/* * %CopyrightBegin% * * Copyright Ericsson AB 2004-2009. All Rights Reserved. * * The contents of this file are subject to the Erlang Public License, * Version 1.1, (the "License"); you may not use this file except in * compliance with the License. You should have received a copy of the * Erlang Public License along with this software. If not, it can be * retrieved online at http://www.erlang.org/. * * Software distributed under the License is distributed on an "AS IS" * basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See * the License for the specific language governing rights and limitations * under the License. * * %CopyrightEnd% */ /* $Id$ */ #include "hipe_ppc_asm.h" #include "hipe_literals.h" #define ASM #include "hipe_mode_switch.h" .text .p2align 2 #if defined(__powerpc64__) /* * Enter Erlang from C. * Create a new frame on the C stack. * Save C callee-save registers (r14-r31) in the frame. * Save r0 (C return address) in the caller's LR save slot. * Retrieve the process pointer from the C argument registers. * Return to LR. * Do not clobber the C argument registers (r3-r10). * * Usage: mflr r0 SEMI bl .enter */ .enter: # Our PPC64 ELF ABI frame must include: # - 48 (6*8) bytes for AIX-like linkage area # - 64 (8*8) bytes for AIX-like parameter area for # recursive C calls with up to 8 parameter words # - padding to make the frame a multiple of 16 bytes # - 144 (18*8) bytes for saving r14-r31 # The final size is 256 bytes. # stdu is required for atomic alloc+init stdu r1,-256(r1) /* 0(r1) contains r1+256 */ std r14, 112(r1) std r15, 120(r1) std r16, 128(r1) std r17, 136(r1) std r18, 144(r1) std r19, 152(r1) std r20, 160(r1) std r21, 168(r1) std r22, 176(r1) std r23, 184(r1) std r24, 192(r1) std r25, 200(r1) std r26, 208(r1) std r27, 216(r1) std r28, 224(r1) std r29, 232(r1) std r30, 240(r1) std r31, 248(r1) std r0, 256+16(r1) /* caller saved LR in r0 */ mr P, r3 /* get the process pointer */ blr /* * Return to the calling C function. * The return value is in r3. * * .nosave_exit saves no state * .flush_exit saves NSP and other cached P state. * .suspend_exit also saves RA. */ .suspend_exit: /* save RA, so we can be resumed */ mflr r0 std r0, P_NRA(P) .flush_exit: /* flush cached P state */ SAVE_CACHED_STATE .nosave_exit: /* restore callee-save registers, drop frame, return */ ld r0, 256+16(r1) mtlr r0 ld r14, 112(r1) ld r15, 120(r1) ld r16, 128(r1) ld r17, 136(r1) ld r18, 144(r1) ld r19, 152(r1) ld r20, 160(r1) ld r21, 168(r1) ld r22, 176(r1) ld r23, 184(r1) ld r24, 192(r1) ld r25, 200(r1) ld r26, 208(r1) ld r27, 216(r1) ld r28, 224(r1) ld r29, 232(r1) /* kills HP */ ld r30, 240(r1) /* kills NSP */ ld r31, 248(r1) /* kills P */ addi r1, r1, 256 blr #else /* !__powerpc64__ */ /* * Enter Erlang from C. * Create a new frame on the C stack. * Save C callee-save registers (r14-r31) in the frame. * Save r0 (C return address) in the frame's LR save slot. * Retrieve the process pointer from the C argument registers. * Return to LR. * Do not clobber the C argument registers (r3-r10). * * Usage: mflr r0 SEMI bl .enter */ .enter: # A unified Linux/OSX C frame must include: # - 24 bytes for AIX/OSX-like linkage area # - 28 bytes for AIX/OSX-like parameter area for # recursive C calls with up to 7 parameter words # - 76 bytes for saving r14-r31 and LR # - padding to make it a multiple of 16 bytes # The final size is 128 bytes. # stwu is required for atomic