%% %% %CopyrightBegin% %% %% Copyright Ericsson AB 1997-2013. All Rights Reserved. %% %% The contents of this file are subject to the Erlang Public License, %% Version 1.1, (the "License"); you may not use this file except in %% compliance with the License. You should have received a copy of the %% Erlang Public License along with this software. If not, it can be %% retrieved online at http://www.erlang.org/. %% %% Software distributed under the License is distributed on an "AS IS" %% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See %% the License for the specific language governing rights and limitations %% under the License. %% %% %CopyrightEnd% %% %% -module(asn1ct_gen). -include("asn1_records.hrl"). -export([pgen_exports/3, pgen_hrl/5, gen_head/3, demit/1, emit/1, get_inner/1,type/1,def_to_tag/1,prim_bif/1, type_from_object/1, get_typefromobject/1,get_fieldcategory/2, get_classfieldcategory/2, list2name/1, list2rname/1, constructed_suffix/2, unify_if_string/1, gen_check_call/7, get_constraint/2, insert_once/2, ct_gen_module/1, index2suffix/1, get_record_name_prefix/0]). -export([pgen/5, pgen_module/6, mk_var/1, un_hyphen_var/1]). -export([gen_encode_constructed/4, gen_decode_constructed/4]). %% pgen(Outfile, Erules, Module, TypeOrVal, Options) %% Generate Erlang module (.erl) and (.hrl) file corresponding to an ASN.1 module %% .hrl file is only generated if necessary %% Erules = per | ber %% Module = atom() %% TypeOrVal = {TypeList,ValueList} %% TypeList = ValueList = [atom()] %% Options = [Options] from asn1ct:compile() pgen(OutFile,Erules,Module,TypeOrVal,Options) -> pgen_module(OutFile,Erules,Module,TypeOrVal,Options,true). pgen_module(OutFile,Erules,Module, TypeOrVal = {Types,_Values,_Ptypes,_Classes,_Objects,_ObjectSets}, Options,Indent) -> N2nConvEnums = [CName|| {n2n,CName} <- get(encoding_options)], case N2nConvEnums -- Types of [] -> ok; UnmatchedTypes -> exit({"Non existing ENUMERATION types used in n2n option", UnmatchedTypes}) end, put(outfile,OutFile), HrlGenerated = pgen_hrl(Erules,Module,TypeOrVal,Options,Indent), asn1ct_name:start(), ErlFile = lists:concat([OutFile,".erl"]), Fid = fopen(ErlFile,[write]), put(gen_file_out,Fid), asn1ct_func:start_link(), gen_head(Erules,Module,HrlGenerated), pgen_exports(Erules,Module,TypeOrVal), pgen_dispatcher(Erules,Module,TypeOrVal), pgen_info(), pgen_typeorval(Erules,Module,N2nConvEnums,TypeOrVal), pgen_partial_incomplete_decode(Erules), % gen_vars(asn1_db:mod_to_vars(Module)), % gen_tag_table(AllTypes), emit([nl, "%%%",nl, "%%% Run-time functions.",nl, "%%%",nl]), asn1ct_func:generate(Fid), file:close(Fid), asn1ct:verbose("--~p--~n",[{generated,ErlFile}],Options). pgen_typeorval(Erules,Module,N2nConvEnums,{Types,Values,_Ptypes,_Classes,Objects,ObjectSets}) -> Rtmod = ct_gen_module(Erules), pgen_types(Rtmod,Erules,N2nConvEnums,Module,Types), pgen_values(Erules,Module,Values), pgen_objects(Rtmod,Erules,Module,Objects), pgen_objectsets(Rtmod,Erules,Module,ObjectSets), case catch lists:member(der,get(encoding_options)) of true -> pgen_check_defaultval(Erules,Module); _ -> ok end, pgen_partial_decode(Rtmod,Erules,Module). pgen_values(_,_,[]) -> true; pgen_values(Erules,Module,[H|T]) -> Valuedef = asn1_db:dbget(Module,H), gen_value(Valuedef), pgen_values(Erules,Module,T). pgen_types(_,_,_,Module,[]) -> gen_value_match(Module), true; pgen_types(Rtmod,Erules,N2nConvEnums,Module,[H|T]) -> asn1ct_name:clear(), Typedef = asn1_db:dbget(Module,H), Rtmod:gen_encode(Erules,Typedef), asn1ct_name:clear(), Rtmod:gen_decode(Erules,Typedef), case lists:member(H,N2nConvEnums) of true -> pgen_n2nconversion(Erules,Typedef); _ -> true end, pgen_types(Rtmod,Erules,N2nConvEnums,Module,T). %% Enumerated type with extension marker pgen_n2nconversion(_Erules,#typedef{name=TypeName,typespec=#type{def={'ENUMERATED',{NN1,NN2}}}}) -> NN = NN1 ++ NN2, pgen_name2numfunc(TypeName,NN, extension_marker), pgen_num2namefunc(TypeName,NN, extension_marker); %% Without extension marker pgen_n2nconversion(_Erules,#typedef{name=TypeName,typespec=#type{def={'ENUMERATED',NN}}}) -> pgen_name2numfunc(TypeName,NN, no_extension_marker), pgen_num2namefunc(TypeName,NN, no_extension_marker); pgen_n2nconversion(_Erules,_) -> true. pgen_name2numfunc(_TypeName,[], _) -> true; pgen_name2numfunc(TypeName,[{Atom,Number}], extension_marker) -> emit(["name2num_",TypeName,"(",{asis,Atom},") ->",Number,";",nl]), emit(["name2num_",TypeName,"({asn1_enum, Num}) -> Num.",nl,nl]); pgen_name2numfunc(TypeName,[{Atom,Number}], _) -> emit(["name2num_",TypeName,"(",{asis,Atom},") ->",Number,".",nl,nl]); pgen_name2numfunc(TypeName,[{Atom,Number}|NNRest], EM) -> emit(["name2num_",TypeName,"(",{asis,Atom},") ->",Number,";",nl]), pgen_name2numfunc(TypeName,NNRest, EM). pgen_num2namefunc(_TypeName,[], _) -> true; pgen_num2namefunc(TypeName,[{Atom,Number}], extension_marker) -> emit(["num2name_",TypeName,"(",Number,") ->",{asis,Atom},";",nl]), emit(["num2name_",TypeName,"(ExtensionNum) -> {asn1_enum, ExtensionNum}.",nl,nl]); pgen_num2namefunc(TypeName,[{Atom,Number}], _) -> emit(["num2name_",TypeName,"(",Number,") ->",{asis,Atom},".",nl,nl]); pgen_num2namefunc(TypeName,[{Atom,Number}|NNRest], EM) -> emit(["num2name_",TypeName,"(",Number,") ->",{asis,Atom},";",nl]), pgen_num2namefunc(TypeName,NNRest, EM). pgen_objects(_,_,_,[]) -> true; pgen_objects(Rtmod,Erules,Module,[H|T]) -> asn1ct_name:clear(), Typedef = asn1_db:dbget(Module,H), Rtmod:gen_obj_code(Erules,Module,Typedef), pgen_objects(Rtmod,Erules,Module,T). pgen_objectsets(_,_,_,[]) -> true; pgen_objectsets(Rtmod,Erules,Module,[H|T]) -> asn1ct_name:clear(), TypeDef = asn1_db:dbget(Module,H), Rtmod:gen_objectset_code(Erules,TypeDef), pgen_objectsets(Rtmod,Erules,Module,T). pgen_check_defaultval(Erules,Module) -> CheckObjects = asn1ct_table:to_list(check_functions), case get(asndebug) of true -> FileName = lists:concat([Module,".table"]), {ok,IoDevice} = file:open(FileName,[write]), Fun = fun(X)-> io:format(IoDevice,"~n~n************~n~n~p~n~n*****" "********~n~n",[X]) end, lists:foreach(Fun,CheckObjects), file:close(IoDevice); _ -> ok end, gen_check_defaultval(Erules,Module,CheckObjects). pgen_partial_decode(Rtmod,Erule,Module) when Erule == ber -> pgen_partial_inc_dec(Rtmod,Erule,Module), pgen_partial_dec(Rtmod,Erule,Module); pgen_partial_decode(_,_,_) -> ok. pgen_partial_inc_dec(Rtmod,Erules,Module) -> % io:format("Start partial incomplete decode gen?