/* * %CopyrightBegin% * * Copyright Ericsson AB 1996-2014. All Rights Reserved. * * The contents of this file are subject to the Erlang Public License, * Version 1.1, (the "License"); you may not use this file except in * compliance with the License. You should have received a copy of the * Erlang Public License along with this software. If not, it can be * retrieved online at http://www.erlang.org/. * * Software distributed under the License is distributed on an "AS IS" * basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See * the License for the specific language governing rights and limitations * under the License. * * %CopyrightEnd% */ #ifdef HAVE_CONFIG_H # include "config.h" #endif #ifdef ISC32 #define _POSIX_SOURCE #define _XOPEN_SOURCE #endif #include /* ! */ #include #include #include #include #include #include #include #ifdef ISC32 #include #endif #include #ifdef HAVE_FCNTL_H #include #endif #ifdef HAVE_SYS_IOCTL_H #include #endif #define NEED_CHILD_SETUP_DEFINES #define ERTS_WANT_BREAK_HANDLING #define ERTS_WANT_GOT_SIGUSR1 #define WANT_NONBLOCKING /* must define this to pull in defs from sys.h */ #include "sys.h" #include "erl_thr_progress.h" #if defined(__APPLE__) && defined(__MACH__) && !defined(__DARWIN__) #define __DARWIN__ 1 #endif #ifdef USE_THREADS #include "erl_threads.h" #endif #include "erl_mseg.h" extern char **environ; static erts_smp_rwmtx_t environ_rwmtx; #define MAX_VSIZE 16 /* Max number of entries allowed in an I/O * vector sock_sendv(). */ /* * Don't need global.h, but bif_table.h (included by bif.h), * won't compile otherwise */ #include "global.h" #include "bif.h" #include "erl_sys_driver.h" #include "erl_check_io.h" #include "erl_cpu_topology.h" #ifndef DISABLE_VFORK #define DISABLE_VFORK 0 #endif #ifdef USE_THREADS # ifdef ENABLE_CHILD_WAITER_THREAD # define CHLDWTHR ENABLE_CHILD_WAITER_THREAD # else # define CHLDWTHR 0 # endif #else # define CHLDWTHR 0 #endif /* * [OTP-3906] * Solaris signal management gets confused when threads are used and a * lot of child processes dies. The confusion results in that SIGCHLD * signals aren't delivered to the emulator which in turn results in * a lot of defunct processes in the system. * * The problem seems to appear when a signal is frequently * blocked/unblocked at the same time as the signal is frequently * propagated. The child waiter thread is a workaround for this problem. * The SIGCHLD signal is always blocked (in all threads), and the child * waiter thread fetches the signal by a call to sigwait(). See * child_waiter(). */ typedef struct ErtsSysReportExit_ ErtsSysReportExit; struct ErtsSysReportExit_ { ErtsSysReportExit *next; Eterm port; int pid; int ifd; int ofd; #if CHLDWTHR && !defined(ERTS_SMP) int status; #endif }; /* This data is shared by these drivers - initialized by spawn_init() */ static struct driver_data { ErlDrvPort port_num; int ofd, packet_bytes; ErtsSysReportExit *report_exit; int pid; int alive; int status; } *driver_data; /* indexed by fd */ static ErtsSysReportExit *report_exit_list; #if CHLDWTHR && !defined(ERTS_SMP) static ErtsSysReportExit *report_exit_transit_list; #endif extern int driver_interrupt(int, int); extern void do_break(void); extern void erl_sys_args(int*, char**); /* The following two defs should probably be moved somewhere else */ extern void erts_sys_init_float(void); extern void erl_crash_dump(char* file, int line, char* fmt, ...); #define DIR_SEPARATOR_CHAR '/' #if defined(__ANDROID__) #define SHELL "/system/bin/sh" #else #define SHELL "/bin/sh" #endif /* __ANDROID__ */ #if defined(DEBUG) #define ERL_BUILD_TYPE_MARKER ".debug" #elif defined(PURIFY) #define ERL_BUILD_TYPE_MARKER ".purify" #elif defined(QUANTIFY) #define ERL_BUILD_TYPE_MARKER ".quantify" #elif defined(PURECOV) #define ERL_BUILD_TYPE_MARKER ".purecov" #elif defined(VALGRIND) #define ERL_BUILD_TYPE_MARKER ".valgrind" #else /* opt */ #define ERL_BUILD_TYPE_MARKER #endif #define CHILD_SETUP_PROG_NAME "child_setup" ERL_BUILD_TYPE_MARKER #if !DISABLE_VFORK static char *child_setup_prog; #endif #ifdef DEBUG static int debug_log = 0; #endif #ifdef ERTS_SMP erts_smp_atomic32_t erts_got_sigusr1; #define ERTS_SET_GOT_SIGUSR1 \ erts_smp_atomic32_set_mb(&erts_got_sigusr1, 1) #define ERTS_UNSET_GOT_SIGUSR1 \ erts_smp_atomic32_set_mb(&erts_got_sigusr1, 0) static erts_smp_atomic32_t have_prepared_crash_dump; #define ERTS_PREPARED_CRASH_DUMP \ ((int) erts_smp_atomic32_xchg_nob(&have_prepared_crash_dump, 1)) #else volatile int erts_got_sigusr1; #define ERTS_SET_GOT_SIGUSR1 (erts_got_sigusr1 = 1) #define ERTS_UNSET_GOT_SIGUSR1 (erts_got_sigusr1 = 0) static volatile int have_prepared_crash_dump; #define ERTS_PREPARED_CRASH_DUMP \ (have_prepared_crash_dump++) #endif static erts_smp_atomic_t sys_misc_mem_sz; #if defined(ERTS_SMP) static void smp_sig_notify(char c); static int sig_notify_fds[2] = {-1, -1}; #endif #if CHLDWTHR || defined(ERTS_SMP) erts_mtx_t chld_stat_mtx; #endif #if CHLDWTHR static erts_tid_t child_waiter_tid; /* chld_stat_mtx is used to protect against concurrent accesses of the driver_data fields pid, alive, and status. */ erts_cnd_t chld_stat_cnd; static long children_alive; #define CHLD_STAT_LOCK erts_mtx_lock(&chld_stat_mtx) #define CHLD_STAT_UNLOCK erts_mtx_unlock(&chld_stat_mtx) #define CHLD_STAT_WAIT erts_cnd_wait(&chld_stat_cnd, &chld_stat_mtx) #define CHLD_STAT_SIGNAL erts_cnd_signal(&chld_stat_cnd) #elif defined(ERTS_SMP) /* ------------------------------------------------- */ #define CHLD_STAT_LOCK erts_mtx_lock(&chld_stat_mtx) #define CHLD_STAT_UNLOCK erts_mtx_unlock(&chld_stat_mtx) #else /* ------------------------------------------------------------------- */ #define CHLD_STAT_LOCK #define CHLD_STAT_UNLOCK static volatile int children_died; #endif static struct fd_data { char pbuf[4]; /* hold partial packet bytes */ int psz; /* size of pbuf */ char *buf; char *cpos; int sz; int remain; /* for input on fd */ } *fd_data; /* indexed by fd */ /* static FUNCTION(int, write_fill, (int, char*, int)); unused? */ static void note_child_death(int, int); #if CHLDWTHR static void* child_waiter(void *); #endif static int crashdump_companion_cube_fd = -1; /********************* General functions ****************************/ /* This is used by both the drivers and general I/O, must be set early */ static int max_files = -1; /* * a few variables used by the break handler */ #ifdef ERTS_SMP erts_smp_atomic32_t erts_break_requested; #define ERTS_SET_BREAK_REQUESTED \ erts_smp_atomic32_set_nob(&erts_break_requested, (erts_aint32_t) 1) #define ERTS_UNSET_BREAK_REQUESTED \ erts_smp_atomic32_set_nob(&erts_break_requested, (erts_aint32_t) 0) #else volatile int erts_break_requested = 0; #define ERTS_SET_BREAK_REQUESTED (erts_break_requested = 1) #define ERTS_UNSET_BREAK_REQUESTED (erts_break_requested = 0) #endif /* set early so the break handler has access to initial mode */ static struct termios initial_tty_mode; static int replace_intr = 0; /* assume yes initially, ttsl_init will clear it */ int using_oldshell = 1; #ifdef ERTS_ENABLE_KERNEL_POLL int erts_use_kernel_poll = 0; struct { int (*select)(ErlDrvPort, ErlDrvEvent, int, int); int (*event)(ErlDrvPort, ErlDrvEvent, ErlDrvEventData); void (*check_io_as_interrupt)(void); void (*check_io_interrupt)(int); void (*check_io_interrupt_tmd)(int, erts_short_time_t); void (*check_io)(int); Uint (*size)(void); Eterm (*info)(void *); int (*check_io_debug)(ErtsCheckIoDebugInfo *); } io_func = {0}; int driver_select(ErlDrvPort port, ErlDrvEvent event, int mode, int on) { return (*io_func.select)(port, event, mode, on); } int driver_event(ErlDrvPort port, ErlDrvEvent event, ErlDrvEventData event_data) { return (*io_func.event)(port, event, event_data); } Eterm erts_check_io_info(void *p) { return (*io_func.info)(p); } int erts_check_io_debug(ErtsCheckIoDebugInfo *ip) { return (*io_func.check_io_debug)(ip); } static void init_check_io(void) { if (erts_use_kernel_poll) { io_func.select = driver_select_kp; io_func.event = driver_event_kp; #ifdef ERTS_POLL_NEED_ASYNC_INTERRUPT_SUPPORT io_func.check_io_as_interrupt = erts_check_io_async_sig_interrupt_kp; #endif io_func.check_io_interrupt = erts_check_io_interrupt_kp; io_func.check_io_interrupt_tmd = erts_check_io_interrupt_timed_kp; io_func.check_io = erts_check_io_kp; io_func.size = erts_check_io_size_kp; io_func.info = erts_check_io_info_kp; io_func.check_io_debug = erts_check_io_debug_kp; erts_init_check_io_kp(); max_files = erts_check_io_max_files_kp(); } else { io_func.select = driver_select_nkp; io_func.event = driver_event_nkp; #ifdef ERTS_POLL_NEED_ASYNC_INTERRUPT_SUPPORT io_func.check_io_as_interrupt = erts_check_io_async_sig_interrupt_nkp; #endif io_func.check_io_interrupt = erts_check_io_interrupt_nkp; io_func.check_io_interrupt_tmd = erts_check_io_interrupt_timed_nkp; io_func.check_io = erts_check_io_nkp; io_func.size = erts_check_io_size_nkp; io_func.info = erts_check_io_info_nkp; io_func.check_io_debug = erts_check_io_debug_nkp; erts_init_check_io_nkp(); max_files = erts_check_io_max_files_nkp(); } } #ifdef ERTS_POLL_NEED_ASYNC_INTERRUPT_SUPPORT #define