUPLE_CNT 2 #define LOAD_TUPLE(vec, i, size) \ (((vec)[(i)] = ERL_DRV_TUPLE), \ ((vec)[(i)+1] = (size)), \ ((i)+LOAD_TUPLE_CNT)) #define LOAD_NIL_CNT 1 #define LOAD_NIL(vec, i) \ (((vec)[(i)] = ERL_DRV_NIL), \ ((i)+LOAD_NIL_CNT)) #define LOAD_LIST_CNT 2 #define LOAD_LIST(vec, i, size) \ (((vec)[(i)] = ERL_DRV_LIST), \ ((vec)[(i)+1] = (size)), \ ((i)+LOAD_LIST_CNT)) #ifdef HAVE_SCTP /* "IS_SCTP": tells the difference between a UDP and an SCTP socket: */ # define IS_SCTP(desc)((desc)->sprotocol==IPPROTO_SCTP) /* For AssocID, 4 bytes should be enough -- checked by "init": */ # define GET_ASSOC_ID get_int32 # define ASSOC_ID_LEN 4 # define LOAD_ASSOC_ID LOAD_UINT # define LOAD_ASSOC_ID_CNT LOAD_UINT_CNT # define SCTP_ANC_BUFF_SIZE INET_DEF_BUFFER/2 /* XXX: not very good... */ #endif static int load_ip_port(ErlDrvTermData* spec, int i, char* buf) { spec[i++] = ERL_DRV_INT; spec[i++] = (ErlDrvTermData) get_int16(buf); return i; } static int load_ip_address(ErlDrvTermData* spec, int i, int family, char* buf) { int n; if (family == AF_INET) { for (n = 0; n < 4; n++) { spec[i++] = ERL_DRV_INT; spec[i++] = (ErlDrvTermData) ((unsigned char)buf[n]); } spec[i++] = ERL_DRV_TUPLE; spec[i++] = 4; } #if defined(HAVE_IN6) && defined(AF_INET6) else if (family == AF_INET6) { for (n = 0; n < 16; n += 2) { spec[i++] = ERL_DRV_INT; spec[i++] = (ErlDrvTermData) get_int16(buf+n); } spec[i++] = ERL_DRV_TUPLE; spec[i++] = 8; } #endif else { spec[i++] = ERL_DRV_TUPLE; spec[i++] = 0; } return i; } #ifdef HAVE_SCTP /* For SCTP, we often need to return {IP, Port} tuples: */ static int inet_get_address (int family, char* dst, inet_address* src, unsigned int* len); #define LOAD_IP_AND_PORT_CNT \ (8*LOAD_INT_CNT + LOAD_TUPLE_CNT + LOAD_INT_CNT + LOAD_TUPLE_CNT) static int load_ip_and_port (ErlDrvTermData* spec, int i, inet_descriptor* desc, struct sockaddr_storage* addr) { /* The size of the buffer used to stringify the addr is the same as that of "sockaddr_storage" itself: only their layout is different: */ unsigned int len = sizeof(struct sockaddr_storage); unsigned int alen = len; char abuf [len]; int res = inet_get_address(desc->sfamily, abuf, (inet_address*) addr, &alen); ASSERT(res==0); res = 0; /* Now "abuf" contains: Family(1b), Port(2b), IP(4|16b) */ /* NB: the following functions are safe to use, as they create tuples of copied Ints on the "spec", and do not install any String pts -- a ptr to "abuf" would be dangling upon exiting this function: */ i = load_ip_address(spec, i, desc->sfamily, abuf+3); i = load_ip_port (spec, i, abuf+1); i = LOAD_TUPLE (spec, i, 2); return i; } /* Loading Boolean flags as Atoms: */ #define LOAD_BOOL_CNT LOAD_ATOM_CNT #define LOAD_BOOL(spec, i, flag) \ LOAD_ATOM((spec), (i), (flag) ? am_true : am_false); #endif /* HAVE_SCTP */ /* Assume a cache line size of 64 bytes */ #define INET_DRV_CACHE_LINE_SIZE ((ErlDrvUInt) 64) #define INET_DRV_CACHE_LINE_MASK (INET_DRV_CACHE_LINE_SIZE - 1) /* ** Binary Buffer Managment ** We keep a stack of usable buffers */ #define BUFFER_STACK_SIZE 14 #define BUFFER_STACK_MAX_MEM_SIZE (1024*1024) ErlDrvTSDKey buffer_stack_key; typedef struct { int mem_size; int pos; ErlDrvBinary* stk[BUFFER_STACK_SIZE]; } InetDrvBufStkBase; typedef struct { InetDrvBufStkBase buf; char align[(((sizeof(InetDrvBufStkBase) - 1) / INET_DRV_CACHE_LINE_SIZE) + 1) * INET_DRV_CACHE_LINE_SIZE]; } InetDrvBufStk; static InetDrvBufStk *get_bufstk(void) { InetDrvBufStk *bs = erl_drv_tsd_get(buffer_stack_key); if (bs) return bs; bs = driver_alloc(sizeof(InetDrvBufStk) + INET_DRV_CACHE_LINE_SIZE - 1); if (!bs) return NULL; if ((((ErlDrvUInt) bs) & INET_DRV_CACHE_LINE_MASK) != 0) bs = ((InetDrvBufStk *) ((((ErlDrvUInt) bs) & ~INET_DRV_CACHE_LINE_MASK) + INET_DRV_CACHE_LINE_SIZE)); erl_drv_tsd_set(buffer_stack_key, bs); bs->buf.pos = 0; bs->buf.mem_size = 0; ASSERT(bs == erl_drv_tsd_get(buffer_stack_key)); return bs; } static ErlDrvBinary* alloc_buffer(long minsz) { InetDrvBufStk *bs = get_bufstk(); DEBUGF(("alloc_buffer: %ld\r\n", minsz)); if (bs && bs->buf.pos > 0) { long size; ErlDrvBinary* buf = bs->buf.stk[--bs->buf.pos]; size = buf->orig_size; bs->buf.mem_size -= size; ASSERT(0 <= bs->buf.mem_size && bs->buf.mem_size <= BUFFER_STACK_MAX_MEM_SIZE); if (size >= minsz) return buf; driver_free_binary(buf); } ASSERT(!bs || bs->buf.pos != 0 || bs->buf.mem_size == 0); return driver_alloc_binary(minsz); } /*#define CHECK_DOUBLE_RELEASE 1*/ #ifdef CHECK_DOUBLE_RELEASE static void check_double_release(InetDrvBufStk *bs, ErlDrvBinary* buf) { #ifdef __GNUC__ #warning CHECK_DOUBLE_RELEASE is enabled, this is a custom build emulator #endif int i; for (i = 0; i < bs->buf.pos; ++i) { if (bs->buf.stk[i] == buf) { erl_exit(ERTS_ABORT_EXIT, "Multiple buffer release in inet_drv, this " "is a bug, save the core and send it to " "support@erlang.ericsson.se!"); } } } #endif static void release_buffer(ErlDrvBinary* buf) { InetDrvBufStk *bs; long size; DEBUGF(("release_buffer: %ld\r\n", (buf==NULL) ? 0 : buf->orig_size)); if (!buf) return; size = buf->orig_size; if (size > BUFFER_STACK_MAX_MEM_SIZE) goto free_binary; bs = get_bufstk(); if (!bs || (bs->buf.mem_size + size > BUFFER_STACK_MAX_MEM_SIZE) || (bs->buf.pos >= BUFFER_STACK_SIZE)) { free_binary: driver_free_binary(buf); } else { #ifdef CHECK_DOUBLE_RELEASE check_double_release(bs, buf); #endif ASSERT(bs->buf.pos != 0 || bs->buf.mem_size == 0); bs->buf.mem_size += size; bs->buf.stk[bs->buf.pos++] = buf; ASSERT(0 <= bs->buf.mem_size && bs->buf.mem_size <= BUFFER_STACK_MAX_MEM_SIZE); } } static ErlDrvBinary* realloc_buffer(ErlDrvBinary* buf, long newsz) { return driver_realloc_binary(buf, newsz); } /* use a TRICK, access the refc field to see if any one else has * a ref to this buffer then call driver_free_binary else * release_buffer instead */ static void free_buffer(ErlDrvBinary* buf) { DEBUGF(("free_buffer: %ld\r\n", (buf==NULL) ? 0 : buf->orig_size)); if (buf != NULL) { if (driver_binary_get_refc(buf) == 1) release_buffer(buf); else driver_free_binary(buf); } } #ifdef __WIN32__ static ErlDrvData dummy_start(ErlDrvPort port, char* command) { return (ErlDrvData)port; } static int dummy_ctl(ErlDrvData data, unsigned int cmd, char* buf, int len, char** rbuf, int rsize) { static char error[] = "no_winsock2"; driver_failure_atom((ErlDrvPort)data, error); return ctl_reply(INET_REP_ERROR, error, sizeof(error), rbuf, rsize); } static void dummy_command(ErlDrvData data, char* buf, int len) { } static struct erl_drv_entry dummy_tcp_driver_entry = { NULL, /* init */ dummy_start, /* start */ NULL, /* stop */ dummy_command, /* command */ NULL, /* input */ NULL, /* output */ "tcp_inet", /* name */ NULL, NULL, dummy_ctl, NULL, NULL }; static struct erl_drv_entry dummy_udp_driver_entry = { NULL, /* init */ dummy_start, /* start */ NULL, /* stop */ dummy_command, /* command */ NULL, /* input */ NULL, /* output */ "udp_inet", /* name */ NULL, NULL, dummy_ctl, NULL, NULL }; #ifdef HAVE_SCTP static struct erl_drv_entry dummy_sctp_driver_entry = { /* Though there is no SCTP for Win32 yet... */ NULL, /* init */ dummy_start, /* start */ NULL, /* stop */ dummy_command, /* command */ NULL, /* input */ NULL, /* output */ "sctp_inet", /* name */ NULL, NULL, dummy_ctl, NULL, NULL }; #endif #endif /* general control reply function */ static int ctl_reply(int rep, char* buf, int len, char** rbuf, int rsize) { char* ptr; if ((len+1) > rsize) { ptr = ALLOC(len+1); *rbuf = ptr; } else ptr = *rbuf; *ptr++ = rep; memcpy(ptr, buf, len); return len+1; } /* general control error reply function */ static int ctl_error(int err, char** rbuf, int rsize) { char response[256]; /* Response buffer. */ char* s; char* t; for (s = erl_errno_id(err), t = response; *s; s++, t++) *t = tolower(*s); return ctl_reply(INET_REP_ERROR, response, t-response, rbuf, rsize); } static int ctl_xerror(char* xerr, char** rbuf, int rsize) { int n = strlen(xerr); return ctl_reply(INET_REP_ERROR, xerr, n, rbuf, rsize); } static ErlDrvTermData error_atom(int err) { char errstr[256]; char* s; char* t; for (s = erl_errno_id(err), t = errstr; *s; s++, t++) *t = tolower(*s); *t = '\0'; return driver_mk_atom(errstr); } static void enq_old_multi_op(tcp_descriptor *desc, int id, int req, ErlDrvTermData caller, MultiTimerData *timeout, ErlDrvMonitor *monitorp) { inet_async_multi_op *opp; opp = ALLOC(sizeof(inet_async_multi_op)); opp->op.id = id; opp->op.caller = caller; opp->op.req = req; opp->op.tmo.mtd = timeout; memcpy(&(opp->op.monitor), monitorp, sizeof(ErlDrvMonitor)); opp->next = NULL; if (desc->multi_first == NULL) { desc->multi_first = opp; } else { desc->multi_last->next = opp; } desc->multi_last = opp; } static void enq_multi_op(tcp_descriptor *desc, char *buf, int req, ErlDrvTermData caller, MultiTimerData *timeout, ErlDrvMonitor *monitorp) { int id = NEW_ASYNC_ID(); enq_old_multi_op(desc,id,req,caller,timeout,monitorp); if (buf != NULL) put_int16(id, buf); } static int deq_multi_op(tcp_descriptor *desc, int *id_p, int *req_p, ErlDrvTermData *caller_p, MultiTimerData **timeout_p, ErlDrvMonitor *monitorp) { inet_async_multi_op *opp; opp = desc->multi_first; if (!opp) { return -1; } desc->multi_first = opp->next; if (desc->multi_first == NULL) { desc->multi_last = NULL; } *id_p = opp->op.id; *req_p = opp->op.req; *caller_p = opp->op.caller; if (timeout_p != NULL) { *timeout_p = opp->op.tmo.mtd; } if (monitorp != NULL) { memcpy(monitorp,&(opp->op.monitor),sizeof(ErlDrvMonitor)); } FREE(opp); return 0; } static int remove_multi_op(tcp_descriptor *desc, int *id_p, int *req_p, ErlDrvTermData caller, MultiTimerData **timeout_p, ErlDrvMonitor *monitorp) { inet_async_multi_op *opp, *slap; for (opp = desc->multi_first, slap = NULL; opp != NULL && opp->op.caller != caller; slap = opp, opp = opp->next) ; if (!opp) { return -1; } if (slap == NULL) { desc->multi_first = opp->next; } else { slap->next = opp->next; } if (desc->multi_last == opp) { desc->multi_last = slap; } *id_p = opp->op.id; *req_p = opp->op.req; if (timeout_p != NULL) { *timeout_p = opp->op.tmo.mtd; } if (monitorp != NULL) { memcpy(monitorp,&(opp->op.monitor),sizeof(ErlDrvMonitor)); } FREE(opp); return 0; } /* setup a new async id + caller (format async_id into buf) */ static int enq_async_w_tmo(inet_descriptor* desc, char* buf, int req, unsigned timeout, ErlDrvMonitor *monitorp) { int id = NEW_ASYNC_ID(); inet_async_op* opp; if ((opp = desc->oph) == NULL) /* queue empty */ opp = desc->oph = desc->opt = desc->op_queue; else if (desc->oph == desc->opt) { /* queue full */ DEBUGF(("enq(%ld): queue full\r\n", (long)desc->port)); return -1; } opp->id = id; opp->caller = driver_caller(desc->port); opp->req = req; opp->tmo.value = timeout; if (monitorp != NULL) { memcpy(&(opp->monitor),monitorp,sizeof(ErlDrvMonitor)); } DEBUGF(("enq(%ld): %d %ld %d\r\n", (long) desc->port, opp->id, opp->caller, opp->req)); opp++; if (opp >= desc->op_queue + INET_MAX_ASYNC) desc->oph = desc->op_queue; else desc->oph = opp; if (buf != NULL) put_int16(id, buf); return 0; } static int enq_async(inet_descriptor* desc, char* buf, int req) { return enq_async_w_tmo(desc,buf,req,INET_INFINITY, NULL); } static int deq_async_w_tmo(inet_descriptor* desc, int* ap, ErlDrvTermData* cp, int* rp, unsigned *tp, ErlDrvMonitor *monitorp) { inet_async_op* opp; if ((opp = desc->opt) == NULL) { /* queue empty */ DEBUGF(("deq(%ld): queue empty\r\n", (long)desc->port)); return -1; } *ap = opp->id; *cp = opp->caller; *rp = opp->req; if (tp != NULL) { *tp = opp->tmo.value; } if (monitorp != NULL) { memcpy(monitorp,&(opp->monitor),sizeof(ErlDrvMonitor)); } DEBUGF(("deq(%ld): %d %ld %d\r\n", (long)desc->port, opp->id, opp->caller, opp->req)); opp++; if (opp >= desc->op_queue + INET_MAX_ASYNC) desc->opt = desc->op_queue; else desc->opt = opp; if (desc->opt == desc->oph) desc->opt = desc->oph = NULL; return 0; } static int deq_async(inet_descriptor* desc, int* ap, ErlDrvTermData* cp, int* rp) { return deq_async_w_tmo(desc,ap,cp,rp,NULL,NULL); } /* send message: ** {inet_async, Port, Ref, ok} */ static int send_async_ok(ErlDrvPort port, ErlDrvTermData Port, int Ref, ErlDrvTermData recipient) { ErlDrvTermData spec[2*LOAD_ATOM_CNT + LOAD_PORT_CNT + LOAD_INT_CNT + LOAD_TUPLE_CNT]; int i = 0; i = LOAD_ATOM(spec, i, am_inet_async); i = LOAD_PORT(spec, i, Port); i = LOAD_INT(spec, i, Ref); i = LOAD_ATOM(spec, i, am_ok); i = LOAD_TUPLE(spec, i, 4); ASSERT(i == sizeof(spec)/sizeof(*spec)); return driver_send_term(port, recipient, spec, i); } /* send message: ** {inet_async, Port, Ref, {ok,Port2}} */ static int send_async_ok_port(ErlDrvPort port, ErlDrvTermData Port, int Ref, ErlDrvTermData recipient, ErlDrvTermData Port2) { ErlDrvTermData spec[2*LOAD_ATOM_CNT + 2*LOAD_PORT_CNT + LOAD_INT_CNT + 2*LOAD_TUPLE_CNT]; int i = 0; i = LOAD_ATOM(spec, i, am_inet_async); i = LOAD_PORT(spec, i, Port); i = LOAD_INT(spec, i, Ref); { i = LOAD_ATOM(spec, i, am_ok); i = LOAD_PORT(spec, i, Port2); i = LOAD_TUPLE(spec, i, 2); } i = LOAD_TUPLE(spec, i, 4); ASSERT(i == sizeof(spec)/sizeof(*spec)); return driver_send_term(port, recipient, spec, i); } /* send message: ** {inet_async, Port, Ref, {error,Reason}} */ static int send_async_error(ErlDrvPort port, ErlDrvTermData Port, int Ref, ErlDrvTermData recipient, ErlDrvTermData Reason) { ErlDrvTermData spec[3*LOAD_ATOM_CNT + LOAD_PORT_CNT + LOAD_INT_CNT + 2*LOAD_TUPLE_CNT]; int i = 0; i = LOAD_ATOM(spec, i, am_inet_async); i = LOAD_PORT(spec, i, Port); i = LOAD_INT(spec, i, Ref); { i = LOAD_ATOM(spec, i, am_error); i = LOAD_ATOM(spec, i, Reason); i = LOAD_TUPLE(spec, i, 2); } i = LOAD_TUPLE(spec, i, 4); ASSERT(i == sizeof(spec)/sizeof(*spec)); DEBUGF(("send_async_error %ld %ld\r\n", recipient, Reason)); return driver_send_term(port, recipient, spec, i); } static int async_ok(inet_descriptor* desc) { int req; int aid; ErlDrvTermData caller; if (deq_async(desc, &aid, &caller, &req) < 0) return -1; return send_async_ok(desc->port, desc->dport, aid, caller); } static int async_ok_port(inet_descriptor* desc, ErlDrvTermData Port2) { int req; int aid; ErlDrvTermData caller; if (deq_async(desc, &aid, &caller, &req) < 0) return -1; return send_async_ok_port(desc->port, desc->dport, aid, caller, Port2); } static int async_error_am(inet_descriptor* desc, ErlDrvTermData reason) { int req; int aid; ErlDrvTermData caller; if (deq_async(desc, &aid, &caller, &req) < 0) return -1; return send_async_error(desc->port, desc->dport, aid, caller, reason); } /* dequeue all operations */ static int async_error_am_all(inet_descriptor* desc, ErlDrvTermData reason) { int req; int aid; ErlDrvTermData caller; while (deq_async(desc, &aid, &caller, &req) == 0) { send_async_error(desc->port, desc->dport, aid, caller, reason); } return 0; } static int async_error(inet_descriptor* desc, int err) { return async_error_am(desc, error_atom(err)); } /* send: ** {inet_reply, S, ok} */ static int inet_reply_ok(inet_descriptor* desc) { ErlDrvTermData spec[2*LOAD_ATOM_CNT + LOAD_PORT_CNT + LOAD_TUPLE_CNT]; ErlDrvTermData caller = desc->caller; int i = 0; i = LOAD_ATOM(spec, i, am_inet_reply); i = LOAD_PORT(spec, i, desc->dport); i = LOAD_ATOM(spec, i, am_ok); i = LOAD_TUPLE(spec, i, 3); ASSERT(i == sizeof(spec)/sizeof(*spec)); desc->caller = 0; return driver_send_term(desc->port, caller, spec, i); } /* send: ** {inet_reply, S, {error, Reason}} */ static int inet_reply_error_am(inet_descriptor* desc, ErlDrvTermData reason) { ErlDrvTermData spec[3*LOAD_ATOM_CNT + LOAD_PORT_CNT + 2*LOAD_TUPLE_CNT]; ErlDrvTermData caller = desc->caller; int i = 0; i = LOAD_ATOM(spec, i, am_inet_reply); i = LOAD_PORT(spec, i, desc->dport); i = LOAD_ATOM(spec, i, am_error); i = LOAD_ATOM(spec, i, reason); i = LOAD_TUPLE(spec, i, 2); i = LOAD_TUPLE(spec, i, 3); ASSERT(i == sizeof(spec)/sizeof(*spec)); desc->caller = 0; DEBUGF(("inet_reply_error_am %ld %ld\r\n", caller, reason)); return driver_send_term(desc->port, caller, spec, i); } /* send: ** {inet_reply, S, {error, Reason}} */ static int inet_reply_error(inet_descriptor* desc, int err) { return inet_reply_error_am(desc, error_atom(err)); } /* ** Deliver port data from buffer */ static int inet_port_data(inet_descriptor* desc, const char* buf, int len) { unsigned int hsz = desc->hsz; DEBUGF(("inet_port_data(%ld): len = %d\r\n", (long)desc->port, len)); if ((desc->mode == INET_MODE_LIST) || (hsz > len)) return driver_output2(desc->port, (char*)buf, len, NULL, 0); else if (hsz > 0) return driver_output2(desc->port, (char*)buf, hsz, (char*)buf+hsz, len-hsz); else return driver_output(desc->port, (char*)buf, len); } /* ** Deliver port data from binary (for an active mode socket) */ static int inet_port_binary_data(inet_descriptor* desc, ErlDrvBinary* bin, int offs, int len) { unsigned int hsz = desc->hsz; DEBUGF(("inet_port_binary_data(%ld): offs=%d, len = %d\r\n", (long)desc->port, offs, len)); if ((desc->mode == INET_MODE_LIST) || (hsz > len)) return driver_output2(desc->port, bin->orig_bytes+offs, len, NULL, 0); else return driver_output_binary(desc->port, bin->orig_bytes+offs, hsz, bin, offs+hsz, len-hsz); } static ErlDrvTermData am_http_eoh; static ErlDrvTermData am_http_header; static ErlDrvTermData am_http_request; static ErlDrvTermData am_http_response; static ErlDrvTermData am_http_error; static ErlDrvTermData am_abs_path; static ErlDrvTermData am_absoluteURI; static ErlDrvTermData am_star; static ErlDrvTermData am_undefined; static ErlDrvTermData am_http; static ErlDrvTermData am_https; static ErlDrvTermData am_scheme; static int http_load_string(tcp_descriptor* desc, ErlDrvTermData* spec, int i, const char* str, int len) { if (desc->inet.htype >= TCP_PB_HTTP_BIN) { ASSERT(desc->inet.htype == TCP_PB_HTTP_BIN || desc->inet.htype == TCP_PB_HTTPH_BIN); i = LOAD_BUF2BINARY(spec, i, str, len); } else { i = LOAD_STRING(spec, i, str, len); } return i; } static int http_response_inetdrv(void *arg, int major, int minor, int status, const char* phrase, int phrase_len) { tcp_descriptor* desc = (tcp_descriptor*) arg; int i = 0; ErlDrvTermData spec[27]; ErlDrvTermData caller = ERL_DRV_NIL; if (desc->inet.active == INET_PASSIVE) { /* {inet_async,S,Ref,{ok,{http_response,Version,Status,Phrase}}} */ int req; int aid; if (deq_async(INETP(desc), &aid, &caller, &req) < 0) return -1; i = LOAD_ATOM(spec, i, am_inet_async); i = LOAD_PORT(spec, i, desc->inet.dport); i = LOAD_INT(spec, i, aid); i = LOAD_ATOM(spec, i, am_ok); } else { /* {http, S, {http_response,Version,Status,Phrase}} */ i = LOAD_ATOM(spec, i, am_http); i = LOAD_PORT(spec, i, desc->inet.dport); } i = LOAD_ATOM(spec, i, am_http_response); i = LOAD_INT(spec, i, major); i = LOAD_INT(spec, i, minor); i = LOAD_TUPLE(spec, i, 2); i = LOAD_INT(spec, i, status); i = http_load_string(desc, spec, i, phrase, phrase_len); i = LOAD_TUPLE(spec, i, 4); if (desc->inet.active == INET_PASSIVE) { i = LOAD_TUPLE(spec, i, 2); i = LOAD_TUPLE(spec, i, 4); ASSERT(i<=27); return driver_send_term(desc->inet.port, caller, spec, i); } else { i = LOAD_TUPLE(spec, i, 3); ASSERT(i<=27); return driver_output_term(desc->inet.port, spec, i); } } static int http_load_uri(tcp_descriptor* desc, ErlDrvTermData* spec, int i, const PacketHttpURI* uri) { ErlDrvTermData scheme; switch (uri->type) { case URI_STAR: i = LOAD_ATOM(spec, i, am_star); break; case URI_ABS_PATH: i = LOAD_ATOM(spec, i, am_abs_path); i = http_load_string(desc, spec, i, uri->s1_ptr, uri->s1_len); i = LOAD_TUPLE(spec, i, 2); break; case URI_HTTP: scheme = am_http; goto http_common; case URI_HTTPS: scheme = am_https; http_common: i = LOAD_ATOM(spec, i, am_absoluteURI); i = LOAD_ATOM(spec, i, scheme); i = http_load_string(desc, spec, i, uri->s1_ptr, uri->s1_len); if (uri->port == 0) { i = LOAD_ATOM(spec, i, am_undefined); } else { i = LOAD_INT(spec, i, uri->port); } i = http_load_string(desc, spec, i, uri->s2_ptr, uri->s2_len); i = LOAD_TUPLE(spec, i, 5); break; case URI_STRING: i = http_load_string(desc, spec, i, uri->s1_ptr, uri->s1_len); break; case URI_SCHEME: i = LOAD_ATOM(spec, i, am_scheme); i = http_load_string(desc, spec, i, uri->s1_ptr, uri->s1_len); i = http_load_string(desc, spec, i, uri->s2_ptr, uri->s2_len); i = LOAD_TUPLE(spec, i, 3); } return i; } static int http_request_inetdrv(void* arg, const http_atom_t* meth, const char* meth_ptr, int meth_len, const PacketHttpURI* uri, int major, int minor) { tcp_descriptor* desc = (tcp_descriptor*) arg; int i = 0; ErlDrvTermData spec[43]; ErlDrvTermData caller = ERL_DRV_NIL; if (desc->inet.active == INET_PASSIVE) { /* {inet_async, S, Ref, {ok,{http_request,Meth,Uri,Version}}} */ int req; int aid; if (deq_async(INETP(desc), &aid, &caller, &req) < 0) return -1; i = LOAD_ATOM(spec, i, am_inet_async); i = LOAD_PORT(spec, i, desc->inet.dport); i = LOAD_INT(spec, i, aid); i = LOAD_ATOM(spec, i, am_ok); } else { /* {http, S, {http_request,Meth,Uri,Version}}} */ i = LOAD_ATOM(spec, i, am_http); i = LOAD_PORT(spec, i, desc->inet.dport); } i = LOAD_ATOM(spec, i, am_http_request); if (meth != NULL) i = LOAD_ATOM(spec, i, meth->atom); else i = http_load_string(desc, spec, i, meth_ptr, meth_len); i = http_load_uri(desc, spec, i, uri); i = LOAD_INT(spec, i, major); i = LOAD_INT(spec, i, minor); i = LOAD_TUPLE(spec, i, 2); i = LOAD_TUPLE(spec, i, 4); if (desc->inet.active == INET_PASSIVE) { i = LOAD_TUPLE(spec, i, 2); i = LOAD_TUPLE(spec, i, 4); ASSERT(i <= 43); return driver_send_term(desc->inet.port, caller, spec, i); } else { i = LOAD_TUPLE(spec, i, 3); ASSERT(i <= 43); return driver_output_term(desc->inet.port, spec, i); } } static int http_header_inetdrv(void* arg, const http_atom_t* name, const char* name_ptr, int name_len, const char* value_ptr, int value_len) { tcp_descriptor* desc = (tcp_descriptor*) arg; int i = 0; ErlDrvTermData spec[26]; ErlDrvTermData caller = ERL_DRV_NIL; if (desc->inet.active == INET_PASSIVE) { /* {inet_async,S,Ref,{ok,{http_header,Bit,Name,IValue,Value}} */ int req; int aid; if (deq_async(INETP(desc), &aid, &caller, &req) < 0) return -1; i = LOAD_ATOM(spec, i, am_inet_async); i = LOAD_PORT(spec, i, desc->inet.dport); i = LOAD_INT(spec, i, aid); i = LOAD_ATOM(spec, i, am_ok); } else { /* {http, S, {http_header,Bit,Name,IValue,Value}} */ i = LOAD_ATOM(spec, i, am_http); i = LOAD_PORT(spec, i, desc->inet.dport); } i = LOAD_ATOM(spec, i, am_http_header); if (name != NULL) { i = LOAD_INT(spec, i, name->index+1); i = LOAD_ATOM(spec, i, name->atom); } else { i = LOAD_INT(spec, i, 0); i = http_load_string(desc, spec, i, name_ptr, name_len); } i = LOAD_ATOM(spec, i, am_undefined); i = http_load_string(desc, spec, i, value_ptr, value_len); i = LOAD_TUPLE(spec, i, 5); if (desc->inet.active == INET_PASSIVE) { i = LOAD_TUPLE(spec, i, 2); i = LOAD_TUPLE(spec, i, 4); ASSERT(i <= 26); return driver_send_term(desc->inet.port, caller, spec, i); } else { i = LOAD_TUPLE(spec, i, 3); ASSERT(i <= 26); return driver_output_term(desc->inet.port, spec, i); } } static int http_eoh_inetdrv(void* arg) { tcp_descriptor* desc = (tcp_descriptor*) arg; int i = 0; ErlDrvTermData spec[14]; if (desc->inet.active == INET_PASSIVE) { /* {inet_async,S,Ref,{ok,http_eoh}} */ int req; int aid; ErlDrvTermData caller; if (deq_async(INETP(desc), &aid, &caller, &req) < 0) return -1; i = LOAD_ATOM(spec, i, am_inet_async); i = LOAD_PORT(spec, i, desc->inet.dport); i = LOAD_INT(spec, i, aid); i = LOAD_ATOM(spec, i, am_ok); i = LOAD_ATOM(spec, i, am_http_eoh); i = LOAD_TUPLE(spec, i, 2); i = LOAD_TUPLE(spec, i, 4); ASSERT(i <= 14); return driver_send_term(desc->inet.port, caller, spec, i); } else { /* {http, S, http_eoh} */ i = LOAD_ATOM(spec, i, am_http); i = LOAD_PORT(spec, i, desc->inet.dport); i = LOAD_ATOM(spec, i, am_http_eoh); i = LOAD_TUPLE(spec, i, 3); ASSERT(i <= 14); return driver_output_term(desc->inet.port, spec, i); } } static int http_error_inetdrv(void* arg, const char* buf, int len) { tcp_descriptor* desc = (tcp_descriptor*) arg; int i = 0; ErlDrvTermData spec[19]; if (desc->inet.active == INET_PASSIVE) { /* {inet_async,S,Ref,{ok,{http_error,Line}}} */ int req; int aid; ErlDrvTermData caller; if (deq_async(INETP(desc), &aid, &caller, &req) < 0) return -1; i = LOAD_ATOM(spec, i, am_inet_async); i = LOAD_PORT(spec, i, desc->inet.dport); i = LOAD_INT(spec, i, aid); i = LOAD_ATOM(spec, i, am_ok); i = LOAD_ATOM(spec, i, am_http_error); i = http_load_string(desc, spec, i, buf, len); i = LOAD_TUPLE(spec, i, 2); i = LOAD_TUPLE(spec, i, 2); i = LOAD_TUPLE(spec, i, 4); ASSERT(i <= 19); return driver_send_term(desc->inet.port, caller, spec, i); } else { /* {http, S, {http_error,Line} */ i = LOAD_ATOM(spec, i, am_http); i = LOAD_PORT(spec, i, desc->inet.dport); i = LOAD_ATOM(spec, i, am_http_error); i = http_load_string(desc, spec, i, buf, len); i = LOAD_TUPLE(spec, i, 2); i = LOAD_TUPLE(spec, i, 3); ASSERT(i <= 19); return driver_output_term(desc->inet.port, spec, i); } } static int ssl_tls_inetdrv(void* arg, unsigned type, unsigned major, unsigned minor, const char* buf, int len, const char* prefix, int plen) { tcp_descriptor* desc = (tcp_descriptor*) arg; int i = 0; ErlDrvTermData spec[28]; ErlDrvTermData caller = ERL_DRV_NIL; ErlDrvBinary* bin; int ret; if ((bin = driver_alloc_binary(plen+len)) == NULL) return async_error(&desc->inet, ENOMEM); memcpy(bin->orig_bytes+plen, buf, len); if (plen) { memcpy(bin->orig_bytes, prefix, plen); len += plen; } if (desc->inet.active == INET_PASSIVE) { /* {inet_async,S,Ref,{ok,{ssl_tls,...