~n"), case asn1ct:get_gen_state_field(inc_type_pattern) of undefined -> % io:format("Partial incomplete decode gen not started: ~w~n",[asn1ct:get_gen_state_field(active)]), ok; % [] -> % ok; ConfList -> PatternLists=lists:map(fun({_,P}) -> P end,ConfList), pgen_partial_inc_dec1(Rtmod,Erules,Module,PatternLists), gen_partial_inc_dec_refed_funcs(Rtmod,Erules) end. %% pgen_partial_inc_dec1 generates a function of the toptype in each %% of the partial incomplete decoded types. pgen_partial_inc_dec1(Rtmod,Erules,Module,[P|Ps]) -> TopTypeName = asn1ct:partial_inc_dec_toptype(P), TypeDef=asn1_db:dbget(Module,TopTypeName), asn1ct_name:clear(), asn1ct:update_gen_state(namelist,P), asn1ct:update_gen_state(active,true), asn1ct:update_gen_state(prefix,"dec-inc-"), case asn1ct:maybe_saved_sindex(TopTypeName,P) of I when is_integer(I),I > 0 -> % io:format("Index:~p~n",[I]), asn1ct:set_current_sindex(I); _I -> asn1ct:set_current_sindex(0), % io:format("Index=~p~n",[_I]), ok end, Rtmod:gen_decode(Erules,TypeDef), gen_dec_part_inner_constr(Rtmod,Erules,TypeDef,[TopTypeName]), pgen_partial_inc_dec1(Rtmod,Erules,Module,Ps); pgen_partial_inc_dec1(_,_,_,[]) -> ok. gen_partial_inc_dec_refed_funcs(Rtmod,Erule) when Erule == ber -> case asn1ct:next_refed_func() of [] -> ok; {#'Externaltypereference'{module=M,type=Name},Sindex,Pattern} -> TypeDef = asn1_db:dbget(M,Name), asn1ct:update_gen_state(namelist,Pattern), asn1ct:set_current_sindex(Sindex), Rtmod:gen_inc_decode(Erule,TypeDef), gen_dec_part_inner_constr(Rtmod,Erule,TypeDef,[Name]), gen_partial_inc_dec_refed_funcs(Rtmod,Erule); {Name,Sindex,Pattern,Type} -> TypeDef=#typedef{name=asn1ct_gen:list2name(Name),typespec=Type}, asn1ct:update_gen_state(namelist,Pattern), asn1ct:set_current_sindex(Sindex), Rtmod:gen_inc_decode(Erule,TypeDef), gen_dec_part_inner_constr(Rtmod,Erule,TypeDef,Name), gen_partial_inc_dec_refed_funcs(Rtmod,Erule) end; gen_partial_inc_dec_refed_funcs(_,_) -> ok. pgen_partial_dec(_Rtmod,Erules,_Module) -> Type_pattern = asn1ct:get_gen_state_field(type_pattern), % io:format("Type_pattern: ~w~n",[Type_pattern]), %% Get the typedef of the top type and follow into the choosen components until the last type/component. pgen_partial_types(Erules,Type_pattern), ok. pgen_partial_types(Erules,Type_pattern) -> % until this functionality works on all back-ends Options = get(encoding_options), case lists:member(asn1config,Options) of true -> pgen_partial_types1(Erules,Type_pattern); _ -> ok end. pgen_partial_types1(Erules,[{FuncName,[TopType|RestTypes]}|Rest]) -> % emit([FuncName,"(Bytes) ->",nl]), CurrMod = get(currmod), TypeDef = asn1_db:dbget(CurrMod,TopType), traverse_type_structure(Erules,TypeDef,RestTypes,FuncName, TypeDef#typedef.name), pgen_partial_types1(Erules,Rest); pgen_partial_types1(_,[]) -> ok; pgen_partial_types1(_,undefined) -> ok. %% traverse_type_structure searches the structure of TypeDef for next %% type/component in TypeList until the last one. For the last type in %% TypeList a decode function will be generated. traverse_type_structure(Erules,Type,[],FuncName,TopTypeName) -> %% this is the selected type Ctmod = ct_gen_module(Erules), TypeDef = case Type of #type{} -> #typedef{name=TopTypeName,typespec=Type}; #typedef{} -> Type end, Ctmod:gen_decode_selected(Erules,TypeDef,FuncName); % what if Type is #type{} traverse_type_structure(Erules,#type{def=Def},[[N]],FuncName,TopTypeName) when is_integer(N) -> % this case a decode of one of the elements in % the SEQUENCE OF is required. InnerType = asn1ct_gen:get_inner(Def), case InnerType of 'SEQUENCE OF' -> {_,Type} = Def, traverse_type_structure(Erules,Type,[],FuncName,TopTypeName); WrongType -> exit({error,{configuration_file_error,[N],"only for SEQUENCE OF components",WrongType}}) end; traverse_type_structure(Erules,Type,[[N]|Ts],FuncName,TopTypeName) when is_integer(N) -> traverse_type_structure(Erules,Type,Ts,FuncName,TopTypeName); traverse_type_structure(Erules,#type{def=Def},[T|Ts],FuncName,TopTypeName) -> InnerType = asn1ct_gen:get_inner(Def), case InnerType of 'SET' -> #'SET'{components=Components} = Def, C = get_component(T,Components), traverse_type_structure(Erules,C#'ComponentType'.typespec,Ts, FuncName,[T|TopTypeName]); 'SEQUENCE' -> #'SEQUENCE'{components=Components} = Def, C = get_component(T,Components), traverse_type_structure(Erules,C#'ComponentType'.typespec,Ts, FuncName,[T|TopTypeName]); 'CHOICE' -> {_,Components} = Def, C = get_component(T,Components), traverse_type_structure(Erules,C#'ComponentType'.typespec,Ts, FuncName,[T|TopTypeName]); 'SEQUENCE OF' -> {_,Type} = Def, traverse_SO_type_structure(Erules,Type,[T|Ts],FuncName, TopTypeName); 'SET OF' -> {_,Type} = Def, traverse_SO_type_structure(Erules,Type,[T|Ts],FuncName, TopTypeName); #'Externaltypereference'{module=M,type=TName} -> TypeDef = asn1_db:dbget(M,TName), traverse_type_structure(Erules,TypeDef,[T|Ts],FuncName, [TypeDef#typedef.name]); _ -> traverse_type_structure(Erules,Def,Ts,FuncName,[T|TopTypeName]) end; traverse_type_structure(Erules,#typedef{typespec=Def},[T|Ts],FuncName, TopTypeName) -> InnerType = asn1ct_gen:get_inner(Def#type.def), case InnerType of 'SET' -> #'SET'{components=Components} = Def#type.def, C = get_component(T,Components), traverse_type_structure(Erules,C#'ComponentType'.typespec,Ts, FuncName,[T|TopTypeName]); 'SEQUENCE' -> #'SEQUENCE'{components=Components} = Def#type.def, C = get_component(T,Components), traverse_type_structure(Erules,C#'ComponentType'.typespec,Ts, FuncName,[T|TopTypeName]); 'CHOICE' -> {_,Components} = Def#type.def, C = get_component(T,Components), traverse_type_structure(Erules,C#'ComponentType'.typespec,Ts, FuncName,[T|TopTypeName]); 'SEQUENCE OF' -> {_,Type} = Def#type.def, traverse_SO_type_structure(Erules,Type,[T|Ts],FuncName, TopTypeName); 'SET OF' -> {_,Type} = Def#type.def, traverse_SO_type_structure(Erules,Type,[T|Ts],FuncName, TopTypeName); #'Externaltypereference'{module=M,type=TName} -> TypeDef = asn1_db:dbget(M,TName), traverse_type_structure(Erules,TypeDef,[T|Ts],FuncName, [TypeDef#typedef.name]); _ -> %this may be a referenced type that shall be traversed or %the selected type traverse_type_structure(Erules,Def,Ts,FuncName,[T|TopTypeName]) end. traverse_SO_type_structure(Erules,Type,[N|Rest],FuncName,TopTypeName) when is_integer(N) -> traverse_type_structure(Erules,Type,Rest,FuncName,TopTypeName); traverse_SO_type_structure(Erules,Type,TypeList,FuncName,TopTypeName) -> traverse_type_structure(Erules,Type,TypeList,FuncName,TopTypeName). get_component(Name,{C1,C2}) when is_list(C1),is_list(C2) -> get_component(Name,C1++C2); get_component(Name,[C=#'ComponentType'{name=Name}|_Cs]) -> C; get_component(Name,[_C|Cs]) -> get_component(Name,Cs); get_component(Name,_) -> throw({error,{asn1,{internal_error,Name}}}). %% generate code for all inner types that are called from the top type %% of the partial incomplete decode and are defined within the top %% type.Constructed subtypes deeper in the structure will be generated %% in turn after all top types have been generated. gen_dec_part_inner_constr(Rtmod,Erules,TypeDef,TypeName) -> Def = TypeDef#typedef.typespec, InnerType = asn1ct_gen:get_inner(Def#type.def), case InnerType of 'SET' -> #'SET'{components=Components} = Def#type.def, gen_dec_part_inner_types(Rtmod,Erules,Components,TypeName); %% Continue generate the inner of each component 'SEQUENCE' -> #'SEQUENCE'{components=Components} = Def#type.def, gen_dec_part_inner_types(Rtmod,Erules,Components,TypeName); 'CHOICE' -> {_,Components} = Def#type.def, gen_dec_part_inner_types(Rtmod,Erules,Components,TypeName); 'SEQUENCE OF' -> %% this and next case must be the last component in the %% partial decode chain here. Not likely that this occur. {_,Type} = Def#type.def, NameSuffix = constructed_suffix(InnerType,Type#type.def), asn1ct_name:clear(), Rtmod:gen_decode(Erules,[NameSuffix|TypeName],Type); %% gen_types(Erules,[NameSuffix|Typename],Type); 'SET OF' -> {_,Type} = Def#type.def, NameSuffix = constructed_suffix(InnerType,Type#type.def), asn1ct_name:clear(), Rtmod:gen_decode(Erules,[NameSuffix|TypeName],Type); _ -> ok end. gen_dec_part_inner_types(Rtmod,Erules,[ComponentType|Rest],TypeName) -> asn1ct_name:clear(), Rtmod:gen_decode(Erules,TypeName,ComponentType), gen_dec_part_inner_types(Rtmod,Erules,Rest,TypeName); gen_dec_part_inner_types(Rtmod,Erules,{Comps1,Comps2},TypeName) when is_list(Comps1),is_list(Comps2) -> gen_dec_part_inner_types(Rtmod,Erules,Comps1 ++ Comps2,TypeName); gen_dec_part_inner_types(_,_,[],_) -> ok. pgen_partial_incomplete_decode(Erule) -> case asn1ct:get_gen_state_field(active) of true -> pgen_partial_incomplete_decode1(Erule), asn1ct:reset_gen_state(); _ -> ok end. pgen_partial_incomplete_decode1(ber) -> case asn1ct:read_config_data(partial_incomplete_decode) of undefined -> ok; Data -> lists:foreach(fun emit_partial_incomplete_decode/1,Data) end, GeneratedFs= asn1ct:get_gen_state_field(gen_refed_funcs), % io:format("GeneratedFs :~n~p~n",[GeneratedFs]), gen_part_decode_funcs(GeneratedFs,0); pgen_partial_incomplete_decode1(_) -> ok. emit_partial_incomplete_decode({FuncName,TopType,Pattern}) -> TypePattern = asn1ct:get_gen_state_field(inc_type_pattern), TPattern = case lists:keysearch(FuncName,1,TypePattern) of {value,{_,TP}} -> TP; _ -> exit({error,{asn1_internal_error,exclusive_decode}}) end, TopTypeName = case asn1ct:maybe_saved_sindex(TopType,TPattern) of I when is_integer(I),I>0 -> lists:concat([TopType,"_",I]); _ -> atom_to_list(TopType) end, emit([{asis,FuncName},"(Bytes) ->",nl, " decode_partial_incomplete('",TopTypeName,"',Bytes,",{asis,Pattern},").",nl]); emit_partial_incomplete_decode(D) -> throw({error,{asn1,{"bad data in asn1config file",D}}}). gen_part_decode_funcs([Data={Name,_,_,Type}|GeneratedFs],N) -> InnerType = case Type#type.def of #'ObjectClassFieldType'{type=OCFTType} -> OCFTType; _ -> get_inner(Type#type.def) end, WhatKind = type(InnerType), TypeName=list2name(Name), if N > 0 -> emit([";",nl]); true -> ok end, emit(["decode_inc_disp('",TypeName,"',Data) ->",nl]), gen_part_decode_funcs(WhatKind,TypeName,Data), gen_part_decode_funcs(GeneratedFs,N+1); gen_part_decode_funcs([_H|T],N) -> gen_part_decode_funcs(T,N); gen_part_decode_funcs([],N) -> if N > 0 -> emit([".",nl]); true -> ok end. gen_part_decode_funcs(#'Externaltypereference'{module=M,type=T}, _TypeName,Data) -> #typedef{typespec=TS} = asn1_db:dbget(M,T), InnerType = case TS#type.def of #'ObjectClassFieldType'{type=OCFTType} -> OCFTType; _ -> get_inner(TS#type.def) end, WhatKind = type(InnerType), gen_part_decode_funcs(WhatKind,[T],Data); gen_part_decode_funcs({constructed,bif},TypeName, {_Name,parts,Tag,_Type}) -> emit([" case Data of",nl, " L when is_list(L) ->",nl, " 