ERTS_CHK_IO_AS_INTR() (*io_func.check_io_as_interrupt)() #else #define ERTS_CHK_IO_AS_INTR() (*io_func.check_io_interrupt)(1) #endif #define ERTS_CHK_IO_INTR (*io_func.check_io_interrupt) #define ERTS_CHK_IO_INTR_TMD (*io_func.check_io_interrupt_tmd) #define ERTS_CHK_IO (*io_func.check_io) #define ERTS_CHK_IO_SZ (*io_func.size) #else /* !ERTS_ENABLE_KERNEL_POLL */ static void init_check_io(void) { erts_init_check_io(); max_files = erts_check_io_max_files(); } #ifdef ERTS_POLL_NEED_ASYNC_INTERRUPT_SUPPORT #define ERTS_CHK_IO_AS_INTR() erts_check_io_async_sig_interrupt() #else #define ERTS_CHK_IO_AS_INTR() erts_check_io_interrupt(1) #endif #define ERTS_CHK_IO_INTR erts_check_io_interrupt #define ERTS_CHK_IO_INTR_TMD erts_check_io_interrupt_timed #define ERTS_CHK_IO erts_check_io #define ERTS_CHK_IO_SZ erts_check_io_size #endif void erts_sys_schedule_interrupt(int set) { ERTS_CHK_IO_INTR(set); } #ifdef ERTS_SMP void erts_sys_schedule_interrupt_timed(int set, erts_short_time_t msec) { ERTS_CHK_IO_INTR_TMD(set, msec); } #endif Uint erts_sys_misc_mem_sz(void) { Uint res = ERTS_CHK_IO_SZ(); res += erts_smp_atomic_read_mb(&sys_misc_mem_sz); return res; } /* * reset the terminal to the original settings on exit */ void sys_tty_reset(int exit_code) { if (using_oldshell && !replace_intr) { SET_BLOCKING(0); } else if (isatty(0)) { tcsetattr(0,TCSANOW,&initial_tty_mode); } } #ifdef __tile__ /* Direct malloc to spread memory around the caches of multiple tiles. */ #include #if defined(MALLOC_USE_HASH) MALLOC_USE_HASH(1); #endif #endif #ifdef USE_THREADS #ifdef ERTS_THR_HAVE_SIG_FUNCS /* * Child thread inherits parents signal mask at creation. In order to * guarantee that the main thread will receive all SIGINT, SIGCHLD, and * SIGUSR1 signals sent to the process, we block these signals in the * parent thread when creating a new thread. */ static sigset_t thr_create_sigmask; #endif /* #ifdef ERTS_THR_HAVE_SIG_FUNCS */ typedef struct { #ifdef ERTS_THR_HAVE_SIG_FUNCS sigset_t saved_sigmask; #endif int sched_bind_data; } erts_thr_create_data_t; /* * thr_create_prepare() is called in parent thread before thread creation. * Returned value is passed as argument to thr_create_cleanup(). */ static void * thr_create_prepare(void) { erts_thr_create_data_t *tcdp; tcdp = erts_alloc(ERTS_ALC_T_TMP, sizeof(erts_thr_create_data_t)); #ifdef ERTS_THR_HAVE_SIG_FUNCS erts_thr_sigmask(SIG_BLOCK, &thr_create_sigmask, &tcdp->saved_sigmask); #endif tcdp->sched_bind_data = erts_sched_bind_atthrcreate_prepare(); return (void *) tcdp; } /* thr_create_cleanup() is called in parent thread after thread creation. */ static void thr_create_cleanup(void *vtcdp) { erts_thr_create_data_t *tcdp = (erts_thr_create_data_t *) vtcdp; erts_sched_bind_atthrcreate_parent(tcdp->sched_bind_data); #ifdef ERTS_THR_HAVE_SIG_FUNCS /* Restore signalmask... */ erts_thr_sigmask(SIG_SETMASK, &tcdp->saved_sigmask, NULL); #endif erts_free(ERTS_ALC_T_TMP, tcdp); } static void thr_create_prepare_child(void *vtcdp) { erts_thr_create_data_t *tcdp = (erts_thr_create_data_t *) vtcdp; #ifdef ERTS_ENABLE_LOCK_COUNT erts_lcnt_thread_setup(); #endif #ifndef NO_FPE_SIGNALS /* * We do not want fp exeptions in other threads than the * scheduler threads. We enable fpe explicitly in the scheduler * threads after this. */ erts_thread_disable_fpe(); #endif erts_sched_bind_atthrcreate_child(tcdp->sched_bind_data); } #endif /* #ifdef USE_THREADS */ void erts_sys_pre_init(void) { erts_printf_add_cr_to_stdout = 1; erts_printf_add_cr_to_stderr = 1; #ifdef USE_THREADS { erts_thr_init_data_t eid = ERTS_THR_INIT_DATA_DEF_INITER; eid.thread_create_child_func = thr_create_prepare_child; /* Before creation in parent */ eid.thread_create_prepare_func = thr_create_prepare; /* After creation in parent */ eid.thread_create_parent_func = thr_create_cleanup, #ifdef ERTS_THR_HAVE_SIG_FUNCS sigemptyset(&thr_create_sigmask); sigaddset(&thr_create_sigmask, SIGINT); /* block interrupt */ sigaddset(&thr_create_sigmask, SIGCHLD); /* block child signals */ sigaddset(&thr_create_sigmask, SIGUSR1); /* block user defined signal */ #endif erts_thr_init(&eid); report_exit_list = NULL; #ifdef ERTS_ENABLE_LOCK_COUNT erts_lcnt_init(); #endif #if CHLDWTHR || defined(ERTS_SMP) erts_mtx_init(&chld_stat_mtx, "child_status"); #endif #if CHLDWTHR #ifndef ERTS_SMP report_exit_transit_list = NULL; #endif erts_cnd_init(&chld_stat_cnd); children_alive = 0; #endif } #ifdef ERTS_SMP erts_smp_atomic32_init_nob(&erts_break_requested, 0); erts_smp_atomic32_init_nob(&erts_got_sigusr1, 0); erts_smp_atomic32_init_nob(&have_prepared_crash_dump, 0); #else erts_break_requested = 0; erts_got_sigusr1 = 0; have_prepared_crash_dump = 0; #endif #if !CHLDWTHR && !defined(ERTS_SMP) children_died = 0; #endif #endif /* USE_THREADS */ erts_smp_atomic_init_nob(&sys_misc_mem_sz, 0); { /* * Unfortunately we depend on fd 0,1,2 in the old shell code. * So if for some reason we do not have those open when we start * we have to open them here. Not doing this can cause the emulator * to deadlock when reaping the fd_driver ports :( */ int fd; /* Make sure fd 0 is open */ if ((fd = open("/dev/null", O_RDONLY)) != 0) close(fd); /* Make sure fds 1 and 2 are open */ while (fd < 3) { fd = open("/dev/null", O_WRONLY); } close(fd); } /* We need a file descriptor to close in the crashdump creation. * We close this one to be sure we can get a fd for our real file ... * so, we create one here ... a stone to carry all the way home. */ crashdump_companion_cube_fd = open("/dev/null", O_RDONLY); /* don't lose it, there will be cake */ } void erl_sys_init(void) { #if !DISABLE_VFORK { int res; char bindir[MAXPATHLEN]; size_t bindirsz = sizeof(bindir); Uint csp_path_sz; res = erts_sys_getenv_raw("BINDIR", bindir, &bindirsz); if (res != 0) { if (res < 0) erl_exit(-1, "Environment variable BINDIR is not set\n"); if (res > 0) erl_exit(-1, "Value of environment variable BINDIR is too large\n"); } if (bindir[0] != DIR_SEPARATOR_CHAR) erl_exit(-1, "Environment variable BINDIR does not contain an" " absolute path\n"); csp_path_sz = (strlen(bindir) + 1 /* DIR_SEPARATOR_CHAR */ + sizeof(CHILD_SETUP_PROG_NAME) + 1); child_setup_prog = erts_alloc(ERTS_ALC_T_CS_PROG_PATH, csp_path_sz); erts_smp_atomic_add_nob(&sys_misc_mem_sz, csp_path_sz); erts_snprintf(child_setup_prog, csp_path_sz, "%s%c%s", bindir, DIR_SEPARATOR_CHAR, CHILD_SETUP_PROG_NAME); } #endif #ifdef USE_SETLINEBUF setlinebuf(stdout); #else setvbuf(stdout, (char *)NULL, _IOLBF, BUFSIZ); #endif erts_sys_init_float(); /* we save this so the break handler can set and reset it properly */ /* also so that we can reset on exit (break handler or not) */ if (isatty(0)) { tcgetattr(0,&initial_tty_mode); } tzset(); /* Required at least for NetBSD with localtime_r() */ } /* signal handling */ #ifdef SIG_SIGSET /* Old SysV */ RETSIGTYPE (*sys_sigset(sig, func))() int sig; RETSIGTYPE (*func)(); { return(sigset(sig, func)); } void sys_sigblock(int sig) { sighold(sig); } void sys_sigrelease(int sig) { sigrelse(sig); } #else /* !SIG_SIGSET */ #ifdef SIG_SIGNAL /* Old BSD */ RETSIGTYPE (*sys_sigset(sig, func))(int, int) int sig; RETSIGTYPE (*func)(); { return(signal(sig, func)); } sys_sigblock(int sig) { sigblock(sig); } sys_sigrelease(int sig) { sigsetmask(sigblock(0) & ~sigmask(sig)); } #else /* !SIG_SIGNAL */ /* The True Way - POSIX!:-) */ RETSIGTYPE (*sys_sigset(int sig, RETSIGTYPE (*func)(int)))(int) { struct sigaction act, oact; sigemptyset(&act.sa_mask); act.sa_flags = 0; act.sa_handler = func; sigaction(sig, &act, &oact); return(oact.sa_handler); } #ifdef USE_THREADS #undef sigprocmask #define sigprocmask erts_thr_sigmask #endif void sys_sigblock(int sig) { sigset_t mask; sigemptyset(&mask); sigaddset(&mask, sig); sigprocmask(SIG_BLOCK, &mask, (sigset_t *)NULL); } void sys_sigrelease(int sig) { sigset_t mask; sigemptyset(&mask); sigaddset(&mask, sig); sigprocmask(SIG_UNBLOCK, &mask, (sigset_t *)NULL); } #endif /* !SIG_SIGNAL */ #endif /* !SIG_SIGSET */ #if (0) /* not used? -- gordon */ static void (*break_func)(); static RETSIGTYPE break_handler(int sig) { #ifdef QNX /* Turn off SIGCHLD during break processing */ sys_sigblock(SIGCHLD); #endif (*break_func)(); #ifdef QNX sys_sigrelease(SIGCHLD); #endif } #endif /* 0 */ static ERTS_INLINE int prepare_crash_dump(int secs) { #define NUFBUF (3) int i; char env[21]; /* enough to hold any 64-bit integer */ size_t envsz; DeclareTmpHeapNoproc(heap,NUFBUF); Port *heart_port; Eterm *hp = heap; Eterm list = NIL; int has_heart = 0; UseTmpHeapNoproc(NUFBUF); if (ERTS_PREPARED_CRASH_DUMP) return 0; /* We have already been called */ heart_port = erts_get_heart_port(); /* Positive secs means an alarm must be set * 0 or negative means no alarm * * Set alarm before we try to write to a port * we don't want to hang on a port write with * no alarm. * */ if (secs >= 0) { alarm((unsigned int)secs); } /* close all viable sockets via emergency close callbacks. * Specifically we want to close epmd sockets. */ erts_emergency_close_ports(); if (heart_port) { has_heart = 1; list = CONS(hp, make_small(8), list); hp += 2; /* send to heart port, CMD = 8, i.e. prepare crash dump =o */ erts_port_output(NULL, ERTS_PORT_SIG_FLG_FORCE_IMM_CALL, heart_port, heart_port->common.id, list, NULL); } /* Make sure we have a fd for our crashdump file. */ close(crashdump_companion_cube_fd); envsz = sizeof(env); i = erts_sys_getenv__("ERL_CRASH_DUMP_NICE", env, &envsz); if (i >= 0) { int nice_val; nice_val = i != 0 ? 