}}} */ int req; int aid; if (deq_async(INETP(desc), &aid, &caller, &req) < 0) { ret = -1; goto done; } i = LOAD_ATOM(spec, i, am_inet_async); i = LOAD_PORT(spec, i, desc->inet.dport); i = LOAD_INT(spec, i, aid); i = LOAD_ATOM(spec, i, am_ok); } /* {ssl_tls,S,ContentType,{Major,Minor},Bin} */ i = LOAD_ATOM(spec, i, am_ssl_tls); i = LOAD_PORT(spec, i, desc->inet.dport); i = LOAD_INT(spec, i, type); i = LOAD_INT(spec, i, major); i = LOAD_INT(spec, i, minor); i = LOAD_TUPLE(spec, i, 2); i = LOAD_BINARY(spec, i, bin, 0, len); i = LOAD_TUPLE(spec, i, 5); if (desc->inet.active == INET_PASSIVE) { i = LOAD_TUPLE(spec, i, 2); i = LOAD_TUPLE(spec, i, 4); ASSERT(i <= 28); ret = driver_send_term(desc->inet.port, caller, spec, i); } else { ASSERT(i <= 28); ret = driver_output_term(desc->inet.port, spec, i); } done: driver_free_binary(bin); return ret; } static PacketCallbacks packet_callbacks = { http_response_inetdrv, http_request_inetdrv, http_eoh_inetdrv, http_header_inetdrv, http_error_inetdrv, ssl_tls_inetdrv }; /* ** passive mode reply: ** {inet_async, S, Ref, {ok,[H1,...Hsz | Data]}} ** NB: this is for TCP only; ** UDP and SCTP use inet_async_binary_data . */ static int inet_async_data(inet_descriptor* desc, const char* buf, int len) { unsigned int hsz = desc->hsz; ErlDrvTermData spec[20]; ErlDrvTermData caller; int req; int aid; int i = 0; DEBUGF(("inet_async_data(%ld): len = %d\r\n", (long)desc->port, len)); if (deq_async(desc, &aid, &caller, &req) < 0) return -1; i = LOAD_ATOM(spec, i, am_inet_async); i = LOAD_PORT(spec, i, desc->dport); i = LOAD_INT(spec, i, aid); i = LOAD_ATOM(spec, i, am_ok); if ((desc->mode == INET_MODE_LIST) || (hsz > len)) { i = LOAD_STRING(spec, i, buf, len); /* => [H1,H2,...Hn] */ i = LOAD_TUPLE(spec, i, 2); i = LOAD_TUPLE(spec, i, 4); ASSERT(i == 15); desc->caller = 0; return driver_send_term(desc->port, caller, spec, i); } else { /* INET_MODE_BINARY => [H1,H2,...HSz | Binary] */ int sz = len - hsz; int code; i = LOAD_BUF2BINARY(spec, i, buf+hsz, sz); if (hsz > 0) i = LOAD_STRING_CONS(spec, i, buf, hsz); i = LOAD_TUPLE(spec, i, 2); i = LOAD_TUPLE(spec, i, 4); ASSERT(i <= 20); desc->caller = 0; code = driver_send_term(desc->port, caller, spec, i); return code; } } #ifdef HAVE_SCTP /* ** SCTP-related atoms: */ static ErlDrvTermData am_sctp_rtoinfo, /* Option names */ am_sctp_associnfo, am_sctp_initmsg, am_sctp_autoclose, am_sctp_nodelay, am_sctp_disable_fragments, am_sctp_i_want_mapped_v4_addr, am_sctp_maxseg, am_sctp_set_peer_primary_addr, am_sctp_primary_addr, am_sctp_adaptation_layer, am_sctp_peer_addr_params, am_sctp_default_send_param, am_sctp_events, am_sctp_delayed_ack_time, am_sctp_status, am_sctp_get_peer_addr_info, /* Record names */ am_sctp_sndrcvinfo, am_sctp_assoc_change, am_sctp_paddr_change, am_sctp_remote_error, am_sctp_send_failed, am_sctp_shutdown_event, am_sctp_adaptation_event, am_sctp_pdapi_event, am_sctp_assocparams, am_sctp_prim, am_sctp_setpeerprim, am_sctp_setadaptation, am_sctp_paddrparams, am_sctp_event_subscribe, am_sctp_assoc_value, am_sctp_paddrinfo, /* For #sctp_sndrcvinfo{}: */ am_unordered, am_addr_over, am_abort, am_eof, /* For #sctp_assoc_change{}: */ am_comm_up, am_comm_lost, am_restart, am_shutdown_comp, am_cant_assoc, /* For #sctp_paddr_change{}: */ am_addr_available, am_addr_unreachable, am_addr_removed, am_addr_added, am_addr_made_prim, am_addr_confirmed, /* For #sctp_remote_error{}: */ am_short_recv, am_wrong_anc_data, /* For #sctp_pdap_event{}: */ am_partial_delivery_aborted, /* For #sctp_paddrparams{}: */ am_hb_enable, am_hb_disable, am_hb_demand, am_pmtud_enable, am_pmtud_disable, am_sackdelay_enable, am_sackdelay_disable, /* For #sctp_paddrinfo{}: */ am_active, am_inactive, /* For #sctp_status{}: */ am_empty, am_closed, am_cookie_wait, am_cookie_echoed, am_established, am_shutdown_pending, am_shutdown_sent, am_shutdown_received, am_shutdown_ack_sent; /* Not yet implemented in the Linux kernel: ** am_bound, am_listen; */ /* ** Parsing of "sctp_sndrcvinfo": ancillary data coming with received msgs. ** This function is mainly used by "sctp_parse_ancillary_data", but also ** by "sctp_parse_async_event" in case of SCTP_SEND_FAILED: */ #define SCTP_PARSE_SNDRCVINFO_CNT \ (5*LOAD_ATOM_CNT + 5*LOAD_INT_CNT + 2*LOAD_UINT_CNT + \ LOAD_NIL_CNT + LOAD_LIST_CNT + LOAD_ASSOC_ID_CNT + LOAD_TUPLE_CNT) static int sctp_parse_sndrcvinfo (ErlDrvTermData * spec, int i, struct sctp_sndrcvinfo * sri) { int n; i = LOAD_ATOM (spec, i, am_sctp_sndrcvinfo); i = LOAD_INT (spec, i, sri->sinfo_stream); i = LOAD_INT (spec, i, sri->sinfo_ssn); /* Now Flags, as a list: */ n = 0; if (sri->sinfo_flags & SCTP_UNORDERED) { i = LOAD_ATOM (spec, i, am_unordered); n++; } if (sri->sinfo_flags & SCTP_ADDR_OVER) { i = LOAD_ATOM (spec, i, am_addr_over); n++; } if (sri->sinfo_flags & SCTP_ABORT) { i = LOAD_ATOM (spec, i, am_abort); n++; } if (sri->sinfo_flags & SCTP_EOF) { i = LOAD_ATOM (spec, i, am_eof); n++; } /* SCTP_SENDALL is not yet supported by the Linux kernel */ i = LOAD_NIL (spec, i); i = LOAD_LIST (spec, i, n+1); /* Continue with other top-level fields: */ i = LOAD_INT (spec, i, sock_ntohl(sri->sinfo_ppid)); i = LOAD_INT (spec, i, sri->sinfo_context); i = LOAD_INT (spec, i, sri->sinfo_timetolive); i = LOAD_UINT (spec, i, sri->sinfo_tsn); i = LOAD_UINT (spec, i, sri->sinfo_cumtsn); i = LOAD_ASSOC_ID (spec, i, sri->sinfo_assoc_id); /* Close up the record: */ i = LOAD_TUPLE (spec, i, 10); return i; } /* ** This function skips non-SCTP ancillary data, returns SCTP-specific anc.data ** (currently "sctp_sndrcvinfo" only) as a list of records: */ static int sctp_parse_ancillary_data (ErlDrvTermData * spec, int i, struct msghdr * mptr) { /* First of all, check for ancillary data: */ struct cmsghdr * cmsg, * frst_msg = CMSG_FIRSTHDR(mptr); int s = 0; for (cmsg = frst_msg; cmsg != NULL; cmsg = CMSG_NXTHDR(mptr,cmsg)) { struct sctp_sndrcvinfo * sri; /* Skip other possible ancillary data, e.g. from IPv6: */ if (cmsg->cmsg_level != IPPROTO_SCTP || cmsg->cmsg_type != SCTP_SNDRCV) continue; if (((char*)cmsg + cmsg->cmsg_len) - (char*)frst_msg > mptr->msg_controllen) /* MUST check this in Linux -- the returned "cmsg" may actually go too far! */ break; /* The ONLY kind of ancillary SCTP data which can occur on receiving is "sctp_sndrcvinfo" (on sending, "sctp_initmsg" can be specified by the user). So parse this type: */ sri = (struct sctp_sndrcvinfo*) CMSG_DATA(cmsg); i = sctp_parse_sndrcvinfo (spec, i, sri); s ++; } /* Now make the list of tuples created above. Normally, it will be [] or a singleton list. The list must first be closed with NIL, otherwise traversing it in Erlang would be problematic: */ i = LOAD_NIL (spec, i); i = LOAD_LIST(spec, i, s+1); return i; } /* ** Parsing of ERROR and ABORT SCTP chunks. The function returns a list of error ** causes (as atoms). The chunks also contain some extended cause info, but it ** is not very detailed anyway, and of no interest at the user level (it only ** concerns the protocol implementation), so we omit it: */ static int sctp_parse_error_chunk (ErlDrvTermData * spec, int i, char * chunk, int chlen) { /* The "chunk" itself contains its length, which must not be greater than the "chlen" derived from the over-all msg size: */ char *causes, *cause; int coff, /* Cause offset */ ccode, /* Cause code */ clen, /* cause length */ s; int len = sock_ntohs (*((uint16_t*)(chunk+2))); ASSERT(len >= 4 && len <= chlen); causes = chunk + 4; coff = 0; len -= 4; /* Total length of the "causes" fields */ cause = causes; s = 0; while (coff < len) { ccode = sock_ntohs (*((uint16_t*)(cause))); clen = sock_ntohs (*((uint16_t*)(cause + 2))); if (clen <= 0) /* Strange, but must guard against that! */ break; /* Install the corresp atom for this "ccode": */ i = LOAD_INT (spec, i, ccode); cause += clen; coff += clen; s ++; } i = LOAD_NIL (spec, i); i = LOAD_LIST(spec, i, s+1); return i; } /* ** Parsing of SCTP notification events. NB: they are NOT ancillary data: they ** are sent IN PLACE OF, not in conjunction with, the normal data: */ static int sctp_parse_async_event (ErlDrvTermData * spec, int i, int ok_pos, ErlDrvTermData error_atom, inet_descriptor* desc, ErlDrvBinary * bin, int offs, int sz) { char* body = bin->orig_bytes + offs; union sctp_notification * nptr = (union sctp_notification *) body; switch (nptr->sn_header.sn_type) { case SCTP_ASSOC_CHANGE: { /* {sctp_assoc_change, State : Atom(), Error : Atom(), OutBoundStreams : Int(), InBoundStreams : Int(), AssocID : Int(), // AbortCauses : [Atom()] // NOT YET IMPLEMENTED } */ struct sctp_assoc_change* sptr = &(nptr->sn_assoc_change); ASSERT(sptr->sac_length <= sz); /* No buffer overrun */ i = LOAD_ATOM (spec, i, am_sctp_assoc_change); switch (sptr->sac_state) { case SCTP_COMM_UP: i = LOAD_ATOM (spec, i, am_comm_up); break; case SCTP_COMM_LOST: i = LOAD_ATOM (spec, i, am_comm_lost); break; case SCTP_RESTART: i = LOAD_ATOM (spec, i, am_restart); break; case SCTP_SHUTDOWN_COMP: i = LOAD_ATOM (spec, i, am_shutdown_comp); break; case SCTP_CANT_STR_ASSOC: i = LOAD_ATOM (spec, i, am_cant_assoc); break; default: ASSERT(0); } i = LOAD_INT (spec, i, sptr->sac_error); i = LOAD_INT (spec, i, sptr->sac_outbound_streams); i = LOAD_INT (spec, i, sptr->sac_inbound_streams); i = LOAD_INT (spec, i, sptr->sac_assoc_id); /* The ABORT chunk may or may not be present at the end, depending on whether there was really an ABORT. In the Linux Kernel SCTP implementation, this chunk is not delivered anyway, so we leave it out. Just close up the tuple: */ i = LOAD_TUPLE (spec, i, 6); break; } case SCTP_PEER_ADDR_CHANGE: { /* {sctp_paddr_change, AffectedAddr : String(), State : Atom(), Error : Atom(), AssocID : Int() } */ struct sctp_paddr_change* sptr = &(nptr->sn_paddr_change); ASSERT(sptr->spc_length <= sz); /* No buffer overrun */ i = LOAD_ATOM (spec, i, am_sctp_paddr_change); i = load_ip_and_port(spec, i, desc, &sptr->spc_aaddr); switch (sptr->spc_state) { case SCTP_ADDR_AVAILABLE: i = LOAD_ATOM (spec, i, am_addr_available); break; case SCTP_ADDR_UNREACHABLE: i = LOAD_ATOM (spec, i, am_addr_unreachable); break; case SCTP_ADDR_REMOVED: i = LOAD_ATOM (spec, i, am_addr_removed); break; case SCTP_ADDR_ADDED: i = LOAD_ATOM (spec, i, am_addr_added); break; case SCTP_ADDR_MADE_PRIM: i = LOAD_ATOM (spec, i, am_addr_made_prim); break; #if HAVE_DECL_SCTP_ADDR_CONFIRMED case SCTP_ADDR_CONFIRMED: i = LOAD_ATOM (spec, i, am_addr_confirmed); break; #endif default: ASSERT(0); } i = LOAD_INT (spec, i, sptr->spc_error); i = LOAD_INT (spec, i, sptr->spc_assoc_id); i = LOAD_TUPLE (spec, i, 5); break; } case SCTP_REMOTE_ERROR: { /* This is an error condition, so we return an error term {sctp_remote_error, Error : Int(), AssocID : Int(), RemoteCauses : [Atom()] // Remote Error flags } */ char *chunk; int chlen; struct sctp_remote_error * sptr = &(nptr->sn_remote_error); ASSERT(sptr->sre_length <= sz); /* No buffer overrun */ /* Over-write the prev part of the response with an error: */ (void)LOAD_ATOM(spec, ok_pos, error_atom); /* Continue from the curr pos: */ i = LOAD_ATOM (spec, i, am_sctp_remote_error); i = LOAD_INT (spec, i, sock_ntohs(sptr->sre_error)); i = LOAD_INT (spec, i, sptr->sre_assoc_id); # ifdef HAVE_STRUCT_SCTP_REMOTE_ERROR_SRE_DATA chunk = (char*) (&(sptr->sre_data)); # else chunk = ((char*)sptr) + sizeof(*sptr); # endif chlen = sptr->sre_length - (chunk - (char *)sptr); i = sctp_parse_error_chunk(spec, i, chunk, chlen); i = LOAD_TUPLE (spec, i, 4); /* The {error, {...}} will be closed by the caller */ break; } case SCTP_SEND_FAILED: { /* {sctp_send_failed, DataSent : Atom() // true or false Error : Atom(), OrigInfo : Tuple(), AssocID : Int(), OrigData : Binary() } This is also an ERROR condition -- overwrite the 'ok': */ char *chunk; int chlen, choff; struct sctp_send_failed * sptr = &(nptr->sn_send_failed); ASSERT(sptr->ssf_length <= sz); /* No buffer overrun */ /* Over-write 'ok' with 'error', continue from curr "i": */ (void)LOAD_ATOM(spec, ok_pos, error_atom); i = LOAD_ATOM (spec, i, am_sctp_send_failed); switch (sptr->ssf_flags) { case SCTP_DATA_SENT: i = LOAD_ATOM (spec, i, am_true); break; case SCTP_DATA_UNSENT: i = LOAD_ATOM (spec, i, am_false); break; default: ASSERT(0); } i = LOAD_INT (spec, i, sptr->ssf_error); /* Now parse the orig SCTP_SNDRCV info */ i = sctp_parse_sndrcvinfo (spec, i, &sptr->ssf_info); i = LOAD_ASSOC_ID (spec, i, sptr->ssf_assoc_id); /* Load the orig data chunk, as an unparsed binary. Note that in LOAD_BINARY below, we must specify the offset wrt bin-> orig_bytes. In Solaris 10, we don't have ssf_data: */ # ifdef HAVE_STRUCT_SCTP_SEND_FAILED_SSF_DATA chunk = (char*) (&(sptr->ssf_data)); # else chunk = ((char*)sptr) + sizeof(*sptr); # endif chlen = sptr->ssf_length - (chunk - (char*) sptr); choff = chunk - bin->orig_bytes; i = LOAD_BINARY(spec, i, bin, choff, chlen); i = LOAD_TUPLE (spec, i, 6); /* The {error, {...}} tuple is not yet closed */ break; } case SCTP_SHUTDOWN_EVENT: { /* {sctp_shutdown_event, AssocID : Int() } */ struct sctp_shutdown_event * sptr = &(nptr->sn_shutdown_event); ASSERT (sptr->sse_length == sizeof(struct sctp_shutdown_event) && sptr->sse_length <= sz); /* No buffer overrun */ i = LOAD_ATOM (spec, i, am_sctp_shutdown_event); i = LOAD_INT (spec, i, sptr->sse_assoc_id); i = LOAD_TUPLE (spec, i, 2); break; } case SCTP_ADAPTATION_INDICATION: { /* {sctp_adaptation_event, Indication : Atom(), AssocID : Int() } */ struct sctp_adaptation_event * sptr = &(nptr->sn_adaptation_event); ASSERT (sptr->sai_length == sizeof(struct sctp_adaptation_event) && sptr->sai_length <= sz); /* No buffer overrun */ i = LOAD_ATOM (spec, i, am_sctp_adaptation_event); i = LOAD_INT (spec, i, sock_ntohl(sptr->sai_adaptation_ind)); i = LOAD_INT (spec, i, sptr->sai_assoc_id); i = LOAD_TUPLE (spec, i, 3); break; } case SCTP_PARTIAL_DELIVERY_EVENT: { /* It is not clear whether this event is sent to the sender (when the receiver gets only a part of a message), or to the receiver itself. In any case, we do not support partial delivery of msgs in this implementation, so this is an error condition: {sctp_pdapi_event, sctp_partial_delivery_aborted, AssocID}: */ struct sctp_pdapi_event * sptr; (void) LOAD_ATOM (spec, ok_pos, error_atom); sptr = &(nptr->sn_pdapi_event); ASSERT (sptr->pdapi_length == sizeof(struct sctp_pdapi_event) && sptr->pdapi_length <= sz); /* No buffer overrun */ i = LOAD_ATOM (spec, i, am_sctp_pdapi_event); /* Currently, there is only one indication possible: */ ASSERT (sptr->pdapi_indication == SCTP_PARTIAL_DELIVERY_ABORTED); i = LOAD_ATOM (spec, i, am_partial_delivery_aborted); i = LOAD_INT (spec, i, sptr->pdapi_assoc_id); i = LOAD_TUPLE (spec, i, 3); /* The {error, {...}} tuple is not yet closed */ break; } /* XXX: No more supported SCTP Event types. The standard also provides SCTP_AUTHENTICATION_EVENT, but it is not implemented in the Linux kernel, hence not supported here either. It is not possible to request delivery of such events in this implementation, so they cannot occur: */ default: ASSERT(0); } return i; } #endif /* HAVE_SCTP */ /* ** passive mode reply: ** for UDP: ** {inet_async, S, Ref, {ok, Data=[H1,...,Hsz | BinData]}} ** or (in the list mode) ** {inet_async, S, Ref, {ok, Data=[H1,...,Hsz]}} ** ** for SCTP: ** {inet_async, S, Ref, {ok, {[H1,...,HSz], [AncilData], Data_OR_Event}}} ** where each AncilDatum:Tuple(); ** Data:List() or Binary(), but if List(), then without the Addr part, ** which is moved in front; ** Event:Tuple(); ** or ** {inet_async, S, Ref, {error, {[H1,...,HSz], [AncilData], ErrorTerm}}} ** ** Cf: the output of send_async_error() is ** {inet_async, S, Ref, {error, Cause:Atom()}} */ static int inet_async_binary_data (inet_descriptor* desc, unsigned int phsz, ErlDrvBinary * bin, int offs, int len, void * extra) { unsigned int hsz = desc->hsz + phsz; ErlDrvTermData spec [PACKET_ERL_DRV_TERM_DATA_LEN]; ErlDrvTermData caller = desc->caller; int aid; int req; int i = 0; #ifdef HAVE_SCTP int ok_pos; #endif DEBUGF(("inet_async_binary_data(%ld): offs=%d, len=%d\r\n", (long)desc->port, offs, len)); if (deq_async(desc, &aid, &caller, &req) < 0) return -1; i = LOAD_ATOM(spec, i, am_inet_async); /* 'inet_async' */ i = LOAD_PORT(spec, i, desc->dport); /* S */ i = LOAD_INT (spec, i, aid); /* Ref */ #ifdef HAVE_SCTP /* Need to memoise the position of the 'ok' atom written, as it may later be overridden by an 'error': */ ok_pos = i; #endif i = LOAD_ATOM(spec, i, am_ok); #ifdef HAVE_SCTP if (IS_SCTP(desc)) { /* For SCTP we always have desc->hsz==0 (i.e., no application-level headers are used), so hsz==phsz (see above): */ struct msghdr* mptr; int sz; ASSERT (hsz == phsz && hsz != 0); sz = len - hsz; /* Size of the msg data proper, w/o the addr */ /* We always put the Addr as a list in front */ i = LOAD_STRING(spec, i, bin->orig_bytes+offs, hsz); /* Put in the list (possibly empty) of Ancillary Data: */ mptr = (struct msghdr *) extra; i = sctp_parse_ancillary_data (spec, i, mptr); /* Then: Data or Event (Notification)? */ if (mptr->msg_flags & MSG_NOTIFICATION) /* This is an Event, parse it. It may indicate a normal or an error condition; in the latter case, the 'ok' above is overridden by an 'error', and the Event we receive contains the error term: */ i = sctp_parse_async_event (spec, i, ok_pos, am_error, desc, bin, offs+hsz, sz); else /* This is SCTP data, not a notification event. The data can be returned as a List or as a Binary, similar to the generic case: */ if (desc->mode == INET_MODE_LIST) /* INET_MODE_LIST => [H1,H2,...Hn], addr and data together, butthe Addr has already been parsed, so start at offs+hsz: */ i = LOAD_STRING(spec, i, bin->orig_bytes+offs+hsz, sz); else /* INET_MODE_BINARY => Binary */ i = LOAD_BINARY(spec, i, bin, offs+hsz, sz); /* Close up the {[H1,...,HSz], [AncilData], Event_OR_Data} tuple. This is valid even in the case when Event is a error notification: */ i = LOAD_TUPLE (spec, i, 3); } else #endif /* HAVE_SCTP */ /* Generic case. Both Addr and Data (or a single list of them together) are returned: */ if ((desc->mode == INET_MODE_LIST) || (hsz > len)) { /* INET_MODE_LIST => [H1,H2,...Hn] */ i = LOAD_STRING(spec, i, bin->orig_bytes+offs, len); } else { /* INET_MODE_BINARY => [H1,H2,...HSz | Binary] or [Binary]: */ int sz = len - hsz; i = LOAD_BINARY(spec, i, bin, offs+hsz, sz); if (hsz > 0) i = LOAD_STRING_CONS(spec, i, bin->orig_bytes+offs, hsz); } /* Close up the {ok, ...} or {error, ...} tuple: */ i = LOAD_TUPLE(spec, i, 2); /* Close up the outer {inet_async, S, Ref, {ok|error, ...}} tuple: */ i = LOAD_TUPLE(spec, i, 4); ASSERT(i <= PACKET_ERL_DRV_TERM_DATA_LEN); desc->caller = 0; return driver_send_term(desc->port, caller, spec, i); } /* ** active mode message: ** {tcp, S, [H1,...Hsz | Data]} */ static int tcp_message(inet_descriptor* desc, const char* buf, int len) { unsigned int hsz = desc->hsz; ErlDrvTermData spec[20]; int i = 0; DEBUGF(("tcp_message(%ld): len = %d\r\n", (long)desc->port, len)); i = LOAD_ATOM(spec, i, am_tcp); i = LOAD_PORT(spec, i, desc->dport); if ((desc->mode == INET_MODE_LIST) || (hsz > len)) { i = LOAD_STRING(spec, i, buf, len); /* => [H1,H2,...Hn] */ i = LOAD_TUPLE(spec, i, 3); ASSERT(i <= 20); return driver_output_term(desc->port, spec, i); } else { /* INET_MODE_BINARY => [H1,H2,...HSz | Binary] */ int sz = len - hsz; int code; i = LOAD_BUF2BINARY(spec, i, buf+hsz, sz); if (hsz > 0) i = LOAD_STRING_CONS(spec, i, buf, hsz); i = LOAD_TUPLE(spec, i, 3); ASSERT(i <= 20); code = driver_output_term(desc->port, spec, i); return code; } } /* ** active mode message: ** {tcp, S, [H1,...Hsz | Data]} */ static int tcp_binary_message(inet_descriptor* desc, ErlDrvBinary* bin, int offs, int len) { unsigned int hsz = desc->hsz; ErlDrvTermData spec[20]; int i = 0; DEBUGF(("tcp_binary_message(%ld): len = %d\r\n", (long)desc->port, len)); i = LOAD_ATOM(spec, i, am_tcp); i = LOAD_PORT(spec, i, desc->dport); if ((desc->mode == INET_MODE_LIST) || (hsz > len)) { /* INET_MODE_LIST => [H1,H2,...Hn] */ i = LOAD_STRING(spec, i, bin->orig_bytes+offs, len); } else { /* INET_MODE_BINARY => [H1,H2,...HSz | Binary] */ int sz = len - hsz; i = LOAD_BINARY(spec, i, bin, offs+hsz, sz); if (hsz > 0) i = LOAD_STRING_CONS(spec, i, bin->orig_bytes+offs, hsz); } i = LOAD_TUPLE(spec, i, 3); ASSERT(i <= 20); return driver_output_term(desc->port, spec, i); } /* ** send: active mode {tcp_closed, S} */ static int tcp_closed_message(tcp_descriptor* desc) { ErlDrvTermData spec[6]; int i = 0; DEBUGF(("tcp_closed_message(%ld):\r\n", (long)desc->inet.port)); if (!(desc->tcp_add_flags & TCP_ADDF_CLOSE_SENT)) { desc->tcp_add_flags |= TCP_ADDF_CLOSE_SENT; i = LOAD_ATOM(spec, i, am_tcp_closed); i = LOAD_PORT(spec, i, desc->inet.dport); i = LOAD_TUPLE(spec, i, 2); ASSERT(i <= 6); return driver_output_term(desc->inet.port, spec, i); } return 0; } /* ** send active message {tcp_error, S, Error} */ static int tcp_error_message(tcp_descriptor* desc, int err) { ErlDrvTermData spec[8]; ErlDrvTermData am_err = error_atom(err); int i = 0; DEBUGF(("tcp_error_message(%ld): %d\r\n", (long)desc->inet.port, err)); i = LOAD_ATOM(spec, i, am_tcp_error); i = LOAD_PORT(spec, i, desc->inet.dport); i = LOAD_ATOM(spec, i, am_err); i = LOAD_TUPLE(spec, i, 3); ASSERT(i <= 8); return driver_output_term(desc->inet.port, spec, i); } /* ** active mode message: ** {udp, S, IP, Port, [H1,...Hsz | Data]} or ** {sctp, S, IP, Port, {[AncilData], Event_or_Data}} ** where ** [H1,...,HSz] are msg headers (without IP/Port, UDP only), ** Data : List() | Binary() */ static int packet_binary_message (inet_descriptor* desc, ErlDrvBinary* bin, int offs, int len, void* extra) { unsigned int hsz = desc->hsz; ErlDrvTermData spec [PACKET_ERL_DRV_TERM_DATA_LEN]; int i = 0; int alen; DEBUGF(("packet_binary_message(%ld): len = %d\r\n", (long)desc->port, len)); # ifdef HAVE_SCTP i = LOAD_ATOM(spec, i, IS_SCTP(desc) ? am_sctp : am_udp); /* UDP|SCTP */ # else i = LOAD_ATOM(spec, i, am_udp ); /* UDP only */ # endif i = LOAD_PORT(spec, i, desc->dport); /* S */ alen = addrlen(desc->sfamily); i = load_ip_address(spec, i, desc->sfamily, bin->orig_bytes+offs+3); i = load_ip_port(spec, i, bin->orig_bytes+offs+1); /* IP, Port */ offs += (alen + 3); len -= (alen + 3); # ifdef HAVE_SCTP if (!IS_SCTP(desc)) { # endif if ((desc->mode == INET_MODE_LIST) || (hsz > len)) /* INET_MODE_LIST, or only headers => [H1,H2,...Hn] */ i = LOAD_STRING(spec, i, bin->orig_bytes+offs, len); else { /* INET_MODE_BINARY => [H1,H2,...HSz | Binary] */ int sz = len - hsz; i = LOAD_BINARY(spec, i, bin, offs+hsz, sz); if (hsz > 0) i = LOAD_STRING_CONS(spec, i, bin->orig_bytes+offs, hsz); } # ifdef HAVE_SCTP } else { /* For SCTP we always have desc->hsz==0 (i.e., no application-level headers are used): */ struct msghdr* mptr; ASSERT(hsz == 0); /* Put in the list (possibly empty) of Ancillary Data: */ mptr = (struct msghdr *) extra; i = sctp_parse_ancillary_data (spec, i, mptr); /* Then: Data or Event (Notification)? */ if (mptr->msg_flags & MSG_NOTIFICATION) /* This is an Event, parse it. It may indicate a normal or an error condition; in the latter case, the initial 'sctp' atom is over- ridden by 'sctp_error', and the Event we receive contains the error term: */ i = sctp_parse_async_event (spec, i, 0, am_sctp_error, desc, bin, offs, len); else /* This is SCTP data, not a notification event. The data can be returned as a List or as a Binary, similar to the generic case: */ if (desc->mode == INET_MODE_LIST) /* INET_MODE_LIST => [H1,H2,...Hn], addr and data together, but the Addr has already been parsed, so start at offs: */ i = LOAD_STRING(spec, i, bin->orig_bytes+offs, len); else /* INET_MODE_BINARY => Binary */ i = LOAD_BINARY(spec, i, bin, offs, len); /* Close up the {[AncilData], Event_OR_Data} tuple: */ i = LOAD_TUPLE (spec, i, 2); } # endif /* HAVE_SCTP */ /* Close up the outer 5-tuple: */ i = LOAD_TUPLE(spec, i, 5); ASSERT(i <= PACKET_ERL_DRV_TERM_DATA_LEN); return driver_output_term(desc->port, spec, i); } /* ** send active message {udp_error|sctp_error, S, Error} */ static int packet_error_message(udp_descriptor* udesc, int err) { inet_descriptor* desc = INETP(udesc); ErlDrvTermData spec[2*LOAD_ATOM_CNT + LOAD_PORT_CNT + LOAD_TUPLE_CNT]; ErlDrvTermData am_err = error_atom(err); int i = 0; DEBUGF(("packet_error_message(%ld): %d\r\n", (long)desc->port, err)); # ifdef HAVE_SCTP if (IS_SCTP(desc) ) i = LOAD_ATOM(spec, i, am_sctp_error); else # endif i = LOAD_ATOM(spec, i, am_udp_error); i = LOAD_PORT(spec, i, desc->dport); i = LOAD_ATOM(spec, i, am_err); i = LOAD_TUPLE(spec, i, 3); ASSERT(i == sizeof(spec)/sizeof(*spec)); return driver_output_term(desc->port, spec, i); } /* scan buffer for bit 7 */ static void scanbit8(inet_descriptor* desc, const char* buf, int len) { int c; if (!desc->bit8f || desc->bit8) return; c = 0; while(len--) c |= *buf++; desc->bit8 = ((c & 0x80) != 0); } /* ** active=TRUE: ** (NOTE! distribution MUST use active=TRUE, deliver=PORT) ** deliver=PORT {S, {data, [H1,..Hsz | Data]}} ** deliver=TERM {tcp, S, [H1..Hsz | Data]} ** ** active=FALSE: ** {async, S, Ref, {ok,[H1,...Hsz | Data]}} */ static int tcp_reply_data(tcp_descriptor* desc, char* buf, int len) { int code; const char* body = buf; int bodylen = len; packet_get_body(desc->inet.htype, &body, &bodylen); scanbit8(INETP(desc), body, bodylen); if (desc->inet.deliver == INET_DELIVER_PORT) { code = inet_port_data(INETP(desc), body, bodylen); } else if ((code=packet_parse(desc->inet.htype, buf, len, &desc->http_state, &packet_callbacks, desc)) == 0) { /* No body parsing, return raw binary */ if (desc->inet.active == INET_PASSIVE) return inet_async_data(INETP(desc), body, bodylen); else code = tcp_message(INETP(desc), body, bodylen); } if (code < 0) return code; if (desc->inet.active == INET_ONCE) desc->inet.active = INET_PASSIVE; return code; } static int tcp_reply_binary_data(tcp_descriptor* desc, ErlDrvBinary* bin, int offs, int len) { int code; const char* buf = bin->orig_bytes + offs; const char* body = buf; int bodylen = len; packet_get_body(desc->inet.htype, &body, &bodylen); offs = body - bin->orig_bytes; /* body offset now */ scanbit8(INETP(desc), body, bodylen); if (desc->inet.deliver == INET_DELIVER_PORT) code = inet_port_binary_data(INETP(desc), bin, offs, bodylen); else if ((code=packet_parse(desc->inet.htype, buf, len, &desc->http_state, &packet_callbacks,desc)) == 0) { /* No body parsing, return raw data */ if (desc->inet.active == INET_PASSIVE) return inet_async_binary_data(INETP(desc), 0, bin, offs, bodylen, NULL); else code = tcp_binary_message(INETP(desc), bin, offs, bodylen); } if (code < 0) return code; if (desc->inet.active == INET_ONCE) desc->inet.active = INET_PASSIVE; return code; } static int packet_reply_binary_data(inet_descriptor* desc, unsigned int hsz, ErlDrvBinary * bin, int offs, int len, void * extra) { int code; scanbit8(desc, bin->orig_bytes+offs, len); if (desc->active == INET_PASSIVE) /* "inet" is actually for both UDP and SCTP, as well as TCP! */ return inet_async_binary_data(desc, hsz, bin, offs, len, extra); else { /* INET_ACTIVE or INET_ONCE: */ if (desc->deliver == INET_DELIVER_PORT) code = inet_port_binary_data(desc, bin, offs, len); else code = packet_binary_message(desc, bin, offs, len, extra); if (code < 0) return code; if (desc->active == INET_ONCE) desc->active = INET_PASSIVE; return code; } } /* ---------------------------------------------------------------------------- INET ---------------------------------------------------------------------------- */ static int sock_init(void) /* May be called multiple times. */ { #ifdef __WIN32__ WORD wVersionRequested; WSADATA wsaData; static int res = -1; /* res < 0 == initialization never attempted */ if (res >= 0) return res; wVersionRequested = MAKEWORD(2,0); if (WSAStartup(wVersionRequested, &wsaData) != 0) goto error; if ((LOBYTE(wsaData.wVersion) != 2) || (HIBYTE(wsaData.wVersion) != 0)) goto error; find_dynamic_functions(); return res = 1; error: WSACleanup(); return res = 0; #else return 1; #endif } #ifdef HAVE_SCTP static void inet_init_sctp(void) { INIT_ATOM(sctp); INIT_ATOM(sctp_error); INIT_ATOM(true); INIT_ATOM(false); INIT_ATOM(buffer); INIT_ATOM(mode); INIT_ATOM(list); INIT_ATOM(binary); INIT_ATOM(active); INIT_ATOM(once); INIT_ATOM(buffer); INIT_ATOM(linger); INIT_ATOM(recbuf); INIT_ATOM(sndbuf); INIT_ATOM(reuseaddr); INIT_ATOM(dontroute); INIT_ATOM(priority); INIT_ATOM(tos); /* Option names */ INIT_ATOM(sctp_rtoinfo); INIT_ATOM(sctp_associnfo); INIT_ATOM(sctp_initmsg); INIT_ATOM(sctp_autoclose); INIT_ATOM(sctp_nodelay); INIT_ATOM(sctp_disable_fragments); INIT_ATOM(sctp_i_want_mapped_v4_addr); INIT_ATOM(sctp_maxseg); INIT_ATOM(sctp_set_peer_primary_addr); INIT_ATOM(sctp_primary_addr); INIT_ATOM(sctp_adaptation_layer); INIT_ATOM(sctp_peer_addr_params); INIT_ATOM(sctp_default_send_param); INIT_ATOM(sctp_events); INIT_ATOM(sctp_delayed_ack_time); INIT_ATOM(sctp_status); INIT_ATOM(sctp_get_peer_addr_info); /* Record names */ INIT_ATOM(sctp_sndrcvinfo); INIT_ATOM(sctp_assoc_change); INIT_ATOM(sctp_paddr_change); INIT_ATOM(sctp_remote_error); INIT_ATOM(sctp_send_failed); INIT_ATOM(sctp_shutdown_event); INIT_ATOM(sctp_adaptation_event); INIT_ATOM(sctp_pdapi_event); INIT_ATOM(sctp_assocparams); INIT_ATOM(sctp_prim); INIT_ATOM(sctp_setpeerprim); INIT_ATOM(sctp_setadaptation); INIT_ATOM(sctp_paddrparams); INIT_ATOM(sctp_event_subscribe); INIT_ATOM(sctp_assoc_value); INIT_ATOM(sctp_paddrinfo); /* For #sctp_sndrcvinfo{}: */ INIT_ATOM(unordered); INIT_ATOM(addr_over); INIT_ATOM(abort); INIT_ATOM(eof); /* For #sctp_assoc_change{}: */ INIT_ATOM(comm_up); INIT_ATOM(comm_lost); INIT_ATOM(restart); INIT_ATOM(shutdown_comp); INIT_ATOM(cant_assoc); /* For #sctp_paddr_change{}: */ INIT_ATOM(addr_available); INIT_ATOM(addr_unreachable); INIT_ATOM(addr_removed); INIT_ATOM(addr_added); INIT_ATOM(addr_made_prim); INIT_ATOM(addr_confirmed); INIT_ATOM(short_recv); INIT_ATOM(wrong_anc_data); /* For #sctp_pdap_event{}: */ INIT_ATOM(partial_delivery_aborted); /* For #sctp_paddrparams{}: */ INIT_ATOM(hb_enable); INIT_ATOM(hb_disable); INIT_ATOM(hb_demand); INIT_ATOM(pmtud_enable); INIT_ATOM(pmtud_disable); INIT_ATOM(sackdelay_enable); INIT_ATOM(sackdelay_disable); /* For #sctp_paddrinfo{}: */ INIT_ATOM(active); INIT_ATOM(inactive); /* For #sctp_status{}: */ INIT_ATOM(empty); INIT_ATOM(closed); INIT_ATOM(cookie_wait); INIT_ATOM(cookie_echoed); INIT_ATOM(established); INIT_ATOM(shutdown_pending); INIT_ATOM(shutdown_sent); INIT_ATOM(shutdown_received); INIT_ATOM(shutdown_ack_sent); /* Not yet implemented in the Linux kernel: ** INIT_ATOM(bound); ** INIT_ATOM(listen); */ } #endif /* HAVE_SCTP */ static int inet_init() { if (!sock_init()) goto error; if (0 != erl_drv_tsd_key_create("inet_buffer_stack_key", &buffer_stack_key)) goto error; ASSERT(sizeof(struct in_addr) == 4); # if defined(HAVE_IN6) && defined(AF_INET6) ASSERT(sizeof(struct in6_addr) == 16); # endif INIT_ATOM(ok); INIT_ATOM(tcp); INIT_ATOM(udp); INIT_ATOM(error); INIT_ATOM(inet_async); INIT_ATOM(inet_reply); INIT_ATOM(timeout); INIT_ATOM(closed); INIT_ATOM(tcp_closed); INIT_ATOM(tcp_error); INIT_ATOM(udp_error); INIT_ATOM(empty_out_q); INIT_ATOM(ssl_tls); INIT_ATOM(http_eoh); INIT_ATOM(http_header); INIT_ATOM(http_request); INIT_ATOM(http_response); INIT_ATOM(http_error); INIT_ATOM(abs_path); INIT_ATOM(absoluteURI); am_star = driver_mk_atom("*"); INIT_ATOM(undefined); INIT_ATOM(http); INIT_ATOM(https); INIT_ATOM(scheme); /* add TCP, UDP and SCTP drivers */ add_driver_entry(&tcp_inet_driver_entry); add_driver_entry(&udp_inet_driver_entry); #ifdef HAVE_SCTP /* Check the size of SCTP AssocID -- currently both this driver and the Erlang part require 32 bit: */ ASSERT(sizeof(sctp_assoc_t)==ASSOC_ID_LEN); # ifndef LIBSCTP # error LIBSCTP not defined # endif if (erts_sys_ddll_open_noext(STRINGIFY(LIBSCTP), &h_libsctp, NULL) == 0) { void *ptr; if (erts_sys_ddll_sym(h_libsctp, "sctp_bindx", &ptr) == 0) { p_sctp_bindx = ptr; inet_init_sctp(); add_driver_entry(&sctp_inet_driver_entry); } } #endif /* remove the dummy inet driver */ remove_driver_entry(&inet_driver_entry); return 0; error: remove_driver_entry(&inet_driver_entry); return -1; } /* ** Set a inaddr structure: ** src = [P1,P0,X1,X2,.....] ** dst points to a structure large enugh to keep any kind ** of inaddr. ** *len is set to length of src on call ** and is set to actual length of dst on return ** return NULL on error and ptr after port address on success */ static char* inet_set_address(int family, inet_address* dst, char* src, int* len) { short port; if ((family == AF_INET) && (*len >= 2+4)) { sys_memzero((char*)dst, sizeof(struct sockaddr_in)); port = get_int16(src); dst->sai.sin_family = family; dst->sai.sin_port = sock_htons(port); sys_memcpy(&dst->sai.sin_addr, src+2, 4); *len = sizeof(struct sockaddr_in); return src + 2+4; } #if defined(HAVE_IN6) && defined(AF_INET6) else if ((family == AF_INET6) && (*len >= 2+16)) { sys_memzero((char*)dst, sizeof(struct sockaddr_in6)); port = get_int16(src); dst->sai6.sin6_family = family; dst->sai6.sin6_port = sock_htons(port); dst->sai6.sin6_flowinfo = 0; /* XXX this may be set as well ?? */ sys_memcpy(&dst->sai6.sin6_addr, src+2, 16); *len = sizeof(struct sockaddr_in6); return src + 2+16; } #endif return NULL; } #ifdef HAVE_SCTP /* ** Set an inaddr structure, address family comes from source data, ** or from argument if source data specifies constant address. ** ** src = [TAG,P1,P0] when TAG = INET_AF_ANY | INET_AF_LOOPBACK ** src = [TAG,P1,P0,X1,X2,...] when TAG = INET_AF_INET | INET_AF_INET6 */ static char *inet_set_faddress(int family, inet_address* dst, char *src, int* len) { int tag; if (*len < 1) return NULL; (*len) --; tag = *(src ++); switch (tag) { case INET_AF_INET: family = AF_INET; break; # if defined(HAVE_IN6) && defined(AF_INET6) case INET_AF_INET6: family = AF_INET6; break; # endif case INET_AF_ANY: case INET_AF_LOOPBACK: { int port; if (*len < 2) return NULL; port = get_int16(src); switch (family) { case AF_INET: { struct in_addr addr; switch (tag) { case INET_AF_ANY: addr.s_addr = sock_htonl(INADDR_ANY); break; case INET_AF_LOOPBACK: addr.s_addr = sock_htonl(INADDR_LOOPBACK); break; default: return NULL; } sys_memzero((char*)dst, sizeof(struct sockaddr_in)); dst->sai.sin_family = family; dst->sai.sin_port = sock_htons(port); dst->sai.sin_addr.s_addr = addr.s_addr; *len = sizeof(struct sockaddr_in); } break; # if defined(HAVE_IN6) && defined(AF_INET6) case AF_INET6: { const struct in6_addr* paddr; switch (tag) { case INET_AF_ANY: paddr = &in6addr_any; break; case INET_AF_LOOPBACK: paddr = &in6addr_loopback; break; default: return NULL; } sys_memzero((char*)dst, sizeof(struct sockaddr_in6)); dst->sai6.sin6_family = family; dst->sai6.sin6_port = sock_htons(port); dst->sai6.sin6_flowinfo = 0; /* XXX this may be set as well ?? */ dst->sai6.sin6_addr = *paddr; *len = sizeof(struct sockaddr_in6); } break; # endif default: return NULL; } return src + 2; } break; default: return NULL; } return inet_set_address(family, dst, src, len); } #endif /* HAVE_SCTP */ /* Get a inaddr structure ** src = inaddr structure ** *len is the lenght of structure ** dst is filled with [F,P1,P0,X1,....] ** where F is the family code (coded) ** and *len is the length of dst on return ** (suitable to deliver to erlang) */ static int inet_get_address(int family, char* dst, inet_address* src, unsigned int* len) { short port; if ((family == AF_INET) && (*len >= sizeof(struct sockaddr_in))) { dst[0] = INET_AF_INET; port = sock_ntohs(src->sai.sin_port); put_int16(port, dst+1); sys_memcpy(dst+3, (char*)&src->sai.sin_addr, sizeof(struct in_addr)); *len = 3 + sizeof(struct in_addr); return 0; } #if defined(HAVE_IN6) && defined(AF_INET6) else if ((family == AF_INET6) && (*len >= sizeof(struct sockaddr_in6))) { dst[0] = INET_AF_INET6; port = sock_ntohs(src->sai6.sin6_port); put_int16(port, dst+1); sys_memcpy(dst+3, (char*)&src->sai6.sin6_addr,sizeof(struct in6_addr)); *len = 3 + sizeof(struct in6_addr); return 0; } #endif return -1; } static void desc_close(inet_descriptor* desc) { if (desc->s != INVALID_SOCKET) { #ifdef __WIN32__ winsock_event_select(desc, FD_READ|FD_WRITE|FD_CLOSE, 0); sock_close(desc->s); desc->forced_events = 0; desc->send_would_block = 0; #endif driver_select(desc->port, (ErlDrvEvent)(long)desc->event, ERL_DRV_USE, 0); desc->event = INVALID_EVENT; /* closed by stop_select callback */ desc->s = INVALID_SOCKET; desc->event_mask = 0; } } static void desc_close_read(inet_descriptor* desc) { if (desc->s != INVALID_SOCKET) { #ifdef __WIN32__ /* This call can not be right??? * We want to turn off read events but keep any write events. * But on windows driver_select(...,READ,1) is only used as a * way to hook into the pollset. sock_select is used to control * which events to wait for. * It seems we used to disabled all events for the socket here. * driver_select(desc->port, desc->event, DO_READ, 0); REMOVED */ #endif sock_select(desc, FD_READ | FD_CLOSE, 0); } } static int erl_inet_close(inet_descriptor* desc) { free_subscribers(&desc->empty_out_q_subs); if ((desc->prebound == 0) && (desc->state & INET_F_OPEN)) { desc_close(desc); desc->state = INET_STATE_CLOSED; } else if (desc->prebound && (desc->s != INVALID_SOCKET)) { sock_select(desc, FD_READ | FD_WRITE | FD_CLOSE, 0); desc->event_mask = 0; #ifdef __WIN32__ desc->forced_events = 0; desc->send_would_block = 0; #endif } return 0; } static int inet_ctl_open(inet_descriptor* desc, int domain, int type, char** rbuf, int rsize) { if (desc->state != INET_STATE_CLOSED) return ctl_xerror(EXBADSEQ, rbuf, rsize); if ((desc->s = sock_open(domain, type, desc->sprotocol)) == INVALID_SOCKET) return ctl_error(sock_errno(), rbuf, rsize); if ((desc->event = sock_create_event(desc)) == INVALID_EVENT) return ctl_error(sock_errno(), rbuf, rsize); SET_NONBLOCKING(desc->s); #ifdef __WIN32__ driver_select(desc->port, desc->event, ERL_DRV_READ, 1); #endif desc->state = INET_STATE_OPEN; desc->stype = type; desc->sfamily = domain; return ctl_reply(INET_REP_OK, NULL, 0, rbuf, rsize); } /* as inet_open but pass in an open socket (MUST BE OF RIGHT TYPE) */ static int inet_ctl_fdopen(inet_descriptor* desc, int domain, int type, SOCKET s, char** rbuf, int rsize) { inet_address name; unsigned int sz = sizeof(name); /* check that it is a socket and that the socket is bound */ if (IS_SOCKET_ERROR(sock_name(s, (struct sockaddr*) &name, &sz))) return ctl_error(sock_errno(), rbuf, rsize); if (name.sa.sa_family != domain) return ctl_error(EINVAL, rbuf, rsize); desc->s = s; if ((desc->event = sock_create_event(desc)) == INVALID_EVENT) return ctl_error(sock_errno(), rbuf, rsize); SET_NONBLOCKING(desc->s); #ifdef __WIN32__ driver_select(desc->port, desc->event, ERL_DRV_READ, 1); #endif desc->state = INET_STATE_BOUND; /* assume bound */ if (type == SOCK_STREAM) { /* check if connected */ sz = sizeof(name); if (!IS_SOCKET_ERROR(sock_peer(s, (struct sockaddr*) &name, &sz))) desc->state = INET_STATE_CONNECTED; } desc->prebound = 1; /* used to prevent a real close since * the fd probably comes from an * external wrapper program, so it is * not certain that we can open it again */ desc->stype = type; desc->sfamily = domain; return ctl_reply(INET_REP_OK, NULL, 0, rbuf, rsize); } /* ** store interface info as: (bytes) ** [Len] Name(Len) Flags(1) addr(4) baddr(4) mask(4) bw(4) */ struct addr_if { char name[INET_IFNAMSIZ]; long flags; /* coded flags */ struct in_addr addr; /* interface address */ struct in_addr baddr; /* broadcast address */ struct in_addr mask; /* netmask */ }; #ifndef SIOCGIFNETMASK static struct in_addr net_mask(in) struct in_addr in; { register u_long i = sock_ntohl(in.s_addr); if (IN_CLASSA(i)) in.s_addr = sock_htonl(IN_CLASSA_NET); else if (IN_CLASSB(i)) in.s_addr = sock_htonl(IN_CLASSB_NET); else in.s_addr = sock_htonl(IN_CLASSC_NET); return in; } #endif #if defined(__WIN32__) && defined(SIO_GET_INTERFACE_LIST) /* format address in dot notation */ static char* fmt_addr(unsigned long x, char* ptr) { int i; for (i = 0; i < 4; i++) { int nb[3]; int y = (x >> 24) & 0xff; x <<= 8; nb[0] = y % 10; y /= 10; nb[1] = y % 10; y /= 10; nb[2] = y % 10; y /= 10; switch((nb[2] ? 3 : (nb[1] ? 2 : 1))) { case 3: *ptr++ = nb[2] + '0'; case 2: *ptr++ = nb[1] + '0'; case 1: *ptr++ = nb[0] + '0'; } *ptr++ = '.'; } *(ptr-1) = '\0'; return ptr; } static int parse_addr(char* ptr, int n, long* x) { long addr = 0; int dots = 0; int digs = 0; int v = 0; while(n--) { switch(*ptr) { case '0': case '1': case '2':case '3':case '4':case '5': case '6': case '7': case '8':case '9': v = v*10 + *ptr - '0'; if (++digs > 3) return -1; break; case '.': if ((dots>2) || (digs==0) || (digs > 3) || (v > 0xff)) return -1; dots++; digs = 0; addr = (addr << 8) | v; v = 0; break; default: return -1; } ptr++; } if ((dots!=3) || (digs==0) || (digs > 3) || (v > 0xff)) return -1; addr = (addr << 8) | v; *x = addr; return 0; } #endif #define buf_check(ptr, end, n) \ do { if ((end)-(ptr) < (n)) goto error; } while(0) static char* sockaddr_to_buf(struct sockaddr* addr, char* ptr, char* end) { if (addr->sa_family == AF_INET || addr->sa_family == 0) { struct in_addr *p = &(((struct sockaddr_in*) addr)->sin_addr); buf_check(ptr, end, 1 + sizeof(struct in_addr)); *ptr = INET_AF_INET; sys_memcpy(ptr+1, (char*)p, sizeof(struct in_addr)); return ptr + 1 + sizeof(struct in_addr); } #if defined(HAVE_IN6) && defined(AF_INET6) else if (addr->sa_family == AF_INET6) { struct in6_addr *p = &(((struct sockaddr_in6*) addr)->sin6_addr); buf_check(ptr, end, 1 + sizeof(struct in6_addr)); *ptr = INET_AF_INET6; sys_memcpy(ptr+1, (char*)p, sizeof(struct in6_addr)); return ptr + 1 + sizeof(struct in6_addr); } #endif #if defined(AF_LINK) else if (addr->sa_family == AF_LINK) { struct sockaddr_dl *sdl_p = (struct sockaddr_dl*) addr; buf_check(ptr, end, 2 + sdl_p->sdl_alen); put_int16(sdl_p->sdl_alen, ptr); ptr += 2; sys_memcpy(ptr, sdl_p->sdl_data + sdl_p->sdl_nlen, sdl_p->sdl_alen); return ptr + sdl_p->sdl_alen; } #endif #if defined(AF_PACKET) && defined(HAVE_NETPACKET_PACKET_H) else if(addr->sa_family == AF_PACKET) { struct sockaddr_ll *sll_p = (struct sockaddr_ll*) addr; buf_check(ptr, end, 2 + sll_p->sll_halen); put_int16(sll_p->sll_halen, ptr); ptr += 2; sys_memcpy(ptr, sll_p->sll_addr, sll_p->sll_halen); return ptr + sll_p->sll_halen; } #endif return ptr; error: return NULL; } static char* buf_to_sockaddr(char* ptr, char* end, struct sockaddr* addr) { buf_check(ptr,end,1); switch (*ptr++) { case INET_AF_INET: { struct in_addr *p = &((struct sockaddr_in*)addr)->sin_addr; buf_check(ptr,end,sizeof(struct in_addr)); sys_memcpy((char*) p, ptr, sizeof(struct in_addr)); addr->sa_family = AF_INET; return ptr + sizeof(struct in_addr); } case INET_AF_INET6: { struct in6_addr *p = &((struct sockaddr_in6*)addr)->sin6_addr; buf_check(ptr,end,sizeof(struct in6_addr)); sys_memcpy((char*) p, ptr, sizeof(struct in6_addr)); addr->sa_family = AF_INET6; return ptr + sizeof(struct in6_addr); } } error: return NULL; } #if defined (IFF_POINTOPOINT) #define IFGET_FLAGS(cflags) IFGET_FLAGS_P2P(cflags, IFF_POINTOPOINT) #elif defined IFF_POINTTOPOINT #define IFGET_FLAGS(cflags) IFGET_FLAGS_P2P(cflags, IFF_POINTTOPOINT) #endif #define IFGET_FLAGS_P2P(cflags, iff_ptp) \ ((((cflags) & IFF_UP) ? INET_IFF_UP : 0) | \ (((cflags) & IFF_BROADCAST) ? INET_IFF_BROADCAST : 0) | \ (((cflags) & IFF_LOOPBACK) ? INET_IFF_LOOPBACK : 0) | \ (((cflags) & iff_ptp) ? INET_IFF_POINTTOPOINT : 0) | \ (((cflags) & IFF_UP) ? INET_IFF_RUNNING : 0) | /* emulate running ? */ \ (((cflags) & IFF_MULTICAST) ? INET_IFF_MULTICAST : 0)) #if defined(__WIN32__) && defined(SIO_GET_INTERFACE_LIST) static int inet_ctl_getiflist(inet_descriptor* desc, char** rbuf, int rsize) { char ifbuf[BUFSIZ]; char sbuf[BUFSIZ]; char* sptr; INTERFACE_INFO* ifp; DWORD len; int n; int err; ifp = (INTERFACE_INFO*) ifbuf; len = 0; err = WSAIoctl(desc->s, SIO_GET_INTERFACE_LIST, NULL, 0, (LPVOID) ifp, BUFSIZ, (LPDWORD) &len, NULL, NULL); if (err == SOCKET_ERROR) return ctl_error(sock_errno(), rbuf, rsize); n = (len + sizeof(INTERFACE_INFO) - 1) / sizeof(INTERFACE_INFO); sptr = sbuf; while(n--) { if (((struct sockaddr*)&ifp->iiAddress)->sa_family == desc->sfamily) { struct in_addr sina = ((struct sockaddr_in*)&ifp->iiAddress)->sin_addr; /* discard INADDR_ANY interface address */ if (sina.s_addr != INADDR_ANY) sptr = fmt_addr(sock_ntohl(sina.s_addr), sptr); } ifp++; } return ctl_reply(INET_REP_OK, sbuf, sptr - sbuf, rbuf, rsize); } /* input is an ip-address in string format i.e A.B.C.D ** scan the INTERFACE_LIST to get the options */ static int inet_ctl_ifget(inet_descriptor* desc, char* buf, int len, char** rbuf, int rsize) { char ifbuf[BUFSIZ]; int n; char sbuf[BUFSIZ]; char* sptr; char* s_end = sbuf + BUFSIZ; int namlen; int err; INTERFACE_INFO* ifp; long namaddr; if ((len == 0) || ((namlen = get_int8(buf)) > len)) goto error; if (parse_addr(buf+1, namlen, &namaddr) < 0) goto error; namaddr = sock_ntohl(namaddr); buf += (namlen+1); len -= (namlen+1); ifp = (INTERFACE_INFO*) ifbuf; err = WSAIoctl(desc->s, SIO_GET_INTERFACE_LIST, NULL, 0, (LPVOID) ifp, BUFSIZ, (LPDWORD) &n, NULL, NULL); if (err == SOCKET_ERROR) { return ctl_error(sock_errno(), rbuf, rsize); } n = (n + sizeof(INTERFACE_INFO) - 1) / sizeof(INTERFACE_INFO); /* find interface */ while(n) { if (((struct sockaddr_in*)&ifp->iiAddress)->sin_addr.s_addr == namaddr) break; ifp++; n--; } if (n == 0) goto error; sptr = sbuf; while (len--) { switch(*buf++) { case INET_IFOPT_ADDR: buf_check(sptr, s_end, 1); *sptr++ = INET_IFOPT_ADDR; if ((sptr = sockaddr_to_buf((struct sockaddr *)&ifp->iiAddress, sptr, s_end)) == NULL) goto error; break; case INET_IFOPT_HWADDR: break; case INET_IFOPT_BROADADDR: #ifdef SIOCGIFBRDADDR buf_check(sptr, s_end, 1); *sptr++ = INET_IFOPT_BROADADDR; if ((sptr=sockaddr_to_buf((struct sockaddr *) &ifp->iiBroadcastAddress,sptr,s_end)) == NULL) goto error; #endif break; case INET_IFOPT_DSTADDR: break; case INET_IFOPT_NETMASK: buf_check(sptr, s_end, 1); *sptr++ = INET_IFOPT_NETMASK; if ((sptr = sockaddr_to_buf((struct sockaddr *) &ifp->iiNetmask,sptr,s_end)) == NULL) goto error; break; case INET_IFOPT_MTU: break; case INET_IFOPT_FLAGS: { int flags = ifp->iiFlags; /* just enumerate the interfaces (no names) */ buf_check(sptr, s_end, 5); *sptr++ = INET_IFOPT_FLAGS; put_int32(IFGET_FLAGS(flags), sptr); sptr += 4; break; } default: goto error; } } return ctl_reply(INET_REP_OK, sbuf, sptr - sbuf, rbuf, rsize); error: return ctl_error(EINVAL, rbuf, rsize); } /* not supported */ static int inet_ctl_ifset(inet_descriptor* desc, char* buf, int len, char** rbuf, int rsize) { return ctl_reply(INET_REP_OK, NULL, 0, rbuf, rsize); } #elif defined(SIOCGIFCONF) && defined(SIOCSIFFLAGS) /* cygwin has SIOCGIFCONF but not SIOCSIFFLAGS (Nov 2002) */ #define VOIDP(x) ((void*)(x)) #if defined(AF_LINK) && !defined(NO_SA_LEN) #define SIZEA(p) (((p).sa_len > sizeof(p)) ? (p).sa_len : sizeof(p)) #else #define SIZEA(p) (sizeof (p)) #endif static int get_ifconf(SOCKET s, struct ifconf *ifcp) { int ifc_len = 0; int buflen = 100 * sizeof(struct ifreq); char *buf = ALLOC(buflen); for (;;) { ifcp->ifc_len = buflen; ifcp->ifc_buf = buf; if (ioctl(s, SIOCGIFCONF, (char *)ifcp) < 0) { int res = sock_errno(); if (res != EINVAL || ifc_len) { FREE(buf); return -1; } } else { if (ifcp->ifc_len == ifc_len) break; /* buf large enough */ ifc_len = ifcp->ifc_len; } buflen += 10 * sizeof(struct ifreq); buf = (char *)REALLOC(buf, buflen); } return 0; } static void free_ifconf(struct ifconf *ifcp) { FREE(ifcp->ifc_buf); } static int inet_ctl_getiflist(inet_descriptor* desc, char** rbuf, int rsize) { struct ifconf ifc; struct ifreq *ifrp; char *sbuf, *sp; int i; /* Courtesy of Per Bergqvist and W. Richard Stevens */ if (get_ifconf(desc->s, &ifc) < 0) { return ctl_error(sock_errno(), rbuf, rsize); } sp = sbuf = ALLOC(ifc.ifc_len+1); *sp++ = INET_REP_OK; i = 0; for (;;) { int n; ifrp = (struct ifreq *) VOIDP(ifc.ifc_buf + i); n = sizeof(ifrp->ifr_name) + SIZEA(ifrp->ifr_addr); if (n < sizeof(*ifrp)) n = sizeof(*ifrp); if (i+n > ifc.ifc_len) break; i += n; switch (ifrp->ifr_addr.sa_family) { #if defined(HAVE_IN6) && defined(AF_INET6) case AF_INET6: #endif case AF_INET: ASSERT(sp+IFNAMSIZ+1 < sbuf+ifc.ifc_len+1) strncpy(sp, ifrp->ifr_name, IFNAMSIZ); sp[IFNAMSIZ] = '\0'; sp += strlen(sp), ++sp; } if (i >= ifc.ifc_len) break; } free_ifconf(&ifc); *rbuf = sbuf; return sp - sbuf; } /* FIXME: temporary hack */ #ifndef IFHWADDRLEN #define IFHWADDRLEN 6 #endif static int inet_ctl_ifget(inet_descriptor* desc, char* buf, int len, char** rbuf, int rsize) { char sbuf[BUFSIZ]; char* sptr; char* s_end = sbuf + BUFSIZ; struct ifreq ifreq; int namlen; if ((len == 0) || ((namlen = get_int8(buf)) > len)) goto error; sys_memset(ifreq.ifr_name, '\0', IFNAMSIZ); sys_memcpy(ifreq.ifr_name, buf+1, (namlen >= IFNAMSIZ) ? IFNAMSIZ-1 : namlen); buf += (namlen+1); len -= (namlen+1); sptr = sbuf; while (len--) { switch(*buf++) { case INET_IFOPT_ADDR: if (ioctl(desc->s, SIOCGIFADDR, (char *)&ifreq) < 0) break; buf_check(sptr, s_end, 1); *sptr++ = INET_IFOPT_ADDR; if ((sptr = sockaddr_to_buf(&ifreq.ifr_addr, sptr, s_end)) == NULL) goto error; break; case INET_IFOPT_HWADDR: { #ifdef SIOCGIFHWADDR if (ioctl(desc->s, SIOCGIFHWADDR, (char *)&ifreq) < 0) break; buf_check(sptr, s_end, 1+2+IFHWADDRLEN); *sptr++ = INET_IFOPT_HWADDR; put_int16(IFHWADDRLEN, sptr); sptr += 2; /* raw memcpy (fix include autoconf later) */ sys_memcpy(sptr, (char*)(&ifreq.ifr_hwaddr.sa_data), IFHWADDRLEN); sptr += IFHWADDRLEN; #elif defined(SIOCGENADDR) if (ioctl(desc->s, SIOCGENADDR, (char *)&ifreq) < 0) break; buf_check(sptr, s_end, 1+2+sizeof(ifreq.ifr_enaddr)); *sptr++ = INET_IFOPT_HWADDR; put_int16(sizeof(ifreq.ifr_enaddr), sptr); sptr += 2; /* raw memcpy (fix include autoconf later) */ sys_memcpy(sptr, (char*)(&ifreq.ifr_enaddr), sizeof(ifreq.ifr_enaddr)); sptr += sizeof(ifreq.ifr_enaddr); #elif defined(HAVE_GETIFADDRS) && defined(AF_LINK) struct ifaddrs *ifa, *ifp; struct sockaddr_dl *sdlp; int found = 0; if (getifaddrs(&ifa) == -1) goto error; for (ifp = ifa; ifp; ifp = ifp->ifa_next) { if ((ifp->ifa_addr->sa_family == AF_LINK) && (sys_strcmp(ifp->ifa_name, ifreq.ifr_name) == 0)) { found = 1; break; } } if (found == 0) { freeifaddrs(ifa); break; } sdlp = (struct sockaddr_dl *)ifp->ifa_addr; buf_check(sptr, s_end, 1+2+sdlp->sdl_alen); *sptr++ = INET_IFOPT_HWADDR; put_int16(sdlp->sdl_alen, sptr); sptr += 2; sys_memcpy(sptr, sdlp->sdl_data + sdlp->sdl_nlen, sdlp->sdl_alen); freeifaddrs(ifa); sptr += sdlp->sdl_alen; #endif break; } case INET_IFOPT_BROADADDR: #ifdef SIOCGIFBRDADDR if (ioctl(desc->s, SIOCGIFBRDADDR, (char *)&ifreq) < 0) break; buf_check(sptr, s_end, 1); *sptr++ = INET_IFOPT_BROADADDR; if ((sptr=sockaddr_to_buf(&ifreq.ifr_broadaddr,sptr,s_end)) == NULL) goto error; #endif break; case INET_IFOPT_DSTADDR: #ifdef SIOCGIFDSTADDR if (ioctl(desc->s, SIOCGIFDSTADDR, (char *)&ifreq) < 0) break; buf_check(sptr, s_end, 1); *sptr++ = INET_IFOPT_DSTADDR; if ((sptr = sockaddr_to_buf(&ifreq.ifr_dstaddr,sptr,s_end)) == NULL) goto error; #endif break; case INET_IFOPT_NETMASK: #if defined(SIOCGIFNETMASK) if (ioctl(desc->s, SIOCGIFNETMASK, (char *)&ifreq) < 0) break; buf_check(sptr, s_end, 1); *sptr++ = INET_IFOPT_NETMASK; #if defined(ifr_netmask) sptr = sockaddr_to_buf(&ifreq.ifr_netmask,sptr,s_end); #else /* SIOCGNETMASK exist but not macro ??? */ sptr = sockaddr_to_buf(&ifreq.ifr_addr,sptr,s_end); #endif if (sptr == NULL) goto error; #else if (ioctl(desc->s, SIOCGIFADDR, (char *)&ifreq) < 0) break; else { struct sockadd_in* ap; /* emulate netmask, * (wasted stuff since noone uses classes) */ buf_check(sptr, s_end, 1); *sptr++ = INET_IFOPT_NETMASK; ap = (struct sockaddr_in*) VOIDP(&ifreq.ifr_addr); ap->sin_addr = net_mask(ap->sin_addr); if ((sptr = sockaddr_to_buf(&ifreq.ifr_addr,sptr,s_end)) == NULL) goto error; } #endif break; case INET_IFOPT_MTU: { #if defined(SIOCGIFMTU) && defined(ifr_mtu) int n; if (ioctl(desc->s, SIOCGIFMTU, (char *)&ifreq) < 0) break; buf_check(sptr, s_end, 5); *sptr++ = INET_IFOPT_MTU; n = ifreq.ifr_mtu; put_int32(n, sptr); sptr += 4; #endif break; } case INET_IFOPT_FLAGS: { int flags; if (ioctl(desc->s, SIOCGIFFLAGS, (char*)&ifreq) < 0) flags = 0; else flags = ifreq.ifr_flags; buf_check(sptr, s_end, 5); *sptr++ = INET_IFOPT_FLAGS; put_int32(IFGET_FLAGS(flags), sptr); sptr += 4; break; } default: goto error; } } return ctl_reply(INET_REP_OK, sbuf, sptr - sbuf, rbuf, rsize); error: return ctl_error(EINVAL, rbuf, rsize); } static int inet_ctl_ifset(inet_descriptor* desc, char* buf, int len, char** rbuf, int rsize) { struct ifreq ifreq; int namlen; char* b_end = buf + len; if ((len == 0) || ((namlen = get_int8(buf)) > len)) goto error; sys_memset(ifreq.ifr_name, '\0', IFNAMSIZ); sys_memcpy(ifreq.ifr_name, buf+1, (namlen >= IFNAMSIZ) ? IFNAMSIZ-1 : namlen); buf += (namlen+1); len -= (namlen+1); while(buf < b_end) { switch(*buf++) { case INET_IFOPT_ADDR: if ((buf = buf_to_sockaddr(buf, b_end, &ifreq.ifr_addr)) == NULL) goto error; (void) ioctl(desc->s, SIOCSIFADDR, (char*)&ifreq); break; case INET_IFOPT_HWADDR: { unsigned int len; buf_check(buf, b_end, 2); len = get_int16(buf); buf += 2; buf_check(buf, b_end, len); #ifdef SIOCSIFHWADDR /* raw memcpy (fix include autoconf later) */ sys_memset((char*)(&ifreq.ifr_hwaddr.sa_data), '\0', sizeof(ifreq.ifr_hwaddr.sa_data)); sys_memcpy((char*)(&ifreq.ifr_hwaddr.sa_data), buf, len); (void) ioctl(desc->s, SIOCSIFHWADDR, (char *)&ifreq); #endif buf += len; break; } case INET_IFOPT_BROADADDR: #ifdef SIOCSIFBRDADDR if ((buf = buf_to_sockaddr(buf, b_end, &ifreq.ifr_broadaddr)) == NULL) goto error; (void) ioctl(desc->s, SIOCSIFBRDADDR, (char *)&ifreq); #endif break; case INET_IFOPT_DSTADDR: #ifdef SIOCSIFDSTADDR if ((buf = buf_to_sockaddr(buf, b_end, &ifreq.ifr_dstaddr)) == NULL) goto error; (void) ioctl(desc->s, SIOCSIFDSTADDR, (char *)&ifreq); #endif break; case INET_IFOPT_NETMASK: #ifdef SIOCSIFNETMASK #if defined(ifr_netmask) buf = buf_to_sockaddr(buf,b_end, &ifreq.ifr_netmask); #else buf = buf_to_sockaddr(buf,b_end, &ifreq.ifr_addr); #endif if (buf == NULL) goto error; (void) ioctl(desc->s, SIOCSIFNETMASK, (char *)&ifreq); #endif break; case INET_IFOPT_MTU: buf_check(buf, b_end, 4); #if defined(SIOCSIFMTU) && defined(ifr_mtu) ifreq.ifr_mtu = get_int32(buf); (void) ioctl(desc->s, SIOCSIFMTU, (char *)&ifreq); #endif buf += 4; break; case INET_IFOPT_FLAGS: { int flags0; int flags; int eflags; buf_check(buf, b_end, 4); eflags = get_int32(buf); /* read current flags */ if (ioctl(desc->s, SIOCGIFFLAGS, (char*)&ifreq) < 0) flags0 = flags = 0; else flags0 = flags = ifreq.ifr_flags; /* update flags */ if (eflags & INET_IFF_UP) flags |= IFF_UP; if (eflags & INET_IFF_DOWN) flags &= ~IFF_UP; if (eflags & INET_IFF_BROADCAST) flags |= IFF_BROADCAST; if (eflags & INET_IFF_NBROADCAST) flags &= ~IFF_BROADCAST; if (eflags & INET_IFF_POINTTOPOINT) flags |= IFF_POINTOPOINT; if (eflags & INET_IFF_NPOINTTOPOINT) flags &= ~IFF_POINTOPOINT; if (flags != flags0) { ifreq.ifr_flags = flags; (void) ioctl(desc->s, SIOCSIFFLAGS, (char*)&ifreq); } buf += 4; break; } default: goto error; } } return ctl_reply(INET_REP_OK, NULL, 0, rbuf, rsize); error: return ctl_error(EINVAL, rbuf, rsize); } #else static int inet_ctl_getiflist(inet_descriptor* desc, char** rbuf, int rsize) { return ctl_reply(INET_REP_OK, NULL, 0, rbuf, rsize); } static int inet_ctl_ifget(inet_descriptor* desc, char* buf, int len, char** rbuf, int rsize) { return ctl_reply(INET_REP_OK, NULL, 0, rbuf, rsize); } static int inet_ctl_ifset(inet_descriptor* desc, char* buf, int len, char** rbuf, int rsize) { return ctl_reply(INET_REP_OK, NULL, 0, rbuf, rsize); } #endif /* Latin-1 to utf8 */ static int utf8_len(const char *c, int m) { int l; for (l = 0; m; c++, l++, m--) { if (*c == '\0') break; if ((*c & 0x7f) != *c) l++; } return l; } static void utf8_encode(const char *c, int m, char *p) { for (; m; c++, m--) { if (*c == '\0') break; if ((*c & 0x7f) != *c) { *p++ = (char) (0xC0 | (0x03 & (*c >> 6))); *p++ = (char) (0x80 | (0x3F & *c)); } else { *p++ = (char) *c; } } } #if defined(__WIN32__) static void set_netmask_bytes(char *c, int len, int pref_len) { int i, m; for (i = 0, m = pref_len >> 3; i < m && i < len; i++) c[i] = '\xFF'; if (i < len) c[i++] = 0xFF << (8 - (pref_len & 7)); for (; i < len; i++) c[i] = '\0'; } int eq_masked_bytes(char *a, char *b, int pref_len) { int i, m; for (i = 0, m = pref_len >> 3; i < m; i++) { if (a[i] != b[i]) return 0; } m = pref_len & 7; if (m) { m = 0xFF & (0xFF << (8 - m)); if ((a[i] & m) != (b[i] & m)) return 0; } return !0; } static int inet_ctl_getifaddrs(inet_descriptor* desc_p, char **rbuf_pp, int rsize) { int i; DWORD ret, n; IP_INTERFACE_INFO *info_p; MIB_IPADDRTABLE *ip_addrs_p; IP_ADAPTER_ADDRESSES *ip_adaddrs_p, *ia_p; char *buf_p; char *buf_alloc_p; int buf_size =512; # define BUF_ENSURE(Size) \ do { \ int NEED_, GOT_ = buf_p - buf_alloc_p; \ NEED_ = GOT_ + (Size); \ if (NEED_ > buf_size) { \ buf_size = NEED_ + 512; \ buf_alloc_p = REALLOC(buf_alloc_p, buf_size); \ buf_p = buf_alloc_p + GOT_; \ } \ } while(0) # define SOCKADDR_TO_BUF(opt, sa) \ do { \ if (sa) { \ char *P_; \ *buf_p++ = (opt); \ while (! (P_ = sockaddr_to_buf((sa), buf_p, \ buf_alloc_p+buf_size))) { \ int GOT_ = buf_p - buf_alloc_p; \ buf_size += 512; \ buf_alloc_p = REALLOC(buf_alloc_p, buf_size); \ buf_p = buf_alloc_p + GOT_; \ } \ if (P_ == buf_p) { \ buf_p--; \ } else { \ buf_p = P_; \ } \ } \ } while (0) { /* Try GetAdaptersAddresses, if it is available */ unsigned long ip_adaddrs_size = 16 * 1024; ULONG family = AF_UNSPEC; ULONG flags = GAA_FLAG_INCLUDE_PREFIX | GAA_FLAG_SKIP_ANYCAST | GAA_FLAG_SKIP_DNS_SERVER | GAA_FLAG_SKIP_FRIENDLY_NAME | GAA_FLAG_SKIP_MULTICAST; ULONG (WINAPI *fpGetAdaptersAddresses) (ULONG, ULONG, PVOID, PIP_ADAPTER_ADDRESSES, PULONG); HMODULE iphlpapi = GetModuleHandle("iphlpapi"); fpGetAdaptersAddresses = (void *) (iphlpapi ? GetProcAddress(iphlpapi, "GetAdaptersAddresses") : NULL); if (fpGetAdaptersAddresses) { ip_adaddrs_p = ALLOC(ip_adaddrs_size); for (i = 17; i; i--) { ret = fpGetAdaptersAddresses( family, flags, NULL, ip_adaddrs_p, &ip_adaddrs_size); ip_adaddrs_p = REALLOC(ip_adaddrs_p, ip_adaddrs_size); if (ret == NO_ERROR) break; if (ret == ERROR_BUFFER_OVERFLOW) continue; i = 0; } if (! i) { FREE(ip_adaddrs_p); ip_adaddrs_p = NULL; } } else ip_adaddrs_p = NULL; } { /* Load the IP_INTERFACE_INFO table (only IPv4 interfaces), * reliable source of interface names on XP */ unsigned long info_size = 4 * 1024; info_p = ALLOC(info_size); for (i = 17; i; i--) { ret = GetInterfaceInfo(info_p, &info_size); info_p = REALLOC(info_p, info_size); if (ret == NO_ERROR) break; if (ret == ERROR_INSUFFICIENT_BUFFER) continue; i = 0; } if (! i) { FREE(info_p); info_p = NULL; } } if (! ip_adaddrs_p) { /* If GetAdaptersAddresses gave nothing we fall back to * MIB_IPADDRTABLE (only IPv4 interfaces) */ unsigned long ip_addrs_size = 16 * sizeof(*ip_addrs_p); ip_addrs_p = ALLOC(ip_addrs_size); for (i = 17; i; i--) { ret = GetIpAddrTable(ip_addrs_p, &ip_addrs_size, FALSE); ip_addrs_p = REALLOC(ip_addrs_p, ip_addrs_size); if (ret == NO_ERROR) break; if (ret == ERROR_INSUFFICIENT_BUFFER) continue; i = 0; } if (! i) { if (info_p) FREE(info_p); FREE(ip_addrs_p); return ctl_reply(INET_REP_OK, NULL, 0, rbuf_pp, rsize); } } else ip_addrs_p = NULL; buf_p = buf_alloc_p = ALLOC(buf_size); *buf_p++ = INET_REP_OK; /* Iterate over MIB_IPADDRTABLE or IP_ADAPTER_ADDRESSES */ for (ia_p = NULL, ip_addrs_p ? ((void *)(i = 0)) : (ia_p = ip_adaddrs_p); ip_addrs_p ? (i < ip_addrs_p->dwNumEntries) : (ia_p != NULL); ip_addrs_p ? ((void *)(i++)) : (ia_p = ia_p->Next)) { MIB_IPADDRROW *ipaddrrow_p = NULL; DWORD flags = INET_IFF_MULTICAST; DWORD index = 0; WCHAR *wname_p = NULL; MIB_IFROW ifrow; if (ip_addrs_p) { ipaddrrow_p = ip_addrs_p->table + i; index = ipaddrrow_p->dwIndex; } else { index = ia_p->IfIndex; if (ia_p->Flags & IP_ADAPTER_NO_MULTICAST) { flags &= ~INET_IFF_MULTICAST; } } index: if (! index) goto done; sys_memzero(&ifrow, sizeof(ifrow)); ifrow.dwIndex = index; if (GetIfEntry(&ifrow) != NO_ERROR) break; /* Find the interface name - first try MIB_IFROW.wzname */ if (ifrow.wszName[0] != 0) { wname_p = ifrow.wszName; } else { /* Then try IP_ADAPTER_INDEX_MAP.Name (only IPv4 adapters) */ int j; for (j = 0; j < info_p->NumAdapters; j++) { if (info_p->Adapter[j].Index == (ULONG) ifrow.dwIndex) { if (info_p->Adapter[j].Name[0] != 0) { wname_p = info_p->Adapter[j].Name; } break; } } } if (wname_p) { int len; /* Convert interface name to UTF-8 */ len = WideCharToMultiByte( CP_UTF8, 0, wname_p, -1, NULL, 0, NULL, NULL); if (! len) break; BUF_ENSURE(len); WideCharToMultiByte( CP_UTF8, 0, wname_p, -1, buf_p, len, NULL, NULL); buf_p += len; } else { /* Found no name - * use "MIB_IFROW.dwIndex: MIB_IFROW.bDescr" as name instead */ int l; l = utf8_len(ifrow.bDescr, ifrow.dwDescrLen); BUF_ENSURE(9 + l+1); buf_p += erts_sprintf( buf_p, "%lu: ", (unsigned long) ifrow.dwIndex); utf8_encode(ifrow.bDescr, ifrow.dwDescrLen, buf_p); buf_p += l; *buf_p++ = '\0'; } /* Interface flags, often make up broadcast and multicast flags */ switch (ifrow.dwType) { case IF_TYPE_ETHERNET_CSMACD: flags |= INET_IFF_BROADCAST; break; case IF_TYPE_SOFTWARE_LOOPBACK: flags |= INET_IFF_LOOPBACK; flags &= ~INET_IFF_MULTICAST; break; default: flags &= ~INET_IFF_MULTICAST; break; } if (ifrow.dwAdminStatus) { flags |= INET_IFF_UP; switch (ifrow.dwOperStatus) { case IF_OPER_STATUS_CONNECTING: flags |= INET_IFF_POINTTOPOINT; break; case IF_OPER_STATUS_CONNECTED: flags |= INET_IFF_RUNNING | INET_IFF_POINTTOPOINT; break; case IF_OPER_STATUS_OPERATIONAL: flags |= INET_IFF_RUNNING; break; } } BUF_ENSURE(1 + 4); *buf_p++ = INET_IFOPT_FLAGS; put_int32(flags, buf_p); buf_p += 4; if (ipaddrrow_p) { /* Legacy implementation through GetIpAddrTable */ struct sockaddr_in sin; /* IP Address */ sys_memzero(&sin, sizeof(sin)); sin.sin_family = AF_INET; sin.sin_addr.s_addr = ipaddrrow_p->dwAddr; BUF_ENSURE(1); /* Netmask */ SOCKADDR_TO_BUF(INET_IFOPT_ADDR, (struct sockaddr *) &sin); sin.sin_addr.s_addr = ipaddrrow_p->dwMask; BUF_ENSURE(1); SOCKADDR_TO_BUF(INET_IFOPT_NETMASK, (struct sockaddr *) &sin); if (flags & INET_IFF_BROADCAST) { /* Broadcast address - fake it*/ sin.sin_addr.s_addr = ipaddrrow_p->dwAddr; sin.sin_addr.s_addr |= ~ipaddrrow_p->dwMask; BUF_ENSURE(1); SOCKADDR_TO_BUF( INET_IFOPT_BROADADDR, (struct sockaddr *) &sin); } } else { IP_ADAPTER_UNICAST_ADDRESS *p; /* IP Address(es) */ for (p = ia_p->FirstUnicastAddress; p; p = p->Next) { IP_ADAPTER_PREFIX *q; ULONG shortest_length; struct sockaddr *shortest_p, *sa_p = p->Address.lpSockaddr; BUF_ENSURE(1); SOCKADDR_TO_BUF(INET_IFOPT_ADDR, sa_p); shortest_p = NULL; shortest_length = 0; for (q = ia_p->FirstPrefix; q; q = q->Next) { struct sockaddr *sp_p = q->Address.lpSockaddr; if (sa_p->sa_family != sp_p->sa_family) continue; switch (sa_p->sa_family) { case AF_INET: { struct sockaddr_in sin; DWORD sa, sp, mask; sa = ntohl((DWORD) ((struct sockaddr_in *) sa_p)->sin_addr.s_addr); sp = ntohl((DWORD) ((struct sockaddr_in *) sp_p)->sin_addr.s_addr); mask = 0xFFFFFFFF << (32 - q->PrefixLength); if ((sa & mask) != (sp & mask)) continue; if ((! shortest_p) || q->PrefixLength < shortest_length) { shortest_p = sp_p; shortest_length = q->PrefixLength; } } break; case AF_INET6: { struct sockaddr_in6 sin6; if (!eq_masked_bytes((char *) &((struct sockaddr_in6 *) sa_p)->sin6_addr, (char *) &((struct sockaddr_in6 *) sp_p)->sin6_addr, q->PrefixLength)) { continue; } if ((! shortest_p) || q->PrefixLength < shortest_length) { shortest_p = sp_p; shortest_length = q->PrefixLength; } } break; } } if (! shortest_p) { /* Found no shortest prefix */ shortest_p = sa_p; switch (shortest_p->sa_family) { case AF_INET: { /* Fall back to old classfull network addresses */ DWORD addr = ntohl(((struct sockaddr_in *)shortest_p) ->sin_addr.s_addr); if (! (addr & 0x800000)) { /* Class A */ shortest_length = 8; } else if (! (addr & 0x400000)) { /* Class B */ shortest_length = 16; } else if (! (addr & 0x200000)) { /* Class C */ shortest_length = 24; } else { shortest_length = 32; } } break; case AF_INET6: { /* Just play it safe */ shortest_length = 128; } break; } } switch (shortest_p->sa_family) { case AF_INET: { struct sockaddr_in sin; DWORD mask = 0xFFFFFFFF << (32 - shortest_length); sys_memzero(&sin, sizeof(sin)); sin.sin_family = shortest_p->sa_family; sin.sin_addr.s_addr = htonl(mask); BUF_ENSURE(1); SOCKADDR_TO_BUF(INET_IFOPT_NETMASK, (struct sockaddr *) &sin); if (flags & INET_IFF_BROADCAST) { DWORD sp = ntohl((DWORD) ((struct sockaddr_in *)shortest_p) -> sin_addr.s_addr); sin.sin_addr.s_addr = htonl(sp | ~mask); BUF_ENSURE(1); SOCKADDR_TO_BUF(INET_IFOPT_BROADADDR, (struct sockaddr *) &sin); } } break; case AF_INET6: { struct sockaddr_in6 sin6; sys_memzero(&sin6, sizeof(sin6)); sin6.sin6_family = shortest_p->sa_family; set_netmask_bytes((char *) &sin6.sin6_addr, 16, shortest_length); BUF_ENSURE(1); SOCKADDR_TO_BUF(INET_IFOPT_NETMASK, (struct sockaddr *) &sin6); } break; } } } if (ifrow.dwPhysAddrLen) { /* Hardware Address */ BUF_ENSURE(1 + 2 + ifrow.dwPhysAddrLen); *buf_p++ = INET_IFOPT_HWADDR; put_int16(ifrow.dwPhysAddrLen, buf_p); buf_p += 2; sys_memcpy(buf_p, ifrow.bPhysAddr, ifrow.dwPhysAddrLen); buf_p += ifrow.dwPhysAddrLen; } done: /* That is all for this interface */ BUF_ENSURE(1); *buf_p++ = '\0'; if (ia_p && ia_p->Ipv6IfIndex && ia_p->Ipv6IfIndex != index) { /* Oops, there was an other interface for IPv6. Possible? XXX */ index = ia_p->Ipv6IfIndex; goto index; } } if (ip_adaddrs_p) FREE(ip_adaddrs_p); if (info_p) FREE(info_p); if (ip_addrs_p) FREE(ip_addrs_p); buf_size = buf_p - buf_alloc_p; buf_alloc_p = REALLOC(buf_alloc_p, buf_size); /* buf_p is now unreliable */ *rbuf_pp = buf_alloc_p; return buf_size; # undef BUF_ENSURE } #elif defined(HAVE_GETIFADDRS) static int inet_ctl_getifaddrs(inet_descriptor* desc_p, char **rbuf_pp, int rsize) { struct ifaddrs *ifa_p, *ifa_free_p; int buf_size; char *buf_p; char *buf_alloc_p; buf_size = 512; buf_alloc_p = ALLOC(buf_size); buf_p = buf_alloc_p; # define BUF_ENSURE(Size) \ do { \ int NEED_, GOT_ = buf_p - buf_alloc_p; \ NEED_ = GOT_ + (Size); \ if (NEED_ > buf_size) { \ buf_size = NEED_ + 512; \ buf_alloc_p = REALLOC(buf_alloc_p, buf_size); \ buf_p = buf_alloc_p + GOT_; \ } \ } while (0) # define SOCKADDR_TO_BUF(opt, sa) \ do { \ if (sa) { \ char *P_; \ *buf_p++ = (opt); \ while (! (P_ = sockaddr_to_buf((sa), buf_p, \ buf_alloc_p+buf_size))) { \ int GOT_ = buf_p - buf_alloc_p; \ buf_size += 512; \ buf_alloc_p = REALLOC(buf_alloc_p, buf_size); \ buf_p = buf_alloc_p + GOT_; \ } \ if (P_ == buf_p) { \ buf_p--; \ } else { \ buf_p = P_; \ } \ } \ } while (0) if (getifaddrs(&ifa_p) < 0) { return ctl_error(sock_errno(), rbuf_pp, rsize); } ifa_free_p = ifa_p; *buf_p++ = INET_REP_OK; for (; ifa_p; ifa_p = ifa_p->ifa_next) { int len = utf8_len(ifa_p->ifa_name, -1); BUF_ENSURE(len+1 + 1+4 + 1); utf8_encode(ifa_p->ifa_name, -1, buf_p); buf_p += len; *buf_p++ = '\0'; *buf_p++ = INET_IFOPT_FLAGS; put_int32(IFGET_FLAGS(ifa_p->ifa_flags), buf_p); buf_p += 4; if (ifa_p->ifa_addr) { if (ifa_p->ifa_addr->sa_family == AF_INET #if defined(AF_INET6) || ifa_p->ifa_addr->sa_family == AF_INET6 #endif ) { SOCKADDR_TO_BUF(INET_IFOPT_ADDR, ifa_p->ifa_addr); if (ifa_p->ifa_netmask) { BUF_ENSURE(1); SOCKADDR_TO_BUF(INET_IFOPT_NETMASK, ifa_p->ifa_netmask); } if (ifa_p->ifa_dstaddr && (ifa_p->ifa_flags & IFF_POINTOPOINT)) { BUF_ENSURE(1); SOCKADDR_TO_BUF(INET_IFOPT_DSTADDR, ifa_p->ifa_dstaddr); } else if (ifa_p->ifa_broadaddr && (ifa_p->ifa_flags & IFF_BROADCAST)) { BUF_ENSURE(1); SOCKADDR_TO_BUF(INET_IFOPT_BROADADDR, ifa_p->ifa_broadaddr); } } #if defined(AF_LINK) || defined(AF_PACKET) else if ( #if defined(AF_LINK) ifa_p->ifa_addr->sa_family == AF_LINK #else 0 #endif #if defined(AF_PACKET) || ifa_p->ifa_addr->sa_family == AF_PACKET #endif ) { char *bp = buf_p; BUF_ENSURE(1); SOCKADDR_TO_BUF(INET_IFOPT_HWADDR, ifa_p->ifa_addr); if (buf_p - bp < 4) buf_p = bp; /* Empty hwaddr */ } #endif } BUF_ENSURE(1); *buf_p++ = '\0'; } buf_size = buf_p - buf_alloc_p; buf_alloc_p = REALLOC(buf_alloc_p, buf_size); /* buf_p is now unreliable */ freeifaddrs(ifa_free_p); *rbuf_pp = buf_alloc_p; return buf_size; # undef BUF_ENSURE } #else static int inet_ctl_getifaddrs(inet_descriptor* desc_p, char **rbuf_pp, int rsize) { return ctl_error(ENOTSUP, rbuf_pp, rsize); } #endif #ifdef VXWORKS /* ** THIS is a terrible creature, a bug in the TCP part ** of the old VxWorks stack (non SENS) created a race. ** If (and only if?) a socket got closed from the other ** end and we tried a set/getsockopt on the TCP level, ** the task would generate a bus error... */ static STATUS wrap_sockopt(STATUS (*function)() /* Yep, no parameter check */, int s, int level, int optname, char *optval, unsigned int optlen /* optlen is a pointer if function is getsockopt... */) { fd_set rs; struct timeval timeout; int to_read; int ret; FD_ZERO(&rs); FD_SET(s,&rs); memset(&timeout,0,sizeof(timeout)); if (level == IPPROTO_TCP) { taskLock(); if (select(s+1,&rs,NULL,NULL,&timeout)) { if (ioctl(s,FIONREAD,(int)&to_read) == ERROR || to_read == 0) { /* End of file, other end closed? */ sock_errno() = EBADF; taskUnlock(); return ERROR; } } ret = (*function)(s,level,optname,optval,optlen); taskUnlock(); } else { ret = (*function)(s,level,optname,optval,optlen); } return ret; } #endif /* Per H @ Tail-f: The original code here had problems that possibly only occur if you abuse it for non-INET sockets, but anyway: a) If the getsockopt for SO_PRIORITY or IP_TOS failed, the actual requested setsockopt was never even attempted. b) If {get,set}sockopt for one of IP_TOS and SO_PRIORITY failed, but ditto for the other worked and that was actually the requested option, failure was still reported to erlang. */ #if defined(IP_TOS) && defined(SOL_IP) && defined(SO_PRIORITY) static int setopt_prio_tos_trick (int fd, int proto, int type, char* arg_ptr, int arg_sz, int propagate) { /* The relations between SO_PRIORITY, TOS and other options is not what you (or at least I) would expect...: If TOS is set after priority, priority is zeroed. If any other option is set after tos, tos might be zeroed. Therefore, save tos and priority. If something else is set, restore both after setting, if tos is set, restore only prio and if prio is set restore none... All to keep the user feeling socket options are independent. /PaN */ int tmp_ival_prio; int tmp_ival_tos; int res; int res_prio; int res_tos; #ifdef HAVE_SOCKLEN_T socklen_t #else int #endif tmp_arg_sz_prio = sizeof(tmp_ival_prio), tmp_arg_sz_tos = sizeof(tmp_ival_tos); res_prio = sock_getopt(fd, SOL_SOCKET, SO_PRIORITY, (char *) &tmp_ival_prio, &tmp_arg_sz_prio); res_tos = sock_getopt(fd, SOL_IP, IP_TOS, (char *) &tmp_ival_tos, &tmp_arg_sz_tos); res = sock_setopt(fd, proto, type, arg_ptr, arg_sz); if (res == 0) { if (type != SO_PRIORITY) { if (type != IP_TOS && res_tos == 0) { res_tos = sock_setopt(fd, SOL_IP, IP_TOS, (char *) &tmp_ival_tos, tmp_arg_sz_tos); if (propagate) res = res_tos; } if (res == 0 && res_prio == 0) { res_prio = sock_setopt(fd, SOL_SOCKET, SO_PRIORITY, (char *) &tmp_ival_prio, tmp_arg_sz_prio); if (propagate) { /* Some kernels set a SO_PRIORITY by default that you are not permitted to reset, silently ignore this error condition */ if (res_prio != 0 && sock_errno() == EPERM) { res = 0; } else { res = res_prio; } } } } } return (res); } #endif /* set socket options: ** return -1 on error ** 0 if ok ** 1 if ok force deliver of queued data */ #ifdef HAVE_SCTP static int sctp_set_opts(inet_descriptor* desc, char* ptr, int len); #endif static int inet_set_opts(inet_descriptor* desc, char* ptr, int len) { int type; int proto; int opt; struct linger li_val; #ifdef HAVE_MULTICAST_SUPPORT struct ip_mreq mreq_val; #endif int ival; char* arg_ptr; int arg_sz; enum PacketParseType old_htype = desc->htype; int old_active = desc->active; int propagate = 0; /* Set to 1 if failure to set this option should be propagated to erlang (not all errors can be propagated for BC reasons) */ int res; #ifdef HAVE_SCTP /* SCTP sockets are treated completely separately: */ if (IS_SCTP(desc)) return sctp_set_opts(desc, ptr, len); #endif while(len >= 5) { opt = *ptr++; ival = get_int32(ptr); ptr += 4; len -= 5; arg_ptr = (char*) &ival; arg_sz = sizeof(ival); proto = SOL_SOCKET; switch(opt) { case INET_LOPT_HEADER: DEBUGF(("inet_set_opts(%ld): s=%d, HEADER=%d\r\n", (long)desc->port, desc->s,ival)); desc->hsz = ival; continue; case INET_LOPT_MODE: /* List or Binary: */ DEBUGF(("inet_set_opts(%ld): s=%d, MODE=%d\r\n", (long)desc->port, desc->s, ival)); desc->mode = ival; continue; case INET_LOPT_DELIVER: DEBUGF(("inet_set_opts(%ld): s=%d, DELIVER=%d\r\n", (long)desc->port, desc->s, ival)); desc->deliver = ival; continue; case INET_LOPT_BUFFER: DEBUGF(("inet_set_opts(%ld): s=%d, BUFFER=%d\r\n", (long)desc->port, desc->s, ival)); if (ival < INET_MIN_BUFFER) ival = INET_MIN_BUFFER; desc->bufsz = ival; continue; case INET_LOPT_ACTIVE: DEBUGF(("inet_set_opts(%ld): s=%d, ACTIVE=%d\r\n", (long)desc->port, desc->s,ival)); desc->active = ival; if ((desc->stype == SOCK_STREAM) && (desc->active != INET_PASSIVE) && (desc->state == INET_STATE_CLOSED)) { tcp_closed_message((tcp_descriptor *) desc); if (desc->exitf) { driver_exit(desc->port, 0); return 0; /* Give up on this socket, descriptor lost */ } else { desc_close_read(desc); } } continue; case INET_LOPT_PACKET: DEBUGF(("inet_set_opts(%ld): s=%d, PACKET=%d\r\n", (long)desc->port, desc->s, ival)); desc->htype = ival; continue; case INET_LOPT_PACKET_SIZE: DEBUGF(("inet_set_opts(%ld): s=%d, PACKET_SIZE=%d\r\n", (long)desc->port, desc->s, ival)); desc->psize = (unsigned int)ival; continue; case INET_LOPT_EXITONCLOSE: DEBUGF(("inet_set_opts(%ld): s=%d, EXITONCLOSE=%d\r\n", (long)desc->port, desc->s, ival)); desc->exitf = ival; continue; case INET_LOPT_BIT8: DEBUGF(("inet_set_opts(%ld): s=%d, BIT8=%d\r\n", (long)desc->port, desc->s, ival)); switch(ival) { case INET_BIT8_ON: desc->bit8f = 1; desc->bit8 = 0; break; case INET_BIT8_OFF: desc->bit8f = 0; desc->bit8 = 0; break; case INET_BIT8_CLEAR: desc->bit8f = 1; desc->bit8 = 0; break; case INET_BIT8_SET: desc->bit8f = 1; desc->bit8 = 1; break; } continue; case INET_LOPT_TCP_HIWTRMRK: if (desc->stype == SOCK_STREAM) { tcp_descriptor* tdesc = (tcp_descriptor*) desc; if (ival < 0) ival = 0; if (tdesc->low > ival) tdesc->low = ival; tdesc->high = ival; } continue; case INET_LOPT_TCP_LOWTRMRK: if (desc->stype == SOCK_STREAM) { tcp_descriptor* tdesc = (tcp_descriptor*) desc; if (ival < 0) ival = 0; if (tdesc->high < ival) tdesc->high = ival; tdesc->low = ival; } continue; case INET_LOPT_TCP_SEND_TIMEOUT: if (desc->stype == SOCK_STREAM) { tcp_descriptor* tdesc = (tcp_descriptor*) desc; tdesc->send_timeout = ival; } continue; case INET_LOPT_TCP_SEND_TIMEOUT_CLOSE: if (desc->stype == SOCK_STREAM) { tcp_descriptor* tdesc = (tcp_descriptor*) desc; tdesc->send_timeout_close = ival; } continue; case INET_LOPT_TCP_DELAY_SEND: if (desc->stype == SOCK_STREAM) { tcp_descriptor* tdesc = (tcp_descriptor*) desc; if (ival) tdesc->tcp_add_flags |= TCP_ADDF_DELAY_SEND; else tdesc->tcp_add_flags &= ~TCP_ADDF_DELAY_SEND; } continue; case INET_LOPT_UDP_READ_PACKETS: if (desc->stype == SOCK_DGRAM) { udp_descriptor* udesc = (udp_descriptor*) desc; if (ival <= 0) return -1; udesc->read_packets = ival; } continue; case INET_OPT_REUSEADDR: #ifdef __WIN32__ continue; /* Bjorn says */ #else type = SO_REUSEADDR; DEBUGF(("inet_set_opts(%ld): s=%d, SO_REUSEADDR=%d\r\n", (long)desc->port, desc->s,ival)); break; #endif case INET_OPT_KEEPALIVE: type = SO_KEEPALIVE; DEBUGF(("inet_set_opts(%ld): s=%d, SO_KEEPALIVE=%d\r\n", (long)desc->port, desc->s, ival)); break; case INET_OPT_DONTROUTE: type = SO_DONTROUTE; DEBUGF(("inet_set_opts(%ld): s=%d, SO_DONTROUTE=%d\r\n", (long)desc->port, desc->s, ival)); break; case INET_OPT_BROADCAST: type = SO_BROADCAST; DEBUGF(("inet_set_opts(%ld): s=%d, SO_BROADCAST=%d\r\n", (long)desc->port, desc->s,ival)); break; case INET_OPT_OOBINLINE: type = SO_OOBINLINE; DEBUGF(("inet_set_opts(%ld): s=%d, SO_OOBINLINE=%d\r\n", (long)desc->port, desc->s, ival)); break; case INET_OPT_SNDBUF: type = SO_SNDBUF; DEBUGF(("inet_set_opts(%ld): s=%d, SO_SNDBUF=%d\r\n", (long)desc->port, desc->s, ival)); /* * Setting buffer sizes in VxWorks gives unexpected results * our workaround is to leave it at default. */ #ifdef VXWORKS goto skip_os_setopt; #else break; #endif case INET_OPT_RCVBUF: type = SO_RCVBUF; DEBUGF(("inet_set_opts(%ld): s=%d, SO_RCVBUF=%d\r\n", (long)desc->port, desc->s, ival)); #ifdef VXWORKS goto skip_os_setopt; #else break; #endif case INET_OPT_LINGER: type = SO_LINGER; if (len < 4) return -1; li_val.l_onoff = ival; li_val.l_linger = get_int32(ptr); ptr += 4; len -= 4; arg_ptr = (char*) &li_val; arg_sz = sizeof(li_val); DEBUGF(("inet_set_opts(%ld): s=%d, SO_LINGER=%d,%d", (long)desc->port, desc->s, li_val.l_onoff,li_val.l_linger)); break; case INET_OPT_PRIORITY: #ifdef SO_PRIORITY type = SO_PRIORITY; propagate = 1; /* We do want to know if this fails */ DEBUGF(("inet_set_opts(%ld): s=%d, SO_PRIORITY=%d\r\n", (long)desc->port, desc->s, ival)); break; #else continue; #endif case INET_OPT_TOS: #if defined(IP_TOS) && defined(SOL_IP) proto = SOL_IP; type = IP_TOS; propagate = 1; DEBUGF(("inet_set_opts(%ld): s=%d, IP_TOS=%d\r\n", (long)desc->port, desc->s, ival)); break; #else continue; #endif case TCP_OPT_NODELAY: proto = IPPROTO_TCP; type = TCP_NODELAY; DEBUGF(("inet_set_opts(%ld): s=%d, TCP_NODELAY=%d\r\n", (long)desc->port, desc->s, ival)); break; #ifdef HAVE_MULTICAST_SUPPORT case UDP_OPT_MULTICAST_TTL: proto = IPPROTO_IP; type = IP_MULTICAST_TTL; DEBUGF(("inet_set_opts(%ld): s=%d, IP_MULTICAST_TTL=%d\r\n", (long)desc->port,desc->s,ival)); break; case UDP_OPT_MULTICAST_LOOP: proto = IPPROTO_IP; type = IP_MULTICAST_LOOP; DEBUGF(("inet_set_opts(%ld): s=%d, IP_MULTICAST_LOOP=%d\r\n", (long)desc->port,desc->s,ival)); break; case UDP_OPT_MULTICAST_IF: proto = IPPROTO_IP; type = IP_MULTICAST_IF; DEBUGF(("inet_set_opts(%ld): s=%d, IP_MULTICAST_IF=%x\r\n", (long)desc->port, desc->s, ival)); ival = sock_htonl(ival); break; case UDP_OPT_ADD_MEMBERSHIP: proto = IPPROTO_IP; type = IP_ADD_MEMBERSHIP; DEBUGF(("inet_set_opts(%ld): s=%d, IP_ADD_MEMBERSHIP=%d\r\n", (long)desc->port, desc->s,ival)); goto L_set_mreq; case UDP_OPT_DROP_MEMBERSHIP: proto = IPPROTO_IP; type = IP_DROP_MEMBERSHIP; DEBUGF(("inet_set_opts(%ld): s=%d, IP_DROP_MEMBERSHIP=%x\r\n", (long)desc->port, desc->s, ival)); L_set_mreq: mreq_val.imr_multiaddr.s_addr = sock_htonl(ival); ival = get_int32(ptr); mreq_val.imr_interface.s_addr = sock_htonl(ival); ptr += 4; len -= 4; arg_ptr = (char*)&mreq_val; arg_sz = sizeof(mreq_val); break; #endif /* HAVE_MULTICAST_SUPPORT */ case INET_OPT_RAW: if (len < 8) { return -1; } proto = ival; type = get_int32(ptr); ptr += 4; arg_sz = get_int32(ptr); ptr += 4; len -= 8; if (len < arg_sz) { return -1; } arg_ptr = ptr; ptr += arg_sz; len -= arg_sz; break; default: return -1; } #if defined(IP_TOS) && defined(SOL_IP) && defined(SO_PRIORITY) res = setopt_prio_tos_trick (desc->s, proto, type, arg_ptr, arg_sz, propagate); #else res = sock_setopt (desc->s, proto, type, arg_ptr, arg_sz); #endif if (propagate && res != 0) { return -1; } DEBUGF(("inet_set_opts(%ld): s=%d returned %d\r\n", (long)desc->port, desc->s, res)); #ifdef VXWORKS skip_os_setopt: #endif if (type == SO_RCVBUF) { /* make sure we have desc->bufsz >= SO_RCVBUF */ if (ival > desc->bufsz) desc->bufsz = ival; } } if ( ((desc->stype == SOCK_STREAM) && IS_CONNECTED(desc)) || ((desc->stype == SOCK_DGRAM) && IS_OPEN(desc))) { if (desc->active != old_active) sock_select(desc, (FD_READ|FD_CLOSE), (desc->active>0)); if ((desc->stype==SOCK_STREAM) && desc->active) { if (!old_active || (desc->htype != old_htype)) { /* passive => active change OR header type change in active mode */ return 1; } return 0; } } return 0; } #ifdef HAVE_SCTP /* "sctp_get_initmsg": ** Used by both "send*" and "setsockopt". Gets the 4 fields of "sctp_initmsg" ** from the input buffer: */ #define SCTP_GET_INITMSG_LEN (4*2) static char* sctp_get_initmsg(struct sctp_initmsg* ini, char* curr) { ini->sinit_num_ostreams = get_int16 (curr); curr += 2; ini->sinit_max_instreams = get_int16 (curr); curr += 2; ini->sinit_max_attempts = get_int16 (curr); curr += 2; ini->sinit_max_init_timeo = get_int16 (curr); curr += 2; return curr; } /* "sctp_get_sendparams": ** Parses (from the command buffer) the 6 user-sprcified parms of ** "sctp_sndrcvinfo": ** stream(u16), flags(u16), ppid(u32), context(u32), ** timetoleave(u32), assoc_id ** Is used by both "send*" and "setsockopt": */ #define SCTP_GET_SENDPARAMS_LEN (2*2 + 3*4 + ASSOC_ID_LEN) static char* sctp_get_sendparams (struct sctp_sndrcvinfo* sri, char* curr) { int eflags; int cflags; sri->sinfo_stream = get_int16(curr); curr += 2; sri->sinfo_ssn = 0; /* The "flags" are already ORed at the Erlang side, here we reconstruct the real SCTP flags: */ eflags = get_int16(curr); curr += 2; cflags = 0; if (eflags & SCTP_FLAG_UNORDERED) cflags |= SCTP_UNORDERED; if (eflags & SCTP_FLAG_ADDR_OVER) cflags |= SCTP_ADDR_OVER; if (eflags & SCTP_FLAG_ABORT) cflags |= SCTP_ABORT; if (eflags & SCTP_FLAG_EOF) cflags |= SCTP_EOF; sri->sinfo_flags = cflags; sri->sinfo_ppid = sock_htonl(get_int32(curr)); curr += 4; sri->sinfo_context = get_int32(curr); curr += 4; sri->sinfo_timetolive = get_int32(curr); curr += 4; sri->sinfo_tsn = 0; sri->sinfo_cumtsn = 0; sri->sinfo_assoc_id = GET_ASSOC_ID (curr); curr += ASSOC_ID_LEN; return curr; } /* Set SCTP options: ** return -1 on error ** 0 if ok ** NB: unlike inet_set_opts(), we don't have an active mode here, so there is no ** mode change which could force data delivery on setting an option. ** Arg: "ptr": [(erlang_encoded_opt(u8), value(...)), ...]; thus, multiple opts ** can be set at a time. */ static int sctp_set_opts(inet_descriptor* desc, char* ptr, int len) { # define CHKLEN(Ptr, Len) \ do { \ if ((Ptr) + (Len) > ptr + len) return -1; \ } while (0) char * curr = ptr; int proto, type, res; /* The following union is used to hold any arg to "setsockopt": */ union opts_union { int ival; struct sctp_rtoinfo rtoi; struct sctp_assocparams ap; struct sctp_initmsg im; struct linger lin; struct sctp_setpeerprim prim; struct sctp_setadaptation ad; struct sctp_paddrparams pap; struct sctp_sndrcvinfo sri; struct sctp_event_subscribe es; # ifdef SCTP_DELAYED_ACK_TIME struct sctp_assoc_value av; /* Not in SOLARIS10 */ # endif } arg; char * arg_ptr = NULL; int arg_sz = 0; int old_active = desc->active; while (curr < ptr + len) { /* Get the Erlang-encoded option type -- always 1 byte: */ int eopt = *curr; curr++; /* Get the option value. XXX: The condition (curr < ptr + len) does not preclude us from reading from beyond the buffer end, if the Erlang part of the driver specifies its input wrongly! */ CHKLEN(curr, 4); /* All options need at least 4 bytes */ switch(eopt) { /* Local INET options: */ case INET_LOPT_BUFFER: desc->bufsz = get_int32(curr); curr += 4; if (desc->bufsz < INET_MIN_BUFFER) desc->bufsz = INET_MIN_BUFFER; res = 0; /* This does not affect the kernel buffer size */ continue; case INET_LOPT_MODE: desc->mode = get_int32(curr); curr += 4; res = 0; continue; case INET_LOPT_ACTIVE: desc->active = get_int32(curr); curr += 4; res = 0; continue; /* SCTP options and applicable generic INET options: */ case SCTP_OPT_RTOINFO: { CHKLEN(curr, ASSOC_ID_LEN + 3*4); arg.rtoi.srto_assoc_id = GET_ASSOC_ID(curr); curr += ASSOC_ID_LEN; arg.rtoi.srto_initial = get_int32 (curr); curr += 4; arg.rtoi.srto_max = get_int32 (curr); curr += 4; arg.rtoi.srto_min = get_int32 (curr); curr += 4; proto = IPPROTO_SCTP; type = SCTP_RTOINFO; arg_ptr = (char*) (&arg.rtoi); arg_sz = sizeof ( arg.rtoi); break; } case SCTP_OPT_ASSOCINFO: { CHKLEN(curr, ASSOC_ID_LEN + 2*2 + 3*4); arg.ap.sasoc_assoc_id = GET_ASSOC_ID(curr); curr += ASSOC_ID_LEN; arg.ap.sasoc_asocmaxrxt = get_int16 (curr); curr += 2; arg.ap.sasoc_number_peer_destinations = get_int16 (curr); curr += 2; arg.ap.sasoc_peer_rwnd = get_int32 (curr); curr += 4; arg.ap.sasoc_local_rwnd = get_int32 (curr); curr += 4; arg.ap.sasoc_cookie_life = get_int32 (curr); curr += 4; proto = IPPROTO_SCTP; type = SCTP_ASSOCINFO; arg_ptr = (char*) (&arg.ap); arg_sz = sizeof ( arg.ap); break; } case SCTP_OPT_INITMSG: { CHKLEN(curr, SCTP_GET_INITMSG_LEN); curr = sctp_get_initmsg (&arg.im, curr); proto = IPPROTO_SCTP; type = SCTP_INITMSG; arg_ptr = (char*) (&arg.im); arg_sz = sizeof ( arg.im); break; } case INET_OPT_LINGER: { CHKLEN(curr, 2*4); arg.lin.l_onoff = get_int32 (curr); curr += 4; arg.lin.l_linger = get_int32 (curr); curr += 4; proto = SOL_SOCKET; type = SO_LINGER; arg_ptr = (char*) (&arg.lin); arg_sz = sizeof ( arg.lin); break; } case SCTP_OPT_NODELAY: { arg.ival= get_int32 (curr); curr += 4; proto = IPPROTO_SCTP; type = SCTP_NODELAY; arg_ptr = (char*) (&arg.ival); arg_sz = sizeof ( arg.ival); break; } case INET_OPT_RCVBUF: { arg.ival= get_int32 (curr); curr += 4; proto = SOL_SOCKET; type = SO_RCVBUF; arg_ptr = (char*) (&arg.ival); arg_sz = sizeof ( arg.ival); /* Adjust the size of the user-level recv buffer, so it's not smaller than the kernel one: */ if (desc->bufsz <= arg.ival) desc->bufsz = arg.ival; break; } case INET_OPT_SNDBUF: { arg.ival= get_int32 (curr); curr += 4; proto = SOL_SOCKET; type = SO_SNDBUF; arg_ptr = (char*) (&arg.ival); arg_sz = sizeof ( arg.ival); /* Adjust the size of the user-level recv buffer, so it's not smaller than the kernel one: */ if (desc->bufsz <= arg.ival) desc->bufsz = arg.ival; break; } case INET_OPT_REUSEADDR: { arg.ival= get_int32 (curr); curr += 4; proto = SOL_SOCKET; type = SO_REUSEADDR; arg_ptr = (char*) (&arg.ival); arg_sz = sizeof ( arg.ival); break; } case INET_OPT_DONTROUTE: { arg.ival= get_int32 (curr); curr += 4; proto = SOL_SOCKET; type = SO_DONTROUTE; arg_ptr = (char*) (&arg.ival); arg_sz = sizeof ( arg.ival); break; } case INET_OPT_PRIORITY: # ifdef SO_PRIORITY { arg.ival= get_int32 (curr); curr += 4; proto = SOL_SOCKET; type = SO_PRIORITY; arg_ptr = (char*) (&arg.ival); arg_sz = sizeof ( arg.ival); break; } # else continue; /* Option not supported -- ignore it */ # endif case INET_OPT_TOS: # if defined(IP_TOS) && defined(SOL_IP) { arg.ival= get_int32 (curr); curr += 4; proto = SOL_IP; type = IP_TOS; arg_ptr = (char*) (&arg.ival); arg_sz = sizeof ( arg.ival); break; } # else continue; /* Option not supported -- ignore it */ # endif case SCTP_OPT_AUTOCLOSE: { arg.ival= get_int32 (curr); curr += 4; proto = IPPROTO_SCTP; type = SCTP_AUTOCLOSE; arg_ptr = (char*) (&arg.ival); arg_sz = sizeof ( arg.ival); break; } case SCTP_OPT_DISABLE_FRAGMENTS: { arg.ival= get_int32 (curr); curr += 4; proto = IPPROTO_SCTP; type = SCTP_DISABLE_FRAGMENTS; arg_ptr = (char*) (&arg.ival); arg_sz = sizeof ( arg.ival); break; } case SCTP_OPT_I_WANT_MAPPED_V4_ADDR: { arg.ival= get_int32 (curr); curr += 4; proto = IPPROTO_SCTP; type = SCTP_I_WANT_MAPPED_V4_ADDR; arg_ptr = (char*) (&arg.ival); arg_sz = sizeof ( arg.ival); break; } case SCTP_OPT_MAXSEG: { arg.ival= get_int32 (curr); curr += 4; proto = IPPROTO_SCTP; type = SCTP_MAXSEG; arg_ptr = (char*) (&arg.ival); arg_sz = sizeof ( arg.ival); break; } case SCTP_OPT_PRIMARY_ADDR: case SCTP_OPT_SET_PEER_PRIMARY_ADDR: { int alen; char *after; CHKLEN(curr, ASSOC_ID_LEN); /* XXX: These 2 opts have isomorphic value data structures, "sctp_setpeerprim" and "sctp_prim" (in Solaris 10, the latter is called "sctp_setprim"), so we grouped them together: */ arg.prim.sspp_assoc_id = GET_ASSOC_ID(curr); curr += ASSOC_ID_LEN; /* Fill in "arg.prim.sspp_addr": */ alen = ptr + len - curr; after = inet_set_faddress(desc->sfamily, (inet_address*) (&arg.prim.sspp_addr), curr, &alen); if (after == NULL) return -1; curr = after; proto = IPPROTO_SCTP; if (eopt == SCTP_OPT_PRIMARY_ADDR) type = SCTP_PRIMARY_ADDR; else type = SCTP_SET_PEER_PRIMARY_ADDR; arg_ptr = (char*) (&arg.prim); arg_sz = sizeof ( arg.prim); break; } case SCTP_OPT_ADAPTATION_LAYER: { /* XXX: do we need to convert the Ind into network byte order??? */ arg.ad.ssb_adaptation_ind = sock_htonl (get_int32(curr)); curr += 4; proto = IPPROTO_SCTP; type = SCTP_ADAPTATION_LAYER; arg_ptr = (char*) (&arg.ad); arg_sz = sizeof ( arg.ad); break; } case SCTP_OPT_PEER_ADDR_PARAMS: { int alen; char *after; # ifdef HAVE_STRUCT_SCTP_PADDRPARAMS_SPP_FLAGS int eflags, cflags, hb_enable, hb_disable, pmtud_enable, pmtud_disable; # ifdef HAVE_STRUCT_SCTP_PADDRPARAMS_SPP_SACKDELAY int sackdelay_enable, sackdelay_disable; # endif # endif CHKLEN(curr, ASSOC_ID_LEN); arg.pap.spp_assoc_id = GET_ASSOC_ID(curr); curr += ASSOC_ID_LEN; /* Fill in "pap.spp_address": */ alen = ptr + len - curr; after = inet_set_faddress(desc->sfamily, (inet_address*) (&arg.pap.spp_address), curr, &alen); if (after == NULL) return -1; curr = after; CHKLEN(curr, 4 + 2 + 3*4); arg.pap.spp_hbinterval = get_int32(curr); curr += 4; arg.pap.spp_pathmaxrxt = get_int16(curr); curr += 2; /* The following are missing in Solaris 10: */ # ifdef HAVE_STRUCT_SCTP_PADDRPARAMS_SPP_PATHMTU arg.pap.spp_pathmtu = get_int32(curr); # endif curr += 4; # ifdef HAVE_STRUCT_SCTP_PADDRPARAMS_SPP_SACKDELAY arg.pap.spp_sackdelay = get_int32(curr); # endif curr += 4; # ifdef HAVE_STRUCT_SCTP_PADDRPARAMS_SPP_FLAGS /* Now re-construct the flags: */ eflags = get_int32(curr); cflags = 0; hb_enable = eflags & SCTP_FLAG_HB_ENABLE; hb_disable = eflags & SCTP_FLAG_HB_DISABLE; if (hb_enable && hb_disable) return -1; if (hb_enable) cflags |= SPP_HB_ENABLE; if (hb_disable) cflags |= SPP_HB_DISABLE; if (eflags & SCTP_FLAG_HB_DEMAND) cflags |= SPP_HB_DEMAND; pmtud_enable = eflags & SCTP_FLAG_PMTUD_ENABLE; pmtud_disable = eflags & SCTP_FLAG_PMTUD_DISABLE; if (pmtud_enable && pmtud_disable) return -1; if (pmtud_enable) cflags |= SPP_PMTUD_ENABLE; if (pmtud_disable) cflags |= SPP_PMTUD_DISABLE; # ifdef HAVE_STRUCT_SCTP_PADDRPARAMS_SPP_SACKDELAY /* The followings are missing in FreeBSD 7.1 */ sackdelay_enable =eflags& SCTP_FLAG_SACDELAY_ENABLE; sackdelay_disable=eflags& SCTP_FLAG_SACDELAY_DISABLE; if (sackdelay_enable && sackdelay_disable) return -1; if (sackdelay_enable) cflags |= SPP_SACKDELAY_ENABLE; if (sackdelay_disable) cflags |= SPP_SACKDELAY_DISABLE; # endif arg.pap.spp_flags = cflags; # endif curr += 4; proto = IPPROTO_SCTP; type = SCTP_PEER_ADDR_PARAMS; arg_ptr = (char*) (&arg.pap); arg_sz = sizeof ( arg.pap); break; } case SCTP_OPT_DEFAULT_SEND_PARAM: { CHKLEN(curr, SCTP_GET_SENDPARAMS_LEN); curr = sctp_get_sendparams (&arg.sri, curr); proto = IPPROTO_SCTP; type = SCTP_DEFAULT_SEND_PARAM; arg_ptr = (char*) (&arg.sri); arg_sz = sizeof ( arg.sri); break; } case SCTP_OPT_EVENTS: { CHKLEN(curr, 9); /* We do not support "sctp_authentication_event" -- it is not implemented in Linux Kernel SCTP anyway. Just in case if the above structure has more fields than we support, zero it out -- the extraneous events will NOT be used: */ memset (&arg.es, 0, sizeof(arg.es)); /* The input "buf" must contain the full definition of all the supported event fields, 1 byte per each, as each event is either explicitly subscribed or cleared: */ arg.es.sctp_data_io_event = get_int8(curr); curr++; arg.es.sctp_association_event = get_int8(curr); curr++; arg.es.sctp_address_event = get_int8(curr); curr++; arg.es.sctp_send_failure_event = get_int8(curr); curr++; arg.es.sctp_peer_error_event = get_int8(curr); curr++; arg.es.sctp_shutdown_event = get_int8(curr); curr++; arg.es.sctp_partial_delivery_event = get_int8(curr); curr++; arg.es.sctp_adaptation_layer_event = get_int8(curr); curr++; /* sctp_authentication_event not implemented */ curr++; proto = IPPROTO_SCTP; type = SCTP_EVENTS; arg_ptr = (char*) (&arg.es); arg_sz = sizeof ( arg.es); break; } /* The following is not available on Solaris 10: */ # ifdef SCTP_DELAYED_ACK_TIME case SCTP_OPT_DELAYED_ACK_TIME: { CHKLEN(curr, ASSOC_ID_LEN + 4); arg.av.assoc_id = GET_ASSOC_ID(curr); curr += ASSOC_ID_LEN; arg.av.assoc_value = get_int32(curr); curr += 4; proto = IPPROTO_SCTP; type = SCTP_DELAYED_ACK_TIME; arg_ptr = (char*) (&arg.av); arg_sz = sizeof ( arg.es); break; } # endif default: /* XXX: No more supported SCTP options. In particular, authentica- tion options (SCTP_AUTH_CHUNK, SCTP_AUTH_KEY, SCTP_PEER_AUTH_ CHUNKS, SCTP_LOCAL_AUTH_CHUNKS, SCTP_AUTH_SETKEY_ACTIVE) are not yet implemented in the Linux kernel, hence not supported here. Also not supported are SCTP_HMAC_IDENT, as well as any "generic" options except "INET_LOPT_MODE". Raise an error: */ return -1; } #if defined(IP_TOS) && defined(SOL_IP) && defined(SO_PRIORITY) res = setopt_prio_tos_trick (desc->s, proto, type, arg_ptr, arg_sz, 1); #else res = sock_setopt (desc->s, proto, type, arg_ptr, arg_sz); #endif /* The return values of "sock_setopt" can only be 0 or -1: */ ASSERT(res == 0 || res == -1); if (res == -1) { /* Got an error, DO NOT continue with other options. However, on Solaris 10, we DO allow SO_SNDBUF and SO_RCVBUF to fail, assu- min that the default kernel versions are good enough: */ # ifdef SOLARIS10 if (type != SO_SNDBUF && type != SO_RCVBUF) # endif return res; } } /* If we got here, all "sock_setopt"s above were successful: */ if (IS_OPEN(desc) && desc->active != old_active) { sock_select(desc, (FD_READ|FD_CLOSE), (desc->active > 0)); } return 0; # undef CHKLEN } #endif /* HAVE_SCTP */ /* load all option values into the buf and reply ** return total length of reply filled into ptr ** ptr should point to a buffer with 9*len +1 to be safe!! */ static int inet_fill_opts(inet_descriptor* desc, char* buf, int len, char** dest, int destlen) { int type; int proto; int opt; struct linger li_val; int ival; char* arg_ptr; unsigned int arg_sz; char *ptr = NULL; int dest_used = 0; int dest_allocated = destlen; char *orig_dest = *dest; /* Ptr is a name parameter */ #define RETURN_ERROR() \ do { \ if (dest_allocated > destlen) { \ FREE(*dest); \ *dest = orig_dest; \ } \ return -1; \ } while(0) #define PLACE_FOR(Size,Ptr) \ do { \ int need = dest_used + (Size); \ if (need > INET_MAX_OPT_BUFFER) { \ RETURN_ERROR(); \ } \ if (need > dest_allocated) { \ char *new_buffer; \ if (dest_allocated == destlen) { \ new_buffer = ALLOC((dest_allocated = need + 10)); \ memcpy(new_buffer,*dest,dest_used); \ } else { \ new_buffer = REALLOC(*dest, (dest_allocated = need + 10)); \ } \ *dest = new_buffer; \ } \ (Ptr) = (*dest) + dest_used; \ dest_used = need; \ } while (0) /* Ptr is a name parameter */ #define TRUNCATE_TO(Size,Ptr) \ do { \ int new_need = ((Ptr) - (*dest)) + (Size); \ if (new_need > dest_used) { \ erl_exit(1,"Internal error in inet_drv, " \ "miscalculated buffer size"); \ } \ dest_used = new_need; \ } while(0) PLACE_FOR(1,ptr); *ptr = INET_REP_OK; while(len--) { opt = *buf++; proto = SOL_SOCKET; ival = 0; /* Windows Vista needs this (only writes part of it) */ arg_sz = sizeof(ival); arg_ptr = (char*) &ival; PLACE_FOR(5,ptr); switch(opt) { case INET_LOPT_BUFFER: *ptr++ = opt; put_int32(desc->bufsz, ptr); continue; case INET_LOPT_HEADER: *ptr++ = opt; put_int32(desc->hsz, ptr); continue; case INET_LOPT_MODE: *ptr++ = opt; put_int32(desc->mode, ptr); continue; case INET_LOPT_DELIVER: *ptr++ = opt; put_int32(desc->deliver, ptr); continue; case INET_LOPT_ACTIVE: *ptr++ = opt; put_int32(desc->active, ptr); continue; case INET_LOPT_PACKET: *ptr++ = opt; put_int32(desc->htype, ptr); continue; case INET_LOPT_PACKET_SIZE: *ptr++ = opt; put_int32(desc->psize, ptr); continue; case INET_LOPT_EXITONCLOSE: *ptr++ = opt; put_int32(desc->exitf, ptr); continue; case INET_LOPT_BIT8: *ptr++ = opt; if (desc->bit8f) { put_int32(desc->bit8, ptr); } else { put_int32(INET_BIT8_OFF, ptr); } continue; case INET_LOPT_TCP_HIWTRMRK: if (desc->stype == SOCK_STREAM) { *ptr++ = opt; ival = ((tcp_descriptor*)desc)->high; put_int32(ival, ptr); } else { TRUNCATE_TO(0,ptr); } continue; case INET_LOPT_TCP_LOWTRMRK: if (desc->stype == SOCK_STREAM) { *ptr++ = opt; ival = ((tcp_descriptor*)desc)->low; put_int32(ival, ptr); } else { TRUNCATE_TO(0,ptr); } continue; case INET_LOPT_TCP_SEND_TIMEOUT: if (desc->stype == SOCK_STREAM) { *ptr++ = opt; ival = ((tcp_descriptor*)desc)->send_timeout; put_int32(ival, ptr); } else { TRUNCATE_TO(0,ptr); } continue; case INET_LOPT_TCP_SEND_TIMEOUT_CLOSE: if (desc->stype == SOCK_STREAM) { *ptr++ = opt; ival = ((tcp_descriptor*)desc)->send_timeout_close; put_int32(ival, ptr); } else { TRUNCATE_TO(0,ptr); } continue; case INET_LOPT_TCP_DELAY_SEND: if (desc->stype == SOCK_STREAM) { *ptr++ = opt; ival = !!(((tcp_descriptor*)desc)->tcp_add_flags & TCP_ADDF_DELAY_SEND); put_int32(ival, ptr); } else { TRUNCATE_TO(0,ptr); } continue; case INET_LOPT_UDP_READ_PACKETS: if (desc->stype == SOCK_DGRAM) { *ptr++ = opt; ival = ((udp_descriptor*)desc)->read_packets; put_int32(ival, ptr); } else { TRUNCATE_TO(0,ptr); } continue; case INET_OPT_PRIORITY: #ifdef SO_PRIORITY type = SO_PRIORITY; break; #else *ptr++ = opt; put_int32(0, ptr); continue; #endif case INET_OPT_TOS: #if defined(IP_TOS) && defined(SOL_IP) proto = SOL_IP; type = IP_TOS; break; #else *ptr++ = opt; put_int32(0, ptr); continue; #endif case INET_OPT_REUSEADDR: type = SO_REUSEADDR; break; case INET_OPT_KEEPALIVE: type = SO_KEEPALIVE; break; case INET_OPT_DONTROUTE: type = SO_DONTROUTE; break; case INET_OPT_BROADCAST: type = SO_BROADCAST; break; case INET_OPT_OOBINLINE: type = SO_OOBINLINE; break; case INET_OPT_SNDBUF: type = SO_SNDBUF; break; case INET_OPT_RCVBUF: type = SO_RCVBUF; break; case TCP_OPT_NODELAY: proto = IPPROTO_TCP; type = TCP_NODELAY; break; #ifdef HAVE_MULTICAST_SUPPORT case UDP_OPT_MULTICAST_TTL: proto = IPPROTO_IP; type = IP_MULTICAST_TTL; break; case UDP_OPT_MULTICAST_LOOP: proto = IPPROTO_IP; type = IP_MULTICAST_LOOP; break; case UDP_OPT_MULTICAST_IF: proto = IPPROTO_IP; type = IP_MULTICAST_IF; break; case INET_OPT_LINGER: arg_sz = sizeof(li_val); sys_memzero((void *) &li_val, sizeof(li_val)); arg_ptr = (char*) &li_val; type = SO_LINGER; break; #endif /* HAVE_MULTICAST_SUPPORT */ case INET_OPT_RAW: { int data_provided; /* Raw options are icky, handle directly... */ if (len < 13) { RETURN_ERROR(); } len -= 13; proto = get_int32(buf); buf += 4; type = get_int32(buf); buf += 4; data_provided = (int) *buf++; arg_sz = get_int32(buf); if (arg_sz > INET_MAX_OPT_BUFFER) { RETURN_ERROR(); } buf += 4; TRUNCATE_TO(0,ptr); PLACE_FOR(13 + arg_sz,ptr); arg_ptr = ptr + 13; if (data_provided) { if (len < arg_sz) { RETURN_ERROR(); } memcpy(arg_ptr,buf,arg_sz); buf += arg_sz; len -= arg_sz; } if (IS_SOCKET_ERROR(sock_getopt(desc->s,proto,type, arg_ptr,&arg_sz))) { TRUNCATE_TO(0,ptr); continue; } TRUNCATE_TO(arg_sz + 13,ptr); *ptr++ = opt; put_int32(proto,ptr); ptr += 4; put_int32(type,ptr); ptr += 4; put_int32(arg_sz,ptr); continue; } default: RETURN_ERROR(); } /* We have 5 bytes allocated to ptr */ if (IS_SOCKET_ERROR(sock_getopt(desc->s,proto,type,arg_ptr,&arg_sz))) { TRUNCATE_TO(0,ptr); continue; } *ptr++ = opt; if (arg_ptr == (char*)&ival) { put_int32(ival, ptr); } else { put_int32(((Uint32) li_val.l_onoff), ptr); PLACE_FOR(4,ptr); put_int32(((Uint32) li_val.l_linger), ptr); } } return (dest_used); #undef PLACE_FOR #undef TRUNCATE_TO #undef RETURN_ERROR } #ifdef HAVE_SCTP #define LOAD_PADDRINFO_CNT \ (2*LOAD_ATOM_CNT + LOAD_ASSOC_ID_CNT + LOAD_IP_AND_PORT_CNT + \ 4*LOAD_INT_CNT + LOAD_TUPLE_CNT) static int load_paddrinfo (ErlDrvTermData * spec, int i, inet_descriptor* desc, struct sctp_paddrinfo* pai) { i = LOAD_ATOM (spec, i, am_sctp_paddrinfo); i = LOAD_ASSOC_ID (spec, i, pai->spinfo_assoc_id); i = load_ip_and_port(spec, i, desc, &pai->spinfo_address); switch(pai->spinfo_state) { case SCTP_ACTIVE: i = LOAD_ATOM (spec, i, am_active); break; case SCTP_INACTIVE: i = LOAD_ATOM (spec, i, am_inactive); break; default: ASSERT(0); /* NB: SCTP_UNCONFIRMED modifier not yet supported */ } i = LOAD_INT (spec, i, pai->spinfo_cwnd); i = LOAD_INT (spec, i, pai->spinfo_srtt); i = LOAD_INT (spec, i, pai->spinfo_rto ); i = LOAD_INT (spec, i, pai->spinfo_mtu ); /* Close up the record: */ i = LOAD_TUPLE (spec, i, 8); return i; } /* ** "sctp_fill_opts": Returns {ok, Results}, or an error: */ static int sctp_fill_opts(inet_descriptor* desc, char* buf, int buflen, char** dest, int destlen) { /* In contrast to the generic "inet_fill_opts", the output here is represented by tuples/records, which are formed in the "spec": */ ErlDrvTermData *spec; int i = 0; int length = 0; /* Number of result list entries */ int spec_allocated = PACKET_ERL_DRV_TERM_DATA_LEN; spec = ALLOC(sizeof(* spec) * spec_allocated); # define RETURN_ERROR(Spec, Errno) \ do { \ FREE(Spec); \ return (Errno); \ } while(0) /* Spec is a name parmeter */ # define PLACE_FOR(Spec, Index, N) \ do { \ int need; \ if ((Index) > spec_allocated) { \ erl_exit(1,"Internal error in inet_drv, " \ "miscalculated buffer size"); \ } \ need = (Index) + (N); \ if (need > INET_MAX_OPT_BUFFER/sizeof(ErlDrvTermData)) {\ RETURN_ERROR((Spec), -ENOMEM); \ } \ if (need > spec_allocated) { \ (Spec) = REALLOC((Spec), \ sizeof(* (Spec)) \ * (spec_allocated = need + 20)); \ } \ } while (0) PLACE_FOR(spec, i, 2*LOAD_ATOM_CNT + LOAD_PORT_CNT); i = LOAD_ATOM (spec, i, am_inet_reply); i = LOAD_PORT (spec, i, desc->dport); i = LOAD_ATOM (spec, i, am_ok); while (buflen > 0) { int eopt = *buf; /* "eopt" is 1-byte encoded */ buf ++; buflen --; switch(eopt) { /* Local options allowed for SCTP. For TCP and UDP, the values of these options are returned via "res" using integer encoding, but here, we encode them as proper terms the same way as we do it for all other SCTP options: */ case INET_LOPT_BUFFER: { PLACE_FOR(spec, i, LOAD_ATOM_CNT + LOAD_INT_CNT + LOAD_TUPLE_CNT); i = LOAD_ATOM (spec, i, am_buffer); i = LOAD_INT (spec, i, desc->bufsz); i = LOAD_TUPLE(spec, i, 2); break; } case INET_LOPT_MODE: { PLACE_FOR(spec, i, 2*LOAD_ATOM_CNT + LOAD_TUPLE_CNT); i = LOAD_ATOM (spec, i, am_mode); switch (desc->mode) { case INET_MODE_LIST : { i = LOAD_ATOM (spec, i, am_list); break; } case INET_MODE_BINARY: { i = LOAD_ATOM (spec, i, am_binary); break; } default: ASSERT (0); } i = LOAD_TUPLE (spec, i, 2); break; } case INET_LOPT_ACTIVE: { PLACE_FOR(spec, i, 2*LOAD_ATOM_CNT + LOAD_TUPLE_CNT); i = LOAD_ATOM (spec, i, am_active); switch (desc->active) { case INET_ACTIVE : { i = LOAD_ATOM (spec, i, am_true); break; } case INET_PASSIVE: { i = LOAD_ATOM (spec, i, am_false); break; } case INET_ONCE : { i = LOAD_ATOM (spec, i, am_once); break; } default: ASSERT (0); } i = LOAD_TUPLE (spec, i, 2); break; } /* SCTP and generic INET options: */ case SCTP_OPT_RTOINFO: { struct sctp_rtoinfo rti; unsigned int sz = sizeof(rti); if (buflen < ASSOC_ID_LEN) RETURN_ERROR(spec, -EINVAL); rti.srto_assoc_id = GET_ASSOC_ID(buf); buf += ASSOC_ID_LEN; buflen -= ASSOC_ID_LEN; if (sock_getopt(desc->s, IPPROTO_SCTP, SCTP_RTOINFO, &rti, &sz) < 0) continue; /* Fill in the response: */ PLACE_FOR(spec, i, 2*LOAD_ATOM_CNT + LOAD_ASSOC_ID_CNT + 3*LOAD_INT_CNT + 2*LOAD_TUPLE_CNT); i = LOAD_ATOM (spec, i, am_sctp_rtoinfo); i = LOAD_ATOM (spec, i, am_sctp_rtoinfo); i = LOAD_ASSOC_ID (spec, i, rti.srto_assoc_id); i = LOAD_INT (spec, i, rti.srto_initial); i = LOAD_INT (spec, i, rti.srto_max); i = LOAD_INT (spec, i, rti.srto_min); i = LOAD_TUPLE (spec, i, 5); i = LOAD_TUPLE (spec, i, 2); break; } case SCTP_OPT_ASSOCINFO: { struct sctp_assocparams ap; unsigned int sz = sizeof(ap); if (buflen < ASSOC_ID_LEN) RETURN_ERROR(spec, -EINVAL); ap.sasoc_assoc_id = GET_ASSOC_ID(buf); buf += ASSOC_ID_LEN; buflen -= ASSOC_ID_LEN; if (sock_getopt(desc->s, IPPROTO_SCTP, SCTP_ASSOCINFO, &ap, &sz) < 0) continue; /* Fill in the response: */ PLACE_FOR(spec, i, 2*LOAD_ATOM_CNT + LOAD_ASSOC_ID_CNT + 5*LOAD_INT_CNT + 2*LOAD_TUPLE_CNT); i = LOAD_ATOM (spec, i, am_sctp_associnfo); i = LOAD_ATOM (spec, i, am_sctp_assocparams); i = LOAD_ASSOC_ID (spec, i, ap.sasoc_assoc_id); i = LOAD_INT (spec, i, ap.sasoc_asocmaxrxt); i = LOAD_INT (spec, i, ap.sasoc_number_peer_destinations); i = LOAD_INT (spec, i, ap.sasoc_peer_rwnd); i = LOAD_INT (spec, i, ap.sasoc_local_rwnd); i = LOAD_INT (spec, i, ap.sasoc_cookie_life); i = LOAD_TUPLE (spec, i, 7); i = LOAD_TUPLE (spec, i, 2); break; } case SCTP_OPT_INITMSG: { struct sctp_initmsg im; unsigned int sz = sizeof(im); if (sock_getopt(desc->s, IPPROTO_SCTP, SCTP_INITMSG, &im, &sz) < 0) continue; /* Fill in the response: */ PLACE_FOR(spec, i, 2*LOAD_ATOM_CNT + 4*LOAD_INT_CNT + 2*LOAD_TUPLE_CNT); i = LOAD_ATOM (spec, i, am_sctp_initmsg); i = LOAD_ATOM (spec, i, am_sctp_initmsg); i = LOAD_INT (spec, i, im.sinit_num_ostreams); i = LOAD_INT (spec, i, im.sinit_max_instreams); i = LOAD_INT (spec, i, im.sinit_max_attempts); i = LOAD_INT (spec, i, im.sinit_max_init_timeo); i = LOAD_TUPLE (spec, i, 5); i = LOAD_TUPLE (spec, i, 2); break; } /* The following option returns a tuple {bool, int}: */ case INET_OPT_LINGER: { struct linger lg; unsigned int sz = sizeof(lg); if (sock_getopt(desc->s, SOL_SOCKET, SO_LINGER, &lg, &sz) < 0) continue; /* Fill in the response: */ PLACE_FOR(spec, i, LOAD_ATOM_CNT + LOAD_BOOL_CNT + LOAD_INT_CNT + 2*LOAD_TUPLE_CNT); i = LOAD_ATOM (spec, i, am_linger); i = LOAD_BOOL (spec, i, lg.l_onoff); i = LOAD_INT (spec, i, lg.l_linger); i = LOAD_TUPLE (spec, i, 2); i = LOAD_TUPLE (spec, i, 2); break; } /* The following options just return an integer value: */ case INET_OPT_RCVBUF : case INET_OPT_SNDBUF : case INET_OPT_REUSEADDR: case INET_OPT_DONTROUTE: case INET_OPT_PRIORITY : case INET_OPT_TOS : case SCTP_OPT_AUTOCLOSE: case SCTP_OPT_MAXSEG : /* The following options return true or false: */ case SCTP_OPT_NODELAY : case SCTP_OPT_DISABLE_FRAGMENTS: case SCTP_OPT_I_WANT_MAPPED_V4_ADDR: { int res = 0; unsigned int sz = sizeof(res); int proto = 0, type = 0, is_int = 0; ErlDrvTermData tag = am_sctp_error; switch(eopt) { case INET_OPT_RCVBUF : { proto = SOL_SOCKET; type = SO_RCVBUF; is_int = 1; tag = am_recbuf; break; } case INET_OPT_SNDBUF : { proto = SOL_SOCKET; type = SO_SNDBUF; is_int = 1; tag = am_sndbuf; break; } case INET_OPT_REUSEADDR: { proto = SOL_SOCKET; type = SO_REUSEADDR; is_int = 0; tag = am_reuseaddr; break; } case INET_OPT_DONTROUTE: { proto = SOL_SOCKET; type = SO_DONTROUTE; is_int = 0; tag = am_dontroute; break; } case INET_OPT_PRIORITY: { # if defined(SO_PRIORITY) proto = SOL_SOCKET; type = SO_PRIORITY; is_int = 1; tag = am_priority; break; # else /* Not supported -- ignore */ continue; # endif } case INET_OPT_TOS: { # if defined(IP_TOS) && defined(SOL_IP) proto = SOL_IP; type = IP_TOS; is_int = 1; tag = am_tos; break; # else /* Not supported -- ignore */ continue; # endif } case SCTP_OPT_AUTOCLOSE: { proto = IPPROTO_SCTP; type = SCTP_AUTOCLOSE; is_int = 1; tag = am_sctp_autoclose; break; } case SCTP_OPT_MAXSEG : { proto = IPPROTO_SCTP; type = SCTP_MAXSEG; is_int = 1; tag = am_sctp_maxseg; break; } case SCTP_OPT_NODELAY : { proto = IPPROTO_SCTP; type = SCTP_NODELAY; is_int = 0; tag = am_sctp_nodelay; break; } case SCTP_OPT_DISABLE_FRAGMENTS: { proto = IPPROTO_SCTP; type = SCTP_DISABLE_FRAGMENTS; is_int = 0; tag = am_sctp_disable_fragments; break; } case SCTP_OPT_I_WANT_MAPPED_V4_ADDR: { proto = IPPROTO_SCTP; type = SCTP_I_WANT_MAPPED_V4_ADDR; is_int = 0; tag = am_sctp_i_want_mapped_v4_addr; break; } default: ASSERT(0); } if (sock_getopt (desc->s, proto, type, &res, &sz) < 0) continue; /* Form the result: */ PLACE_FOR(spec, i, LOAD_ATOM_CNT + (is_int ? LOAD_INT_CNT : LOAD_BOOL_CNT) + LOAD_TUPLE_CNT); i = LOAD_ATOM (spec, i, tag); if (is_int) i = LOAD_INT (spec, i, res); else i = LOAD_BOOL (spec, i, res); i = LOAD_TUPLE (spec, i, 2); break; } case SCTP_OPT_PRIMARY_ADDR: case SCTP_OPT_SET_PEER_PRIMARY_ADDR: { /* These 2 options use completely isomorphic data structures: */ struct sctp_setpeerprim sp; unsigned int sz = sizeof(sp); if (buflen < ASSOC_ID_LEN) RETURN_ERROR(spec, -EINVAL); sp.sspp_assoc_id = GET_ASSOC_ID(buf); buf += ASSOC_ID_LEN; buflen -= ASSOC_ID_LEN; if (sock_getopt(desc->s, IPPROTO_SCTP, (eopt == SCTP_OPT_PRIMARY_ADDR) ? SCTP_PRIMARY_ADDR : SCTP_SET_PEER_PRIMARY_ADDR, &sp, &sz) < 0) continue; /* Fill in the response: */ PLACE_FOR(spec, i, 2*LOAD_ATOM_CNT + LOAD_ASSOC_ID_CNT + LOAD_IP_AND_PORT_CNT + 2*LOAD_TUPLE_CNT); switch (eopt) { case SCTP_OPT_PRIMARY_ADDR: i = LOAD_ATOM(spec, i, am_sctp_primary_addr); i = LOAD_ATOM(spec, i, am_sctp_prim); break; case SCTP_OPT_SET_PEER_PRIMARY_ADDR: i = LOAD_ATOM(spec, i, am_sctp_set_peer_primary_addr); i = LOAD_ATOM(spec, i, am_sctp_setpeerprim); break; default: ASSERT(0); } i = LOAD_ASSOC_ID (spec, i, sp.sspp_assoc_id); i = load_ip_and_port(spec, i, desc, &sp.sspp_addr); i = LOAD_TUPLE (spec, i, 3); i = LOAD_TUPLE (spec, i, 2); break; } case SCTP_OPT_ADAPTATION_LAYER: { struct sctp_setadaptation ad; unsigned int sz = sizeof (ad); if (sock_getopt(desc->s, IPPROTO_SCTP, SCTP_ADAPTATION_LAYER, &ad, &sz) < 0) continue; /* Fill in the response: */ PLACE_FOR(spec, i, 2*LOAD_ATOM_CNT + LOAD_INT_CNT + 2*LOAD_TUPLE_CNT); i = LOAD_ATOM (spec, i, am_sctp_adaptation_layer); i = LOAD_ATOM (spec, i, am_sctp_setadaptation); i = LOAD_INT (spec, i, ad.ssb_adaptation_ind); i = LOAD_TUPLE (spec, i, 2); i = LOAD_TUPLE (spec, i, 2); break; } case SCTP_OPT_PEER_ADDR_PARAMS: { struct sctp_paddrparams ap; unsigned int sz = sizeof(ap); int n; char *after; int alen; if (buflen < ASSOC_ID_LEN) RETURN_ERROR(spec, -EINVAL); ap.spp_assoc_id = GET_ASSOC_ID(buf); buf += ASSOC_ID_LEN; buflen -= ASSOC_ID_LEN; alen = buflen; after = inet_set_faddress(desc->sfamily, (inet_address*) (&ap.spp_address), buf, &alen); if (after == NULL) RETURN_ERROR(spec, -EINVAL); buflen -= after - buf; buf = after; if (sock_getopt(desc->s, IPPROTO_SCTP, SCTP_PEER_ADDR_PARAMS, &ap, &sz) < 0) continue; /* Fill in the response: */ PLACE_FOR(spec, i, 2*LOAD_ATOM_CNT + LOAD_ASSOC_ID_CNT + LOAD_IP_AND_PORT_CNT + 4*LOAD_INT_CNT); i = LOAD_ATOM (spec, i, am_sctp_peer_addr_params); i = LOAD_ATOM (spec, i, am_sctp_paddrparams); i = LOAD_ASSOC_ID (spec, i, ap.spp_assoc_id); i = load_ip_and_port(spec, i, desc, &ap.spp_address); i = LOAD_INT (spec, i, ap.spp_hbinterval); i = LOAD_INT (spec, i, ap.spp_pathmaxrxt); /* The following fields are not suported in SOLARIS10, ** so put 0s for "spp_pathmtu", "spp_sackdelay", ** and empty list for "spp_flags": */ # ifdef HAVE_STRUCT_SCTP_PADDRPARAMS_SPP_PATHMTU i = LOAD_INT (spec, i, ap.spp_pathmtu); # else i = LOAD_INT (spec, i, 0); # endif # ifdef HAVE_STRUCT_SCTP_PADDRPARAMS_SPP_SACKDELAY i = LOAD_INT (spec, i, ap.spp_sackdelay); # else i = LOAD_INT (spec, i, 0); # endif n = 0; # ifdef HAVE_STRUCT_SCTP_PADDRPARAMS_SPP_FLAGS PLACE_FOR(spec, i, 7*LOAD_ATOM_CNT); /* Now Flags, as a list: */ if (ap.spp_flags & SPP_HB_ENABLE) { i = LOAD_ATOM (spec, i, am_hb_enable); n++; } if (ap.spp_flags & SPP_HB_DISABLE) { i = LOAD_ATOM (spec, i, am_hb_disable); n++; } if (ap.spp_flags & SPP_HB_DEMAND) { i = LOAD_ATOM (spec, i, am_hb_demand); n++; } if (ap.spp_flags & SPP_PMTUD_ENABLE) { i = LOAD_ATOM (spec, i, am_pmtud_enable); n++; } if (ap.spp_flags & SPP_PMTUD_DISABLE) { i = LOAD_ATOM (spec, i, am_pmtud_disable); n++; } # ifdef HAVE_STRUCT_SCTP_PADDRPARAMS_SPP_SACKDELAY /* SPP_SACKDELAY_* not in FreeBSD 7.1 */ if (ap.spp_flags & SPP_SACKDELAY_ENABLE) { i = LOAD_ATOM (spec, i, am_sackdelay_enable); n++; } if (ap.spp_flags & SPP_SACKDELAY_DISABLE) { i = LOAD_ATOM (spec, i, am_sackdelay_disable); n++; } # endif # endif PLACE_FOR(spec, i, LOAD_NIL_CNT + LOAD_LIST_CNT + 2*LOAD_TUPLE_CNT); /* Close up the Flags list: */ i = LOAD_NIL (spec, i); i = LOAD_LIST (spec, i, n+1); /* Close up the record: */ i = LOAD_TUPLE (spec, i, 8); /* Close up the result tuple: */ i = LOAD_TUPLE (spec, i, 2); break; } case SCTP_OPT_DEFAULT_SEND_PARAM: { struct sctp_sndrcvinfo sri; unsigned int sz = sizeof(sri); if (buflen < ASSOC_ID_LEN) RETURN_ERROR(spec, -EINVAL); sri.sinfo_assoc_id = GET_ASSOC_ID(buf); buf += ASSOC_ID_LEN; buflen -= ASSOC_ID_LEN; if (sock_getopt(desc->s, IPPROTO_SCTP, SCTP_DEFAULT_SEND_PARAM, &sri, &sz) < 0) continue; /* Fill in the response: */ PLACE_FOR(spec, i, LOAD_ATOM_CNT + SCTP_PARSE_SNDRCVINFO_CNT + LOAD_TUPLE_CNT); i = LOAD_ATOM(spec, i, am_sctp_default_send_param); i = sctp_parse_sndrcvinfo(spec, i, &sri); i = LOAD_TUPLE(spec, i, 2); break; } case SCTP_OPT_EVENTS: { struct sctp_event_subscribe evs; unsigned int sz = sizeof(evs); if (sock_getopt(desc->s, IPPROTO_SCTP, SCTP_EVENTS, &evs, &sz) < 0) continue; /* Fill in the response: */ PLACE_FOR(spec, i, 2*LOAD_ATOM_CNT + 9*LOAD_BOOL_CNT + 2*LOAD_TUPLE_CNT); i = LOAD_ATOM (spec, i, am_sctp_events); i = LOAD_ATOM (spec, i, am_sctp_event_subscribe); i = LOAD_BOOL (spec, i, evs.sctp_data_io_event); i = LOAD_BOOL (spec, i, evs.sctp_association_event); i = LOAD_BOOL (spec, i, evs.sctp_address_event); i = LOAD_BOOL (spec, i, evs.sctp_send_failure_event); i = LOAD_BOOL (spec, i, evs.sctp_peer_error_event); i = LOAD_BOOL (spec, i, evs.sctp_shutdown_event); i = LOAD_BOOL (spec, i, evs.sctp_partial_delivery_event); i = LOAD_BOOL (spec, i, evs.sctp_adaptation_layer_event); i = LOAD_BOOL (spec, i, 0);/* NB: sctp_authentication_event * is not yet supported in Linux */ i = LOAD_TUPLE (spec, i, 10); i = LOAD_TUPLE (spec, i, 2); break; } /* The following option is not available in Solaris 10: */ # ifdef SCTP_DELAYED_ACK_TIME case SCTP_OPT_DELAYED_ACK_TIME: { struct sctp_assoc_value av; unsigned int sz = sizeof(av); if (buflen < ASSOC_ID_LEN) RETURN_ERROR(spec, -EINVAL); av.assoc_id = GET_ASSOC_ID(buf); buf += ASSOC_ID_LEN; buflen -= ASSOC_ID_LEN; if (sock_getopt(desc->s, IPPROTO_SCTP, SCTP_DELAYED_ACK_TIME, &av, &sz) < 0) continue; /* Fill in the response: */ PLACE_FOR(spec, i, 2*LOAD_ATOM_CNT + LOAD_ASSOC_ID_CNT + LOAD_INT_CNT + 2*LOAD_TUPLE_CNT); i = LOAD_ATOM (spec, i, am_sctp_delayed_ack_time); i = LOAD_ATOM (spec, i, am_sctp_assoc_value); i = LOAD_ASSOC_ID (spec, i, av.assoc_id); i = LOAD_INT (spec, i, av.assoc_value); i = LOAD_TUPLE (spec, i, 3); i = LOAD_TUPLE (spec, i, 2); break; } # endif case SCTP_OPT_STATUS: { struct sctp_status st; unsigned int sz = sizeof(st); if (buflen < ASSOC_ID_LEN) RETURN_ERROR(spec, -EINVAL); st.sstat_assoc_id = GET_ASSOC_ID(buf); buf += ASSOC_ID_LEN; buflen -= ASSOC_ID_LEN; if (sock_getopt(desc->s, IPPROTO_SCTP, SCTP_STATUS, &st, &sz) < 0) continue; /* Fill in the response: */ PLACE_FOR(spec, i, 3*LOAD_ATOM_CNT + LOAD_ASSOC_ID_CNT + 6*LOAD_INT_CNT + LOAD_PADDRINFO_CNT + 2*LOAD_TUPLE_CNT); i = LOAD_ATOM (spec, i, am_sctp_status); i = LOAD_ATOM (spec, i, am_sctp_status); i = LOAD_ASSOC_ID (spec, i, st.sstat_assoc_id); switch(st.sstat_state) { /* SCTP_EMPTY is not supported on SOLARIS10: */ # ifdef SCTP_EMPTY case SCTP_EMPTY: i = LOAD_ATOM (spec, i, am_empty); break; # endif case SCTP_CLOSED: i = LOAD_ATOM (spec, i, am_closed); break; /* The following states are not supported by Linux Kernel SCTP yet: case SCTP_BOUND: i = LOAD_ATOM (spec, i, am_bound); break; case SCTP_LISTEN: i = LOAD_ATOM (spec, i, am_listen); break; */ case SCTP_COOKIE_WAIT: i = LOAD_ATOM (spec, i, am_cookie_wait); break; case SCTP_COOKIE_ECHOED: i = LOAD_ATOM (spec, i, am_cookie_echoed); break; case SCTP_ESTABLISHED: i = LOAD_ATOM (spec, i, am_established); break; case SCTP_SHUTDOWN_PENDING: i = LOAD_ATOM (spec, i, am_shutdown_pending); break; case SCTP_SHUTDOWN_SENT: i = LOAD_ATOM (spec, i, am_shutdown_sent); break; case SCTP_SHUTDOWN_RECEIVED: i = LOAD_ATOM (spec, i, am_shutdown_received); break; case SCTP_SHUTDOWN_ACK_SENT: i = LOAD_ATOM (spec, i, am_shutdown_ack_sent); break; default: i = LOAD_ATOM (spec, i, am_undefined); break; } i = LOAD_INT (spec, i, st.sstat_rwnd); i = LOAD_INT (spec, i, st.sstat_unackdata); i = LOAD_INT (spec, i, st.sstat_penddata); i = LOAD_INT (spec, i, st.sstat_instrms); i = LOAD_INT (spec, i, st.sstat_outstrms); i = LOAD_INT (spec, i, st.sstat_fragmentation_point); i = load_paddrinfo (spec, i, desc, &st.sstat_primary); /* Close up the record: */ i = LOAD_TUPLE (spec, i, 10); /* Close up the result tuple: */ i = LOAD_TUPLE (spec, i, 2); break; } case SCTP_OPT_GET_PEER_ADDR_INFO: { struct sctp_paddrinfo pai; unsigned int sz = sizeof(pai); char *after; int alen; if (buflen < ASSOC_ID_LEN) RETURN_ERROR(spec, -EINVAL); pai.spinfo_assoc_id = GET_ASSOC_ID(buf); buf += ASSOC_ID_LEN; buflen -= ASSOC_ID_LEN; alen = buflen; after = inet_set_faddress(desc->sfamily, (inet_address*) (&pai.spinfo_address), buf, &alen); if (after == NULL) RETURN_ERROR(spec, -EINVAL); buflen -= after - buf; buf = after; if (sock_getopt(desc->s, IPPROTO_SCTP, SCTP_GET_PEER_ADDR_INFO, &pai, &sz) < 0) continue; /* Fill in the response: */ PLACE_FOR(spec, i, LOAD_ATOM_CNT + LOAD_PADDRINFO_CNT + LOAD_TUPLE_CNT); i = LOAD_ATOM (spec, i, am_sctp_get_peer_addr_info); i = load_paddrinfo (spec, i, desc, &pai); i = LOAD_TUPLE (spec, i, 2); break; } default: RETURN_ERROR(spec, -EINVAL); /* No more valid options */ } /* If we get here one result has been successfully loaded */ length ++; } if (buflen != 0) RETURN_ERROR(spec, -EINVAL); /* Optparam mismatch */ PLACE_FOR(spec, i, LOAD_NIL_CNT + LOAD_LIST_CNT + 2*LOAD_TUPLE_CNT); /* If we get here, we have "length" options: */ i = LOAD_NIL (spec, i); i = LOAD_LIST (spec, i, length+1); /* Close up the {ok, List} response: */ i = LOAD_TUPLE(spec, i, 2); /* Close up the {inet_reply, S, {ok, List}} response: */ i = LOAD_TUPLE(spec, i, 3); /* Now, convert "spec" into the returnable term: */ driver_send_term(desc->port, driver_caller(desc->port), spec, i); FREE(spec); (*dest)[0] = INET_REP_SCTP; return 1; /* Response length */ # undef PLACE_FOR # undef RETURN_ERROR } #endif /* fill statistics reply, op codes from src and result in dest ** dst area must be a least 5*len + 1 bytes */ static int inet_fill_stat(inet_descriptor* desc, char* src, int len, char* dst) { unsigned long val; int op; char* dst_start = dst; *dst++ = INET_REP_OK; /* put reply code */ while (len--) { op = *src++; *dst++ = op; /* copy op code */ switch(op) { case INET_STAT_RECV_CNT: val = desc->recv_cnt; break; case INET_STAT_RECV_MAX: val = (unsigned long) desc->recv_max; break; case INET_STAT_RECV_AVG: val = (unsigned long) desc->recv_avg; break; case INET_STAT_RECV_DVI: val = (unsigned long) fabs(desc->recv_dvi); break; case INET_STAT_SEND_CNT: val = desc->send_cnt; break; case INET_STAT_SEND_MAX: val = desc->send_max; break; case INET_STAT_SEND_AVG: val = (unsigned long) desc->send_avg; break; case INET_STAT_SEND_PND: val = driver_sizeq(desc->port); break; case INET_STAT_RECV_OCT: put_int32(desc->recv_oct[1], dst); /* write high 32bit */ put_int32(desc->recv_oct[0], dst+4); /* write low 32bit */ dst += 8; continue; case INET_STAT_SEND_OCT: put_int32(desc->send_oct[1], dst); /* write high 32bit */ put_int32(desc->send_oct[0], dst+4); /* write low 32bit */ dst += 8; continue; default: return -1; /* invalid argument */ } put_int32(val, dst); /* write 32bit value */ dst += 4; } return dst - dst_start; /* actual length */ } static void send_empty_out_q_msgs(inet_descriptor* desc) { ErlDrvTermData msg[6]; int msg_len = 0; if(NO_SUBSCRIBERS(&desc->empty_out_q_subs)) return; msg_len = LOAD_ATOM(msg, msg_len, am_empty_out_q); msg_len = LOAD_PORT(msg, msg_len, desc->dport); msg_len = LOAD_TUPLE(msg, msg_len, 2); ASSERT(msg_len == sizeof(msg)/sizeof(*msg)); send_to_subscribers(desc->port, &desc->empty_out_q_subs, 1, msg, msg_len); } /* subscribe and fill subscription reply, op codes from src and ** result in dest dst area must be a least 5*len + 1 bytes */ static int inet_subscribe(inet_descriptor* desc, char* src, int len, char* dst) { unsigned long val; int op; char* dst_start = dst; *dst++ = INET_REP_OK; /* put reply code */ while (len--) { op = *src++; *dst++ = op; /* copy op code */ switch(op) { case INET_SUBS_EMPTY_OUT_Q: val = driver_sizeq(desc->port); if(val > 0) if(!save_subscriber(&desc->empty_out_q_subs, driver_caller(desc->port))) return 0; break; default: return -1; /* invalid argument */ } put_int32(val, dst); /* write 32bit value */ dst += 4; } return dst - dst_start; /* actual length */ } /* Terminate socket */ static void inet_stop(inet_descriptor* desc) { erl_inet_close(desc); FREE(desc); } /* Allocate descriptor */ static ErlDrvData inet_start(ErlDrvPort port, int size, int protocol) { inet_descriptor* desc; if ((desc = (inet_descriptor*) ALLOC(size)) == NULL) return NULL; desc->s = INVALID_SOCKET; desc->event = INVALID_EVENT; desc->event_mask = 0; #ifdef __WIN32__ desc->forced_events = 0; desc->send_would_block = 0; #endif desc->port = port; desc->dport = driver_mk_port(port); desc->state = INET_STATE_CLOSED; desc->prebound = 0; desc->bufsz = INET_DEF_BUFFER; desc->hsz = 0; /* list header size */ desc->htype = TCP_PB_RAW; /* default packet type */ desc->psize = 0; /* no size check */ desc->stype = -1; /* bad stype */ desc->sfamily = -1; desc->sprotocol = protocol; desc->mode = INET_MODE_LIST; /* list mode */ desc->exitf = 1; /* exit port when close on active socket */ desc->bit8f = 0; desc->bit8 = 0; desc->deliver = INET_DELIVER_TERM; /* standard term format */ desc->active = INET_PASSIVE; /* start passive */ desc->oph = NULL; desc->opt = NULL; desc->peer_ptr = NULL; desc->name_ptr = NULL; desc->recv_oct[0] = desc->recv_oct[1] = 0; desc->recv_cnt = 0; desc->recv_max = 0; desc->recv_avg = 0.0; desc->recv_dvi = 0.0; desc->send_oct[0] = desc->send_oct[1] = 0; desc->send_cnt = 0; desc->send_max = 0; desc->send_avg = 0.0; desc->empty_out_q_subs.subscriber = NO_PROCESS; desc->empty_out_q_subs.next = NULL; sys_memzero((char *)&desc->remote,sizeof(desc->remote)); return (ErlDrvData)desc; } #ifndef MAXHOSTNAMELEN #define MAXHOSTNAMELEN 256 #endif /* ** common TCP/UDP/SCTP control command */ static int inet_ctl(inet_descriptor* desc, int cmd, char* buf, int len, char** rbuf, int rsize) { switch (cmd) { case INET_REQ_GETSTAT: { char* dst; int i; int dstlen = 1; /* Reply code */ for (i = 0; i < len; i++) { switch(buf[i]) { case INET_STAT_SEND_OCT: dstlen += 9; break; case INET_STAT_RECV_OCT: dstlen += 9; break; default: dstlen += 5; break; } } DEBUGF(("inet_ctl(%ld): GETSTAT\r\n", (long) desc->port)); if (dstlen > INET_MAX_OPT_BUFFER) /* sanity check */ return 0; if (dstlen > rsize) { if ((dst = (char*) ALLOC(dstlen)) == NULL) return 0; *rbuf = dst; /* call will free this buffer */ } else dst = *rbuf; /* ok we fit in buffer given */ return inet_fill_stat(desc, buf, len, dst); } case INET_REQ_SUBSCRIBE: { char* dst; int dstlen = 1 /* Reply code */ + len*5; DEBUGF(("inet_ctl(%ld): INET_REQ_SUBSCRIBE\r\n", (long) desc->port)); if (dstlen > INET_MAX_OPT_BUFFER) /* sanity check */ return 0; if (dstlen > rsize) { if ((dst = (char*) ALLOC(dstlen)) == NULL) return 0; *rbuf = dst; /* call will free this buffer */ } else dst = *rbuf; /* ok we fit in buffer given */ return inet_subscribe(desc, buf, len, dst); } case INET_REQ_GETOPTS: { /* get options */ int replen; DEBUGF(("inet_ctl(%ld): GETOPTS\r\n", (long)desc->port)); #ifdef HAVE_SCTP if (IS_SCTP(desc)) { if ((replen = sctp_fill_opts(desc, buf, len, rbuf, rsize)) < 0) return ctl_error(-replen, rbuf, rsize); } else #endif if ((replen = inet_fill_opts(desc, buf, len, rbuf, rsize)) < 0) { return ctl_error(EINVAL, rbuf, rsize); } return replen; } case INET_REQ_GETIFLIST: { DEBUGF(("inet_ctl(%ld): GETIFLIST\r\n", (long)desc->port)); if (!IS_OPEN(desc)) return ctl_xerror(EXBADPORT, rbuf, rsize); return inet_ctl_getiflist(desc, rbuf, rsize); } case INET_REQ_GETIFADDRS: { DEBUGF(("inet_ctl(%ld): GETIFADDRS\r\n", (long)desc->port)); if (!IS_OPEN(desc)) return ctl_xerror(EXBADPORT, rbuf, rsize); return inet_ctl_getifaddrs(desc, rbuf, rsize); } case INET_REQ_IFGET: { DEBUGF(("inet_ctl(%ld): IFGET\r\n", (long)desc->port)); if (!IS_OPEN(desc)) return ctl_xerror(EXBADPORT, rbuf, rsize); return inet_ctl_ifget(desc, buf, len, rbuf, rsize); } case INET_REQ_IFSET: { DEBUGF(("inet_ctl(%ld): IFSET\r\n", (long)desc->port)); if (!IS_OPEN(desc)) return ctl_xerror(EXBADPORT, rbuf, rsize); return inet_ctl_ifset(desc, buf, len, rbuf, rsize); } case INET_REQ_SETOPTS: { /* set options */ DEBUGF(("inet_ctl(%ld): SETOPTS\r\n", (long)desc->port)); switch(inet_set_opts(desc, buf, len)) { case -1: return ctl_error(EINVAL, rbuf, rsize); case 0: return ctl_reply(INET_REP_OK, NULL, 0, rbuf, rsize); default: /* active/passive change!! */ /* * Let's hope that the descriptor really is a tcp_descriptor here. */ tcp_deliver((tcp_descriptor *) desc, 0); return ctl_reply(INET_REP_OK, NULL, 0, rbuf, rsize); } } case INET_REQ_GETSTATUS: { char tbuf[4]; DEBUGF(("inet_ctl(%ld): GETSTATUS\r\n", (long)desc->port)); put_int32(desc->state, tbuf); return ctl_reply(INET_REP_OK, tbuf, 4, rbuf, rsize); } case INET_REQ_GETTYPE: { char tbuf[8]; DEBUGF(("inet_ctl(%ld): GETTYPE\r\n", (long)desc->port)); if (desc->sfamily == AF_INET) { put_int32(INET_AF_INET, &tbuf[0]); } #if defined(HAVE_IN6) && defined(AF_INET6) else if (desc->sfamily == AF_INET6) { put_int32(INET_AF_INET6, &tbuf[0]); } #endif else return ctl_error(EINVAL, rbuf, rsize); if (desc->stype == SOCK_STREAM) { put_int32(INET_TYPE_STREAM, &tbuf[4]); } else if (desc->stype == SOCK_DGRAM) { put_int32(INET_TYPE_DGRAM, &tbuf[4]); } #ifdef HAVE_SCTP else if (desc->stype == SOCK_SEQPACKET) { put_int32(INET_TYPE_SEQPACKET, &tbuf[4]); } #endif else return ctl_error(EINVAL, rbuf, rsize); return ctl_reply(INET_REP_OK, tbuf, 8, rbuf, rsize); } case INET_REQ_GETFD: { char tbuf[4]; DEBUGF(("inet_ctl(%ld): GETFD\r\n", (long)desc->port)); if (!IS_OPEN(desc)) return ctl_error(EINVAL, rbuf, rsize); put_int32((long)desc->s, tbuf); return ctl_reply(INET_REP_OK, tbuf, 4, rbuf, rsize); } case INET_REQ_GETHOSTNAME: { /* get host name */ char tbuf[MAXHOSTNAMELEN]; DEBUGF(("inet_ctl(%ld): GETHOSTNAME\r\n", (long)desc->port)); if (len != 0) return ctl_error(EINVAL, rbuf, rsize); if (IS_SOCKET_ERROR(sock_hostname(tbuf, MAXHOSTNAMELEN))) return ctl_error(sock_errno(), rbuf, rsize); return ctl_reply(INET_REP_OK, tbuf, strlen(tbuf), rbuf, rsize); } case INET_REQ_PEER: { /* get peername */ char tbuf[sizeof(inet_address)]; inet_address peer; inet_address* ptr; unsigned int sz = sizeof(peer); DEBUGF(("inet_ctl(%ld): PEER\r\n", (long)desc->port)); if (!(desc->state & INET_F_ACTIVE)) return ctl_error(ENOTCONN, rbuf, rsize); if ((ptr = desc->peer_ptr) == NULL) { ptr = &peer; if (IS_SOCKET_ERROR(sock_peer(desc->s, (struct sockaddr*)ptr,&sz))) return ctl_error(sock_errno(), rbuf, rsize); } if (inet_get_address(desc->sfamily, tbuf, ptr, &sz) < 0) return ctl_error(EINVAL, rbuf, rsize); return ctl_reply(INET_REP_OK, tbuf, sz, rbuf, rsize); } case INET_REQ_SETPEER: { /* set fake peername Port Address */ if (len == 0) { desc->peer_ptr = NULL; return ctl_reply(INET_REP_OK, NULL, 0, rbuf, rsize); } else if (len < 2) return ctl_error(EINVAL, rbuf, rsize); else if (inet_set_address(desc->sfamily, &desc->peer_addr, buf, &len) == NULL) return ctl_error(EINVAL, rbuf, rsize); else { desc->peer_ptr = &desc->peer_addr; return ctl_reply(INET_REP_OK, NULL, 0, rbuf, rsize); } } case INET_REQ_NAME: { /* get sockname */ char tbuf[sizeof(inet_address)]; inet_address name; inet_address* ptr; unsigned int sz = sizeof(name); DEBUGF(("inet_ctl(%ld): NAME\r\n", (long)desc->port)); if (!IS_BOUND(desc)) return ctl_error(EINVAL, rbuf, rsize); /* address is not valid */ if ((ptr = desc->name_ptr) == NULL) { ptr = &name; if (IS_SOCKET_ERROR(sock_name(desc->s, (struct sockaddr*)ptr, &sz))) return ctl_error(sock_errno(), rbuf, rsize); } if (inet_get_address(desc->sfamily, tbuf, ptr, &sz) < 0) return ctl_error(EINVAL, rbuf, rsize); return ctl_reply(INET_REP_OK, tbuf, sz, rbuf, rsize); } case INET_REQ_SETNAME: { /* set fake peername Port Address */ if (len == 0) { desc->name_ptr = NULL; return ctl_reply(INET_REP_OK, NULL, 0, rbuf, rsize); } else if (len < 2) return ctl_error(EINVAL, rbuf, rsize); else if (inet_set_address(desc->sfamily, &desc->name_addr, buf, &len) == NULL) return ctl_error(EINVAL, rbuf, rsize); else { desc->name_ptr = &desc->name_addr; return ctl_reply(INET_REP_OK, NULL, 0, rbuf, rsize); } } case INET_REQ_BIND: { /* bind socket */ char tbuf[2]; inet_address local; short port; DEBUGF(("inet_ctl(%ld): BIND\r\n", (long)desc->port)); if (len < 2) return ctl_error(EINVAL, rbuf, rsize); if (desc->state != INET_STATE_OPEN) return ctl_xerror(EXBADPORT, rbuf, rsize); if (inet_set_address(desc->sfamily, &local, buf, &len) == NULL) return ctl_error(EINVAL, rbuf, rsize); if (IS_SOCKET_ERROR(sock_bind(desc->s,(struct sockaddr*) &local, len))) return ctl_error(sock_errno(), rbuf, rsize); desc->state = INET_STATE_BOUND; if ((port = inet_address_port(&local)) == 0) { len = sizeof(local); sock_name(desc->s, (struct sockaddr*) &local, (unsigned int*)&len); port = inet_address_port(&local); } port = sock_ntohs(port); put_int16(port, tbuf); return ctl_reply(INET_REP_OK, tbuf, 2, rbuf, rsize); } #ifndef VXWORKS case INET_REQ_GETSERVBYNAME: { /* L1 Name-String L2 Proto-String */ char namebuf[256]; char protobuf[256]; char tbuf[2]; struct servent* srv; short port; int n; if (len < 2) return ctl_error(EINVAL, rbuf, rsize); n = get_int8(buf); buf++; len--; if (n >= len) /* the = sign makes the test inklude next length byte */ return ctl_error(EINVAL, rbuf, rsize); memcpy(namebuf, buf, n); namebuf[n] = '\0'; len -= n; buf += n; n = get_int8(buf); buf++; len--; if (n > len) return ctl_error(EINVAL, rbuf, rsize); memcpy(protobuf, buf, n); protobuf[n] = '\0'; if ((srv = sock_getservbyname(namebuf, protobuf)) == NULL) return ctl_error(EINVAL, rbuf, rsize); port = sock_ntohs(srv->s_port); put_int16(port, tbuf); return ctl_reply(INET_REP_OK, tbuf, 2, rbuf, rsize); } case INET_REQ_GETSERVBYPORT: { /* P1 P0 L1 Proto-String */ char protobuf[256]; unsigned short port; int n; struct servent* srv; if (len < 3) return ctl_error(EINVAL, rbuf, rsize); port = get_int16(buf); port = sock_htons(port); buf += 2; n = get_int8(buf); buf++; len -= 3; if (n > len) return ctl_error(EINVAL, rbuf, rsize); memcpy(protobuf, buf, n); protobuf[n] = '\0'; if ((srv = sock_getservbyport(port, protobuf)) == NULL) return ctl_error(EINVAL, rbuf, rsize); len = strlen(srv->s_name); return ctl_reply(INET_REP_OK, srv->s_name, len, rbuf, rsize); } #endif /* !VXWORKS */ default: return ctl_xerror(EXBADPORT, rbuf, rsize); } } /* update statistics on output packets */ static void inet_output_count(inet_descriptor* desc, int len) { unsigned long n = desc->send_cnt + 1; unsigned long t = desc->send_oct[0] + len; int c = (t < desc->send_oct[0]); double avg = desc->send_avg; /* at least 64 bit octet count */ desc->send_oct[0] = t; desc->send_oct[1] += c; if (n == 0) /* WRAP, use old avg as input to a new sequence */ n = 1; desc->send_avg += (len - avg) / n; if (len > desc->send_max) desc->send_max = len; desc->send_cnt = n; } /* update statistics on input packets */ static void inet_input_count(inet_descriptor* desc, int len) { unsigned long n = desc->recv_cnt + 1; unsigned long t = desc->recv_oct[0] + len; int c = (t < desc->recv_oct[0]); double avg = desc->recv_avg; double dvi; /* at least 64 bit octet count */ desc->recv_oct[0] = t; desc->recv_oct[1] += c; if (n == 0) /* WRAP */ n = 1; /* average packet length */ avg = avg + (len - avg) / n; desc->recv_avg = avg; if (len > desc->recv_max) desc->recv_max = len; /* average deviation from average packet length */ dvi = desc->recv_dvi; desc->recv_dvi = dvi + ((len - avg) - dvi) / n; desc->recv_cnt = n; } /*---------------------------------------------------------------------------- TCP -----------------------------------------------------------------------------*/ /* ** Set new size on buffer, used when packet size is determined ** and the buffer is to small. ** buffer must have a size of at least len bytes (counting from ptr_start!) */ static int tcp_expand_buffer(tcp_descriptor* desc, int len) { ErlDrvBinary* bin; int offs1; int offs2; int used = desc->i_ptr_start - desc->i_buf->orig_bytes; int ulen = used + len; if (desc->i_bufsz >= ulen) /* packet will fit */ return 0; else if (desc->i_buf->orig_size >= ulen) { /* buffer is large enough */ desc->i_bufsz = ulen; /* set "virtual" size */ return 0; } DEBUGF(("tcp_expand_buffer(%ld): s=%d, from %ld to %d\r\n", (long)desc->inet.port, desc->inet.s, desc->i_buf->orig_size, ulen)); offs1 = desc->i_ptr_start - desc->i_buf->orig_bytes; offs2 = desc->i_ptr - desc->i_ptr_start; if ((bin = driver_realloc_binary(desc->i_buf, ulen)) == NULL) return -1; desc->i_buf = bin; desc->i_ptr_start = bin->orig_bytes + offs1; desc->i_ptr = desc->i_ptr_start + offs2; desc->i_bufsz = ulen; return 0; } /* push data into i_buf */ static int tcp_push_buffer(tcp_descriptor* desc, char* buf, int len) { ErlDrvBinary* bin; if (desc->i_buf == NULL) { bin = alloc_buffer(len); sys_memcpy(bin->orig_bytes, buf, len); desc->i_buf = bin; desc->i_bufsz = len; desc->i_ptr_start = desc->i_buf->orig_bytes; desc->i_ptr = desc->i_ptr_start + len; } else { char* start = desc->i_buf->orig_bytes; int sz_before = desc->i_ptr_start - start; int sz_filled = desc->i_ptr - desc->i_ptr_start; if (len <= sz_before) { sys_memcpy(desc->i_ptr_start - len, buf, len); desc->i_ptr_start -= len; } else { bin = alloc_buffer(desc->i_bufsz+len); sys_memcpy(bin->orig_bytes, buf, len); sys_memcpy(bin->orig_bytes+len, desc->i_ptr_start, sz_filled); free_buffer(desc->i_buf); desc->i_bufsz += len; desc->i_buf = bin; desc->i_ptr_start = bin->orig_bytes; desc->i_ptr = desc->i_ptr_start + sz_filled + len; } } desc->i_remain = 0; return 0; } /* clear CURRENT input buffer */ static void tcp_clear_input(tcp_descriptor* desc) { if (desc->i_buf != NULL) free_buffer(desc->i_buf); desc->i_buf = NULL; desc->i_remain = 0; desc->i_ptr = NULL; desc->i_ptr_start = NULL; desc->i_bufsz = 0; } /* clear QUEUED output */ static void tcp_clear_output(tcp_descriptor* desc) { ErlDrvPort ix = desc->inet.port; int qsz = driver_sizeq(ix); driver_deq(ix, qsz); send_empty_out_q_msgs(INETP(desc)); } /* Move data so that ptr_start point at buf->orig_bytes */ static void tcp_restart_input(tcp_descriptor* desc) { if (desc->i_ptr_start != desc->i_buf->orig_bytes) { int n = desc->i_ptr - desc->i_ptr_start; DEBUGF(("tcp_restart_input: move %d bytes\r\n", n)); sys_memmove(desc->i_buf->orig_bytes, desc->i_ptr_start, n); desc->i_ptr_start = desc->i_buf->orig_bytes; desc->i_ptr = desc->i_ptr_start + n; } } static int tcp_inet_init(void) { DEBUGF(("tcp_inet_init() {}\r\n")); return 0; } /* initialize the TCP descriptor */ static ErlDrvData tcp_inet_start(ErlDrvPort port, char* args) { tcp_descriptor* desc; DEBUGF(("tcp_inet_start(%ld) {\r\n", (long)port)); desc = (tcp_descriptor*) inet_start(port, sizeof(tcp_descriptor), IPPROTO_TCP); if (desc == NULL) return ERL_DRV_ERROR_ERRNO; desc->high = INET_HIGH_WATERMARK; desc->low = INET_LOW_WATERMARK; desc->send_timeout = INET_INFINITY; desc->send_timeout_close = 0; desc->busy_on_send = 0; desc->i_buf = NULL; desc->i_ptr = NULL; desc->i_ptr_start = NULL; desc->i_remain = 0; desc->i_bufsz = 0; desc->tcp_add_flags = 0; desc->http_state = 0; desc->mtd = NULL; desc->multi_first = desc->multi_last = NULL; DEBUGF(("tcp_inet_start(%ld) }\r\n", (long)port)); return (ErlDrvData) desc; } /* Copy a descriptor, by creating a new port with same settings * as the descriptor desc. * return NULL on error (ENFILE no ports avail) */ static tcp_descriptor* tcp_inet_copy(tcp_descriptor* desc,SOCKET s, ErlDrvTermData owner, int* err) { ErlDrvPort port = desc->inet.port; tcp_descriptor* copy_desc; copy_desc = (tcp_descriptor*) tcp_inet_start(port, NULL); /* Setup event if needed */ if ((copy_desc->inet.s = s) != INVALID_SOCKET) { if ((copy_desc->inet.event = sock_create_event(INETP(copy_desc))) == INVALID_EVENT) { *err = sock_errno(); FREE(copy_desc); return NULL; } } /* Some flags must be inherited at this point */ copy_desc->inet.mode = desc->inet.mode; copy_desc->inet.exitf = desc->inet.exitf; copy_desc->inet.bit8f = desc->inet.bit8f; copy_desc->inet.deliver = desc->inet.deliver; copy_desc->inet.htype = desc->inet.htype; copy_desc->inet.psize = desc->inet.psize; copy_desc->inet.stype = desc->inet.stype; copy_desc->inet.sfamily = desc->inet.sfamily; copy_desc->inet.hsz = desc->inet.hsz; copy_desc->inet.bufsz = desc->inet.bufsz; copy_desc->high = desc->high; copy_desc->low = desc->low; copy_desc->send_timeout = desc->send_timeout; copy_desc->send_timeout_close = desc->send_timeout_close; /* The new port will be linked and connected to the original caller */ port = driver_create_port(port, owner, "tcp_inet", (ErlDrvData) copy_desc); if ((long)port == -1) { *err = ENFILE; FREE(copy_desc); return NULL; } copy_desc->inet.port = port; copy_desc->inet.dport = driver_mk_port(port); *err = 0; return copy_desc; } /* ** Check Special cases: ** 1. we are a listener doing nb accept -> report error on accept ! ** 2. we are doing accept -> restore listener state */ static void tcp_close_check(tcp_descriptor* desc) { /* XXX:PaN - multiple clients to handle! */ if (desc->inet.state == INET_STATE_ACCEPTING) { inet_async_op *this_op = desc->inet.opt; sock_select(INETP(desc), FD_ACCEPT, 0); desc->inet.state = INET_STATE_LISTENING; if (this_op != NULL) { driver_demonitor_process(desc->inet.port, &(this_op->monitor)); } async_error_am(INETP(desc), am_closed); } else if (desc->inet.state == INET_STATE_MULTI_ACCEPTING) { int id,req; ErlDrvTermData caller; ErlDrvMonitor monitor; sock_select(INETP(desc), FD_ACCEPT, 0); desc->inet.state = INET_STATE_LISTENING; while (deq_multi_op(desc,&id,&req,&caller,NULL,&monitor) == 0) { driver_demonitor_process(desc->inet.port, &monitor); send_async_error(desc->inet.port, desc->inet.dport, id, caller, am_closed); } clean_multi_timers(&(desc->mtd), desc->inet.port); } else if (desc->inet.state == INET_STATE_CONNECTING) { async_error_am(INETP(desc), am_closed); } else if (desc->inet.state == INET_STATE_CONNECTED) { async_error_am_all(INETP(desc), am_closed); } } /* ** Cleanup & Free */ static void tcp_inet_stop(ErlDrvData e) { tcp_descriptor* desc = (tcp_descriptor*)e; DEBUGF(("tcp_inet_stop(%ld) {s=%d\r\n", (long)desc->inet.port, desc->inet.s)); tcp_close_check(desc); /* free input buffer & output buffer */ if (desc->i_buf != NULL) release_buffer(desc->i_buf); desc->i_buf = NULL; /* net_mess2 may call this function recursively when faulty messages arrive on dist ports*/ DEBUGF(("tcp_inet_stop(%ld) }\r\n", (long)desc->inet.port)); inet_stop(INETP(desc)); } /* TCP requests from Erlang */ static int tcp_inet_ctl(ErlDrvData e, unsigned int cmd, char* buf, int len, char** rbuf, int rsize) { tcp_descriptor* desc = (tcp_descriptor*)e; switch(cmd) { case INET_REQ_OPEN: /* open socket and return internal index */ DEBUGF(("tcp_inet_ctl(%ld): OPEN\r\n", (long)desc->inet.port)); if ((len == 1) && (buf[0] == INET_AF_INET)) return inet_ctl_open(INETP(desc), AF_INET, SOCK_STREAM, rbuf, rsize); #if defined(HAVE_IN6) && defined(AF_INET6) else if ((len == 1) && (buf[0] == INET_AF_INET6)) return inet_ctl_open(INETP(desc), AF_INET6, SOCK_STREAM, rbuf, rsize); #else else if ((len == 1) && (buf[0] == INET_AF_INET6)) return ctl_xerror("eafnosupport",rbuf,rsize); #endif else return ctl_error(EINVAL, rbuf, rsize); case INET_REQ_FDOPEN: /* pass in an open socket */ DEBUGF(("tcp_inet_ctl(%ld): FDOPEN\r\n", (long)desc->inet.port)); if ((len == 5) && (buf[0] == INET_AF_INET)) return inet_ctl_fdopen(INETP(desc), AF_INET, SOCK_STREAM, (SOCKET) get_int32(buf+1), rbuf, rsize); #if defined(HAVE_IN6) && defined(AF_INET6) else if ((len == 5) && (buf[0] == INET_AF_INET6)) return inet_ctl_fdopen(INETP(desc), AF_INET6, SOCK_STREAM, (SOCKET) get_int32(buf+1), rbuf, rsize); #endif else return ctl_error(EINVAL, rbuf, rsize); case INET_REQ_LISTEN: { /* argument backlog */ int backlog; DEBUGF(("tcp_inet_ctl(%ld): LISTEN\r\n", (long)desc->inet.port)); if (desc->inet.state == INET_STATE_CLOSED) return ctl_xerror(EXBADPORT, rbuf, rsize); if (!IS_OPEN(INETP(desc))) return ctl_xerror(EXBADPORT, rbuf, rsize); if (!IS_BOUND(INETP(desc))) return ctl_xerror(EXBADSEQ, rbuf, rsize); if (len != 2) return ctl_error(EINVAL, rbuf, rsize); backlog = get_int16(buf); if (IS_SOCKET_ERROR(sock_listen(desc->inet.s, backlog))) return ctl_error(sock_errno(), rbuf, rsize); desc->inet.state = INET_STATE_LISTENING; return ctl_reply(INET_REP_OK, NULL, 0, rbuf, rsize); } case INET_REQ_CONNECT: { /* do async connect */ int code; char tbuf[2]; unsigned timeout; DEBUGF(("tcp_inet_ctl(%ld): CONNECT\r\n", (long)desc->inet.port)); /* INPUT: Timeout(4), Port(2), Address(N) */ if (!IS_OPEN(INETP(desc))) return ctl_xerror(EXBADPORT, rbuf, rsize); if (IS_CONNECTED(INETP(desc))) return ctl_error(EISCONN, rbuf, rsize); if (!IS_BOUND(INETP(desc))) return ctl_xerror(EXBADSEQ, rbuf, rsize); if (IS_CONNECTING(INETP(desc))) return ctl_error(EINVAL, rbuf, rsize); if (len < 6) return ctl_error(EINVAL, rbuf, rsize); timeout = get_int32(buf); buf += 4; len -= 4; if (inet_set_address(desc->inet.sfamily, &desc->inet.remote, buf, &len) == NULL) return ctl_error(EINVAL, rbuf, rsize); code = sock_connect(desc->inet.s, (struct sockaddr*) &desc->inet.remote, len); if (IS_SOCKET_ERROR(code) && ((sock_errno() == ERRNO_BLOCK) || /* Winsock2 */ (sock_errno() == EINPROGRESS))) { /* Unix & OSE!! */ sock_select(INETP(desc), FD_CONNECT, 1); desc->inet.state = INET_STATE_CONNECTING; if (timeout != INET_INFINITY) driver_set_timer(desc->inet.port, timeout); enq_async(INETP(desc), tbuf, INET_REQ_CONNECT); } else if (code == 0) { /* ok we are connected */ desc->inet.state = INET_STATE_CONNECTED; if (desc->inet.active) sock_select(INETP(desc), (FD_READ|FD_CLOSE), 1); enq_async(INETP(desc), tbuf, INET_REQ_CONNECT); async_ok(INETP(desc)); } else { return ctl_error(sock_errno(), rbuf, rsize); } return ctl_reply(INET_REP_OK, tbuf, 2, rbuf, rsize); } case INET_REQ_ACCEPT: { /* do async accept */ char tbuf[2]; unsigned timeout; inet_address remote; unsigned int n; SOCKET s; DEBUGF(("tcp_inet_ctl(%ld): ACCEPT\r\n", (long)desc->inet.port)); /* INPUT: Timeout(4) */ if ((desc->inet.state != INET_STATE_LISTENING && desc->inet.state != INET_STATE_ACCEPTING && desc->inet.state != INET_STATE_MULTI_ACCEPTING) || len != 4) { return ctl_error(EINVAL, rbuf, rsize); } timeout = get_int32(buf); if (desc->inet.state == INET_STATE_ACCEPTING) { unsigned long time_left = 0; int oid = 0; ErlDrvTermData ocaller = ERL_DRV_NIL; int oreq = 0; unsigned otimeout = 0; ErlDrvTermData caller = driver_caller(desc->inet.port); MultiTimerData *mtd = NULL,*omtd = NULL; ErlDrvMonitor monitor, omonitor; if (driver_monitor_process(desc->inet.port, caller ,&monitor) != 0) { return ctl_xerror("noproc", rbuf, rsize); } deq_async_w_tmo(INETP(desc),&oid,&ocaller,&oreq,&otimeout,&omonitor); if (otimeout != INET_INFINITY) { driver_read_timer(desc->inet.port, &time_left); driver_cancel_timer(desc->inet.port); if (time_left <= 0) { time_left = 1; } omtd = add_multi_timer(&(desc->mtd), desc->inet.port, ocaller, time_left, &tcp_inet_multi_timeout); } enq_old_multi_op(desc, oid, oreq, ocaller, omtd, &omonitor); if (timeout != INET_INFINITY) { mtd = add_multi_timer(&(desc->mtd), desc->inet.port, caller, timeout, &tcp_inet_multi_timeout); } enq_multi_op(desc, tbuf, INET_REQ_ACCEPT, caller, mtd, &monitor); desc->inet.state = INET_STATE_MULTI_ACCEPTING; return ctl_reply(INET_REP_OK, tbuf, 2, rbuf, rsize); } else if (desc->inet.state == INET_STATE_MULTI_ACCEPTING) { ErlDrvTermData caller = driver_caller(desc->inet.port); MultiTimerData *mtd = NULL; ErlDrvMonitor monitor; if (driver_monitor_process(desc->inet.port, caller ,&monitor) != 0) { return ctl_xerror("noproc", rbuf, rsize); } if (timeout != INET_INFINITY) { mtd = add_multi_timer(&(desc->mtd), desc->inet.port, caller, timeout, &tcp_inet_multi_timeout); } enq_multi_op(desc, tbuf, INET_REQ_ACCEPT, caller, mtd, &monitor); return ctl_reply(INET_REP_OK, tbuf, 2, rbuf, rsize); } else { n = sizeof(desc->inet.remote); s = sock_accept(desc->inet.s, (struct sockaddr*) &remote, &n); if (s == INVALID_SOCKET) { if (sock_errno() == ERRNO_BLOCK) { ErlDrvMonitor monitor; if (driver_monitor_process(desc->inet.port, driver_caller(desc->inet.port), &monitor) != 0) { return ctl_xerror("noproc", rbuf, rsize); } enq_async_w_tmo(INETP(desc), tbuf, INET_REQ_ACCEPT, timeout, &monitor); desc->inet.state = INET_STATE_ACCEPTING; sock_select(INETP(desc),FD_ACCEPT,1); if (timeout != INET_INFINITY) { driver_set_timer(desc->inet.port, timeout); } } else { return ctl_error(sock_errno(), rbuf, rsize); } } else { ErlDrvTermData caller = driver_caller(desc->inet.port); tcp_descriptor* accept_desc; int err; if ((accept_desc = tcp_inet_copy(desc,s,caller,&err)) == NULL) { sock_close(s); return ctl_error(err, rbuf, rsize); } /* FIXME: may MUST lock access_port * 1 - Port is accessible via the erlang:ports() * 2 - Port is accessible via callers process_info(links) */ accept_desc->inet.remote = remote; SET_NONBLOCKING(accept_desc->inet.s); #ifdef __WIN32__ driver_select(accept_desc->inet.port, accept_desc->inet.event, ERL_DRV_READ, 1); #endif accept_desc->inet.state = INET_STATE_CONNECTED; enq_async(INETP(desc), tbuf, INET_REQ_ACCEPT); async_ok_port(INETP(desc), accept_desc->inet.dport); } return ctl_reply(INET_REP_OK, tbuf, 2, rbuf, rsize); } } case INET_REQ_CLOSE: DEBUGF(("tcp_inet_ctl(%ld): CLOSE\r\n", (long)desc->inet.port)); tcp_close_check(desc); erl_inet_close(INETP(desc)); return ctl_reply(INET_REP_OK, NULL, 0, rbuf, rsize); case TCP_REQ_RECV: { unsigned timeout; char tbuf[2]; int n; DEBUGF(("tcp_inet_ctl(%ld): RECV\r\n", (long)desc->inet.port)); /* INPUT: Timeout(4), Length(4) */ if (!IS_CONNECTED(INETP(desc))) { if (desc->tcp_add_flags & TCP_ADDF_DELAYED_CLOSE_RECV) { desc->tcp_add_flags &= ~(TCP_ADDF_DELAYED_CLOSE_RECV| TCP_ADDF_DELAYED_CLOSE_SEND); return ctl_reply(INET_REP_ERROR, "closed", 6, rbuf, rsize); } return ctl_error(ENOTCONN, rbuf, rsize); } if (desc->inet.active || (len != 8)) return ctl_error(EINVAL, rbuf, rsize); timeout = get_int32(buf); buf += 4; n = get_int32(buf); DEBUGF(("tcp_inet_ctl(%ld) timeout = %d, n = %d\r\n", (long)desc->inet.port,timeout,n)); if ((desc->inet.htype != TCP_PB_RAW) && (n != 0)) return ctl_error(EINVAL, rbuf, rsize); if (n > TCP_MAX_PACKET_SIZE) return ctl_error(ENOMEM, rbuf, rsize); if (enq_async(INETP(desc), tbuf, TCP_REQ_RECV) < 0) return ctl_error(EALREADY, rbuf, rsize); if (tcp_recv(desc, n) == 0) { if (timeout == 0) async_error_am(INETP(desc), am_timeout); else { if (timeout != INET_INFINITY) driver_set_timer(desc->inet.port, timeout); sock_select(INETP(desc),(FD_READ|FD_CLOSE),1); } } return ctl_reply(INET_REP_OK, tbuf, 2, rbuf, rsize); } case TCP_REQ_UNRECV: { DEBUGF(("tcp_inet_ctl(%ld): UNRECV\r\n", (long)desc->inet.port)); if (!IS_CONNECTED(INETP(desc))) return ctl_error(ENOTCONN, rbuf, rsize); tcp_push_buffer(desc, buf, len); if (desc->inet.active) tcp_deliver(desc, 0); return ctl_reply(INET_REP_OK, NULL, 0, rbuf, rsize); } case TCP_REQ_SHUTDOWN: { int how; DEBUGF(("tcp_inet_ctl(%ld): FDOPEN\r\n", (long)desc->inet.port)); if (!IS_CONNECTED(INETP(desc))) { return ctl_error(ENOTCONN, rbuf, rsize); } if (len != 1) { return ctl_error(EINVAL, rbuf, rsize); } how = buf[0]; if (sock_shutdown(INETP(desc)->s, how) == 0) { return ctl_reply(INET_REP_OK, NULL, 0, rbuf, rsize); } else { return ctl_error(sock_errno(), rbuf, rsize); } } default: DEBUGF(("tcp_inet_ctl(%ld): %u\r\n", (long)desc->inet.port, cmd)); return inet_ctl(INETP(desc), cmd, buf, len, rbuf, rsize); } } /* ** tcp_inet_timeout: ** called when timer expire: ** TCP socket may be: ** ** a) receiving -- deselect ** b) connecting -- close socket ** c) accepting -- reset listener ** */ static void tcp_inet_timeout(ErlDrvData e) { tcp_descriptor* desc = (tcp_descriptor*)e; int state = desc->inet.state; DEBUGF(("tcp_inet_timeout(%ld) {s=%d\r\n", (long)desc->inet.port, desc->inet.s)); if ((state & INET_F_MULTI_CLIENT)) { /* Multi-client always means multi-timers */ fire_multi_timers(&(desc->mtd), desc->inet.port, e); } else if ((state & INET_STATE_CONNECTED) == INET_STATE_CONNECTED) { if (desc->busy_on_send) { ASSERT(IS_BUSY(INETP(desc))); desc->inet.caller = desc->inet.busy_caller; desc->inet.state &= ~INET_F_BUSY; desc->busy_on_send = 0; set_busy_port(desc->inet.port, 0); inet_reply_error_am(INETP(desc), am_timeout); if (desc->send_timeout_close) { erl_inet_close(INETP(desc)); } } else { /* assume recv timeout */ ASSERT(!desc->inet.active); sock_select(INETP(desc),(FD_READ|FD_CLOSE),0); desc->i_remain = 0; async_error_am(INETP(desc), am_timeout); } } else if ((state & INET_STATE_CONNECTING) == INET_STATE_CONNECTING) { /* assume connect timeout */ /* close the socket since it's not usable (see man pages) */ erl_inet_close(INETP(desc)); async_error_am(INETP(desc), am_timeout); } else if ((state & INET_STATE_ACCEPTING) == INET_STATE_ACCEPTING) { inet_async_op *this_op = desc->inet.opt; /* timer is set on accept */ sock_select(INETP(desc), FD_ACCEPT, 0); if (this_op != NULL) { driver_demonitor_process(desc->inet.port, &(this_op->monitor)); } desc->inet.state = INET_STATE_LISTENING; async_error_am(INETP(desc), am_timeout); } DEBUGF(("tcp_inet_timeout(%ld) }\r\n", (long)desc->inet.port)); } static void tcp_inet_multi_timeout(ErlDrvData e, ErlDrvTermData caller) { tcp_descriptor* desc = (tcp_descriptor*)e; int id,req; ErlDrvMonitor monitor; if (remove_multi_op(desc, &id, &req, caller, NULL, &monitor) != 0) { return; } driver_demonitor_process(desc->inet.port, &monitor); if (desc->multi_first == NULL) { sock_select(INETP(desc),FD_ACCEPT,0); desc->inet.state = INET_STATE_LISTENING; /* restore state */ } send_async_error(desc->inet.port, desc->inet.dport, id, caller, am_timeout); } /* ** command: ** output on a socket only ! ** a reply code will be sent to connected (caller later) ** {inet_reply, S, Status} ** NOTE! normal sockets use the the tcp_inet_commandv ** but distribution still uses the tcp_inet_command!! */ static void tcp_inet_command(ErlDrvData e, char *buf, int len) { tcp_descriptor* desc = (tcp_descriptor*)e; desc->inet.caller = driver_caller(desc->inet.port); DEBUGF(("tcp_inet_command(%ld) {s=%d\r\n", (long)desc->inet.port, desc->inet.s)); if (!IS_CONNECTED(INETP(desc))) inet_reply_error(INETP(desc), ENOTCONN); else if (tcp_send(desc, buf, len) == 0) inet_reply_ok(INETP(desc)); DEBUGF(("tcp_inet_command(%ld) }\r\n", (long)desc->inet.port)); } static void tcp_inet_commandv(ErlDrvData e, ErlIOVec* ev) { tcp_descriptor* desc = (tcp_descriptor*)e; desc->inet.caller = driver_caller(desc->inet.port); DEBUGF(("tcp_inet_commanv(%ld) {s=%d\r\n", (long)desc->inet.port, desc->inet.s)); if (!IS_CONNECTED(INETP(desc))) { if (desc->tcp_add_flags & TCP_ADDF_DELAYED_CLOSE_SEND) { desc->tcp_add_flags &= ~TCP_ADDF_DELAYED_CLOSE_SEND; inet_reply_error_am(INETP(desc), am_closed); } else inet_reply_error(INETP(desc), ENOTCONN); } else if (tcp_sendv(desc, ev) == 0) inet_reply_ok(INETP(desc)); DEBUGF(("tcp_inet_commandv(%ld) }\r\n", (long)desc->inet.port)); } static void tcp_inet_flush(ErlDrvData e) { tcp_descriptor* desc = (tcp_descriptor*)e; if (!