alloc+init stwu r1,-128(r1) /* 0(r1) contains r1+128 */ stw r14, 52(r1) stw r15, 56(r1) stw r16, 60(r1) stw r17, 64(r1) stw r18, 68(r1) stw r19, 72(r1) stw r20, 76(r1) stw r21, 80(r1) stw r22, 84(r1) stw r23, 88(r1) stw r24, 92(r1) stw r25, 96(r1) stw r26, 100(r1) stw r27, 104(r1) stw r28, 108(r1) stw r29, 112(r1) stw r30, 116(r1) stw r31, 120(r1) stw r0, 124(r1) /* caller saved LR in r0 */ mr P, r3 /* get the process pointer */ blr /* * Return to the calling C function. * The return value is in r3. * * .nosave_exit saves no state * .flush_exit saves NSP and other cached P state. * .suspend_exit also saves RA. */ .suspend_exit: /* save RA, so we can be resumed */ mflr r0 stw r0, P_NRA(P) .flush_exit: /* flush cached P state */ SAVE_CACHED_STATE .nosave_exit: /* restore callee-save registers, drop frame, return */ lwz r0, 124(r1) mtlr r0 lwz r14, 52(r1) lwz r15, 56(r1) lwz r16, 60(r1) lwz r17, 64(r1) lwz r18, 68(r1) lwz r19, 72(r1) lwz r20, 76(r1) lwz r21, 80(r1) lwz r22, 84(r1) lwz r23, 88(r1) lwz r24, 92(r1) lwz r25, 96(r1) lwz r26, 100(r1) lwz r27, 104(r1) lwz r28, 108(r1) lwz r29, 112(r1) /* kills HP */ lwz r30, 116(r1) /* kills NSP */ lwz r31, 120(r1) /* kills P */ addi r1, r1, 128 blr #endif /* !__powerpc64__ */ /* * int hipe_ppc_call_to_native(Process *p); * Emulated code recursively calls native code. */ GLOBAL(CSYM(hipe_ppc_call_to_native)) CSYM(hipe_ppc_call_to_native): /* save C context */ mflr r0 bl .enter /* prepare to call the target */ LOAD r0, P_NCALLEE(P) mtctr r0 /* get argument registers */ LOAD_ARG_REGS /* cache some P state in registers */ RESTORE_CACHED_STATE /* call the target */ bctrl /* defines LR (a.k.a. NRA) */ /* FALLTHROUGH * * We export this return address so that hipe_mode_switch() can discover * when native code tailcalls emulated code. * * This is where native code returns to emulated code. */ GLOBAL(ASYM(nbif_return)) ASYM(nbif_return): STORE r3, P_ARG0(P) /* save retval */ li r3, HIPE_MODE_SWITCH_RES_RETURN b .flush_exit /* * int hipe_ppc_return_to_native(Process *p); * Emulated code returns to its native code caller. */ GLOBAL(CSYM(hipe_ppc_return_to_native)) CSYM(hipe_ppc_return_to_native): /* save C context */ mflr r0 bl .enter /* restore return address */ LOAD r0, P_NRA(P) mtlr r0 /* cache some P state in registers */ RESTORE_CACHED_STATE /* get return value */ LOAD r3, P_ARG0(P) /* * Return using the current return address. * The parameters were popped at the original native-to-emulated * call (hipe_call_from_native_is_recursive), so a plain ret suffices. */ blr /* * int hipe_ppc_tailcall_to_native(Process *p); * Emulated code tailcalls native code. */ GLOBAL(CSYM(hipe_ppc_tailcall_to_native)) CSYM(hipe_ppc_tailcall_to_native): /* save C context */ mflr r0 bl .enter /* prepare to call the target */ LOAD r0, P_NCALLEE(P) mtctr r0 /* get argument registers */ LOAD_ARG_REGS /* restore return address */ LOAD r0, P_NRA(P) mtlr r0 /* cache some P state in registers */ RESTORE_CACHED_STATE /* call the target */ bctr /* * int hipe_ppc_throw_to_native(Process *p); * Emulated code throws an exception to its native code caller. */ GLOBAL(CSYM(hipe_ppc_throw_to_native)) CSYM(hipe_ppc_throw_to_native): /* save C context */ mflr r0 bl .enter /* prepare to invoke handler */ LOAD r0, P_NCALLEE(P) /* set by hipe_find_handler() */ mtctr r0 /* cache some P state in registers */ RESTORE_CACHED_STATE /* invoke the handler */ bctr /* * Native code calls