0 : atoi(env); if (nice_val > 39) { nice_val = 39; } erts_silence_warn_unused_result(nice(nice_val)); } UnUseTmpHeapNoproc(NUFBUF); #undef NUFBUF return has_heart; } int erts_sys_prepare_crash_dump(int secs) { return prepare_crash_dump(secs); } static ERTS_INLINE void break_requested(void) { /* * just set a flag - checked for and handled by * scheduler threads erts_check_io() (not signal handler). */ #ifdef DEBUG fprintf(stderr,"break!\n"); #endif if (ERTS_BREAK_REQUESTED) erl_exit(ERTS_INTR_EXIT, ""); ERTS_SET_BREAK_REQUESTED; ERTS_CHK_IO_AS_INTR(); /* Make sure we don't sleep in poll */ } /* set up signal handlers for break and quit */ #if (defined(SIG_SIGSET) || defined(SIG_SIGNAL)) static RETSIGTYPE request_break(void) #else static RETSIGTYPE request_break(int signum) #endif { #ifdef ERTS_SMP smp_sig_notify('I'); #else break_requested(); #endif } static ERTS_INLINE void sigusr1_exit(void) { char env[21]; /* enough to hold any 64-bit integer */ size_t envsz; int i, secs = -1; /* We do this at interrupt level, since the main reason for * wanting to generate a crash dump in this way is that the emulator * is hung somewhere, so it won't be able to poll any flag we set here. */ ERTS_SET_GOT_SIGUSR1; envsz = sizeof(env); if ((i = erts_sys_getenv_raw("ERL_CRASH_DUMP_SECONDS", env, &envsz)) >= 0) { secs = i != 0 ? 0 : atoi(env); } prepare_crash_dump(secs); erl_exit(1, "Received SIGUSR1\n"); } #ifdef ETHR_UNUSABLE_SIGUSRX #warning "Unusable SIGUSR1 & SIGUSR2. Disabling use of these signals" #endif #ifndef ETHR_UNUSABLE_SIGUSRX #if (defined(SIG_SIGSET) || defined(SIG_SIGNAL)) static RETSIGTYPE user_signal1(void) #else static RETSIGTYPE user_signal1(int signum) #endif { #ifdef ERTS_SMP smp_sig_notify('1'); #else sigusr1_exit(); #endif } #ifdef QUANTIFY #if (defined(SIG_SIGSET) || defined(SIG_SIGNAL)) static RETSIGTYPE user_signal2(void) #else static RETSIGTYPE user_signal2(int signum) #endif { #ifdef ERTS_SMP smp_sig_notify('2'); #else quantify_save_data(); #endif } #endif #endif /* #ifndef ETHR_UNUSABLE_SIGUSRX */ static void quit_requested(void) { erl_exit(ERTS_INTR_EXIT, ""); } #if (defined(SIG_SIGSET) || defined(SIG_SIGNAL)) static RETSIGTYPE do_quit(void) #else static RETSIGTYPE do_quit(int signum) #endif { #ifdef ERTS_SMP smp_sig_notify('Q'); #else quit_requested(); #endif } /* Disable break */ void erts_set_ignore_break(void) { sys_sigset(SIGINT, SIG_IGN); sys_sigset(SIGQUIT, SIG_IGN); sys_sigset(SIGTSTP, SIG_IGN); } /* Don't use ctrl-c for break handler but let it be used by the shell instead (see user_drv.erl) */ void erts_replace_intr(void) { struct termios mode; if (isatty(0)) { tcgetattr(0, &mode); /* here's an example of how to replace ctrl-c with ctrl-u */ /* mode.c_cc[VKILL] = 0; mode.c_cc[VINTR] = CKILL; */ mode.c_cc[VINTR] = 0; /* disable ctrl-c */ tcsetattr(0, TCSANOW, &mode); replace_intr = 1; } } void init_break_handler(void) { sys_sigset(SIGINT, request_break); #ifndef ETHR_UNUSABLE_SIGUSRX sys_sigset(SIGUSR1, user_signal1); #ifdef QUANTIFY sys_sigset(SIGUSR2, user_signal2); #endif #endif /* #ifndef ETHR_UNUSABLE_SIGUSRX */ sys_sigset(SIGQUIT, do_quit); } int sys_max_files(void) { return(max_files); } static void block_signals(void) { #if !CHLDWTHR sys_sigblock(SIGCHLD); #endif #ifndef ERTS_SMP sys_sigblock(SIGINT); #ifndef ETHR_UNUSABLE_SIGUSRX sys_sigblock(SIGUSR1); #endif #endif } static void unblock_signals(void) { /* Update erl_child_setup.c if changed */ #if !CHLDWTHR sys_sigrelease(SIGCHLD); #endif #ifndef ERTS_SMP sys_sigrelease(SIGINT); #ifndef ETHR_UNUSABLE_SIGUSRX sys_sigrelease(SIGUSR1); #endif /* #ifndef ETHR_UNUSABLE_SIGUSRX */ #endif } /************************** Time stuff **************************/ #ifdef HAVE_GETHRTIME #ifdef GETHRTIME_WITH_CLOCK_GETTIME SysHrTime sys_gethrtime(void) { struct timespec ts; long long result; if (clock_gettime(CLOCK_MONOTONIC,&ts) != 0) { erl_exit(1,"Fatal, could not get clock_monotonic value!, " "errno = %d\n", errno); } result = ((long long) ts.tv_sec) * 1000000000LL + ((long long) ts.tv_nsec); return (SysHrTime) result; } #endif #endif /************************** OS info *******************************/ /* Used by erlang:info/1. */ /* (This code was formerly in drv.XXX/XXX_os_drv.c) */ char os_type[] = "unix"; static int get_number(char **str_ptr) { char* s = *str_ptr; /* Pointer to beginning of string. */ char* dot; /* Pointer to dot in string or NULL. */ if (!isdigit((int) *s)) return 0; if ((dot = strchr(s, '.')) == NULL) { *str_ptr = s+strlen(s); return atoi(s); } else { *dot = '\0'; *str_ptr = dot+1; return atoi(s); } } void os_flavor(char* namebuf, /* Where to return the name. */ unsigned size) /* Size of name buffer. */ { struct utsname uts; /* Information about the system. */ char* s; (void) uname(&uts); for (s = uts.sysname; *s; s++) { if (isupper((int) *s)) { *s = tolower((int) *s); } } strcpy(namebuf, uts.sysname); } void os_version(pMajor, pMinor, pBuild) int* pMajor; /* Pointer to major version. */ int* pMinor; /* Pointer to minor version. */ int* pBuild; /* Pointer to build number. */ { struct utsname uts; /* Information about the system. */ char* release; /* Pointer to the release string: * X.Y or X.Y.Z. */ (void) uname(&uts); release = uts.release; *pMajor = get_number(&release); *pMinor = get_number(&release); *pBuild = get_number(&release); } void init_getenv_state(GETENV_STATE *state) { erts_smp_rwmtx_rlock(&environ_rwmtx); *state = NULL; } char *getenv_string(GETENV_STATE *state0) { char **state = (char **) *state0; char *cp; ERTS_SMP_LC_ASSERT(erts_smp_lc_rwmtx_is_rlocked(&environ_rwmtx)); if (state == NULL) state = environ; cp = *state++; *state0 = (GETENV_STATE) state; return cp; } void fini_getenv_state(GETENV_STATE *state) { *state = NULL; erts_smp_rwmtx_runlock(&environ_rwmtx); } /************************** Port I/O *******************************/ /* I. Common stuff */ /* * Decreasing the size of it below 16384 is not allowed. */ /* II. The spawn/fd/vanilla drivers */ #define ERTS_SYS_READ_BUF_SZ (64*1024) /* Driver interfaces */ static ErlDrvData spawn_start(ErlDrvPort, char*, SysDriverOpts*); static ErlDrvData fd_start(ErlDrvPort, char*, SysDriverOpts*); static ErlDrvSSizeT fd_control(ErlDrvData, unsigned int, char *, ErlDrvSizeT, char **, ErlDrvSizeT); static ErlDrvData vanilla_start(ErlDrvPort, char*, SysDriverOpts*); static int spawn_init(void); static void fd_stop(ErlDrvData); static void stop(ErlDrvData); static void ready_input(ErlDrvData, ErlDrvEvent); static void ready_output(ErlDrvData, ErlDrvEvent); static void output(ErlDrvData, char*, ErlDrvSizeT); static void outputv(ErlDrvData, ErlIOVec*); static void stop_select(ErlDrvEvent, void*); struct erl_drv_entry spawn_driver_entry = { spawn_init, spawn_start, stop, output, ready_input, ready_output, "spawn", NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, ERL_DRV_EXTENDED_MARKER, ERL_DRV_EXTENDED_MAJOR_VERSION, ERL_DRV_EXTENDED_MINOR_VERSION, ERL_DRV_FLAG_USE_PORT_LOCKING, NULL, NULL, stop_select }; struct erl_drv_entry fd_driver_entry = { NULL, fd_start, fd_stop, output, ready_input, ready_output, "fd", NULL, NULL, fd_control, NULL, outputv, NULL, /* ready_async */ NULL, /* flush */ NULL, /* call */ NULL, /* event */ ERL_DRV_EXTENDED_MARKER, ERL_DRV_EXTENDED_MAJOR_VERSION, ERL_DRV_EXTENDED_MINOR_VERSION, 0, /* ERL_DRV_FLAGs */ NULL, /* handle2 */ NULL, /* process_exit */ stop_select }; struct erl_drv_entry vanilla_driver_entry = { NULL, vanilla_start, stop, output, ready_input, ready_output, "vanilla", NULL, NULL, NULL, NULL, NULL, NULL, NULL, /* flush */ NULL, /* call */ NULL, /* event */ ERL_DRV_EXTENDED_MARKER, ERL_DRV_EXTENDED_MAJOR_VERSION, ERL_DRV_EXTENDED_MINOR_VERSION, 0, /* ERL_DRV_FLAGs */ NULL, /* handle2 */ NULL, /* process_exit */ stop_select }; /* Handle SIGCHLD signals. */ #if (defined(SIG_SIGSET) || defined(SIG_SIGNAL)) static RETSIGTYPE onchld(void) #else static RETSIGTYPE onchld(int signum) #endif { #if CHLDWTHR ASSERT(0); /* We should *never* catch a SIGCHLD signal */ #elif defined(ERTS_SMP) smp_sig_notify('C'); #else children_died = 1; ERTS_CHK_IO_AS_INTR(); /* Make sure we don't sleep in poll */ #endif } static int set_driver_data(ErlDrvPort port_num, int ifd, int ofd, int packet_bytes, int read_write, int exit_status, int pid) { Port *prt; ErtsSysReportExit *report_exit; if (!exit_status) report_exit = NULL; else { report_exit = erts_alloc(ERTS_ALC_T_PRT_REP_EXIT, sizeof(ErtsSysReportExit)); report_exit->next = report_exit_list; report_exit->port = erts_drvport2id(port_num); report_exit->pid = pid; report_exit->ifd = read_write & DO_READ ? ifd : -1; report_exit->ofd = read_write & DO_WRITE ? ofd : -1; #if CHLDWTHR && !defined(ERTS_SMP) report_exit->status = 0; #endif report_exit_list = report_exit; } prt = erts_drvport2port(port_num); if (prt != ERTS_INVALID_ERL_DRV_PORT) prt->os_pid = pid; if (read_write & DO_READ) { driver_data[ifd].packet_bytes = packet_bytes; driver_data[ifd].port_num = port_num; driver_data[ifd].report_exit = report_exit; driver_data[ifd].pid = pid; driver_data[ifd].alive = 1; driver_data[ifd].status = 0; if (read_write & DO_WRITE) { driver_data[ifd].ofd = ofd; if (ifd != ofd) driver_data[ofd] = driver_data[ifd]; /* structure copy */ } else { /* DO_READ only */ driver_data[ifd].ofd = -1; } (void) driver_select(port_num, ifd, (ERL_DRV_READ|ERL_DRV_USE), 1); return(ifd); } else { /* DO_WRITE only */ driver_data[ofd].packet_bytes = packet_bytes; driver_data[ofd].port_num = port_num; driver_data[ofd].report_exit = report_exit; driver_data[ofd].ofd = ofd; driver_data[ofd].pid = pid; driver_data[ofd].alive = 1; driver_data[ofd].status = 0; return(ofd); } } static int spawn_init() { int i; #if CHLDWTHR erts_thr_opts_t thr_opts = ERTS_THR_OPTS_DEFAULT_INITER; thr_opts.detached = 0; thr_opts.suggested_stack_size = 0; /* Smallest possible */ #endif sys_sigset(SIGPIPE, SIG_IGN); /* Ignore - we'll handle the write failure */ driver_data = (struct driver_data *) erts_alloc(ERTS_ALC_T_DRV_TAB, max_files * sizeof(struct driver_data)); erts_smp_atomic_add_nob(&sys_misc_mem_sz, max_files * sizeof(struct driver_data)); for (i = 0; i < max_files; i++) driver_data[i].pid = -1; #if CHLDWTHR sys_sigblock(SIGCHLD); #endif sys_sigset(SIGCHLD, onchld); /* Reap children */ #if CHLDWTHR erts_thr_create(&child_waiter_tid, child_waiter, NULL, &thr_opts); #endif return 1; } static void close_pipes(int ifd[2], int ofd[2], int read_write) { if (read_write & DO_READ) { (void) close(ifd[0]); (void) close(ifd[1]); } if (read_write & DO_WRITE) { (void) close(ofd[0]); (void) close(ofd[1]); } } static void init_fd_data(int fd, ErlDrvPort port_num) { fd_data[fd].buf = NULL; fd_data[fd].cpos = NULL; fd_data[fd].remain = 0; fd_data[fd].sz = 0; fd_data[fd].psz = 0; } static char **build_unix_environment(char *block) { int i; int j; int len; char *cp; char **cpp; char** old_env; ERTS_SMP_LC_ASSERT(erts_smp_lc_rwmtx_is_rlocked(&environ_rwmtx)); cp = block; len = 0; while (*cp != '\0') { cp += strlen(cp) + 1; len++; } old_env = environ; while (*old_env++ != NULL) { len++; } cpp = (char **) erts_alloc_fnf(ERTS_ALC_T_ENVIRONMENT, sizeof(char *) * (len+1)); if (cpp == NULL) { return NULL; } cp = block; len = 0; while (*cp != '\0') { cpp[len] = cp; cp += strlen(cp) + 1; len++; } i = len; for (old_env = environ; *old_env; old_env++) { char* old = *old_env; for (j = 0; j < len; j++) { char *s, *t; s = cpp[j]; t = old; while (*s == *t && *s != '=') { s++, t++; } if (*s == '=' && *t == '=') { break; } } if (j == len) { /* New version not found */ cpp[len++] = old; } } for (j = 0; j < i; ) { size_t last = strlen(cpp[j])-1; if (cpp[j][last] == '=' && strchr(cpp[j], '=') == cpp[j]+last) { cpp[j] = cpp[--len]; if (len < i) { i--; } else { j++; } } else { j++; } } cpp[len] = NULL; return cpp; } /* [arndt] In most Unix systems, including Solaris 2.5, 'fork' allocates memory in swap space for the child of a 'fork', whereas 'vfork' does not do this. The natural call to use here is therefore 'vfork'. Due to a bug in 'vfork' in Solaris 2.5 (apparently fixed in 2.6), using 'vfork' can be dangerous in what seems to be these circumstances: If the child code under a vfork sets the signal action to SIG_DFL (or SIG_IGN) for any signal which was previously set to a signal handler, the state of the parent is clobbered, so that the later arrival of such a signal yields a sigsegv in the parent. If the signal was not set to a signal handler, but ignored, all seems to work. If you change the forking code below, beware of this. */ static ErlDrvData spawn_start(ErlDrvPort port_num, char* name, SysDriverOpts* opts) { #define CMD_LINE_PREFIX_STR "exec " #define CMD_LINE_PREFIX_STR_SZ (sizeof(CMD_LINE_PREFIX_STR) - 1) int ifd[2], ofd[2], len, pid, i; char **volatile new_environ; /* volatile since a vfork() then cannot cause 'new_environ' to be clobbered in the parent process. */ int saved_errno; long res; char *cmd_line; #ifndef QNX int unbind; #endif #if !DISABLE_VFORK int no_vfork; size_t no_vfork_sz = sizeof(no_vfork); no_vfork = (erts_sys_getenv_raw("ERL_NO_VFORK", (char *) &no_vfork, &no_vfork_sz) >= 0); #endif switch (opts->read_write) { case DO_READ: if (pipe(ifd) < 0) return ERL_DRV_ERROR_ERRNO; if (ifd[0] >= max_files) { close_pipes(ifd, ofd, opts->read_write); errno = EMFILE; return ERL_DRV_ERROR_ERRNO; } ofd[1] = -1; /* keep purify happy */ break; case DO_WRITE: if (pipe(ofd) < 0) return ERL_DRV_ERROR_ERRNO; if (ofd[1] >= max_files) { close_pipes(ifd, ofd, opts->read_write); errno = EMFILE; return ERL_DRV_ERROR_ERRNO; } ifd[0] = -1; /* keep purify happy */ break; case DO_READ|DO_WRITE: if (pipe(ifd) < 0) return ERL_DRV_ERROR_ERRNO; errno = EMFILE; /* default for next two conditions */ if (ifd[0] >= max_files || pipe(ofd) < 0) { close_pipes(ifd, ofd, DO_READ); return ERL_DRV_ERROR_ERRNO; } if (ofd[1] >= max_files) { close_pipes(ifd, ofd, opts->read_write); errno = EMFILE; return ERL_DRV_ERROR_ERRNO; } break; default: ASSERT(0); return ERL_DRV_ERROR_GENERAL; } if (opts->spawn_type == ERTS_SPAWN_EXECUTABLE) { /* started with spawn_executable, not with spawn */ len = strlen(name); cmd_line = (char *) erts_alloc_fnf(ERTS_ALC_T_TMP, len + 1); if (!cmd_line) { close_pipes(ifd, ofd, opts->read_write); errno = ENOMEM; return ERL_DRV_ERROR_ERRNO; } memcpy((void *) cmd_line,(void *) name, len); cmd_line[len] = '\0'; if (access(cmd_line,X_OK) != 0) { int save_errno = errno; erts_free(ERTS_ALC_T_TMP, cmd_line); errno = save_errno; return ERL_DRV_ERROR_ERRNO; } } else { /* make the string suitable for giving to "sh" */ len = strlen(name); cmd_line = (char *) erts_alloc_fnf(ERTS_ALC_T_TMP, CMD_LINE_PREFIX_STR_SZ + len + 1); if (!cmd_line) { close_pipes(ifd, ofd, opts->read_write); errno = ENOMEM; return ERL_DRV_ERROR_ERRNO; } memcpy((void *) cmd_line, (void *) CMD_LINE_PREFIX_STR, CMD_LINE_PREFIX_STR_SZ); memcpy((void *) (cmd_line + CMD_LINE_PREFIX_STR_SZ), (void *) name, len); cmd_line[CMD_LINE_PREFIX_STR_SZ + len] = '\0'; } erts_smp_rwmtx_rlock(&environ_rwmtx); if (opts->envir == NULL) { new_environ = environ; } else if ((new_environ = build_unix_environment(opts->envir)) == NULL) { erts_smp_rwmtx_runlock(&environ_rwmtx); erts_free(ERTS_ALC_T_TMP, (void *) cmd_line); errno = ENOMEM; return ERL_DRV_ERROR_ERRNO; } #ifndef QNX /* Block child from SIGINT and SIGUSR1. Must be before fork() to be safe. */ block_signals(); CHLD_STAT_LOCK; unbind = erts_sched_bind_atfork_prepare(); #if !DISABLE_VFORK /* See fork/vfork discussion before this function. */ if (no_vfork) { #endif DEBUGF(("Using fork\n")); pid = fork(); if (pid == 0) { /* The child! Setup child... */ if (erts_sched_bind_atfork_child(unbind) != 0) goto child_error; /* OBSERVE! * Keep child setup after vfork() (implemented below and in * erl_child_setup.c) up to date if changes are made here. */ if (opts->use_stdio) { if (opts->read_write & DO_READ) { /* stdout for process */ if (dup2(ifd[1], 1) < 0) goto child_error; if(opts->redir_stderr) /* stderr for process */ if (dup2(ifd[1], 2) < 0) goto child_error; } if (opts->read_write & DO_WRITE) /* stdin for process */ if (dup2(ofd[0], 0) < 0) goto child_error; } else { /* XXX will fail if ofd[0] == 4 (unlikely..) */ if (opts->read_write & DO_READ) if (dup2(ifd[1], 4) < 0) goto child_error; if (opts->read_write & DO_WRITE) if (dup2(ofd[0], 3) < 0) goto child_error; } for (i = opts->use_stdio ? 3 : 5; i < max_files; i++) (void) close(i); if (opts->wd && chdir(opts->wd) < 0) goto child_error; #if defined(USE_SETPGRP_NOARGS) /* SysV */ (void) setpgrp(); #elif defined(USE_SETPGRP) /* BSD */ (void) setpgrp(0, getpid()); #else /* POSIX */ (void) setsid(); #endif unblock_signals(); if (opts->spawn_type == ERTS_SPAWN_EXECUTABLE) { if (opts->argv == NULL) { execle(cmd_line,cmd_line,(char *) NULL, new_environ); } else { if (opts->argv[0] == erts_default_arg0) { opts->argv[0] = cmd_line; } execve(cmd_line, opts->argv, new_environ); if (opts->argv[0] == cmd_line) { opts->argv[0] = erts_default_arg0; } } } else { execle(SHELL, "sh", "-c", cmd_line, (char *) NULL, new_environ); } child_error: _exit(1); } #if !DISABLE_VFORK } #define ENOUGH_BYTES (44) else { /* Use vfork() */ char **cs_argv= erts_alloc(ERTS_ALC_T_TMP,(CS_ARGV_NO_OF_ARGS + 1)* sizeof(char *)); char fd_close_range[ENOUGH_BYTES]; /* 44 bytes are enough to */ char dup2_op[CS_ARGV_NO_OF_DUP2_OPS][ENOUGH_BYTES]; /* hold any "%d:%d" string */ /* on a 64-bit machine. */ /* Setup argv[] for the child setup program (implemented in erl_child_setup.c) */ i = 0; if (opts->use_stdio) { if (opts->read_write & DO_READ){ /* stdout for process */ erts_snprintf(&dup2_op[i++][0], ENOUGH_BYTES, "%d:%d", ifd[1], 1); if(opts->redir_stderr) /* stderr for process */ erts_snprintf(&dup2_op[i++][0], ENOUGH_BYTES, "%d:%d", ifd[1], 2); } if (opts->read_write & DO_WRITE) /* stdin for process */ erts_snprintf(&dup2_op[i++][0], ENOUGH_BYTES, "%d:%d", ofd[0], 0); } else { /* XXX will fail if ofd[0] == 4 (unlikely..) */ if (opts->read_write & DO_READ) erts_snprintf(&dup2_op[i++][0], ENOUGH_BYTES, "%d:%d", ifd[1], 4); if (opts->read_write & DO_WRITE) erts_snprintf(&dup2_op[i++][0], ENOUGH_BYTES, "%d:%d", ofd[0], 3); } for (; i < CS_ARGV_NO_OF_DUP2_OPS; i++) strcpy(&dup2_op[i][0], "-"); erts_snprintf(fd_close_range, ENOUGH_BYTES, "%d:%d", opts->use_stdio ? 