(desc->inet.event_mask & FD_WRITE)) { /* Discard send queue to avoid hanging port (OTP-7615) */ tcp_clear_output(desc); } } static void tcp_inet_process_exit(ErlDrvData e, ErlDrvMonitor *monitorp) { tcp_descriptor* desc = (tcp_descriptor*)e; ErlDrvTermData who = driver_get_monitored_process(desc->inet.port,monitorp); int state = desc->inet.state; if ((state & INET_STATE_MULTI_ACCEPTING) == INET_STATE_MULTI_ACCEPTING) { int id,req; MultiTimerData *timeout; if (remove_multi_op(desc, &id, &req, who, &timeout, NULL) != 0) { return; } if (timeout != NULL) { remove_multi_timer(&(desc->mtd), desc->inet.port, timeout); } if (desc->multi_first == NULL) { sock_select(INETP(desc),FD_ACCEPT,0); desc->inet.state = INET_STATE_LISTENING; /* restore state */ } } else if ((state & INET_STATE_ACCEPTING) == INET_STATE_ACCEPTING) { int did,drid; ErlDrvTermData dcaller; deq_async(INETP(desc), &did, &dcaller, &drid); driver_cancel_timer(desc->inet.port); sock_select(INETP(desc),FD_ACCEPT,0); desc->inet.state = INET_STATE_LISTENING; /* restore state */ } } static void inet_stop_select(ErlDrvEvent event, void* _) { #ifdef __WIN32__ WSACloseEvent((HANDLE)event); #else sock_close((SOCKET)(long)event); #endif } /* The peer socket has closed, cleanup and send event */ static int tcp_recv_closed(tcp_descriptor* desc) { #ifdef DEBUG long port = (long) desc->inet.port; /* Used after driver_exit() */ #endif DEBUGF(("tcp_recv_closed(%ld): s=%d, in %s, line %d\r\n", port, desc->inet.s, __FILE__, __LINE__)); if (IS_BUSY(INETP(desc))) { /* A send is blocked */ desc->inet.caller = desc->inet.busy_caller; tcp_clear_output(desc); if (desc->busy_on_send) { driver_cancel_timer(desc->inet.port); desc->busy_on_send = 0; DEBUGF(("tcp_recv_closed(%ld): busy on send\r\n", port)); } desc->inet.state &= ~INET_F_BUSY; set_busy_port(desc->inet.port, 0); inet_reply_error_am(INETP(desc), am_closed); DEBUGF(("tcp_recv_closed(%ld): busy reply 'closed'\r\n", port)); } if (!desc->inet.active) { /* We must cancel any timer here ! */ driver_cancel_timer(desc->inet.port); /* passive mode do not terminate port ! */ tcp_clear_input(desc); if (desc->inet.exitf) { tcp_clear_output(desc); desc_close(INETP(desc)); } else { desc_close_read(INETP(desc)); } async_error_am_all(INETP(desc), am_closed); /* next time EXBADSEQ will be delivered */ DEBUGF(("tcp_recv_closed(%ld): passive reply all 'closed'\r\n", port)); } else { tcp_clear_input(desc); tcp_closed_message(desc); if (desc->inet.exitf) { driver_exit(desc->inet.port, 0); } else { desc_close_read(INETP(desc)); } DEBUGF(("tcp_recv_closed(%ld): active close\r\n", port)); } DEBUGF(("tcp_recv_closed(%ld): done\r\n", port)); return -1; } /* We have a read error determine the action */ static int tcp_recv_error(tcp_descriptor* desc, int err) { if (err != ERRNO_BLOCK) { if (IS_BUSY(INETP(desc))) { /* A send is blocked */ desc->inet.caller = desc->inet.busy_caller; tcp_clear_output(desc); if (desc->busy_on_send) { driver_cancel_timer(desc->inet.port); desc->busy_on_send = 0; } desc->inet.state &= ~INET_F_BUSY; set_busy_port(desc->inet.port, 0); inet_reply_error_am(INETP(desc), am_closed); } if (!desc->inet.active) { /* We must cancel any timer here ! */ driver_cancel_timer(desc->inet.port); tcp_clear_input(desc); if (desc->inet.exitf) { desc_close(INETP(desc)); } else { desc_close_read(INETP(desc)); } async_error_am_all(INETP(desc), error_atom(err)); } else { tcp_clear_input(desc); tcp_error_message(desc, err); /* first error */ tcp_closed_message(desc); /* then closed */ if (desc->inet.exitf) driver_exit(desc->inet.port, err); else desc_close(INETP(desc)); } return -1; } return 0; } /* ** Calculate number of bytes that remain to read before deliver ** Assume buf, ptr_start, ptr has been setup ** ** return > 0 if more to read ** = 0 if holding complete packet ** < 0 on error ** ** if return value == 0 then *len will hold the length of the first packet ** return value > 0 then if *len == 0 then value means upperbound ** *len > 0 then value means exact ** */ static int tcp_remain(tcp_descriptor* desc, int* len) { char* ptr = desc->i_ptr_start; int nfill = (desc->i_ptr - desc->i_buf->orig_bytes); /* filled */ int nsz = desc->i_bufsz - nfill; /* remain */ int n = desc->i_ptr - ptr; /* number of bytes read */ int tlen; DEBUGF(("tcp_remain(%ld): s=%d, n=%d, nfill=%d nsz=%d\r\n", (long)desc->inet.port, desc->inet.s, n, nfill, nsz)); tlen = packet_get_length(desc->inet.htype, ptr, n, desc->inet.psize, desc->i_bufsz, &desc->http_state); if (tlen > 0) { if (tlen <= n) { /* got a packet */ *len = tlen; DEBUGF((" => nothing remain packet=%d\r\n", tlen)); return 0; } else { /* need known more */ if (tcp_expand_buffer(desc, tlen) < 0) return -1; *len = tlen - n; DEBUGF((" => remain=%d\r\n", *len)); return *len; } } else if (tlen == 0) { /* need unknown more */ *len = 0; if (nsz == 0) { if (nfill == n) goto error; DEBUGF((" => restart more=%d\r\n", nfill - n)); return nfill - n; } else { DEBUGF((" => more=%d \r\n", nsz)); return nsz; } } error: DEBUGF((" => packet error\r\n")); return -1; } /* ** Deliver all packets ready ** if len == 0 then check start with a check for ready packet */ static int tcp_deliver(tcp_descriptor* desc, int len) { int count = 0; int n; /* Poll for ready packet */ if (len == 0) { /* empty buffer or waiting for more input */ if ((desc->i_buf == NULL) || (desc->i_remain > 0)) return count; if ((n = tcp_remain(desc, &len)) != 0) { if (n < 0) /* packet error */ return n; if (len > 0) /* more data pending */ desc->i_remain = len; return count; } } while (len > 0) { int code = 0; inet_input_count(INETP(desc), len); /* deliver binary? */ if (len*4 >= desc->i_buf->orig_size*3) { /* >=75% */ /* something after? */ if (desc->i_ptr_start + len == desc->i_ptr) { /* no */ code = tcp_reply_binary_data(desc, desc->i_buf, (desc->i_ptr_start - desc->i_buf->orig_bytes), len); tcp_clear_input(desc); } else { /* move trail to beginning of a new buffer */ ErlDrvBinary* bin; char* ptr_end = desc->i_ptr_start + len; int sz = desc->i_ptr - ptr_end; bin = alloc_buffer(desc->i_bufsz); memcpy(bin->orig_bytes, ptr_end, sz); code = tcp_reply_binary_data(desc, desc->i_buf, (desc->i_ptr_start- desc->i_buf->orig_bytes), len); free_buffer(desc->i_buf); desc->i_buf = bin; desc->i_ptr_start = desc->i_buf->orig_bytes; desc->i_ptr = desc->i_ptr_start + sz; desc->i_remain = 0; } } else { code = tcp_reply_data(desc, desc->i_ptr_start, len); /* XXX The buffer gets thrown away on error (code < 0) */ /* Windows needs workaround for this in tcp_inet_event... */ desc->i_ptr_start += len; if (desc->i_ptr_start == desc->i_ptr) tcp_clear_input(desc); else desc->i_remain = 0; } if (code < 0) return code; count++; len = 0; if (!desc->inet.active) { if (!desc->busy_on_send) { driver_cancel_timer(desc->inet.port); } sock_select(INETP(desc),(FD_READ|FD_CLOSE),0); if (desc->i_buf != NULL) tcp_restart_input(desc); } else if (desc->i_buf != NULL) { if ((n = tcp_remain(desc, &len)) != 0) { if (n < 0) /* packet error */ return n; tcp_restart_input(desc); if (len > 0) desc->i_remain = len; len = 0; } } } return count; } static int tcp_recv(tcp_descriptor* desc, int request_len) { int n; int len; int nread; if (desc->i_buf == NULL) { /* allocte a read buffer */ int sz = (request_len > 0) ? request_len : desc->inet.bufsz; if ((desc->i_buf = alloc_buffer(sz)) == NULL) return -1; /* XXX: changing bufsz during recv SHOULD/MAY? affect * ongoing operation but is not now */ desc->i_bufsz = sz; /* use i_bufsz not i_buf->orig_size ! */ desc->i_ptr_start = desc->i_buf->orig_bytes; desc->i_ptr = desc->i_ptr_start; nread = sz; if (request_len > 0) desc->i_remain = request_len; else desc->i_remain = 0; } else if (request_len > 0) { /* we have a data in buffer and a request */ n = desc->i_ptr - desc->i_ptr_start; if (n >= request_len) return tcp_deliver(desc, request_len); else if (tcp_expand_buffer(desc, request_len) < 0) return tcp_recv_error(desc, ENOMEM); else desc->i_remain = nread = request_len - n; } else if (desc->i_remain == 0) { /* poll remain from buffer data */ if ((nread = tcp_remain(desc, &len)) < 0) return tcp_recv_error(desc, EMSGSIZE); else if (nread == 0) return tcp_deliver(desc, len); else if (len > 0) desc->i_remain = len; /* set remain */ } else /* remain already set use it */ nread = desc->i_remain; DEBUGF(("tcp_recv(%ld): s=%d about to read %d bytes...\r\n", (long)desc->inet.port, desc->inet.s, nread)); n = sock_recv(desc->inet.s, desc->i_ptr, nread, 0); if (IS_SOCKET_ERROR(n)) { int err = sock_errno(); if (err == ECONNRESET) { DEBUGF((" => detected close (connreset)\r\n")); return tcp_recv_closed(desc); } if (err == ERRNO_BLOCK) { DEBUGF((" => would block\r\n")); return 0; } else { DEBUGF((" => error: %d\r\n", err)); return tcp_recv_error(desc, err); } } else if (n == 0) { DEBUGF((" => detected close\r\n")); return tcp_recv_closed(desc); } DEBUGF((" => got %d bytes\r\n", n)); desc->i_ptr += n; if (desc->i_remain > 0) { desc->i_remain -= n; if (desc->i_remain == 0) return tcp_deliver(desc, desc->i_ptr - desc->i_ptr_start); } else { if ((nread = tcp_remain(desc, &len)) < 0) return tcp_recv_error(desc, EMSGSIZE); else if (nread == 0) return tcp_deliver(desc, len); else if (len > 0) desc->i_remain = len; /* set remain */ } return 0; } #ifdef __WIN32__ static int winsock_event_select(inet_descriptor *desc, int flags, int on) { int save_event_mask = desc->event_mask; desc->forced_events = 0; if (on) desc->event_mask |= flags; else desc->event_mask &= (~flags); DEBUGF(("port %d: winsock_event_select: " "flags=%02X, on=%d, event_mask=%02X\n", desc->port, flags, on, desc->event_mask)); /* The RIGHT WAY (TM) to do this is to make sure: A) The cancelling of all network events is done with NULL as the event parameter (bug in NT's winsock), B) The actual event handle is reset so that it is only raised if one of the requested network events is active, C) Avoid race conditions by making sure that the event cannot be set while we are preparing to set the correct network event mask. The simplest way to do it is to turn off all events, reset the event handle and then, if event_mask != 0, turn on the appropriate events again. */ if (WSAEventSelect(desc->s, NULL, 0) != 0) { DEBUGF(("port %d: winsock_event_select: " "WSAEventSelect returned error, code %d.\n", sock_errno())); desc->event_mask = save_event_mask; return -1; } if (!ResetEvent(desc->event)) { DEBUGF(("port %d: winsock_event_select: " "ResetEvent returned error, code %d.\n", GetLastError())); desc->event_mask = 0; return -1; } if (desc->event_mask != 0) { if (WSAEventSelect(desc->s, desc->event, desc->event_mask) != 0) { DEBUGF(("port %d: winsock_event_select: " "WSAEventSelect returned error, code %d.\n", sock_errno())); desc->event_mask = 0; return -1; } /* Now, WSAEventSelect() is trigged only when the queue goes from full to empty or from empty to full; therefore we need an extra test to see whether it is writeable, readable or closed... */ if ((desc->event_mask & FD_WRITE)) { int do_force = 1; if (desc->send_would_block) { TIMEVAL tmo = {0,0}; FD_SET fds; int ret; FD_ZERO(&fds); FD_SET(desc->s,&fds); do_force = (select(desc->s+1,0,&fds,0,&tmo) > 0); } if (do_force) { SetEvent(desc->event); desc->forced_events |= FD_WRITE; } } if ((desc->event_mask & (FD_READ|FD_CLOSE))) { int readable = 0; int closed = 0; TIMEVAL tmo = {0,0}; FD_SET fds; int ret; unsigned long arg; FD_ZERO(&fds); FD_SET(desc->s,&fds); ret = select(desc->s+1,&fds,0,0,&tmo); if (ret > 0) { ++readable; if (ioctlsocket(desc->s,FIONREAD,&arg) != 0) { ++closed; /* Which gives a FD_CLOSE event */ } else { closed = (arg == 0); } } if ((desc->event_mask & FD_READ) && readable && !closed) { SetEvent(desc->event); desc->forced_events |= FD_READ; } if ((desc->event_mask & FD_CLOSE) && closed) { SetEvent(desc->event); desc->forced_events |= FD_CLOSE; } } } return 0; } static void tcp_inet_event(ErlDrvData e, ErlDrvEvent event) { tcp_descriptor* desc = (tcp_descriptor*)e; WSANETWORKEVENTS netEv; int err; DEBUGF(("tcp_inet_event(%ld) {s=%d\r\n", (long)desc->inet.port, desc->inet.s)); if (WSAEnumNetworkEvents(desc->inet.s, desc->inet.event, &netEv) != 0) { DEBUGF((" => EnumNetworkEvents = %d\r\n", sock_errno() )); goto error; } DEBUGF((" => event=%02X, mask=%02X\r\n", netEv.lNetworkEvents, desc->inet.event_mask)); /* Add the forced events. */ netEv.lNetworkEvents |= desc->inet.forced_events; /* * Calling WSAEventSelect() with a mask of 0 doesn't always turn off * all events. To avoid acting on events we don't want, we mask * the events with mask for the events we really want. */ #ifdef DEBUG if ((netEv.lNetworkEvents & ~(desc->inet.event_mask)) != 0) { DEBUGF(("port %d: ... unexpected event: %d\r\n", desc->inet.port, netEv.lNetworkEvents & ~(desc->inet.event_mask))); } #endif netEv.lNetworkEvents &= desc->inet.event_mask; if (netEv.lNetworkEvents & FD_READ) { if (tcp_inet_input(desc, event) < 0) { goto error; } if (netEv.lNetworkEvents & FD_CLOSE) { /* * We must loop to read out the remaining packets (if any). */ for (;;) { DEBUGF(("Retrying read due to closed port\r\n")); /* XXX The buffer will be thrown away on error (empty que). Possible SMP FIXME. */ if (!desc->inet.active && (desc->inet.opt) == NULL) { goto error; } if (tcp_inet_input(desc, event) < 0) { goto error; } } } } if (netEv.lNetworkEvents & FD_WRITE) { desc->inet.send_would_block = 0; if (tcp_inet_output(desc, event) < 0) goto error; } if (netEv.lNetworkEvents & FD_CONNECT) { if ((err = netEv.iErrorCode[FD_CONNECT_BIT]) != 0) { async_error(INETP(desc), err); } else { tcp_inet_output(desc, event); } } else if (netEv.lNetworkEvents & FD_ACCEPT) { if ((err = netEv.iErrorCode[FD_ACCEPT_BIT]) != 0) async_error(INETP(desc), err); else tcp_inet_input(desc, event); } if (netEv.lNetworkEvents & FD_CLOSE) { /* error in err = netEv.iErrorCode[FD_CLOSE_BIT] */ DEBUGF(("Detected close in %s, line %d\r\n", __FILE__, __LINE__)); tcp_recv_closed(desc); } DEBUGF(("tcp_inet_event(%ld) }\r\n", (long)desc->inet.port)); return; error: DEBUGF(("tcp_inet_event(%ld) error}\r\n", (long)desc->inet.port)); return; } #endif /* WIN32 */ /* socket has input: ** 1. INET_STATE_ACCEPTING => non block accept ? ** 2. INET_STATE_CONNECTED => read input */ static int tcp_inet_input(tcp_descriptor* desc, HANDLE event) { int ret = 0; #ifdef DEBUG long port = (long) desc->inet.port; /* Used after driver_exit() */ #endif DEBUGF(("tcp_inet_input(%ld) {s=%d\r\n", port, desc->inet.s)); if (desc->inet.state == INET_STATE_ACCEPTING) { SOCKET s; unsigned int len; inet_address remote; inet_async_op *this_op = desc->inet.opt; len = sizeof(desc->inet.remote); s = sock_accept(desc->inet.s, (struct sockaddr*) &remote, &len); if (s == INVALID_SOCKET && sock_errno() == ERRNO_BLOCK) { /* Just try again, no real error, just a ghost trigger from poll, keep the default return code and everything else as is */ goto done; } sock_select(INETP(desc),FD_ACCEPT,0); desc->inet.state = INET_STATE_LISTENING; /* restore state */ if (this_op != NULL) { driver_demonitor_process(desc->inet.port, &(this_op->monitor)); } driver_cancel_timer(desc->inet.port); /* posssibly cancel a timer */ if (s == INVALID_SOCKET) { ret = async_error(INETP(desc), sock_errno()); goto done; } else { ErlDrvTermData caller; tcp_descriptor* accept_desc; int err; if (desc->inet.opt == NULL) { /* No caller setup */ sock_close(s); ret = async_error(INETP(desc), EINVAL); goto done; } caller = desc->inet.opt->caller; if ((accept_desc = tcp_inet_copy(desc,s,caller,&err)) == NULL) { sock_close(s); ret = async_error(INETP(desc), err); goto done; } /* FIXME: may MUST lock port * 1 - Port is accessible via the erlang:ports() * 2 - Port is accessible via callers process_info(links) */ accept_desc->inet.remote = remote; SET_NONBLOCKING(accept_desc->inet.s); #ifdef __WIN32__ driver_select(accept_desc->inet.port, accept_desc->inet.event, ERL_DRV_READ, 1); #endif accept_desc->inet.state = INET_STATE_CONNECTED; ret = async_ok_port(INETP(desc), accept_desc->inet.dport); goto done; } } else if (desc->inet.state == INET_STATE_MULTI_ACCEPTING) { SOCKET s; unsigned int len; inet_address remote; int id,req; ErlDrvTermData caller; MultiTimerData *timeout; ErlDrvMonitor monitor; #ifdef HARDDEBUG int times = 0; #endif while (desc->inet.state == INET_STATE_MULTI_ACCEPTING) { len = sizeof(desc->inet.remote); s = sock_accept(desc->inet.s, (struct sockaddr*) &remote, &len); if (s == INVALID_SOCKET && sock_errno() == ERRNO_BLOCK) { /* Just try again, no real error, keep the last return code */ goto done; } #ifdef HARDDEBUG if (++times > 1) { erts_fprintf(stderr,"Accepts in one suite: %d :-)\r\n",times); } #endif if (deq_multi_op(desc,&id,&req,&caller,&timeout,&monitor) != 0) { ret = -1; goto done; } if (desc->multi_first == NULL) { sock_select(INETP(desc),FD_ACCEPT,0); desc->inet.state = INET_STATE_LISTENING; /* restore state */ } if (timeout != NULL) { remove_multi_timer(&(desc->mtd), desc->inet.port, timeout); } driver_demonitor_process(desc->inet.port, &monitor); if (s == INVALID_SOCKET) { /* Not ERRNO_BLOCK, that's handled right away */ ret = send_async_error(desc->inet.port, desc->inet.dport, id, caller, error_atom(sock_errno())); goto done; } else { tcp_descriptor* accept_desc; int err; if ((accept_desc = tcp_inet_copy(desc,s,caller,&err)) == NULL) { sock_close(s); ret = send_async_error(desc->inet.port, desc->inet.dport, id, caller, error_atom(err)); goto done; } accept_desc->inet.remote = remote; SET_NONBLOCKING(accept_desc->inet.s); #ifdef __WIN32__ driver_select(accept_desc->inet.port, accept_desc->inet.event, ERL_DRV_READ, 1); #endif accept_desc->inet.state = INET_STATE_CONNECTED; ret = send_async_ok_port(desc->inet.port, desc->inet.dport, id, caller, accept_desc->inet.dport); } } } else if (IS_CONNECTED(INETP(desc))) { ret = tcp_recv(desc, 0); goto done; } else { /* maybe a close op from connection attempt?? */ sock_select(INETP(desc),FD_ACCEPT,0); DEBUGF(("tcp_inet_input(%ld): s=%d bad state: %04x\r\n", port, desc->inet.s, desc->inet.state)); } done: DEBUGF(("tcp_inet_input(%ld) }\r\n", port)); return ret; } static int tcp_send_error(tcp_descriptor* desc, int err) { /* * If the port is busy, we must do some clean-up before proceeding. */ if (IS_BUSY(INETP(desc))) { desc->inet.caller = desc->inet.busy_caller; if (desc->busy_on_send) { driver_cancel_timer(desc->inet.port); desc->busy_on_send = 0; } desc->inet.state &= ~INET_F_BUSY; set_busy_port(desc->inet.port, 0); } /* * We used to handle "expected errors" differently from unexpected ones. * Now we handle all errors in the same way. We just have to distinguish * between passive and active sockets. */ DEBUGF(("driver_failure_eof(%ld) in %s, line %d\r\n", (long)desc->inet.port, __FILE__, __LINE__)); if (desc->inet.active) { tcp_closed_message(desc); inet_reply_error_am(INETP(desc), am_closed); if (desc->inet.exitf) driver_exit(desc->inet.port, 0); else desc_close(INETP(desc)); } else { tcp_clear_output(desc); tcp_clear_input(desc); tcp_close_check(desc); erl_inet_close(INETP(desc)); if (desc->inet.caller) { inet_reply_error_am(INETP(desc), am_closed); } else { /* No blocking send op to reply to right now. * If next op is a send, make sure it returns {error,closed} * rather than {error,enotconn}. */ desc->tcp_add_flags |= TCP_ADDF_DELAYED_CLOSE_SEND; } /* * Make sure that the next receive operation gets an {error,closed} * result rather than {error,enotconn}. That means that the caller * can safely ignore errors in the send operations and handle them * in the receive operation. */ desc->tcp_add_flags |= TCP_ADDF_DELAYED_CLOSE_RECV; } return -1; } /* ** Send non-blocking vector data */ static int tcp_sendv(tcp_descriptor* desc, ErlIOVec* ev) { int sz; char buf[4]; int h_len; int n; ErlDrvPort ix = desc->inet.port; int len = ev->size; switch(desc->inet.htype) { case TCP_PB_1: put_int8(len, buf); h_len = 1; break; case TCP_PB_2: put_int16(len, buf); h_len = 2; break; case TCP_PB_4: put_int32(len, buf); h_len = 4; break; default: if (len == 0) return 0; h_len = 0; break; } inet_output_count(INETP(desc), len+h_len); if (h_len > 0) { ev->iov[0].iov_base = buf; ev->iov[0].iov_len = h_len; ev->size += h_len; } if ((sz = driver_sizeq(ix)) > 0) { driver_enqv(ix, ev, 0); if (sz+ev->size >= desc->high) { DEBUGF(("tcp_sendv(%ld): s=%d, sender forced busy\r\n", (long)desc->inet.port, desc->inet.s)); desc->inet.state |= INET_F_BUSY; /* mark for low-watermark */ desc->inet.busy_caller = desc->inet.caller; set_busy_port(desc->inet.port, 1); if (desc->send_timeout != INET_INFINITY) { desc->busy_on_send = 1; driver_set_timer(desc->inet.port, desc->send_timeout); } return 1; } } else { int vsize = (ev->vsize > MAX_VSIZE) ? MAX_VSIZE : ev->vsize; DEBUGF(("tcp_sendv(%ld): s=%d, about to send %d,%d bytes\r\n", (long)desc->inet.port, desc->inet.s, h_len, len)); if (desc->tcp_add_flags & TCP_ADDF_DELAY_SEND) { n = 0; } else if (IS_SOCKET_ERROR(sock_sendv(desc->inet.s, ev->iov, vsize, &n, 0))) { if ((sock_errno() != ERRNO_BLOCK) && (sock_errno() != EINTR)) { int err = sock_errno(); DEBUGF(("tcp_sendv(%ld): s=%d, " "sock_sendv(size=2) errno = %d\r\n", (long)desc->inet.port, desc->inet.s, err)); return tcp_send_error(desc, err); } #ifdef __WIN32__ desc->inet.send_would_block = 1; #endif n = 0; } else if (n == ev->size) { ASSERT(NO_SUBSCRIBERS(&INETP(desc)->empty_out_q_subs)); return 0; } else { DEBUGF(("tcp_sendv(%ld): s=%d, only sent %d/%d of %d/%d bytes/items\r\n", (long)desc->inet.port, desc->inet.s, n, vsize, ev->size, ev->vsize)); } DEBUGF(("tcp_sendv(%ld): s=%d, Send failed, queuing\r\n", (long)desc->inet.port, desc->inet.s)); driver_enqv(ix, ev, n); sock_select(INETP(desc),(FD_WRITE|FD_CLOSE), 1); } return 0; } /* ** Send non blocking data */ static int tcp_send(tcp_descriptor* desc, char* ptr, int len) { int sz; char buf[4]; int h_len; int n; ErlDrvPort ix = desc->inet.port; SysIOVec iov[2]; switch(desc->inet.htype) { case TCP_PB_1: put_int8(len, buf); h_len = 1; break; case TCP_PB_2: put_int16(len, buf); h_len = 2; break; case TCP_PB_4: put_int32(len, buf); h_len = 4; break; default: if (len == 0) return 0; h_len = 0; break; } inet_output_count(INETP(desc), len+h_len); if ((sz = driver_sizeq(ix)) > 0) { if (h_len > 0) driver_enq(ix, buf, h_len); driver_enq(ix, ptr, len); if (sz+h_len+len >= desc->high) { DEBUGF(("tcp_send(%ld): s=%d, sender forced busy\r\n", (long)desc->inet.port, desc->inet.s)); desc->inet.state |= INET_F_BUSY; /* mark for low-watermark */ desc->inet.busy_caller = desc->inet.caller; set_busy_port(desc->inet.port, 1); if (desc->send_timeout != INET_INFINITY) { desc->busy_on_send = 1; driver_set_timer(desc->inet.port, desc->send_timeout); } return 1; } } else { iov[0].iov_base = buf; iov[0].iov_len = h_len; iov[1].iov_base = ptr; iov[1].iov_len = len; DEBUGF(("tcp_send(%ld): s=%d, about to send %d,%d bytes\r\n", (long)desc->inet.port, desc->inet.s, h_len, len)); if (desc->tcp_add_flags & TCP_ADDF_DELAY_SEND) { sock_send(desc->inet.s, buf, 0, 0); n = 0; } else if (IS_SOCKET_ERROR(sock_sendv(desc->inet.s,iov,2,&n,0))) { if ((sock_errno() != ERRNO_BLOCK) && (sock_errno() != EINTR)) { int err = sock_errno(); DEBUGF(("tcp_send(%ld): s=%d,sock_sendv(size=2) errno = %d\r\n", (long)desc->inet.port, desc->inet.s, err)); return tcp_send_error(desc, err); } #ifdef __WIN32__ desc->inet.send_would_block = 1; #endif n = 0; } else if (n == len+h_len) { ASSERT(NO_SUBSCRIBERS(&INETP(desc)->empty_out_q_subs)); return 0; } DEBUGF(("tcp_send(%ld): s=%d, Send failed, queuing", (long)desc->inet.port, desc->inet.s)); if (n < h_len) { driver_enq(ix, buf+n, h_len-n); driver_enq(ix, ptr, len); } else { n -= h_len; driver_enq(ix, ptr+n, len-n); } sock_select(INETP(desc),(FD_WRITE|FD_CLOSE), 1); } return 0; } static void tcp_inet_drv_output(ErlDrvData data, ErlDrvEvent event) { (void)tcp_inet_output((tcp_descriptor*)data, (HANDLE)event); } static void tcp_inet_drv_input(ErlDrvData data, ErlDrvEvent event) { (void)tcp_inet_input((tcp_descriptor*)data, (HANDLE)event); } /* socket ready for ouput: ** 1. INET_STATE_CONNECTING => non block connect ? ** 2. INET_STATE_CONNECTED => write output */ static int tcp_inet_output(tcp_descriptor* desc, HANDLE event) { int ret = 0; ErlDrvPort ix = desc->inet.port; DEBUGF(("tcp_inet_output(%ld) {s=%d\r\n", (long)desc->inet.port, desc->inet.s)); if (desc->inet.state == INET_STATE_CONNECTING) { sock_select(INETP(desc),FD_CONNECT,0); driver_cancel_timer(ix); /* posssibly cancel a timer */ #ifndef __WIN32__ /* * XXX This is strange. This *should* work on Windows NT too, * but doesn't. An bug in Winsock 2.0 for Windows NT? * * See "Unix Netwok Programming", W.R.Stevens, p 412 for a * discussion about Unix portability and non blocking connect. */ #ifndef SO_ERROR { int sz = sizeof(desc->inet.remote); int code = sock_peer(desc->inet.s, (struct sockaddr*) &desc->inet.remote, &sz); if (IS_SOCKET_ERROR(code)) { desc->inet.state = INET_STATE_BOUND; /* restore state */ ret = async_error(INETP(desc), sock_errno()); goto done; } } #else { int error = 0; /* Has to be initiated, we check it */ unsigned int sz = sizeof(error); /* even if we get -1 */ int code = sock_getopt(desc->inet.s, SOL_SOCKET, SO_ERROR, (void *)&error, &sz); if ((code < 0) || error) { desc->inet.state = INET_STATE_BOUND; /* restore state */ ret = async_error(INETP(desc), error); goto done; } } #endif /* SO_ERROR */ #endif /* !