emulated code via a stub * which should look as follows: * * stub for f/N: * <set r12 to f's BEAM code address> * <set r0 to N> * b nbif_callemu * * The stub may need to create &nbif_callemu as a 32-bit immediate * in a scratch register if the branch needs a trampoline. The code * for creating a 32-bit immediate in r0 is potentially slower than * for other registers (an add must be replaced by an or, and adds * are potentially faster than ors), so it is better to use r0 for * the arity (a small immediate), making r11 available for trampolines. * (See "The PowerPC Compiler Writer's Guide, section 3.2.3.1.) * * XXX: Different stubs for different number of register parameters? */ GLOBAL(ASYM(nbif_callemu)) ASYM(nbif_callemu): STORE r12, P_BEAM_IP(P) STORE r0, P_ARITY(P) STORE_ARG_REGS li r3, HIPE_MODE_SWITCH_RES_CALL b .suspend_exit /* * nbif_apply */ GLOBAL(ASYM(nbif_apply)) ASYM(nbif_apply): STORE_ARG_REGS li r3, HIPE_MODE_SWITCH_RES_APPLY b .suspend_exit /* * Native code calls an emulated-mode closure via a stub defined below. * * The closure is appended as the last actual parameter, and parameters * beyond the first few passed in registers are pushed onto the stack in * left-to-right order. * Hence, the location of the closure parameter only depends on the number * of parameters in registers, not the total number of parameters. */ #if NR_ARG_REGS >= 6 GLOBAL(ASYM(nbif_ccallemu6)) ASYM(nbif_ccallemu6): STORE ARG5, P_ARG5(P) #if NR_ARG_REGS > 6 mr ARG5, ARG6 #else LOAD ARG5, 0(NSP) #endif /*FALLTHROUGH*/ #endif #if NR_ARG_REGS >= 5 GLOBAL(ASYM(nbif_ccallemu5)) ASYM(nbif_ccallemu5): STORE ARG4, P_ARG4(P) #if NR_ARG_REGS > 5 mr ARG4, ARG5 #else LOAD ARG4, 0(NSP) #endif /*FALLTHROUGH*/ #endif #if NR_ARG_REGS >= 4 GLOBAL(ASYM(nbif_ccallemu4)) ASYM(nbif_ccallemu4): STORE ARG3, P_ARG3(P) #if NR_ARG_REGS > 4 mr ARG3, ARG4 #else LOAD ARG3, 0(NSP) #endif /*FALLTHROUGH*/ #endif #if NR_ARG_REGS >= 3 GLOBAL(ASYM(nbif_ccallemu3)) ASYM(nbif_ccallemu3): STORE ARG2, P_ARG2(P) #if NR_ARG_REGS > 3 mr ARG2, ARG3 #else LOAD ARG2, 0(NSP) #endif /*FALLTHROUGH*/ #endif #if NR_ARG_REGS >= 2 GLOBAL(ASYM(nbif_ccallemu2)) ASYM(nbif_ccallemu2): STORE ARG1, P_ARG1(P) #if NR_ARG_REGS > 2 mr ARG1, ARG2 #else LOAD ARG1, 0(NSP) #endif /*FALLTHROUGH*/ #endif #if NR_ARG_REGS >= 1 GLOBAL(ASYM(nbif_ccallemu1)) ASYM(nbif_ccallemu1): STORE ARG0, P_ARG0(P) #if NR_ARG_REGS > 1 mr ARG0, ARG1 #else LOAD ARG0, 0(NSP) #endif /*FALLTHROUGH*/ #endif GLOBAL(ASYM(nbif_ccallemu0)) ASYM(nbif_ccallemu0): /* We use r4 not ARG0 here because ARG0 is not defined when NR_ARG_REGS == 0. */ #if NR_ARG_REGS == 0 LOAD r4, 0(NSP) /* get the closure */ #endif STORE r4, P_CLOSURE(P) /* save the closure */ li r3, HIPE_MODE_SWITCH_RES_CALL_CLOSURE b .suspend_exit /* * This is where native code suspends. */ GLOBAL(ASYM(nbif_suspend_0)) ASYM(nbif_suspend_0): li r3, HIPE_MODE_SWITCH_RES_SUSPEND b .suspend_exit /* * Suspend from a receive (waiting for a message) */ GLOBAL(ASYM(nbif_suspend_msg)) ASYM(nbif_suspend_msg): li r3, HIPE_MODE_SWITCH_RES_WAIT b .suspend_exit /* * Suspend from a receive with a timeout (waiting for a message) * if (!