3 : 5, max_files-1); cs_argv[CS_ARGV_PROGNAME_IX] = child_setup_prog; cs_argv[CS_ARGV_WD_IX] = opts->wd ? opts->wd : "."; cs_argv[CS_ARGV_UNBIND_IX] = erts_sched_bind_atvfork_child(unbind); cs_argv[CS_ARGV_FD_CR_IX] = fd_close_range; for (i = 0; i < CS_ARGV_NO_OF_DUP2_OPS; i++) cs_argv[CS_ARGV_DUP2_OP_IX(i)] = &dup2_op[i][0]; if (opts->spawn_type == ERTS_SPAWN_EXECUTABLE) { int num = 0; int j = 0; if (opts->argv != NULL) { for(; opts->argv[num] != NULL; ++num) ; } cs_argv = erts_realloc(ERTS_ALC_T_TMP,cs_argv, (CS_ARGV_NO_OF_ARGS + 1 + num + 1) * sizeof(char *)); cs_argv[CS_ARGV_CMD_IX] = "-"; cs_argv[CS_ARGV_NO_OF_ARGS] = cmd_line; if (opts->argv != NULL) { for (;opts->argv[j] != NULL; ++j) { if (opts->argv[j] == erts_default_arg0) { cs_argv[CS_ARGV_NO_OF_ARGS + 1 + j] = cmd_line; } else { cs_argv[CS_ARGV_NO_OF_ARGS + 1 + j] = opts->argv[j]; } } } cs_argv[CS_ARGV_NO_OF_ARGS + 1 + j] = NULL; } else { cs_argv[CS_ARGV_CMD_IX] = cmd_line; /* Command */ cs_argv[CS_ARGV_NO_OF_ARGS] = NULL; } DEBUGF(("Using vfork\n")); pid = vfork(); if (pid == 0) { /* The child! */ /* Observe! * OTP-4389: The child setup program (implemented in * erl_child_setup.c) will perform the necessary setup of the * child before it execs to the user program. This because * vfork() only allow an *immediate* execve() or _exit() in the * child. */ execve(child_setup_prog, cs_argv, new_environ); _exit(1); } erts_free(ERTS_ALC_T_TMP,cs_argv); } #undef ENOUGH_BYTES #endif erts_sched_bind_atfork_parent(unbind); if (pid == -1) { saved_errno = errno; CHLD_STAT_UNLOCK; erts_smp_rwmtx_runlock(&environ_rwmtx); erts_free(ERTS_ALC_T_TMP, (void *) cmd_line); unblock_signals(); close_pipes(ifd, ofd, opts->read_write); errno = saved_errno; return ERL_DRV_ERROR_ERRNO; } #else /* QNX */ if (opts->use_stdio) { if (opts->read_write & DO_READ) qnx_spawn_options.iov[1] = ifd[1]; /* stdout for process */ if (opts->read_write & DO_WRITE) qnx_spawn_options.iov[0] = ofd[0]; /* stdin for process */ } else { if (opts->read_write & DO_READ) qnx_spawn_options.iov[4] = ifd[1]; if (opts->read_write & DO_WRITE) qnx_spawn_options.iov[3] = ofd[0]; } /* Close fds on exec */ for (i = 3; i < max_files; i++) fcntl(i, F_SETFD, 1); qnx_spawn_options.flags = _SPAWN_SETSID; if ((pid = spawnl(P_NOWAIT, SHELL, SHELL, "-c", cmd_line, (char *) 0)) < 0) { erts_free(ERTS_ALC_T_TMP, (void *) cmd_line); reset_qnx_spawn(); erts_smp_rwmtx_runlock(&environ_rwmtx); close_pipes(ifd, ofd, opts->read_write); return ERL_DRV_ERROR_GENERAL; } reset_qnx_spawn(); #endif /* QNX */ erts_free(ERTS_ALC_T_TMP, (void *) cmd_line); if (new_environ != environ) erts_free(ERTS_ALC_T_ENVIRONMENT, (void *) new_environ); if (opts->read_write & DO_READ) (void) close(ifd[1]); if (opts->read_write & DO_WRITE) (void) close(ofd[0]); if (opts->read_write & DO_READ) { SET_NONBLOCKING(ifd[0]); init_fd_data(ifd[0], port_num); } if (opts->read_write & DO_WRITE) { SET_NONBLOCKING(ofd[1]); init_fd_data(ofd[1], port_num); } res = set_driver_data(port_num, ifd[0], ofd[1], opts->packet_bytes, opts->read_write, opts->exit_status, pid); /* Don't unblock SIGCHLD until now, since the call above must first complete putting away the info about our new subprocess. */ unblock_signals(); #if CHLDWTHR ASSERT(children_alive >= 0); if (!(children_alive++)) CHLD_STAT_SIGNAL; /* Wake up child waiter thread if no children was alive before we fork()ed ... */ #endif /* Don't unlock chld_stat_mtx until now of the same reason as above */ CHLD_STAT_UNLOCK; erts_smp_rwmtx_runlock(&environ_rwmtx); return (ErlDrvData)res; #undef CMD_LINE_PREFIX_STR #undef CMD_LINE_PREFIX_STR_SZ } #ifdef QNX static reset_qnx_spawn() { int i; /* Reset qnx_spawn_options */ qnx_spawn_options.flags = 0; qnx_spawn_options.iov[0] = 0xff; qnx_spawn_options.iov[1] = 0xff; qnx_spawn_options.iov[2] = 0xff; qnx_spawn_options.iov[3] = 0xff; } #endif #define FD_DEF_HEIGHT 24 #define FD_DEF_WIDTH 80 /* Control op */ #define FD_CTRL_OP_GET_WINSIZE 100 static int fd_get_window_size(int fd, Uint32 *width, Uint32 *height) { #ifdef TIOCGWINSZ struct winsize ws; if (ioctl(fd,TIOCGWINSZ,&ws) == 0) { *width = (Uint32) ws.ws_col; *height = (Uint32) ws.ws_row; return 0; } #endif return -1; } static ErlDrvSSizeT fd_control(ErlDrvData drv_data, unsigned int command, char *buf, ErlDrvSizeT len, char **rbuf, ErlDrvSizeT rlen) { int fd = (int)(long)drv_data; char resbuff[2*sizeof(Uint32)]; switch (command) { case FD_CTRL_OP_GET_WINSIZE: { Uint32 w,h; if (fd_get_window_size(fd,&w,&h)) return 0; memcpy(resbuff,&w,sizeof(Uint32)); memcpy(resbuff+sizeof(Uint32),&h,sizeof(Uint32)); } break; default: return 0; } if (rlen < 2*sizeof(Uint32)) { *rbuf = driver_alloc(2*sizeof(Uint32)); } memcpy(*rbuf,resbuff,2*sizeof(Uint32)); return 2*sizeof(Uint32); } static ErlDrvData fd_start(ErlDrvPort port_num, char* name, SysDriverOpts* opts) { ErlDrvData res; if (((opts->read_write & DO_READ) && opts->ifd >= max_files) || ((opts->read_write & DO_WRITE) && opts->ofd >= max_files)) return ERL_DRV_ERROR_GENERAL; /* * Historical: * * "Note about nonblocking I/O. * * At least on Solaris, setting the write end of a TTY to nonblocking, * will set the input end to nonblocking as well (and vice-versa). * If erl is run in a pipeline like this: cat | erl * the input end of the TTY will be the standard input of cat. * And cat is not prepared to handle nonblocking I/O." * * Actually, the reason for this is not that the tty itself gets set * in non-blocking mode, but that the "input end" (cat's stdin) and * the "output end" (erlang's stdout) are typically the "same" file * descriptor, dup()'ed from a single fd by one of this process' * ancestors. * * The workaround for this problem used to be a rather bad kludge, * interposing an extra process ("internal cat") between erlang's * stdout and the original stdout, allowing erlang to set its stdout * in non-blocking mode without affecting the stdin of the preceding * process in the pipeline - and being a kludge, it caused all kinds * of weird problems. * * So, this is the current logic: * * The only reason to set non-blocking mode on the output fd at all is * if it's something that can cause a write() to block, of course, * i.e. primarily if it points to a tty, socket, pipe, or fifo. * * If we don't set non-blocking mode when we "should" have, and output * becomes blocked, the entire runtime system will be suspended - this * is normally bad of course, and can happen fairly "easily" - e.g. user * hits ^S on tty - but doesn't necessarily happen. * * If we do set non-blocking mode when we "shouldn't" have, the runtime * system will end up seeing EOF on the input fd (due to the preceding * process dying), which typically will cause the entire runtime system * to terminate immediately (due to whatever erlang process is seeing * the EOF taking it as a signal to halt the system). This is *very* bad. * * I.e. we should take a conservative approach, and only set non- * blocking mode when we a) need to, and b) are reasonably certain * that it won't be a problem. And as in the example above, the problem * occurs when input fd and output fd point to different "things". * * However, determining that they are not just the same "type" of * "thing", but actually the same instance of that type of thing, is * unreasonably complex in many/most cases. * * Also, with pipes, sockets, and fifos it's far from obvious that the * user *wants* non-blocking output: If you're running erlang inside * some complex pipeline, you're probably not running a real-time system * that must never stop, but rather *want* it to suspend if the output * channel is "full". * * So, the bottom line: We will only set the output fd non-blocking if * it points to a tty, and either a) the input fd also points to a tty, * or b) we can make sure that setting the output fd non-blocking * doesn't interfere with someone else's input, via a somewhat milder * kludge than the above. * * Also keep in mind that while this code is almost exclusively run as * a result of an erlang open_port({fd,0,1}, ...), that isn't the only * case - it can be called with any old pre-existing file descriptors, * the relations between which (if they're even two) we can only guess * at - still, we try our best... */ if (opts->read_write & DO_READ) { init_fd_data(opts->ifd, port_num); } if (opts->read_write & DO_WRITE) { init_fd_data(opts->ofd, port_num); /* If we don't have a read end, all bets are off - no non-blocking. */ if (opts->read_write & DO_READ) { if (isatty(opts->ofd)) { /* output fd is a tty:-) */ if (isatty(opts->ifd)) { /* input fd is also a tty */ /* To really do this "right", we should also check that input and output fd point to the *same* tty - but this seems like overkill; ttyname() isn't for free, and this is a very common case - and it's hard to imagine a scenario where setting non-blocking mode here would cause problems - go ahead and do it. */ SET_NONBLOCKING(opts->ofd); } else { /* output fd is a tty, input fd isn't */ /* This is a "problem case", but also common (see the example above) - i.e. it makes sense to try a bit harder before giving up on non-blocking mode: Try to re-open the tty that the output fd points to, and if successful replace the original one with the "new" fd obtained this way, and set *that* one in non-blocking mode. (Yes, this is a kludge.) However, re-opening the tty may fail in a couple of (unusual) cases: 1) The name of the tty (or an equivalent one, i.e. same major/minor number) can't be found, because it actually lives somewhere other than /dev (or wherever ttyname() looks for it), and isn't equivalent to any of those that do live in the "standard" place - this should be *very* unusual. 