__WIN32__ */ desc->inet.state = INET_STATE_CONNECTED; if (desc->inet.active) sock_select(INETP(desc),(FD_READ|FD_CLOSE),1); async_ok(INETP(desc)); } else if (IS_CONNECTED(INETP(desc))) { for (;;) { int vsize; int n; SysIOVec* iov; if ((iov = driver_peekq(ix, &vsize)) == NULL) { sock_select(INETP(desc), FD_WRITE, 0); send_empty_out_q_msgs(INETP(desc)); goto done; } vsize = vsize > MAX_VSIZE ? MAX_VSIZE : vsize; DEBUGF(("tcp_inet_output(%ld): s=%d, About to send %d items\r\n", (long)desc->inet.port, desc->inet.s, vsize)); if (IS_SOCKET_ERROR(sock_sendv(desc->inet.s, iov, vsize, &n, 0))) { if ((sock_errno() != ERRNO_BLOCK) && (sock_errno() != EINTR)) { DEBUGF(("tcp_inet_output(%ld): sock_sendv(%d) errno = %d\r\n", (long)desc->inet.port, vsize, sock_errno())); ret = tcp_send_error(desc, sock_errno()); goto done; } #ifdef __WIN32__ desc->inet.send_would_block = 1; #endif goto done; } if (driver_deq(ix, n) <= desc->low) { if (IS_BUSY(INETP(desc))) { desc->inet.caller = desc->inet.busy_caller; desc->inet.state &= ~INET_F_BUSY; set_busy_port(desc->inet.port, 0); /* if we have a timer then cancel and send ok to client */ if (desc->busy_on_send) { driver_cancel_timer(desc->inet.port); desc->busy_on_send = 0; } inet_reply_ok(INETP(desc)); } } } } else { sock_select(INETP(desc),FD_CONNECT,0); DEBUGF(("tcp_inet_output(%ld): bad state: %04x\r\n", (long)desc->inet.port, desc->inet.state)); } done: DEBUGF(("tcp_inet_output(%ld) }\r\n", (long)desc->inet.port)); return ret; } /*----------------------------------------------------------------------------- UDP & SCTP (the latter in a 1<->M Mode) -----------------------------------------------------------------------------*/ #if defined(HAVE_SO_BSDCOMPAT) #if defined(__linux__) #include static int should_use_so_bsdcompat(void) { /* SMP: FIXME this is probably not SMP safe but may be ok anyway? */ static int init_done; static int so_bsdcompat_is_obsolete; if (!init_done) { struct utsname utsname; unsigned int version, patchlevel; init_done = 1; if (uname(&utsname) < 0) { fprintf(stderr, "uname: %s\r\n", strerror(sock_errno())); return 1; } /* Format is .. where the first three are unsigned integers and the last is an arbitrary string. We only care about the first two. */ if (sscanf(utsname.release, "%u.%u", &version, &patchlevel) != 2) { fprintf(stderr, "uname: unexpected release '%s'\r\n", utsname.release); return 1; } /* SO_BSDCOMPAT is deprecated and triggers warnings in 2.5 kernels. It is a no-op in 2.4 but not in 2.2 kernels. */ if (version > 2 || (version == 2 && patchlevel >= 5)) so_bsdcompat_is_obsolete = 1; } return !so_bsdcompat_is_obsolete; } #else /* __linux__ */ #define should_use_so_bsdcompat() 1 #endif /* __linux__ */ #endif /* HAVE_SO_BSDCOMPAT */ static int packet_inet_init() { return 0; } static ErlDrvData packet_inet_start(ErlDrvPort port, char* args, int protocol) { /* "inet_start" returns "ErlDrvData", but in fact it is "inet_descriptor*", so we can preserve it as "ErlDrvData": */ ErlDrvData drvd = inet_start(port, sizeof(udp_descriptor), protocol); udp_descriptor* desc = (udp_descriptor*) drvd; if (desc == NULL) return ERL_DRV_ERROR_ERRNO; desc->read_packets = INET_PACKET_POLL; return drvd; } static ErlDrvData udp_inet_start(ErlDrvPort port, char *args) { return packet_inet_start(port, args, IPPROTO_UDP); } #ifdef HAVE_SCTP static ErlDrvData sctp_inet_start(ErlDrvPort port, char *args) { return packet_inet_start(port, args, IPPROTO_SCTP); } #endif static void packet_inet_stop(ErlDrvData e) { /* There should *never* be any "empty out q" subscribers on an UDP or SCTP socket! NB: as in "inet_start", we can always cast "ErlDRvData" into "udp_descriptor*" or "inet_descriptor*": */ udp_descriptor * udesc = (udp_descriptor*) e; inet_descriptor* descr = INETP(udesc); ASSERT(NO_SUBSCRIBERS(&(descr->empty_out_q_subs))); inet_stop(descr); } static int packet_error(udp_descriptor* udesc, int err) { inet_descriptor * desc = INETP(udesc); if (!desc->active) async_error(desc, err); driver_failure_posix(desc->port, err); return -1; } /* ** Various functions accessible via "port_control" on the Erlang side: */ static int packet_inet_ctl(ErlDrvData e, unsigned int cmd, char* buf, int len, char** rbuf, int rsize) { int replen; udp_descriptor * udesc = (udp_descriptor *) e; inet_descriptor* desc = INETP(udesc); int type = SOCK_DGRAM; int af; #ifdef HAVE_SCTP if (IS_SCTP(desc)) type = SOCK_SEQPACKET; #endif switch(cmd) { case INET_REQ_OPEN: /* open socket and return internal index */ DEBUGF(("packet_inet_ctl(%ld): OPEN\r\n", (long)desc->port)); if (len != 1) { return ctl_error(EINVAL, rbuf, rsize); } switch (buf[0]) { case INET_AF_INET: af = AF_INET; break; #if defined(HAVE_IN6) && defined(AF_INET6) case INET_AF_INET6: af = AF_INET6; break; #endif default: return ctl_error(EINVAL, rbuf, rsize); } replen = inet_ctl_open(desc, af, type, rbuf, rsize); if ((*rbuf)[0] != INET_REP_ERROR) { if (desc->active) sock_select(desc,FD_READ,1); #ifdef HAVE_SO_BSDCOMPAT /* * Make sure that sending UDP packets to a non existing port on an * existing machine doesn't close the socket. (Linux behaves this * way) */ if (should_use_so_bsdcompat()) { int one = 1; /* Ignore errors */ sock_setopt(desc->s, SOL_SOCKET, SO_BSDCOMPAT, &one, sizeof(one)); } #endif } return replen; case INET_REQ_FDOPEN: /* pass in an open (and bound) socket */ DEBUGF(("packet inet_ctl(%ld): FDOPEN\r\n", (long)desc->port)); if ((len == 5) && (buf[0] == INET_AF_INET)) replen = inet_ctl_fdopen(desc, AF_INET, SOCK_DGRAM, (SOCKET)get_int32(buf+1),rbuf,rsize); #if defined(HAVE_IN6) && defined(AF_INET6) else if ((len == 5) && (buf[0] == INET_AF_INET6)) replen = inet_ctl_fdopen(desc, AF_INET6, SOCK_DGRAM, (SOCKET)get_int32(buf+1),rbuf,rsize); #endif else return ctl_error(EINVAL, rbuf, rsize); if ((*rbuf)[0] != INET_REP_ERROR) { if (desc->active) sock_select(desc,FD_READ,1); #ifdef HAVE_SO_BSDCOMPAT /* * Make sure that sending UDP packets to a non existing port on an * existing machine doesn't close the socket. (Linux behaves this * way) */ if (should_use_so_bsdcompat()) { int one = 1; /* Ignore errors */ sock_setopt(desc->s, SOL_SOCKET, SO_BSDCOMPAT, &one, sizeof(one)); } #endif } return replen; case INET_REQ_CLOSE: DEBUGF(("packet_inet_ctl(%ld): CLOSE\r\n", (long)desc->port)); erl_inet_close(desc); return ctl_reply(INET_REP_OK, NULL, 0, rbuf, rsize); return 0; case INET_REQ_CONNECT: { /* UDP and SCTP connect operations are completely different. UDP connect means only setting the default peer addr locally, so it is always synchronous. SCTP connect means actual establish- ing of an SCTP association with a remote peer, so it is async- ronous, and similar to TCP connect. However, unlike TCP, SCTP allows the socket to have multiple simultaneous associations: */ int code; char tbuf[2]; unsigned timeout; DEBUGF(("packet_inet_ctl(%ld): CONNECT\r\n", (long)desc->port)); /* INPUT: [ Timeout(4), Port(2), Address(N) ] */ if (!IS_OPEN(desc)) return ctl_xerror(EXBADPORT, rbuf, rsize); if (!IS_BOUND(desc)) return ctl_xerror(EXBADSEQ, rbuf, rsize); #ifdef HAVE_SCTP if (IS_SCTP(desc)) { inet_address remote; if (IS_CONNECTING(desc)) return ctl_error(EINVAL, rbuf, rsize); if (len < 6) return ctl_error(EINVAL, rbuf, rsize); timeout = get_int32(buf); buf += 4; len -= 4; /* For SCTP, we do not set the peer's addr in desc->remote, as multiple peers are possible: */ if (inet_set_address(desc->sfamily, &remote, buf, &len) == NULL) return ctl_error(EINVAL, rbuf, rsize); sock_select(desc, FD_CONNECT, 1); code = sock_connect(desc->s, &remote.sa, len); if (IS_SOCKET_ERROR(code) && (sock_errno() == EINPROGRESS)) { /* XXX: Unix only -- WinSock would have a different cond! */ desc->state = INET_STATE_CONNECTING; if (timeout != INET_INFINITY) driver_set_timer(desc->port, timeout); enq_async(desc, tbuf, INET_REQ_CONNECT); } else if (code == 0) { /* OK we are connected */ sock_select(desc, FD_CONNECT, 0); desc->state = INET_STATE_CONNECTED; enq_async(desc, tbuf, INET_REQ_CONNECT); async_ok(desc); } else { sock_select(desc, FD_CONNECT, 0); return ctl_error(sock_errno(), rbuf, rsize); } return ctl_reply(INET_REP_OK, tbuf, 2, rbuf, rsize); } #endif /* UDP */ if (len == 0) { /* What does it mean??? NULL sockaddr??? */ sock_connect(desc->s, (struct sockaddr*) NULL, 0); desc->state &= ~INET_F_ACTIVE; enq_async(desc, tbuf, INET_REQ_CONNECT); async_ok (desc); } else if (len < 6) return ctl_error(EINVAL, rbuf, rsize); else { timeout = get_int32(buf); /* IGNORED */ buf += 4; len -= 4; if (inet_set_address(desc->sfamily, &desc->remote, buf, &len) == NULL) return ctl_error(EINVAL, rbuf, rsize); code = sock_connect(desc->s, (struct sockaddr*) &desc->remote, len); if (IS_SOCKET_ERROR(code)) { sock_connect(desc->s, (struct sockaddr*) NULL, 0); desc->state &= ~INET_F_ACTIVE; return ctl_error(sock_errno(), rbuf, rsize); } else /* ok we are connected */ { enq_async(desc, tbuf, INET_REQ_CONNECT); desc->state |= INET_F_ACTIVE; async_ok (desc); } } return ctl_reply(INET_REP_OK, tbuf, 2, rbuf, rsize); } #ifdef HAVE_SCTP case INET_REQ_LISTEN: { /* LISTEN is only for SCTP sockets, not UDP. This code is borrowed from the TCP section. Returns: {ok,[]} on success. */ int backlog; DEBUGF(("packet_inet_ctl(%ld): LISTEN\r\n", (long)desc->port)); if (!IS_SCTP(desc)) return ctl_xerror(EXBADPORT, rbuf, rsize); if (!IS_OPEN(desc)) return ctl_xerror(EXBADPORT, rbuf, rsize); if (!IS_BOUND(desc)) return ctl_xerror(EXBADSEQ, rbuf, rsize); if (len != 2) return ctl_error(EINVAL, rbuf, rsize); backlog = get_int16(buf); if (IS_SOCKET_ERROR(sock_listen(desc->s, backlog))) return ctl_error(sock_errno(), rbuf, rsize); desc->state = INET_STATE_LISTENING; /* XXX: not used? */ return ctl_reply(INET_REP_OK, NULL, 0, rbuf, rsize); } case SCTP_REQ_BINDX: { /* Multi-homing bind for SCTP: */ /* Construct the list of addresses we bind to. The curr limit is 256 addrs. Buff structure: Flags(1), ListItem,...: */ struct sockaddr addrs[256]; char* curr; int add_flag, n, rflag; if (!IS_SCTP(desc)) return ctl_xerror(EXBADPORT, rbuf, rsize); curr = buf; add_flag = get_int8(curr); curr++; for(n=0; n < 256 && curr < buf+len; n++) { /* List item format: Port(2), IP(4|16) -- compatible with "inet_set_address": */ inet_address tmp; int alen = buf + len - curr; curr = inet_set_address(desc->sfamily, &tmp, curr, &alen); if (curr == NULL) return ctl_error(EINVAL, rbuf, rsize); /* Now: we need to squeeze "tmp" into the size of "sockaddr", which is smaller than "tmp" for IPv6 (extra IN6 info will be cut off): */ memcpy(addrs + n, &tmp, sizeof(struct sockaddr)); } /* Make the real flags: */ rflag = add_flag ? SCTP_BINDX_ADD_ADDR : SCTP_BINDX_REM_ADDR; /* Invoke the call: */ if (p_sctp_bindx(desc->s, addrs, n, rflag) < 0) return ctl_error(sock_errno(), rbuf, rsize); desc->state = INET_STATE_BOUND; return ctl_reply(INET_REP_OK, NULL, 0, rbuf, rsize); } #endif /* HAVE_SCTP */ case PACKET_REQ_RECV: { /* THIS IS A FRONT-END for "recv*" requests. It only enqueues the request and possibly returns the data immediately available. The actual data returning function is the back-end ("*input"): */ unsigned timeout; char tbuf[2]; DEBUGF(("packet_inet_ctl(%ld): RECV\r\n", (long)desc->port)); /* INPUT: Timeout(4), Length(4) */ if (!IS_OPEN(desc)) return ctl_xerror(EXBADPORT, rbuf, rsize); if (!IS_BOUND(desc)) return ctl_error(EINVAL, rbuf, rsize); if (desc->active || (len != 8)) return ctl_error(EINVAL, rbuf, rsize); timeout = get_int32(buf); /* The 2nd arg, Length(4), is ignored for both UDP and SCTP protocols, since they are msg-oriented. */ if (enq_async(desc, tbuf, PACKET_REQ_RECV) < 0) return ctl_error(EALREADY, rbuf, rsize); if (packet_inet_input(udesc, desc->event) == 0) { if (timeout == 0) async_error_am(desc, am_timeout); else { if (timeout != INET_INFINITY) driver_set_timer(desc->port, timeout); } } return ctl_reply(INET_REP_OK, tbuf, 2, rbuf, rsize); } default: /* Delegate the request to the INET layer. In particular, INET_REQ_BIND goes here. If the req is not recognised there either, an error is returned: */ return inet_ctl(desc, cmd, buf, len, rbuf, rsize); } } static void packet_inet_timeout(ErlDrvData e) { udp_descriptor * udesc = (udp_descriptor*) e; inet_descriptor * desc = INETP(udesc); if (!(desc->active)) sock_select(desc, FD_READ, 0); async_error_am (desc, am_timeout); } /* THIS IS A "send*" REQUEST; on the Erlang side: "port_command". ** input should be: P1 P0 Address buffer . ** For UDP, buffer (after Address) is just data to be sent. ** For SCTP, buffer contains a list representing 2 items: ** (1) 6 parms for sctp_sndrcvinfo, as in sctp_get_sendparams(); ** (2) 0+ real data bytes. ** There is no destination address -- SCTYP send is performed over ** an existing association, using "sctp_sndrcvinfo" specified. */ static void packet_inet_command(ErlDrvData e, char* buf, int len) { udp_descriptor * udesc= (udp_descriptor*) e; inet_descriptor* desc = INETP(udesc); char* ptr = buf; char* qtr; int sz; int code; inet_address other; desc->caller = driver_caller(desc->port); if (!IS_OPEN(desc)) { inet_reply_error(desc, EINVAL); return; } if (!IS_BOUND(desc)) { inet_reply_error(desc, EINVAL); return; } #ifdef HAVE_SCTP if (IS_SCTP(desc)) { int data_len; struct iovec iov[1]; /* For real data */ struct msghdr mhdr; /* Message wrapper */ struct sctp_sndrcvinfo *sri; /* The actual ancilary data */ union { /* For ancilary data */ struct cmsghdr hdr; char ancd[CMSG_SPACE(sizeof(*sri))]; } cmsg; if (len < SCTP_GET_SENDPARAMS_LEN) { inet_reply_error(desc, EINVAL); return; } /* The ancilary data */ sri = (struct sctp_sndrcvinfo *) (CMSG_DATA(&cmsg.hdr)); /* Get the "sndrcvinfo" from the buffer, advancing the "ptr": */ ptr = sctp_get_sendparams(sri, ptr); /* The ancilary data wrapper */ cmsg.hdr.cmsg_level = IPPROTO_SCTP; cmsg.hdr.cmsg_type = SCTP_SNDRCV; cmsg.hdr.cmsg_len = CMSG_LEN(sizeof(*sri)); data_len = (buf + len) - ptr; /* The whole msg. * Solaris (XPG 4.2) requires iovlen >= 1 even for data_len == 0. */ mhdr.msg_name = NULL; /* Already connected */ mhdr.msg_namelen = 0; iov[0].iov_len = data_len; iov[0].iov_base = ptr; /* The real data */ mhdr.msg_iov = iov; mhdr.msg_iovlen = 1; mhdr.msg_control = cmsg.ancd; /* For ancilary data */ mhdr.msg_controllen = cmsg.hdr.cmsg_len; mhdr.msg_flags = 0; /* Not used with "sendmsg" */ /* Now do the actual sending. NB: "flags" in "sendmsg" itself are NOT used: */ code = sock_sendmsg(desc->s, &mhdr, 0); goto check_result_code; } #endif /* UDP socket. Even if it is connected, there is an address prefix here -- ignored for connected sockets: */ sz = len; qtr = inet_set_address(desc->sfamily, &other, ptr, &sz); if (qtr == NULL) { inet_reply_error(desc, EINVAL); return; } len -= (qtr - ptr); ptr = qtr; /* Now "ptr" is the user data ptr, "len" is data length: */ inet_output_count(desc, len); if (desc->state & INET_F_ACTIVE) { /* connected (ignore address) */ code = sock_send(desc->s, ptr, len, 0); } else { code = sock_sendto(desc->s, ptr, len, 0, &other.sa, sz); } #ifdef HAVE_SCTP check_result_code: /* "code" analysis is the same for both SCTP and UDP cases above: */ #endif if (IS_SOCKET_ERROR(code)) { int err = sock_errno(); inet_reply_error(desc, err); } else inet_reply_ok(desc); } #ifdef __WIN32__ static void packet_inet_event(ErlDrvData e, ErlDrvEvent event) { udp_descriptor * udesc = (udp_descriptor*)e; inet_descriptor* desc = INETP(udesc); WSANETWORKEVENTS netEv; if ((WSAEnumNetworkEvents)(desc->s, desc->event, &netEv) != 0) { DEBUGF(( "port %d: EnumNetwrokEvents = %d\r\n", desc->port, sock_errno() )); return; /* -1; */ } netEv.lNetworkEvents |= desc->forced_events; if (netEv.lNetworkEvents & FD_READ) { packet_inet_input(udesc, (HANDLE)event); } } #endif static void packet_inet_drv_input(ErlDrvData e, ErlDrvEvent event) { (void) packet_inet_input((udp_descriptor*)e, (HANDLE)event); } /* ** THIS IS A BACK-END FOR "recv*" REQUEST, which actually receives the ** data requested, and delivers them to the caller: */ static int packet_inet_input(udp_descriptor* udesc, HANDLE event) { inet_descriptor* desc = INETP(udesc); int n; unsigned int len; inet_address other; char abuf[sizeof(inet_address)]; /* buffer address; enough??? */ int sz; char* ptr; ErlDrvBinary* buf; /* binary */ int packet_count = udesc->read_packets; int count = 0; /* number of packets delivered to owner */ #ifdef HAVE_SCTP struct msghdr mhdr; /* Top-level msg structure */ struct iovec iov[1]; /* Data or Notification Event */ char ancd[SCTP_ANC_BUFF_SIZE]; /* Ancillary Data */ int short_recv = 0; #endif while(packet_count--) { len = sizeof(other); sz = desc->bufsz; /* Allocate space for message and address. NB: "bufsz" is in "desc", but the "buf" itself is allocated separately: */ if ((buf = alloc_buffer(sz+len)) == NULL) return packet_error(udesc, ENOMEM); ptr = buf->orig_bytes + len; /* pointer to message part */ /* Note: On Windows NT, recvfrom() fails if the socket is connected. */ #ifdef HAVE_SCTP /* For SCTP we must use recvmsg() */ if (IS_SCTP(desc)) { iov->iov_base = ptr; /* Data will come here */ iov->iov_len = sz; /* Remaining buffer space */ mhdr.msg_name = &other; /* Peer addr comes into "other" */ mhdr.msg_namelen = len; mhdr.msg_iov = iov; mhdr.msg_iovlen = 1; mhdr.msg_control = ancd; mhdr.msg_controllen = SCTP_ANC_BUFF_SIZE; mhdr.msg_flags = 0; /* To be filled by "recvmsg" */ /* Do the actual SCTP receive: */ n = sock_recvmsg(desc->s, &mhdr, 0); goto check_result; } #endif /* Use recv() instead on connected sockets. */ if ((desc->state & INET_F_ACTIVE)) { n = sock_recv(desc->s, ptr, sz, 0); other = desc->remote; } else n = sock_recvfrom(desc->s, ptr, sz, 0, &other.sa, &len); #ifdef HAVE_SCTP check_result: #endif /* Analyse the result: */ if (IS_SOCKET_ERROR(n) #ifdef HAVE_SCTP || (short_recv = (IS_SCTP(desc) && !(mhdr.msg_flags & MSG_EOR))) /* NB: here we check for EOR not being set -- this is an error as well, we don't support partial msgs: */ #endif ) { int err = sock_errno(); release_buffer(buf); if (err != ERRNO_BLOCK) { if (!desc->active) { #ifdef HAVE_SCTP if (short_recv) { async_error_am(desc, am_short_recv); } else { async_error(desc, err); } #else async_error(desc, err); #endif driver_cancel_timer(desc->port); sock_select(desc,FD_READ,0); } else { /* This is for an active desc only: */ packet_error_message(udesc, err); } } else if (!desc->active) sock_select(desc,FD_READ,1); return count; /* strange, not ready */ } else { int offs; int nsz; int code; unsigned int alen = len; void * extra = NULL; inet_input_count(desc, n); inet_get_address(desc->sfamily, abuf, &other, &alen); /* Copy formatted address to the buffer allocated; "alen" is the actual length which must be <= than the original reserved "len". This means that the addr + data in the buffer are contiguous, but they may start not at the "orig_bytes", but with some "offs" from them: */ ASSERT (alen <= len); sys_memcpy(ptr - alen, abuf, alen); ptr -= alen; nsz = n + alen; /* nsz = data + address */ offs = ptr - buf->orig_bytes; /* initial pointer offset */ /* Check if we need to reallocate binary */ if ((desc->mode == INET_MODE_BINARY) && (desc->hsz < n) && (nsz < BIN_REALLOC_LIMIT(sz))) { ErlDrvBinary* tmp; if ((tmp = realloc_buffer(buf,nsz+offs)) != NULL) buf = tmp; } #ifdef HAVE_SCTP if (IS_SCTP(desc)) extra = &mhdr; #endif /* Actual parsing and return of the data received, occur here: */ code = packet_reply_binary_data(desc, (unsigned int)alen, buf, offs, nsz, extra); free_buffer(buf); if (code < 0) return count; count++; if (!desc->active) { driver_cancel_timer(desc->port); /* possibly cancel */ sock_select(desc,FD_READ,0); return count; /* passive mode (read one packet only) */ } } } return count; } static void packet_inet_drv_output(ErlDrvData e, ErlDrvEvent event) { (void) packet_inet_output((udp_descriptor*)e, (HANDLE)event); } /* UDP/SCTP socket ready for output: ** This is a Back-End for Non-Block SCTP Connect (INET_STATE_CONNECTING) */ static int packet_inet_output(udp_descriptor* udesc, HANDLE event) { inet_descriptor* desc = INETP(udesc); int ret = 0; ErlDrvPort ix = desc->port; DEBUGF(("packet_inet_output(%ld) {s=%d\r\n", (long)desc->port, desc->s)); if (desc->state == INET_STATE_CONNECTING) { sock_select(desc, FD_CONNECT, 0); driver_cancel_timer(ix); /* posssibly cancel a timer */ #ifndef __WIN32__ /* * XXX This is strange. This *should* work on Windows NT too, * but doesn't. An bug in Winsock 2.0 for Windows NT? * * See "Unix Netwok Programming", W.R.Stevens, p 412 for a * discussion about Unix portability and non blocking connect. */ #ifndef SO_ERROR { int sz = sizeof(desc->remote); int code = sock_peer(desc->s, (struct sockaddr*) &desc->remote, &sz); if (IS_SOCKET_ERROR(code)) { desc->state = INET_STATE_BOUND; /* restore state */ ret = async_error(desc, sock_errno()); goto done; } } #else { int error = 0; /* Has to be initiated, we check it */ unsigned int sz = sizeof(error); /* even if we get -1 */ int code = sock_getopt(desc->s, SOL_SOCKET, SO_ERROR, (void *)&error, &sz); if ((code < 0) || error) { desc->state = INET_STATE_BOUND; /* restore state */ ret = async_error(desc, error); goto done; } } #endif /* SO_ERROR */ #endif /* !__WIN32__ */ desc->state = INET_STATE_CONNECTED; async_ok(desc); } else { sock_select(desc,FD_CONNECT,0); DEBUGF(("packet_inet_output(%ld): bad state: %04x\r\n", (long)desc->port, desc->state)); } done: DEBUGF(("packet_inet_output(%ld) }\r\n", (long)desc->port)); return ret; } /*---------------------------------------------------------------------------*/ #ifdef __WIN32__ /* * Although we no longer need to lookup all of winsock2 dynamically, * there are still some function(s) we need to look up. */ static void find_dynamic_functions(void) { char kernel_dll_name[] = "kernel32"; HMODULE module; module = GetModuleHandle(kernel_dll_name); fpSetHandleInformation = (module != NULL) ? (BOOL (WINAPI *)(HANDLE,DWORD,DWORD)) GetProcAddress(module,"SetHandleInformation") : NULL; } /* * We must make sure that the socket handles are not inherited * by port programs (if there are inherited, the sockets will not * get closed when the emulator terminates, and epmd and other Erlang * nodes will not notice that we have exited). * * XXX It is not clear whether this works/is necessary in Windows 95. * There could also be problems with Winsock implementations from other * suppliers than Microsoft. */ static SOCKET make_noninheritable_handle(SOCKET s) { if (s != INVALID_SOCKET) { if (fpSetHandleInformation != NULL) { (*fpSetHandleInformation)((HANDLE) s, HANDLE_FLAG_INHERIT, 0); } else { HANDLE non_inherited; HANDLE this_process = GetCurrentProcess(); if (DuplicateHandle(this_process, (HANDLE) s, this_process, &non_inherited, 0, FALSE, DUPLICATE_SAME_ACCESS)) { sock_close(s); s = (SOCKET) non_inherited; } } } return s; } #endif /* UDP for __WIN32__ */ /* * Multi-timers */ static void absolute_timeout(unsigned millis, ErlDrvNowData *out) { unsigned rest; unsigned long millipart; unsigned long secpart; unsigned long megasecpart; unsigned tmo_secs = (millis / 1000U); unsigned tmo_millis = (millis % 1000); driver_get_now(out); rest = (out->microsecs) % 1000; millipart = ((out->microsecs) / 1000UL); if (rest >= 500) { ++millipart; } secpart = out->secs; megasecpart = out->megasecs; millipart += tmo_millis; secpart += (millipart / 1000000UL); millipart %= 1000000UL; secpart += tmo_secs; megasecpart += (secpart / 1000000UL); secpart %= 1000000UL; out->megasecs = megasecpart; out->secs = secpart; out->microsecs = (millipart * 1000UL); } static unsigned relative_timeout(ErlDrvNowData *in) { ErlDrvNowData now; unsigned rest; unsigned long millipart, in_millis, in_secs, in_megasecs; driver_get_now(&now); in_secs = in->secs; in_megasecs = in->megasecs; rest = (now.microsecs) % 1000; millipart = ((now.microsecs) / 1000UL); if (rest >= 500) { ++millipart; } in_millis = ((in->microsecs) / 1000UL); if ( in_millis < millipart ) { if (in_secs > 0) { --in_secs; } else { in_secs = (1000000UL - 1UL); if (in_megasecs <= now.megasecs) { return 0; } else { --in_megasecs; } } in_millis += 1000UL; } in_millis -= millipart; if (in_secs < now.secs) { if (in_megasecs <= now.megasecs) { return 0; } else { --in_megasecs; } in_secs += 1000000; } in_secs -= now.secs; if (in_megasecs < now.megasecs) { return 0; } else { in_megasecs -= now.megasecs; } return (unsigned) ((in_megasecs * 1000000000UL) + (in_secs * 1000UL) + in_millis); } #ifdef DEBUG static int nowcmp(ErlDrvNowData *d1, ErlDrvNowData *d2) { /* Assume it's not safe to do signed conversion on megasecs... */ if (d1->megasecs < d2->megasecs) { return -1; } else if (d1->megasecs > d2->megasecs) { return 1; } else if (d1->secs != d2->secs) { return ((int) d1->secs) - ((int) d2->secs); } return ((int) d1->microsecs) - ((int) d2->microsecs); } #endif static void fire_multi_timers(MultiTimerData **first, ErlDrvPort port, ErlDrvData data) { unsigned next_timeout; if (!*first) { ASSERT(0); return; } #ifdef DEBUG { ErlDrvNowData chk; driver_get_now(&chk); chk.microsecs /= 10000UL; chk.microsecs *= 10000UL; chk.microsecs += 10000; ASSERT(nowcmp(&chk,&((*first)->when)) >= 0); } #endif do { MultiTimerData *save = *first; *first = save->next; (*(save->timeout_function))(data,save->caller); FREE(save); if (*first == NULL) { return; } (*first)->prev = NULL; next_timeout = relative_timeout(&((*first)->when)); } while (next_timeout == 0); driver_set_timer(port,next_timeout); } static void clean_multi_timers(MultiTimerData **first, ErlDrvPort port) { MultiTimerData *p; if (*first) { driver_cancel_timer(port); } while (*first) { p = *first; *first = p->next; FREE(p); } } static void remove_multi_timer(MultiTimerData **first, ErlDrvPort port, MultiTimerData *p) { if (p->prev != NULL) { p->prev->next = p->next; } else { driver_cancel_timer(port); *first = p->next; if (*first) { unsigned ntmo = relative_timeout(&((*first)->when)); driver_set_timer(port,ntmo); } } if (p->next != NULL) { p->next->prev = p->prev; } FREE(p); } static MultiTimerData *add_multi_timer(MultiTimerData **first, ErlDrvPort port, ErlDrvTermData caller, unsigned timeout, void (*timeout_fun)(ErlDrvData drv_data, ErlDrvTermData caller)) { MultiTimerData *mtd, *p, *s; mtd = ALLOC(sizeof(MultiTimerData)); absolute_timeout(timeout, &(mtd->when)); mtd->timeout_function = timeout_fun; mtd->caller = caller; mtd->next = mtd->prev = NULL; for(p = *first,s = NULL; p != NULL; s = p, p = p->next) { if (p->when.megasecs >= mtd->when.megasecs) { break; } } if (!p || p->when.megasecs > mtd->when.megasecs) { goto found; } for (; p!= NULL; s = p, p = p->next) { if (p->when.secs >= mtd->when.secs) { break; } } if (!p || p->when.secs > mtd->when.secs) { goto found; } for (; p!= NULL; s = p, p = p->next) { if (p->when.microsecs >= mtd->when.microsecs) { break; } } found: if (!p) { if (!s) { *first = mtd; } else { s->next = mtd; mtd->prev = s; } } else { if (!s) { *first = mtd; } else { s->next = mtd; mtd->prev = s; } mtd->next = p; p->prev = mtd; } if (!s) { if (mtd->next) { driver_cancel_timer(port); } driver_set_timer(port,timeout); } return mtd; } /*----------------------------------------------------------------------------- Subscription -----------------------------------------------------------------------------*/ static int save_subscriber(subs, subs_pid) subs_list *subs; ErlDrvTermData subs_pid; { subs_list *tmp; if(NO_SUBSCRIBERS(subs)) { subs->subscriber = subs_pid; subs->next = NULL; } else { tmp = subs->next; subs->next = ALLOC(sizeof(subs_list)); if(subs->next == NULL) { subs->next = tmp; return 0; } subs->next->subscriber = subs_pid; subs->next->next = tmp; } return 1; } static void free_subscribers(subs) subs_list *subs; { subs_list *this; subs_list *next; this = subs->next; while(this) { next = this->next; FREE((void *) this); this = next; } subs->subscriber = NO_PROCESS; subs->next = NULL; } static void send_to_subscribers ( ErlDrvPort port, subs_list *subs, int free_subs, ErlDrvTermData msg[], int msg_len ) { subs_list *this; subs_list *next; int first = 1; if(NO_SUBSCRIBERS(subs)) return; this = subs; while(this) { (void) driver_send_term(port, this->subscriber, msg, msg_len); if(free_subs && !first) { next = this->next; FREE((void *) this); this = next; } else this = this->next; first = 0; } if(free_subs) { subs->subscriber = NO_PROCESS; subs->next = NULL; } } /* * A *very* limited socket interface. Used by the memory tracer * (erl_mtrace.c). */ #include "erl_sock.h" erts_sock_t erts_sock_open(void) { SOCKET s; if(!sock_init()) return ERTS_SOCK_INVALID_SOCKET; s = sock_open(AF_INET, SOCK_STREAM, 0); if (s == INVALID_SOCKET) return ERTS_SOCK_INVALID_SOCKET; return (erts_sock_t) s; } void erts_sock_close(erts_sock_t socket) { if (socket != ERTS_SOCK_INVALID_SOCKET) sock_close((SOCKET) socket); } int erts_sock_connect(erts_sock_t socket, byte *ip_addr, int len, Uint16 port) { SOCKET s = (SOCKET) socket; char buf[2 + 4]; int blen = 6; inet_address addr; if (socket == ERTS_SOCK_INVALID_SOCKET || len != 4) return 0; put_int16(port, buf); memcpy((void *) (buf + 2), (void *) ip_addr, 4); if (!inet_set_address(AF_INET, &addr, buf, &blen)) return 0; if (IS_SOCKET_ERROR(sock_connect(s, (struct sockaddr *) &addr, sizeof(struct sockaddr_in)))) return 0; return 1; } Sint erts_sock_send(erts_sock_t socket, const void *buf, Sint len) { Sint result = (Sint) sock_send((SOCKET) socket, buf, (size_t) len, 0); if (IS_SOCKET_ERROR(result)) return SOCKET_ERROR; return result; } int erts_sock_gethostname(char *buf, int bufsz) { if (IS_SOCKET_ERROR(sock_hostname(buf, bufsz))) return SOCKET_ERROR; return 0; } int erts_sock_errno() { return sock_errno(); }