(p->flags & F_TIMO)) { suspend } * else { return 0; } */ GLOBAL(ASYM(nbif_suspend_msg_timeout)) ASYM(nbif_suspend_msg_timeout): LOAD r4, P_FLAGS(P) li r3, HIPE_MODE_SWITCH_RES_WAIT_TIMEOUT /* this relies on F_TIMO (1<<2) fitting in a uimm16 */ andi. r0, r4, F_TIMO beq- .suspend_exit /* sees the CR state from andi. above */ /* timeout has occurred */ li r3, 0 blr /* * This is the default exception handler for native code. */ GLOBAL(ASYM(nbif_fail)) ASYM(nbif_fail): li r3, HIPE_MODE_SWITCH_RES_THROW b .flush_exit /* no need to save RA */ GLOBAL(CSYM(nbif_0_gc_after_bif)) GLOBAL(CSYM(nbif_1_gc_after_bif)) GLOBAL(CSYM(nbif_2_gc_after_bif)) GLOBAL(CSYM(nbif_3_gc_after_bif)) CSYM(nbif_0_gc_after_bif): li r4, 0 b .gc_after_bif CSYM(nbif_1_gc_after_bif): li r4, 1 b .gc_after_bif CSYM(nbif_2_gc_after_bif): li r4, 2 b .gc_after_bif CSYM(nbif_3_gc_after_bif): li r4, 3 /*FALLTHROUGH*/ .gc_after_bif: stw r4, P_NARITY(P) /* Note: narity is a 32-bit field */ STORE TEMP_LR, P_NRA(P) STORE NSP, P_NSP(P) mflr TEMP_LR mr r4, r3 mr r3, P bl CSYM(erts_gc_after_bif_call) mtlr TEMP_LR LOAD TEMP_LR, P_NRA(P) li r4, 0 stw r4, P_NARITY(P) /* Note: narity is a 32-bit field */ blr /* * We end up here when a BIF called from native signals an * exceptional condition. * The heap pointer was just read from P. * TEMP_LR contains a copy of LR */ GLOBAL(CSYM(nbif_0_simple_exception)) CSYM(nbif_0_simple_exception): li r4, 0 b .nbif_simple_exception GLOBAL(CSYM(nbif_1_simple_exception)) CSYM(nbif_1_simple_exception): li r4, 1 b .nbif_simple_exception GLOBAL(CSYM(nbif_2_simple_exception)) CSYM(nbif_2_simple_exception): li r4, 2 b .nbif_simple_exception GLOBAL(CSYM(nbif_3_simple_exception)) CSYM(nbif_3_simple_exception): li r4, 3 /*FALLTHROUGH*/ .nbif_simple_exception: LOAD r3, P_FREASON(P) CMPI r3, FREASON_TRAP beq- .handle_trap /* * Find and invoke catch handler (it must exist). * The heap pointer was just read from P. * TEMP_LR should contain the current call's return address. * r4 should contain the current call's arity. */ STORE NSP, P_NSP(P) STORE TEMP_LR, P_NRA(P) stw r4, P_NARITY(P) /* Note: narity is a 32-bit field */ /* find and prepare to invoke the handler */ mr r3, P bl CSYM(hipe_handle_exception) /* Note: hipe_handle_exception() conses */ /* prepare to invoke handler */ LOAD r0, P_NCALLEE(P) /* set by hipe_find_handler() */ mtctr r0 RESTORE_CACHED_STATE /* NSP updated by hipe_find_handler() */ /* now invoke the handler */ bctr /* * A BIF failed with freason TRAP: * - the BIF's arity is in r4 * - the native RA was saved in TEMP_LR before the BIF call * - the native heap/stack/reds registers are saved in P */ .handle_trap: li r3, HIPE_MODE_SWITCH_RES_TRAP STORE NSP, P_NSP(P) STORE r4, P_NARITY(P) STORE TEMP_LR, P_NRA(P) b .nosave_exit /* * nbif_stack_trap_ra: trap return address for maintaining * the gray/white stack boundary */ GLOBAL(ASYM(nbif_stack_trap_ra)) ASYM(nbif_stack_trap_ra): /* a return address, not a function */ # This only handles a single return value. # If we have more, we need to save them in the PCB. mr TEMP_ARG0, r3 /* save retval */ STORE NSP, P_NSP(P) mr r3, P bl CSYM(hipe_handle_stack_trap) /* must not cons */ mtctr r3 /* original RA */ mr r3, TEMP_ARG0 /* restore retval */ bctr /* resume at original RA */ /* * hipe_ppc_inc_stack * Caller saved its LR in TEMP_LR (== TEMP1) before calling us. */ GLOBAL(ASYM(hipe_ppc_inc_stack)) ASYM(hipe_ppc_inc_stack): STORE_ARG_REGS mflr TEMP_ARG0 STORE NSP, P_NSP(P) mr r3, P # hipe_inc_nstack reads and writes NSP and NSP_LIMIT, # but does not access LR/RA, HP, or FCALLS. bl CSYM(hipe_inc_nstack) mtlr TEMP_ARG0 LOAD NSP, P_NSP(P) LOAD_ARG_REGS blr #if defined(__linux__) && defined(__ELF__) .section .note.GNU-stack,"",%progbits #endif