'dec_",TypeName,"'(lists:map(fun(X) -> element(1, ", {call,ber,ber_decode_erlang,["X"]},") end, L),",{asis,Tag},");",nl, " _ ->",nl, " [Res] = 'dec_",TypeName,"'([Data],",{asis,Tag},"),",nl, " Res",nl, " end"]); gen_part_decode_funcs(WhatKind,_TypeName,{_Name,parts,_Tag,_Type}) -> throw({error,{asn1,{"only SEQUENCE OF/SET OF may have the partial incomplete directive 'parts'.",WhatKind}}}); gen_part_decode_funcs({constructed,bif},TypeName, {_Name,undecoded,Tag,_Type}) -> emit([" 'dec_",TypeName,"'(Data,",{asis,Tag},")"]); gen_part_decode_funcs({primitive,bif},_TypeName, {_Name,undecoded,Tag,Type}) -> % Argument no 6 is 0, i.e. bit 6 for primitive encoding. asn1ct_gen_ber_bin_v2:gen_dec_prim(ber_bin_v2,Type,"Data",Tag,[],0,", mandatory, "); gen_part_decode_funcs(WhatKind,_TypeName,{_,Directive,_,_}) -> throw({error,{asn1,{"Not implemented yet",WhatKind," partial incomplete directive:",Directive}}}). gen_types(Erules,Tname,{RootL1,ExtList,RootL2}) when is_list(RootL1), is_list(RootL2) -> gen_types(Erules,Tname,RootL1), Rtmod = ct_gen_module(Erules), gen_types(Erules,Tname,Rtmod:extaddgroup2sequence(ExtList)), gen_types(Erules,Tname,RootL2); gen_types(Erules,Tname,{RootList,ExtList}) when is_list(RootList) -> gen_types(Erules,Tname,RootList), Rtmod = ct_gen_module(Erules), gen_types(Erules,Tname,Rtmod:extaddgroup2sequence(ExtList)); gen_types(Erules,Tname,[{'EXTENSIONMARK',_,_}|Rest]) -> gen_types(Erules,Tname,Rest); gen_types(Erules,Tname,[ComponentType|Rest]) -> Rtmod = ct_gen_module(Erules), asn1ct_name:clear(), Rtmod:gen_encode(Erules,Tname,ComponentType), asn1ct_name:clear(), Rtmod:gen_decode(Erules,Tname,ComponentType), gen_types(Erules,Tname,Rest); gen_types(_,_,[]) -> true; gen_types(Erules,Tname,Type) when is_record(Type,type) -> Rtmod = ct_gen_module(Erules), asn1ct_name:clear(), Rtmod:gen_encode(Erules,Tname,Type), asn1ct_name:clear(), Rtmod:gen_decode(Erules,Tname,Type). gen_value_match(Module) -> case get(value_match) of {true,Module} -> emit(["value_match([{Index,Cname}|Rest],Value) ->",nl, " Value2 =",nl, " case element(Index,Value) of",nl, " {Cname,Val2} -> Val2;",nl, " X -> X",nl, " end,",nl, " value_match(Rest,Value2);",nl, "value_match([],Value) ->",nl, " Value.",nl]); _ -> ok end, put(value_match,undefined). gen_check_defaultval(Erules,Module,[{Name,Type}|Rest]) -> gen_check_func(Name,Type), gen_check_defaultval(Erules,Module,Rest); gen_check_defaultval(_,_,[]) -> ok. gen_check_func(Name,FType = #type{def=Def}) -> EncName = ensure_atom(Name), emit({{asis,EncName},"(_V,asn1_DEFAULT) ->",nl," true;",nl}), emit({{asis,EncName},"(V,V) ->",nl," true;",nl}), emit({{asis,EncName},"(V,{_,V}) ->",nl," true;",nl}), case Def of {'SEQUENCE OF',Type} -> gen_check_sof(Name,'SEQOF',Type); {'SET OF',Type} -> gen_check_sof(Name,'SETOF',Type); #'SEQUENCE'{components=Components} -> gen_check_sequence(Name,Components); #'SET'{components=Components} -> gen_check_sequence(Name,Components); {'CHOICE',Components} -> gen_check_choice(Name,Components); #'Externaltypereference'{type=T} -> emit({{asis,EncName},"(DefaultValue,Value) ->",nl}), emit({" '",list2name([T,check]),"'(DefaultValue,Value).",nl}); MaybePrim -> InnerType = get_inner(MaybePrim), case type(InnerType) of {primitive,bif} -> emit({{asis,EncName},"(DefaultValue,Value) ->",nl," "}), gen_prim_check_call(get_inner(InnerType),"DefaultValue","Value", FType), emit({".",nl,nl}); _ -> throw({asn1_error,{unknown,type,MaybePrim}}) end end. gen_check_sof(Name,SOF,Type) -> EncName = ensure_atom(Name), NewName = ensure_atom(list2name([sorted,Name])), emit({{asis,EncName},"(V1,V2) ->",nl}), emit({" ",{asis,NewName},"(lists:sort(V1),lists:sort(V2)).",nl,nl}), emit({{asis,NewName},"([],[]) ->",nl," true;",nl}), emit({{asis,NewName},"([DV|DVs],[V|Vs]) ->",nl," "}), InnerType = get_inner(Type#type.def), case type(InnerType) of {primitive,bif} -> gen_prim_check_call(get_inner(InnerType),"DV","V",Type), emit({",",nl}); {constructed,bif} -> emit([{asis,ensure_atom(list2name([SOF,Name]))},"(DV, V),",nl]); #'Externaltypereference'{type=T} -> emit([{asis,ensure_atom(list2name([T,check]))},"(DV,V),",nl]); 'ASN1_OPEN_TYPE' -> emit(["DV = V,",nl]); _ -> emit(["DV = V,",nl]) end, emit({" ",{asis,NewName},"(DVs,Vs).",nl,nl}). gen_check_sequence(Name,Components) -> emit([{asis,ensure_atom(Name)},"(DefaultValue,Value) ->",nl]), gen_check_sequence(Name,Components,1). gen_check_sequence(Name,[#'ComponentType'{name=N,typespec=Type}|Cs],Num) -> InnerType = get_inner(Type#type.def), NthDefV = ["element(",Num+1,",DefaultValue)"], NthV = ["element(",Num+1,",Value)"], gen_check_func_call(Name,Type,InnerType,NthDefV,NthV,N), case Cs of [] -> emit({".",nl,nl}); _ -> emit({",",nl}), gen_check_sequence(Name,Cs,Num+1) end; gen_check_sequence(_,[],_) -> ok. gen_check_choice(Name,CList=[#'ComponentType'{}|_Cs]) -> emit([{asis,ensure_atom(Name)},"({Id,DefaultValue},{Id,Value}) ->",nl]), emit([" case Id of",nl]), gen_check_choice_components(Name,CList,1). gen_check_choice_components(_,[],_)-> ok; gen_check_choice_components(Name,[#'ComponentType'{name=N,typespec=Type}| Cs],Num) -> Ind6 = " ", InnerType = get_inner(Type#type.def), emit({Ind6,"'",N,"' ->",nl,Ind6}), gen_check_func_call(Name,Type,InnerType,{var,"defaultValue"}, {var,"value"},N), case Cs of [] -> emit({nl," end.",nl,nl}); _ -> emit({";",nl}), gen_check_choice_components(Name,Cs,Num+1) end. gen_check_func_call(Name,Type,InnerType,DefVal,Val,N) -> case type(InnerType) of {primitive,bif} -> emit(" "), gen_prim_check_call(get_inner(InnerType),DefVal,Val,Type); #'Externaltypereference'{type=T} -> emit({" ",{asis,ensure_atom(list2name([T,check]))},"(",DefVal,",",Val,")"}); 'ASN1_OPEN_TYPE' -> emit([" if",nl, " ",DefVal," == ",Val," -> true;",nl, " true -> throw({error,{asn1_open_type}})",nl, " end",nl]); {constructed,bif} -> emit([" ",{asis,ensure_atom(list2name([N,Name]))},"(",DefVal,",",Val,")"]); _ -> emit([" if",nl, " ",DefVal," == ",Val," -> true;",nl, " true -> throw({error,{asn1_open_type}})",nl, " end",nl]) end. %% VARIOUS GENERATOR STUFF %% ************************************************* %%************************************************** mk_var(X) when is_atom(X) -> list_to_atom(mk_var(atom_to_list(X))); mk_var([H|T]) -> [H-32|T]. %% Since hyphens are allowed in ASN.1 names, it may occur in a %% variable to. Turn a hyphen into a under-score sign. un_hyphen_var(X) when is_atom(X) -> list_to_atom(un_hyphen_var(atom_to_list(X))); un_hyphen_var([45|T]) -> [95|un_hyphen_var(T)]; un_hyphen_var([H|T]) -> [H|un_hyphen_var(T)]; un_hyphen_var([]) -> []. %% Generate value functions *************** %% **************************************** %% Generates a function 'V'/0 for each Value V defined in the ASN.1 module %% the function returns the value in an Erlang representation which can be %% used as input to the runtime encode functions gen_value(Value) when is_record(Value,valuedef) -> %% io:format(" ~w ",[Value#valuedef.name]), emit({"'",Value#valuedef.name,"'() ->",nl}), V = Value#valuedef.value, emit([{asis,V},".",nl,nl]). gen_encode_constructed(Erules,Typename,InnerType,D) when is_record(D,type) -> Rtmod = ct_constructed_module(Erules), case InnerType of 'SET' -> Rtmod:gen_encode_set(Erules,Typename,D), #'SET'{components=Components} = D#type.def, gen_types(Erules,Typename,Components); 'SEQUENCE' -> Rtmod:gen_encode_sequence(Erules,Typename,D), #'SEQUENCE'{components=Components} = D#type.def, gen_types(Erules,Typename,Components); 'CHOICE' -> Rtmod:gen_encode_choice(Erules,Typename,D), {_,Components} = D#type.def, gen_types(Erules,Typename,Components); 'SEQUENCE OF' -> Rtmod:gen_encode_sof(Erules,Typename,InnerType,D), {_,Type} = D#type.def, NameSuffix = asn1ct_gen:constructed_suffix(InnerType,Type#type.def), gen_types(Erules,[NameSuffix|Typename],Type); 'SET OF' -> Rtmod:gen_encode_sof(Erules,Typename,InnerType,D), {_,Type} = D#type.def, NameSuffix = asn1ct_gen:constructed_suffix(InnerType,Type#type.def), gen_types(Erules,[NameSuffix|Typename],Type); _ -> exit({nyi,InnerType}) end; gen_encode_constructed(Erules,Typename,InnerType,D) when is_record(D,typedef) -> gen_encode_constructed(Erules,Typename,InnerType,D#typedef.typespec). gen_decode_constructed(Erules,Typename,InnerType,D) when is_record(D,type) -> Rtmod = ct_constructed_module(Erules), asn1ct:step_in_constructed(), %% updates namelist for exclusive decode case InnerType of 'SET' -> Rtmod:gen_decode_set(Erules,Typename,D); 'SEQUENCE' -> Rtmod:gen_decode_sequence(Erules,Typename,D); 'CHOICE' -> Rtmod:gen_decode_choice(Erules,Typename,D); 'SEQUENCE OF' -> Rtmod:gen_decode_sof(Erules,Typename,InnerType,D); 'SET OF' -> Rtmod:gen_decode_sof(Erules,Typename,InnerType,D); _ -> exit({nyi,InnerType}) end; gen_decode_constructed(Erules,Typename,InnerType,D) when is_record(D,typedef) -> gen_decode_constructed(Erules,Typename,InnerType,D#typedef.typespec). pgen_exports(Erules,_Module,{Types,Values,_,_,Objects,ObjectSets}) -> emit(["-export([encoding_rule/0,bit_string_format/0]).",nl]), case Types of [] -> ok; _ -> emit({"-export([",nl}), case Erules of ber -> gen_exports1(Types,"enc_",2); _ -> gen_exports1(Types,"enc_",1) end, emit({"-export([",nl}), gen_exports1(Types,"dec_",2) end, case [X || {n2n,X} <- get(encoding_options)] of [] -> ok; A2nNames -> emit({"-export([",nl}), gen_exports1(A2nNames,"name2num_",1), emit({"-export([",nl}), gen_exports1(A2nNames,"num2name_",1) end, case Values of [] -> ok; _ -> emit({"-export([",nl}), gen_exports1(Values,"",0) end, case Objects of [] -> ok; _ -> case erule(Erules) of per -> emit({"-export([",nl}), gen_exports1(Objects,"enc_",3), emit({"-export([",nl}), gen_exports1(Objects,"dec_",4); ber -> emit({"-export([",nl}), gen_exports1(Objects,"enc_",3), emit({"-export([",nl}), gen_exports1(Objects,"dec_",3) end end, case ObjectSets of [] -> ok; _ -> emit({"-export([",nl}), gen_exports1(ObjectSets,"getenc_",2), emit({"-export([",nl}), gen_exports1(ObjectSets,"getdec_",2) end, emit({"-export([info/0]).",nl}), gen_partial_inc_decode_exports(), gen_selected_decode_exports(), emit({nl,nl}). gen_exports1([F1,F2|T],Prefix,Arity) -> emit({"'",Prefix,F1,"'/",Arity,com,nl}), gen_exports1([F2|T],Prefix,Arity); gen_exports1([Flast|_T],Prefix,Arity) -> emit({"'",Prefix,Flast,"'/",Arity,nl,"]).",nl,nl}). gen_partial_inc_decode_exports() -> case {asn1ct:read_config_data(partial_incomplete_decode), asn1ct:get_gen_state_field(inc_type_pattern)} of {undefined,_} -> ok; {_,undefined} -> ok; {Data,_} -> gen_partial_inc_decode_exports(Data), emit(["-export([decode_part/2]).",nl]) end. gen_partial_inc_decode_exports([]) -> ok; gen_partial_inc_decode_exports([{Name,_,_}|Rest]) -> emit(["-export([",Name,"/1"]), gen_partial_inc_decode_exports1(Rest); gen_partial_inc_decode_exports([_|Rest]) -> gen_partial_inc_decode_exports(Rest). gen_partial_inc_decode_exports1([]) -> emit(["]).",nl]); gen_partial_inc_decode_exports1([{Name,_,_}|Rest]) -> emit([", ",Name,"/1"]), gen_partial_inc_decode_exports1(Rest); gen_partial_inc_decode_exports1([_|Rest]) -> gen_partial_inc_decode_exports1(Rest). gen_selected_decode_exports() -> case asn1ct:get_gen_state_field(type_pattern) of undefined -> ok; L -> gen_selected_decode_exports(L) end. gen_selected_decode_exports([]) -> ok; gen_selected_decode_exports([{FuncName,_}|Rest]) -> emit(["-export([",FuncName,"/1"]), gen_selected_decode_exports1(Rest). gen_selected_decode_exports1([]) -> emit(["]).",nl,nl]); gen_selected_decode_exports1([{FuncName,_}|Rest]) -> emit([",",nl," ",FuncName,"/1"]), gen_selected_decode_exports1(Rest). pgen_dispatcher(Erules,_Module,{[],_Values,_,_,_Objects,_ObjectSets}) -> gen_info_functions(Erules); pgen_dispatcher(Erules,_Module,{Types,_Values,_,_,_Objects,_ObjectSets}) -> emit(["-export([encode/2,decode/2]).",nl,nl]), gen_info_functions(Erules), NoFinalPadding = lists:member(no_final_padding,get(encoding_options)), {Call,BytesAsBinary} = case Erules of per -> asn1ct_func:need({Erules,complete,1}), {["complete(encode_disp(Type, Data))"],"Bytes"}; ber -> {"encode_disp(Type,Data)","iolist_to_binary(Bytes)"}; uper when NoFinalPadding == true -> asn1ct_func:need({Erules,complete_NFP,1}), {"complete_NFP(encode_disp(Type, Data))","Bytes"}; uper -> asn1ct_func:need({Erules,complete,1}), {["complete(encode_disp(Type, Data))"],"Bytes"} end, emit(["encode(Type,Data) ->",nl, "case catch ",Call," of",nl, " {'EXIT',{error,Reason}} ->",nl, " {error,Reason};",nl, " {'EXIT',Reason} ->",nl, " {error,{asn1,Reason}};",nl, " {Bytes,_Len} ->",nl, " {ok,",BytesAsBinary,"};",nl, " Bytes ->",nl, " {ok,",BytesAsBinary,"}",nl, "end.",nl,nl]), Return_rest = lists:member(undec_rest,get(encoding_options)), Data = case {Erules,Return_rest} of {ber,true} -> "Data0"; _ -> "Data" end, emit(["decode(Type,",Data,") ->",nl]), DecAnonymous = case {Erules,Return_rest} of {ber,false} -> asn1ct_func:need({ber,ber_decode_nif,1}), "element(1, ber_decode_nif(Data))"; {ber,true} -> asn1ct_func:need({ber,ber_decode_nif,1}), emit(["{Data,Rest} = ber_decode_nif(Data0),",nl]), "Data"; _ -> "Data" end, DecWrap = case Erules of ber -> DecAnonymous; _ -> "Data" end, emit(["case catch decode_disp(Type,",DecWrap,") of",nl, " {'EXIT',{error,Reason}} ->",nl, " {error,Reason};",nl, " {'EXIT',Reason} ->",nl, " {error,{asn1,Reason}};",nl]), case {Erules,Return_rest} of {ber,false} -> emit([" Result ->",nl, " {ok,Result}",nl]); {ber,true} -> emit([" Result ->",nl, " {ok,Result,Rest}",nl]); {_,false} -> emit([" {X,_Rest} ->",nl, " {ok,X};",nl, " {X,_Rest,_Len} ->",nl, " {ok,X}",nl]); {per,true} -> emit([" {X,{_,Rest}} ->",nl, " {ok,X,Rest};",nl, " {X,{_,Rest},_Len} ->",nl, " {ok,X,Rest};",nl, " {X,Rest} ->",nl, " {ok,X,Rest};",nl, " {X,Rest,_Len} ->",nl, " {ok,X,Rest}",nl]); {uper,true} -> emit([" {X,{_,Rest}} ->",nl, " {ok,X,Rest};",nl, " {X,{_,Rest},_Len} ->",nl, " {ok,X,Rest};",nl, " {X,Rest} ->",nl, " {ok,X,Rest};",nl, " {X,Rest,_Len} ->",nl, " {ok,X,Rest}",nl]) end, emit(["end.",nl,nl]), gen_decode_partial_incomplete(Erules), case Erules of ber -> gen_dispatcher(Types,"encode_disp","enc_",""), gen_dispatcher(Types,"decode_disp","dec_",""), gen_partial_inc_dispatcher(); _PerOrPer_bin -> gen_dispatcher(Types,"encode_disp","enc_",""), gen_dispatcher(Types,"decode_disp","dec_",",mandatory") end, emit([nl]), emit({nl,nl}). gen_info_functions(Erules) -> emit(["encoding_rule() -> ", {asis,Erules},".",nl,nl, "bit_string_format() -> ", {asis,asn1ct:get_bit_string_format()},".",nl,nl]). gen_decode_partial_incomplete(ber) -> case {asn1ct:read_config_data(partial_incomplete_decode), asn1ct:get_gen_state_field(inc_type_pattern)} of {undefined,_} -> ok; {_,undefined} -> ok; _ -> EmitCaseClauses = fun() -> emit([" {'EXIT',{error,Reason}} ->",nl, " {error,Reason};",nl, " {'EXIT',Reason} ->",nl, " {error,{asn1,Reason}};",nl, " Result ->",nl, " {ok,Result}",nl, " end"]) end, emit(["decode_partial_incomplete(Type,Data0,", "Pattern) ->",nl]), emit([" {Data,_RestBin} =",nl, " ",{call,ber,decode_primitive_incomplete, ["Pattern","Data0"]},com,nl, " case catch decode_partial_inc_disp(Type,", "Data) of",nl]), EmitCaseClauses(), emit([".",nl,nl]), emit(["decode_part(Type, Data0) " "when is_binary(Data0) ->",nl]), emit([" case catch decode_inc_disp(Type,element(1, ", {call,ber,ber_decode_nif,["Data0"]},")) of",nl]), EmitCaseClauses(), emit([";",nl]), emit(["decode_part(Type, Data0) ->",nl]), emit([" case catch decode_inc_disp(Type, Data0) of",nl]), EmitCaseClauses(), emit([".",nl,nl]) end; gen_decode_partial_incomplete(_Erule) -> ok. gen_partial_inc_dispatcher() -> case {asn1ct:read_config_data(partial_incomplete_decode), asn1ct:get_gen_state_field(inc_type_pattern)} of {undefined,_} -> ok; {_,undefined} -> ok; {Data1,Data2} -> % io:format("partial_incomplete_decode: ~p~ninc_type_pattern: ~p~n",[Data,Data2]), gen_partial_inc_dispatcher(Data1,Data2) end. gen_partial_inc_dispatcher([{FuncName,TopType,_Pattern}|Rest],TypePattern) -> TPattern = case lists:keysearch(FuncName,1,TypePattern) of {value,{_,TP}} -> TP; _ -> exit({error,{asn1_internal_error,exclusive_decode}}) end, FuncName2=asn1ct:maybe_rename_function(inc_disp,TopType,TPattern), TopTypeName = case asn1ct:maybe_saved_sindex(TopType,TPattern) of I when is_integer(I),I>0 -> lists:concat([TopType,"_",I]); _ -> atom_to_list(TopType) end, emit(["decode_partial_inc_disp('",TopTypeName,"',Data) ->",nl, " ",{asis,list_to_atom(lists:concat(["dec-inc-",FuncName2]))}, "(Data);",nl]), gen_partial_inc_dispatcher(Rest,TypePattern); gen_partial_inc_dispatcher([],_) -> emit(["decode_partial_inc_disp(Type,_Data) ->",nl, " exit({error,{asn1,{undefined_type,Type}}}).",nl]). gen_dispatcher([F1,F2|T],FuncName,Prefix,ExtraArg) -> emit([FuncName,"('",F1,"',Data) -> '",Prefix,F1,"'(Data",ExtraArg,")",";",nl]), gen_dispatcher([F2|T],FuncName,Prefix,ExtraArg); gen_dispatcher([Flast|_T],FuncName,Prefix,ExtraArg) -> emit([FuncName,"('",Flast,"',Data) -> '",Prefix,Flast,"'(Data",ExtraArg,")",";",nl]), emit([FuncName,"(","Type",",_Data) -> exit({error,{asn1,{undefined_type,Type}}}).",nl,nl,nl]). pgen_info() -> emit(["info() ->",nl, " case ?MODULE:module_info(attributes) of",nl, " Attributes when is_list(Attributes) ->",nl, " case lists:keyfind(asn1_info, 1, Attributes) of",nl, " {_,Info} when is_list(Info) ->",nl, " Info;",nl, " _ ->",nl, " []",nl, " end;",nl, " _ ->",nl, " []",nl, " end.",nl]). open_hrl(OutFile,Module) -> File = lists:concat([OutFile,".hrl"]), Fid = fopen(File,[write]), put(gen_file_out,Fid), gen_hrlhead(Module). %% EMIT functions ************************ %% *************************************** % debug generation demit(Term) -> case get(asndebug) of true -> emit(Term); _ ->true end. % always generation emit({external,_M,T}) -> emit(T); emit({prev,Variable}) when is_atom(Variable) -> emit({var,asn1ct_name:prev(Variable)}); emit({next,Variable}) when is_atom(Variable) -> emit({var,asn1ct_name:next(Variable)}); emit({curr,Variable}) when is_atom(Variable) -> emit({var,asn1ct_name:curr(Variable)}); emit({var,Variable}) when is_atom(Variable) -> [Head|V] = atom_to_list(Variable), emit([Head-32|V]); emit({var,Variable}) -> [Head|V] = Variable, emit([Head-32|V]); emit({asis,What}) -> format(get(gen_file_out),"~w",[What]); emit({call,M,F,A}) -> asn1ct_func:call(M, F, A); emit(nl) -> nl(get(gen_file_out)); emit(com) -> emit(","); emit(tab) -> put_chars(get(gen_file_out)," "); emit(What) when is_integer(What) -> put_chars(get(gen_file_out),integer_to_list(What)); emit(What) when is_list(What), is_integer(hd(What)) -> put_chars(get(gen_file_out),What); emit(What) when is_atom(What) -> put_chars(get(gen_file_out),atom_to_list(What)); emit(What) when is_tuple(What) -> emit_parts(tuple_to_list(What)); emit(What) when is_list(What) -> emit_parts(What); emit(X) -> exit({'cant emit ',X}). emit_parts([]) -> true; emit_parts([H|T]) -> emit(H), emit_parts(T). format(undefined,X,Y) -> io:format(X,Y); format(X,Y,Z) -> io:format(X,Y,Z). nl(undefined) -> io:nl(); nl(X) -> io:nl(X). put_chars(undefined,X) -> io:put_chars(X); put_chars(Y,X) -> io:put_chars(Y,X). fopen(F, ModeList) -> case file:open(F, ModeList) of {ok, Fd} -> Fd; {error, Reason} -> io:format("** Can't open file ~p ~n", [F]), exit({error,Reason}) end. pgen_hrl(Erules,Module,TypeOrVal,Options,_Indent) -> put(currmod,Module), {Types,Values,Ptypes,_,_,_} = TypeOrVal, Ret = case pgen_hrltypes(Erules,Module,Ptypes++Types,0) of 0 -> case Values of [] -> 0; _ -> open_hrl(get(outfile),get(currmod)), pgen_macros(Erules,Module,Values), 1 end; X -> pgen_macros(Erules,Module,Values), X end, case Ret of 0 -> 0; Y -> Fid = get(gen_file_out), file:close(Fid), asn1ct:verbose("--~p--~n", [{generated,lists:concat([get(outfile),".hrl"])}], Options), Y end. pgen_macros(_,_,[]) -> true; pgen_macros(Erules,Module,[H|T]) -> Valuedef = asn1_db:dbget(Module,H), gen_macro(Valuedef), pgen_macros(Erules,Module,T). pgen_hrltypes(_,_,[],NumRecords) -> NumRecords; pgen_hrltypes(Erules,Module,[H|T],NumRecords) -> % io:format("records = ~p~n",NumRecords), Typedef = asn1_db:dbget(Module,H), AddNumRecords = gen_record(Typedef,NumRecords), pgen_hrltypes(Erules,Module,T,NumRecords+AddNumRecords). %% Generates a macro for value Value defined in the ASN.1 module gen_macro(Value) when is_record(Value,valuedef) -> Prefix = get_macro_name_prefix(), emit({"-define('",Prefix,Value#valuedef.name,"', ", {asis,Value#valuedef.value},").",nl}). %% Generate record functions ************** %% Generates an Erlang record for each named and unnamed SEQUENCE and SET in the ASN.1 %% module. If no SEQUENCE or SET is found there is no .hrl file generated gen_record(Tdef,NumRecords) when is_record(Tdef,typedef) -> Name = [Tdef#typedef.name], Type = Tdef#typedef.typespec, gen_record(type,Name,Type,NumRecords); gen_record(Tdef,NumRecords) when is_record(Tdef,ptypedef) -> Name = [Tdef#ptypedef.name], Type = Tdef#ptypedef.typespec, gen_record(ptype,Name,Type,NumRecords). gen_record(TorPtype,Name,[#'ComponentType'{name=Cname,typespec=Type}|T],Num) -> Num2 = gen_record(TorPtype,[Cname|Name],Type,Num), gen_record(TorPtype,Name,T,Num2); gen_record(TorPtype,Name,{Clist1,Clist2},Num) when is_list(Clist1), is_list(Clist2) -> gen_record(TorPtype,Name,Clist1++Clist2,Num); gen_record(TorPtype,Name,{Clist1,EClist,Clist2},Num) when is_list(Clist1), is_list(EClist), is_list(Clist2) -> gen_record(TorPtype,Name,Clist1++EClist++Clist2,Num); gen_record(TorPtype,Name,[_|T],Num) -> % skip EXTENSIONMARK gen_record(TorPtype,Name,T,Num); gen_record(_TorPtype,_Name,[],Num) -> Num; gen_record(TorPtype,Name,Type,Num) when is_record(Type,type) -> Def = Type#type.def, Rec = case Def of Seq when is_record(Seq,'SEQUENCE') -> case Seq#'SEQUENCE'.pname of false -> {record,Seq#'SEQUENCE'.components}; %% _Pname when TorPtype == type -> %% false; _ -> {record,Seq#'SEQUENCE'.components} end; Set when is_record(Set,'SET') -> case Set#'SET'.pname of false -> {record,to_textual_order(Set#'SET'.components)}; _Pname when TorPtype == type -> false; _ -> {record,to_textual_order(Set#'SET'.components)} end; % {'SET',{_,_CompList}} -> % {record,_CompList}; {'CHOICE',_CompList} -> {inner,Def}; {'SEQUENCE OF',_CompList} -> {['SEQOF'|Name],Def}; {'SET OF',_CompList} -> {['SETOF'|Name],Def}; _ -> false end, case Rec of false -> Num; {record,CompList} -> case Num of 0 -> open_hrl(get(outfile),get(currmod)); _ -> true end, Prefix = get_record_name_prefix(), emit({"-record('",Prefix,list2name(Name),"',{",nl}), RootList = case CompList of _ when is_list(CompList) -> CompList; {Rl,_} -> Rl; {Rl1,_Ext,_Rl2} -> Rl1 end, gen_record2(Name,'SEQUENCE',RootList), NewCompList = case CompList of {CompList1,[]} -> emit({"}). % with extension mark",nl,nl}), CompList1; {Tr,ExtensionList2} -> case Tr of [] -> true; _ -> emit({",",nl}) end, emit({"%% with extensions",nl}), gen_record2(Name, 'SEQUENCE', ExtensionList2, "", ext), emit({"}).",nl,nl}), Tr ++ ExtensionList2; {Rootl1,Extl,Rootl2} -> case Rootl1 of [] -> true; _ -> emit([",",nl]) end, emit(["%% with