2) Permissions on the tty don't allow us to open it - it's perfectly possible to have an fd open to an object whose permissions wouldn't allow us to open it. This is not as unusual as it sounds, one case is if the user has su'ed to someone else (not root) - we have a read/write fd open to the tty (because it has been inherited all the way down here), but we have neither read nor write permission for the tty. In these cases, we finally give up, and don't set the output fd in non-blocking mode. */ char *tty; int nfd; if ((tty = ttyname(opts->ofd)) != NULL && (nfd = open(tty, O_WRONLY)) != -1) { dup2(nfd, opts->ofd); close(nfd); SET_NONBLOCKING(opts->ofd); } } } } } CHLD_STAT_LOCK; res = (ErlDrvData)(long)set_driver_data(port_num, opts->ifd, opts->ofd, opts->packet_bytes, opts->read_write, 0, -1); CHLD_STAT_UNLOCK; return res; } static void clear_fd_data(int fd) { if (fd_data[fd].sz > 0) { erts_free(ERTS_ALC_T_FD_ENTRY_BUF, (void *) fd_data[fd].buf); ASSERT(erts_smp_atomic_read_nob(&sys_misc_mem_sz) >= fd_data[fd].sz); erts_smp_atomic_add_nob(&sys_misc_mem_sz, -1*fd_data[fd].sz); } fd_data[fd].buf = NULL; fd_data[fd].sz = 0; fd_data[fd].remain = 0; fd_data[fd].cpos = NULL; fd_data[fd].psz = 0; } static void nbio_stop_fd(ErlDrvPort prt, int fd) { driver_select(prt,fd,DO_READ|DO_WRITE,0); clear_fd_data(fd); SET_BLOCKING(fd); } static void fd_stop(ErlDrvData fd) /* Does not close the fds */ { int ofd; nbio_stop_fd(driver_data[(int)(long)fd].port_num, (int)(long)fd); ofd = driver_data[(int)(long)fd].ofd; if (ofd != (int)(long)fd && ofd != -1) nbio_stop_fd(driver_data[(int)(long)fd].port_num, (int)(long)ofd); } static ErlDrvData vanilla_start(ErlDrvPort port_num, char* name, SysDriverOpts* opts) { int flags, fd; ErlDrvData res; flags = (opts->read_write == DO_READ ? O_RDONLY : opts->read_write == DO_WRITE ? O_WRONLY|O_CREAT|O_TRUNC : O_RDWR|O_CREAT); if ((fd = open(name, flags, 0666)) < 0) return ERL_DRV_ERROR_GENERAL; if (fd >= max_files) { close(fd); return ERL_DRV_ERROR_GENERAL; } SET_NONBLOCKING(fd); init_fd_data(fd, port_num); CHLD_STAT_LOCK; res = (ErlDrvData)(long)set_driver_data(port_num, fd, fd, opts->packet_bytes, opts->read_write, 0, -1); CHLD_STAT_UNLOCK; return res; } /* Note that driver_data[fd].ifd == fd if the port was opened for reading, */ /* otherwise (i.e. write only) driver_data[fd].ofd = fd. */ static void stop(ErlDrvData fd) { ErlDrvPort prt; int ofd; prt = driver_data[(int)(long)fd].port_num; nbio_stop_fd(prt, (int)(long)fd); ofd = driver_data[(int)(long)fd].ofd; if (ofd != (int)(long)fd && (int)(long)ofd != -1) nbio_stop_fd(prt, ofd); else ofd = -1; CHLD_STAT_LOCK; /* Mark as unused. */ driver_data[(int)(long)fd].pid = -1; CHLD_STAT_UNLOCK; /* SMP note: Close has to be last thing done (open file descriptors work as locks on driver_data[] entries) */ driver_select(prt, (int)(long)fd, ERL_DRV_USE, 0); /* close(fd); */ if (ofd >= 0) { driver_select(prt, (int)(long)ofd, ERL_DRV_USE, 0); /* close(ofd); */ } } static void outputv(ErlDrvData e, ErlIOVec* ev) { int fd = (int)(long)e; ErlDrvPort ix = driver_data[fd].port_num; int pb = driver_data[fd].packet_bytes; int ofd = driver_data[fd].ofd; ssize_t n; ErlDrvSizeT sz; char lb[4]; char* lbp; ErlDrvSizeT len = ev->size; /* (len > ((unsigned long)-1 >> (4-pb)*8)) */ /* if (pb >= 0 && (len & (((ErlDrvSizeT)1 << (pb*8))) - 1) != len) {*/ if (((pb == 2) && (len > 0xffff)) || (pb == 1 && len > 0xff)) { driver_failure_posix(ix, EINVAL); return; /* -1; */ } /* Handles 0 <= pb <= 4 only */ put_int32((Uint32) len, lb); lbp = lb + (4-pb); ev->iov[0].iov_base = lbp; ev->iov[0].iov_len = pb; ev->size += pb; if ((sz = driver_sizeq(ix)) > 0) { driver_enqv(ix, ev, 0); if (sz + ev->size >= (1 << 13)) set_busy_port(ix, 1); } else { int vsize = ev->vsize > MAX_VSIZE ? MAX_VSIZE : ev->vsize; n = writev(ofd, (const void *) (ev->iov), vsize); if (n == ev->size) return; /* 0;*/ if (n < 0) { if ((errno != EINTR) && (errno != ERRNO_BLOCK)) { driver_failure_posix(ix, errno); return; /* -1;*/ } n = 0; } driver_enqv(ix, ev, n); /* n is the skip value */ driver_select(ix, ofd, ERL_DRV_WRITE|ERL_DRV_USE, 1); } /* return 0;*/ } static void output(ErlDrvData e, char* buf, ErlDrvSizeT len) { int fd = (int)(long)e; ErlDrvPort ix = driver_data[fd].port_num; int pb = driver_data[fd].packet_bytes; int ofd = driver_data[fd].ofd; ssize_t n; ErlDrvSizeT sz; char lb[4]; char* lbp; struct iovec iv[2]; /* (len > ((unsigned long)-1 >> (4-pb)*8)) */ if (((pb == 2) && (len > 0xffff)) || (pb == 1 && len > 0xff)) { driver_failure_posix(ix, EINVAL); return; /* -1; */ } put_int32(len, lb); lbp = lb + (4-pb); if ((sz = driver_sizeq(ix)) > 0) { driver_enq(ix, lbp, pb); driver_enq(ix, buf, len); if (sz + len + pb >= (1 << 13)) set_busy_port(ix, 1); } else { iv[0].iov_base = lbp; iv[0].iov_len = pb; /* should work for pb=0 */ iv[1].iov_base = buf; iv[1].iov_len = len; n = writev(ofd, iv, 2); if (n == pb+len) return; /* 0; */ if (n < 0) { if ((errno != EINTR) && (errno != ERRNO_BLOCK)) { driver_failure_posix(ix, errno); return; /* -1; */ } n = 0; } if (n < pb) { driver_enq(ix, lbp+n, pb-n); driver_enq(ix, buf, len); } else { n -= pb; driver_enq(ix, buf+n, len-n); } driver_select(ix, ofd, ERL_DRV_WRITE|ERL_DRV_USE, 1); } return; /* 0; */ } static int port_inp_failure(ErlDrvPort port_num, int ready_fd, int res) /* Result: 0 (eof) or -1 (error) */ { int err = errno; ASSERT(res <= 0); (void) driver_select(port_num, ready_fd, ERL_DRV_READ|ERL_DRV_WRITE, 0); clear_fd_data(ready_fd); if (res == 0) { if (driver_data[ready_fd].report_exit) { CHLD_STAT_LOCK; if (driver_data[ready_fd].alive) { /* * We have eof and want to report exit status, but the process * hasn't exited yet. When it does report_exit_status() will * driver_select() this fd which will make sure that we get * back here with driver_data[ready_fd].alive == 0 and * driver_data[ready_fd].status set. */ CHLD_STAT_UNLOCK; return 0; } else { int status = driver_data[ready_fd].status; CHLD_STAT_UNLOCK; /* We need not be prepared for stopped/continued processes. */ if (WIFSIGNALED(status)) status = 128 + WTERMSIG(status); else status = WEXITSTATUS(status); driver_report_exit(driver_data[ready_fd].port_num, status); } } driver_failure_eof(port_num); } else { driver_failure_posix(port_num, err); } return 0; } /* fd is the drv_data that is returned from the */ /* initial start routine */ /* ready_fd is the descriptor that is ready to read */ static void ready_input(ErlDrvData e, ErlDrvEvent ready_fd) { int fd = (int)(long)e; ErlDrvPort port_num; int packet_bytes; int res; Uint h; port_num = driver_data[fd].port_num; packet_bytes = driver_data[fd].packet_bytes; if (packet_bytes == 0) { byte *read_buf = (byte *) erts_alloc(ERTS_ALC_T_SYS_READ_BUF, ERTS_SYS_READ_BUF_SZ); res = read(ready_fd, read_buf, ERTS_SYS_READ_BUF_SZ); if (res < 0) { if ((errno != EINTR) && (errno != ERRNO_BLOCK)) port_inp_failure(port_num, ready_fd, res); } else if (res == 0) port_inp_failure(port_num, ready_fd, res); else driver_output(port_num, (char*) read_buf, res); erts_free(ERTS_ALC_T_SYS_READ_BUF, (void *) read_buf); } else if (fd_data[ready_fd].remain > 0) { /* We try to read the remainder */ /* space is allocated in buf */ res = read(ready_fd, fd_data[ready_fd].cpos, fd_data[ready_fd].remain); if (res < 0) { if ((errno != EINTR) && (errno != ERRNO_BLOCK)) port_inp_failure(port_num, ready_fd, res); } else if (res == 0) { port_inp_failure(port_num, ready_fd, res); } else if (res == fd_data[ready_fd].remain) { /* we're done */ driver_output(port_num, fd_data[ready_fd].buf, fd_data[ready_fd].sz); clear_fd_data(ready_fd); } else { /* if (res < fd_data[ready_fd].remain) */ fd_data[ready_fd].cpos += res; fd_data[ready_fd].remain -= res; } } else if (fd_data[ready_fd].remain == 0) { /* clean fd */ byte *read_buf = (byte *) erts_alloc(ERTS_ALC_T_SYS_READ_BUF, ERTS_SYS_READ_BUF_SZ); /* We make one read attempt and see what happens */ res = read(ready_fd, read_buf, ERTS_SYS_READ_BUF_SZ); if (res < 0) { if ((errno != EINTR) && (errno != ERRNO_BLOCK)) port_inp_failure(port_num, ready_fd, res); } else if (res == 0) { /* eof */ port_inp_failure(port_num, ready_fd, res); } else if (res < packet_bytes - fd_data[ready_fd].psz) { memcpy(fd_data[ready_fd].pbuf+fd_data[ready_fd].psz, read_buf, res); fd_data[ready_fd].psz += res; } else { /* if (res >= packet_bytes) */ unsigned char* cpos = read_buf; int bytes_left = res; while (1) { int psz = fd_data[ready_fd].psz; char* pbp = fd_data[ready_fd].pbuf + psz; while(bytes_left && (psz < packet_bytes)) { *pbp++ = *cpos++; bytes_left--; psz++; } if (psz < packet_bytes) { fd_data[ready_fd].psz = psz; break; } fd_data[ready_fd].psz = 0; switch (packet_bytes) { case 1: h = get_int8(fd_data[ready_fd].pbuf); break; case 2: h = get_int16(fd_data[ready_fd].pbuf); break; case 4: h = get_int32(fd_data[ready_fd].pbuf); break; default: ASSERT(0); return; /* -1; */ } if (h <= (bytes_left)) { driver_output(port_num, (char*) cpos, h); cpos += h; bytes_left -= h; continue; } else { /* The last message we got was split */ char *buf = erts_alloc_fnf(ERTS_ALC_T_FD_ENTRY_BUF, h); if (!buf) { errno = ENOMEM; port_inp_failure(port_num, ready_fd, -1); } else { erts_smp_atomic_add_nob(&sys_misc_mem_sz, h); sys_memcpy(buf, cpos, bytes_left); fd_data[ready_fd].buf = buf; fd_data[ready_fd].sz = h; fd_data[ready_fd].remain = h - bytes_left; fd_data[ready_fd].cpos = buf + bytes_left; } break; } } } erts_free(ERTS_ALC_T_SYS_READ_BUF, (void *) read_buf); } } /* fd is the drv_data that is returned from the */ /* initial start routine */ /* ready_fd is the descriptor that is ready to read */ static void ready_output(ErlDrvData e, ErlDrvEvent ready_fd) { int fd = (int)(long)e; ErlDrvPort ix = driver_data[fd].port_num; int n; struct iovec* iv; int vsize; if ((iv = (struct iovec*) driver_peekq(ix, &vsize)) == NULL) { driver_select(ix, ready_fd, ERL_DRV_WRITE, 0); return; /* 0; */ } vsize = vsize > MAX_VSIZE ? MAX_VSIZE : vsize; if ((n = writev(ready_fd, iv, vsize)) > 0) { if (driver_deq(ix, n) == 0) set_busy_port(ix, 0); } else if (n < 0) { if (errno == ERRNO_BLOCK || errno == EINTR) return; /* 0; */ else { int res = errno; driver_select(ix, ready_fd, ERL_DRV_WRITE, 0); driver_failure_posix(ix, res); return; /* -1; */ } } return; /* 0; */ } static void stop_select(ErlDrvEvent fd, void* _) { close((int)fd); } void erts_do_break_handling(void) { struct termios temp_mode; int saved = 0; /* * Most functions that do_break() calls are intentionally not thread safe; * therefore, make sure that all threads but this one are blocked before * proceeding! */ erts_smp_thr_progress_block(); /* during break we revert to initial settings */ /* this is done differently for oldshell */ if (using_oldshell && !replace_intr) { SET_BLOCKING(1); } else if (isatty(0)) { tcgetattr(0,&temp_mode); tcsetattr(0,TCSANOW,&initial_tty_mode); saved = 1; } /* call the break handling function, reset the flag */ do_break(); ERTS_UNSET_BREAK_REQUESTED; fflush(stdout); /* after break we go back to saved settings */ if (using_oldshell && !replace_intr) { SET_NONBLOCKING(1); } else if (saved) { tcsetattr(0,TCSANOW,&temp_mode); } erts_smp_thr_progress_unblock(); } /* Fills in the systems representation of the jam/beam process identifier. ** The Pid is put in STRING representation in the supplied buffer, ** no interpretatione of this should be done by the rest of the ** emulator. The buffer should be at least 21 bytes long. */ void sys_get_pid(char *buffer, size_t buffer_size){ pid_t p = getpid(); /* Assume the pid is scalar and can rest in an unsigned long... */ erts_snprintf(buffer, buffer_size, "%lu",(unsigned long) p); } int erts_sys_putenv_raw(char *key, char *value) { return erts_sys_putenv(key, value); } int erts_sys_putenv(char *key, char *value) { int res; char *env; Uint need = strlen(key) + strlen(value) + 2; #ifdef HAVE_COPYING_PUTENV env = erts_alloc(ERTS_ALC_T_TMP, need); #else env = erts_alloc(ERTS_ALC_T_PUTENV_STR, need); erts_smp_atomic_add_nob(&sys_misc_mem_sz, need); #endif strcpy(env,key); strcat(env,"="); strcat(env,value); erts_smp_rwmtx_rwlock(&environ_rwmtx); res = putenv(env); erts_smp_rwmtx_rwunlock(&environ_rwmtx); #ifdef HAVE_COPYING_PUTENV erts_free(ERTS_ALC_T_TMP, env); #endif return res; } int erts_sys_getenv__(char *key, char *value, size_t *size) { int res; char *orig_value = getenv(key); if (!orig_value) res = -1; else { size_t len = sys_strlen(orig_value); if (len >= *size) { *size = len + 1; res = 1; } else { *size = len; sys_memcpy((void *) value, (void *) orig_value, len+1); res = 0; } } return res; } int erts_sys_getenv_raw(char *key, char *value, size_t *size) { return erts_sys_getenv(key, value, size); } /* * erts_sys_getenv * returns: * -1, if environment key is not set with a value * 0, if environment key is set and value fits into buffer size * 1, if environment key is set but does not fit into buffer size * size is set with the needed buffer size value */ int erts_sys_getenv(char *key, char *value, size_t *size) { int res; erts_smp_rwmtx_rlock(&environ_rwmtx); res = erts_sys_getenv__(key, value, size); erts_smp_rwmtx_runlock(&environ_rwmtx); return res; } int erts_sys_unsetenv(char *key) { int res; erts_smp_rwmtx_rwlock(&environ_rwmtx); res = unsetenv(key); erts_smp_rwmtx_rwunlock(&environ_rwmtx); return res; } void sys_init_io(void) { fd_data = (struct fd_data *) erts_alloc(ERTS_ALC_T_FD_TAB, max_files * sizeof(struct fd_data)); erts_smp_atomic_add_nob(&sys_misc_mem_sz, max_files * sizeof(struct fd_data)); } #if (0) /* unused? */ static int write_fill(fd, buf, len) int fd, len; char *buf; { int i, done = 0; do { if ((i = write(fd, buf+done, len-done)) < 0) { if (errno != EINTR) return (i); i = 0; } done += i; } while (done < len); return (len); } #endif extern const char pre_loaded_code[]; extern Preload pre_loaded[]; void erts_sys_alloc_init(void) { } #if ERTS_HAVE_ERTS_SYS_ALIGNED_ALLOC void *erts_sys_aligned_alloc(UWord alignment, UWord size) { #ifdef HAVE_POSIX_MEMALIGN void *ptr = NULL; int error; ASSERT(alignment && (alignment & (alignment-1)) == 0); /* power of 2 */ error = posix_memalign(&ptr, (size_t) alignment, (size_t) size); #if HAVE_ERTS_MSEG if (error || !ptr) { erts_mseg_clear_cache(); error = posix_memalign(&ptr, (size_t) alignment, (size_t) size); } #endif if (error) { errno = error; return NULL; } if (!ptr) errno = ENOMEM; ASSERT(!ptr || (((UWord) ptr) & (alignment - 1)) == 0); return ptr; #else # error "Missing erts_sys_aligned_alloc() implementation" #endif } void erts_sys_aligned_free(UWord alignment, void *ptr) { ASSERT(alignment && (alignment & (alignment-1)) == 0); /* power of 2 */ free(ptr); } void *erts_sys_aligned_realloc(UWord alignment, void *ptr, UWord size, UWord old_size) { void *new_ptr = erts_sys_aligned_alloc(alignment, size); if (new_ptr) { UWord copy_size = old_size < size ? old_size : size; sys_memcpy(new_ptr, ptr, (size_t) copy_size); erts_sys_aligned_free(alignment, ptr); } return new_ptr; } #endif void *erts_sys_alloc(ErtsAlcType_t t, void *x, Uint sz) { void *res = malloc((size_t) sz); #if HAVE_ERTS_MSEG if (!res) { erts_mseg_clear_cache(); return malloc((size_t) sz); } #endif return res; } void *erts_sys_realloc(ErtsAlcType_t t, void *x, void *p, Uint sz) { void *res = realloc(p, (size_t) sz); #if HAVE_ERTS_MSEG if (!res) { erts_mseg_clear_cache(); return realloc(p, (size_t) sz); } #endif return res; } void erts_sys_free(ErtsAlcType_t t, void *x, void *p) { free(p); } /* Return a pointer to a vector of names of preloaded modules */ Preload* sys_preloaded(void) { return pre_loaded; } /* Return a pointer to preloaded code for module "module" */ unsigned char* sys_preload_begin(Preload* p) { return p->code; } /* Clean up if allocated */ void sys_preload_end(Preload* p) { /* Nothing */ } /* Read a key from console (?) */ int sys_get_key(fd) int fd; { int c; unsigned char rbuf[64]; fflush(stdout); /* Flush query ??? */ if ((c = read(fd,rbuf,64)) <= 0) { return c; } return rbuf[0]; } extern int erts_initialized; void erl_assert_error(const char* expr, const char* func, const char* file, int line) { fflush(stdout); fprintf(stderr, "%s:%d:%s() Assertion failed: %s\n", file, line, func, expr); fflush(stderr); #if !defined(ERTS_SMP) && 0 /* Writing a crashdump from a failed assertion when smp support * is enabled almost a guaranteed deadlocking, don't even bother. * * It could maybe be useful (but I'm not convinced) to write the * crashdump if smp support is disabled... */ if (erts_initialized) erl_crash_dump(file, line, "Assertion failed: %s\n", expr); #endif abort(); } #ifdef DEBUG void erl_debug(char* fmt, ...) { char sbuf[1024]; /* Temporary buffer. */ va_list va; if (debug_log) { va_start(va, fmt); vsprintf(sbuf, fmt, va); va_end(va); fprintf(stderr, "%s", sbuf); } } #endif /* DEBUG */ static ERTS_INLINE void report_exit_status(ErtsSysReportExit *rep, int status) { Port *pp; #ifdef ERTS_SMP CHLD_STAT_UNLOCK; pp = erts_thr_id2port_sflgs(rep->port, ERTS_PORT_SFLGS_INVALID_DRIVER_LOOKUP); CHLD_STAT_LOCK; #else pp = erts_id2port_sflgs(rep->port, NULL, 0, ERTS_PORT_SFLGS_INVALID_DRIVER_LOOKUP); #endif if (pp) { if (rep->ifd >= 0) { driver_data[rep->ifd].alive = 0; driver_data[rep->ifd].status = status; (void) driver_select(ERTS_Port2ErlDrvPort(pp), rep->ifd, (ERL_DRV_READ|ERL_DRV_USE), 1); } if (rep->ofd >= 0) { driver_data[rep->ofd].alive = 0; driver_data[rep->ofd].status = status; (void) driver_select(ERTS_Port2ErlDrvPort(pp), rep->ofd, (ERL_DRV_WRITE|ERL_DRV_USE), 1); } #ifdef ERTS_SMP erts_thr_port_release(pp); #else erts_port_release(pp); #endif } erts_free(ERTS_ALC_T_PRT_REP_EXIT, rep); } #if !CHLDWTHR /* ---------------------------------------------------------- */ #define ERTS_REPORT_EXIT_STATUS report_exit_status static int check_children(void) { int res = 0; int pid; int status; #ifndef ERTS_SMP if (children_died) #endif { sys_sigblock(SIGCHLD); CHLD_STAT_LOCK; while ((pid = waitpid(-1, &status, WNOHANG)) > 0) note_child_death(pid, status); #ifndef ERTS_SMP children_died = 0; #endif CHLD_STAT_UNLOCK; sys_sigrelease(SIGCHLD); res = 1; } return res; } #ifdef ERTS_SMP void erts_check_children(void) { (void) check_children(); } #endif #elif CHLDWTHR && defined(ERTS_SMP) /* ------------------------------------- */ #define ERTS_REPORT_EXIT_STATUS report_exit_status #define check_children() (0) #else /* CHLDWTHR && !defined(ERTS_SMP) ------------------------------------ */ #define ERTS_REPORT_EXIT_STATUS initiate_report_exit_status static ERTS_INLINE void initiate_report_exit_status(ErtsSysReportExit *rep, int status) { rep->next = report_exit_transit_list; rep->status = status; report_exit_transit_list = rep; erts_sys_schedule_interrupt(1); } static int check_children(void) { int res; ErtsSysReportExit *rep; CHLD_STAT_LOCK; rep = report_exit_transit_list; res = rep != NULL; while (rep) { ErtsSysReportExit *curr_rep = rep; rep = rep->next; report_exit_status(curr_rep, curr_rep->status); } report_exit_transit_list = NULL; CHLD_STAT_UNLOCK; return res; } #endif /* ------------------------------------------------------------------ */ static void note_child_death(int pid, int status) { ErtsSysReportExit **repp = &report_exit_list; ErtsSysReportExit *rep = report_exit_list; while (rep) { if (pid == rep->pid) { *repp = rep->next; ERTS_REPORT_EXIT_STATUS(rep, status); break; } repp = &rep->next; rep = rep->next; } } #if CHLDWTHR static void * child_waiter(void *unused) { int pid; int status; #ifdef ERTS_ENABLE_LOCK_CHECK erts_lc_set_thread_name("child waiter"); #endif while(1) { #ifdef DEBUG int waitpid_errno; #endif pid = waitpid(-1, &status, 0); #ifdef DEBUG waitpid_errno = errno; #endif CHLD_STAT_LOCK; if (pid < 0) { ASSERT(waitpid_errno == ECHILD); } else { children_alive--; ASSERT(children_alive >= 0); note_child_death(pid, status); } while (!children_alive) CHLD_STAT_WAIT; /* Wait for children to wait on... :) */ CHLD_STAT_UNLOCK; } return NULL; } #endif /* * Called from schedule() when it runs out of runnable processes, * or when Erlang code has performed INPUT_REDUCTIONS reduction * steps. runnable == 0 iff there are no runnable Erlang processes. */ void erl_sys_schedule(int runnable) { #ifdef ERTS_SMP ERTS_CHK_IO(!runnable); #else ERTS_CHK_IO(runnable ? 0 : !check_children()); #endif ERTS_SMP_LC_ASSERT(!erts_thr_progress_is_blocking()); (void) check_children(); } #ifdef ERTS_SMP static erts_smp_tid_t sig_dispatcher_tid; static void smp_sig_notify(char c) { int res; do { /* write() is async-signal safe (according to posix) */ res = write(sig_notify_fds[1], &c, 1); } while (res < 0 && errno == EINTR); if (res != 1) { char msg[] = "smp_sig_notify(): Failed to notify signal-dispatcher thread " "about received signal"; erts_silence_warn_unused_result(write(2, msg, sizeof(msg))); abort(); } } static void * signal_dispatcher_thread_func(void *unused) { #if !CHLDWTHR int initialized = 0; int notify_check_children = 0; #endif #ifdef ERTS_ENABLE_LOCK_CHECK erts_lc_set_thread_name("signal_dispatcher"); #endif while (1) { char buf[32]; int res, i; /* Block on read() waiting for a signal notification to arrive... */ res = read(sig_notify_fds[0], (void *) &buf[0], 32); if (res < 0) { if (errno == EINTR) continue; erl_exit(ERTS_ABORT_EXIT, "signal-dispatcher thread got unexpected error: %s (%d)\n", erl_errno_id(errno), errno); } for (i = 0; i < res; i++) { /* * NOTE 1: The signal dispatcher thread should not do work * that takes a substantial amount of time (except * perhaps in test and debug builds). It needs to * be responsive, i.e, it should only dispatch work * to other threads. * * NOTE 2: The signal dispatcher thread is not a blockable * thread (i.e., not a thread managed by the * erl_thr_progress module). This is intentional. * We want to be able to interrupt writing of a crash * dump by hitting C-c twice. Since it isn't a * blockable thread it is important that it doesn't * change the state of any data that a blocking thread * expects to have exclusive access to (unless the * signal dispatcher itself explicitly is blocking all * blockable threads). */ switch (buf[i]) { case 0: /* Emulator initialized */ #if !CHLDWTHR initialized = 1; if (!notify_check_children) #endif break; #if !CHLDWTHR case 'C': /* SIGCHLD */ if (initialized) erts_smp_notify_check_children_needed(); else notify_check_children = 1; break; #endif case 'I': /* SIGINT */ break_requested(); break; case 'Q': /* SIGQUIT */ quit_requested(); break; case '1': /* SIGUSR1 */ sigusr1_exit(); break; #ifdef QUANTIFY case '2': /* SIGUSR2 */ quantify_save_data(); /* Might take a substantial amount of time, but this is a test/debug build */ break; #endif default: erl_exit(ERTS_ABORT_EXIT, "signal-dispatcher thread received unknown " "signal notification: '%c'\n", buf[i]); } } ERTS_SMP_LC_ASSERT(!erts_thr_progress_is_blocking()); } return NULL; } static void init_smp_sig_notify(void) { erts_smp_thr_opts_t thr_opts = ERTS_SMP_THR_OPTS_DEFAULT_INITER; thr_opts.detached = 1; if (pipe(sig_notify_fds) < 0) { erl_exit(ERTS_ABORT_EXIT, "Failed to create signal-dispatcher pipe: %s (%d)\n", erl_errno_id(errno), errno); } /* Start signal handler thread */ erts_smp_thr_create(&sig_dispatcher_tid, signal_dispatcher_thread_func, NULL, &thr_opts); } #ifdef __DARWIN__ int erts_darwin_main_thread_pipe[2]; int erts_darwin_main_thread_result_pipe[2]; static void initialize_darwin_main_thread_pipes(void) { if (pipe(erts_darwin_main_thread_pipe) < 0 || pipe(erts_darwin_main_thread_result_pipe) < 0) { erl_exit(1,"Fatal error initializing Darwin main thread stealing"); } } #endif void erts_sys_main_thread(void) { erts_thread_disable_fpe(); #ifdef __DARWIN__ initialize_darwin_main_thread_pipes(); #endif /* Become signal receiver thread... */ #ifdef ERTS_ENABLE_LOCK_CHECK erts_lc_set_thread_name("signal_receiver"); #endif smp_sig_notify(0); /* Notify initialized */ while (1) { /* Wait for a signal to arrive... */ #ifdef __DARWIN__ /* * The wx driver needs to be able to steal the main thread for Cocoa to * work properly. */ fd_set readfds; int res; FD_ZERO(&readfds); FD_SET(erts_darwin_main_thread_pipe[0], &readfds); res = select(erts_darwin_main_thread_pipe[0] + 1, &readfds, NULL, NULL, NULL); if (res > 0 && FD_ISSET(erts_darwin_main_thread_pipe[0],&readfds)) { void* (*func)(void*); void* arg; void *resp; read(erts_darwin_main_thread_pipe[0],&func,sizeof(void* (*)(void*))); read(erts_darwin_main_thread_pipe[0],&arg, sizeof(void*)); resp = (*func)(arg); write(erts_darwin_main_thread_result_pipe[1],&resp,sizeof(void *)); } #else #ifdef DEBUG int res = #else (void) #endif select(0, NULL, NULL, NULL, NULL); ASSERT(res < 0); ASSERT(errno == EINTR); #endif } } #endif /* ERTS_SMP */ #ifdef ERTS_ENABLE_KERNEL_POLL /* get_value() is currently only used when kernel-poll is enabled */ /* Get arg marks argument as handled by putting NULL in argv */ static char * get_value(char* rest, char** argv, int* ip) { char *param = argv[*ip]+1; argv[*ip] = NULL; if (*rest == '\0') { char *next = argv[*ip + 1]; if (next[0] == '-' && next[1] == '-' && next[2] == '\0') { erts_fprintf(stderr, "bad \"%s\" value: \n", param); erts_usage(); } (*ip)++; argv[*ip] = NULL; return next; } return rest; } #endif /* ERTS_ENABLE_KERNEL_POLL */ void erl_sys_args(int* argc, char** argv) { int i, j; erts_smp_rwmtx_init(&environ_rwmtx, "environ"); i = 1; ASSERT(argc && argv); while (i < *argc) { if(argv[i][0] == '-') { switch (argv[i][1]) { #ifdef ERTS_ENABLE_KERNEL_POLL case 'K': { char *arg = get_value(argv[i] + 2, argv, &i); if (strcmp("true", arg) == 0) { erts_use_kernel_poll = 1; } else if (strcmp("false", arg) == 0) { erts_use_kernel_poll = 0; } else { erts_fprintf(stderr, "bad \"K\" value: %s\n", arg); erts_usage(); } break; } #endif case '-': goto done_parsing; default: break; } } i++; } done_parsing: #ifdef ERTS_ENABLE_KERNEL_POLL if (erts_use_kernel_poll) { char no_kp[10]; size_t no_kp_sz = sizeof(no_kp); int res = erts_sys_getenv_raw("ERL_NO_KERNEL_POLL", no_kp, &no_kp_sz); if (res > 0 || (res == 0 && sys_strcmp("false", no_kp) != 0 && sys_strcmp("FALSE", no_kp) != 0)) { erts_use_kernel_poll = 0; } } #endif init_check_io(); #ifdef ERTS_SMP init_smp_sig_notify(); #endif /* Handled arguments have been marked with NULL. Slide arguments not handled towards the beginning of argv. */ for (i = 0, j = 0; i < *argc; i++) { if (argv[i]) argv[j++] = argv[i]; } *argc = j; }