extensions",nl]), gen_record2(Name,'SEQUENCE',Extl,"",ext), case Extl of [_H|_] when Rootl2 /= [] -> emit([",",nl]); _ -> ok end, emit(["%% end of extensions",nl]), gen_record2(Name,'SEQUENCE',Rootl2,"",noext), emit(["}).",nl,nl]), Rootl1++Extl++Rootl2; _ -> emit({"}).",nl,nl}), CompList end, gen_record(TorPtype,Name,NewCompList,Num+1); {inner,{'CHOICE', CompList}} -> gen_record(TorPtype,Name,CompList,Num); {NewName,{_, CompList}} -> gen_record(TorPtype,NewName,CompList,Num) end; gen_record(_,_,_,NumRecords) -> % skip CLASS etc for now. NumRecords. gen_head(Erules,Mod,Hrl) -> Options = get(encoding_options), case Erules of per -> emit(["%% Generated by the Erlang ASN.1 PER-" "compiler version, utilizing bit-syntax:", asn1ct:vsn(),nl]); ber -> emit(["%% Generated by the Erlang ASN.1 BER_V2-" "compiler version, utilizing bit-syntax:", asn1ct:vsn(),nl]); uper -> emit(["%% Generated by the Erlang ASN.1 UNALIGNED" " PER-compiler version, utilizing bit-syntax:", asn1ct:vsn(),nl]) end, emit({"%% Purpose: encoder and decoder to the types in mod ",Mod,nl,nl}), emit({"-module('",Mod,"').",nl}), put(currmod,Mod), emit({"-compile(nowarn_unused_vars).",nl}), case Hrl of 0 -> ok; _ -> emit({"-include(\"",Mod,".hrl\").",nl}) end, emit(["-asn1_info([{vsn,'",asn1ct:vsn(),"'},",nl, " {module,'",Mod,"'},",nl, " {options,",io_lib:format("~p",[Options]),"}]).",nl,nl]). gen_hrlhead(Mod) -> emit({"%% Generated by the Erlang ASN.1 compiler version:",asn1ct:vsn(),nl}), emit({"%% Purpose: Erlang record definitions for each named and unnamed",nl}), emit({"%% SEQUENCE and SET, and macro definitions for each value",nl}), emit({"%% definition,in module ",Mod,nl,nl}), emit({nl,nl}). gen_record2(Name,SeqOrSet,Comps) -> gen_record2(Name,SeqOrSet,Comps,"",noext). gen_record2(_Name,_SeqOrSet,[],_Com,_Extension) -> true; gen_record2(_Name,_SeqOrSet,[H = #'ComponentType'{name=Cname}],Com,Extension) -> emit(Com), emit({asis,Cname}), gen_record_default(H, Extension); gen_record2(Name,SeqOrSet,[H = #'ComponentType'{name=Cname}|T],Com, Extension) -> emit(Com), emit({asis,Cname}), gen_record_default(H, Extension), gen_record2(Name,SeqOrSet,T,", ", Extension); gen_record2(Name,SeqOrSet,[_|T],Com,Extension) -> %% skip EXTENSIONMARK, ExtensionAdditionGroup and other markers gen_record2(Name,SeqOrSet,T,Com,Extension). gen_record_default(#'ComponentType'{prop='OPTIONAL'}, _)-> emit(" = asn1_NOVALUE"); gen_record_default(#'ComponentType'{prop={'DEFAULT',_}}, _)-> emit(" = asn1_DEFAULT"); gen_record_default(_, _) -> true. %% May only be a list or a two-tuple. to_textual_order({Root,Ext}) -> {to_textual_order(Root),Ext}; to_textual_order(Cs={_R1,_Ext,_R2}) -> Cs; to_textual_order(Cs=[#'ComponentType'{textual_order=undefined}|_]) -> Cs; to_textual_order(Cs) when is_list(Cs) -> lists:keysort(#'ComponentType'.textual_order,Cs). gen_check_call(TopType,Cname,Type,InnerType,WhatKind,DefaultValue,Element) -> case WhatKind of {primitive,bif} -> gen_prim_check_call(InnerType,DefaultValue,Element,Type); #'Externaltypereference'{module=M,type=T} -> %% generate function call Name = list2name([T,check]), emit({"'",Name,"'(",DefaultValue,", ",Element,")"}), %% insert in ets table and do look ahead check Typedef = asn1_db:dbget(M,T), RefType = Typedef#typedef.typespec, InType = asn1ct_gen:get_inner(RefType#type.def), case insert_once(check_functions,{Name,RefType}) of true -> lookahead_innertype([T],InType,RefType); _ -> ok end; {constructed,bif} -> NameList = [Cname|TopType], Name = list2name(NameList ++ [check]), emit({"'",Name,"'(",DefaultValue,", ",Element,")"}), asn1ct_table:insert(check_functions, {Name, Type}), %% Must look for check functions in InnerType, %% that may be referenced or internal defined %% constructed types not used elsewhere. lookahead_innertype(NameList,InnerType,Type); _ -> %% Generate Dummy function call i.e. anything is accepted emit(["fun() -> true end ()"]) end. gen_prim_check_call(PrimType, Default, Element, Type) -> case unify_if_string(PrimType) of 'BOOLEAN' -> check_call(check_bool, [Default,Element]); 'INTEGER' -> NNL = case Type#type.def of {_,NamedNumberList} -> NamedNumberList; _ -> [] end, check_call(check_int, [Default,Element,{asis,NNL}]); 'BIT STRING' -> {_,NBL} = Type#type.def, check_call(check_bitstring, [Default,Element,{asis,NBL}]); 'OCTET STRING' -> check_call(check_octetstring, [Default,Element]); 'NULL' -> check_call(check_null, [Default,Element]); 'OBJECT IDENTIFIER' -> check_call(check_objectidentifier, [Default,Element]); 'RELATIVE-OID' -> check_call(check_objectidentifier, [Default,Element]); 'ObjectDescriptor' -> check_call(check_objectdescriptor, [Default,Element]); 'REAL' -> check_call(check_real, [Default,Element]); 'ENUMERATED' -> {_,Enumerations} = Type#type.def, check_call(check_enum, [Default,Element,{asis,Enumerations}]); restrictedstring -> check_call(check_restrictedstring, [Default,Element]) end. check_call(F, Args) -> asn1ct_func:call(check, F, Args). %% lokahead_innertype/3 traverses Type and checks if check functions %% have to be generated, i.e. for all constructed or referenced types. lookahead_innertype(Name,'SEQUENCE',Type) -> Components = (Type#type.def)#'SEQUENCE'.components, lookahead_components(Name,Components); lookahead_innertype(Name,'SET',Type) -> Components = (Type#type.def)#'SET'.components, lookahead_components(Name,Components); lookahead_innertype(Name,'CHOICE',Type) -> {_,Components} = Type#type.def, lookahead_components(Name,Components); lookahead_innertype(Name,'SEQUENCE OF',SeqOf) -> lookahead_sof(Name,'SEQOF',SeqOf); lookahead_innertype(Name,'SET OF',SeqOf) -> lookahead_sof(Name,'SETOF',SeqOf); lookahead_innertype(_Name,#'Externaltypereference'{module=M,type=T},_) -> Typedef = asn1_db:dbget(M,T), RefType = Typedef#typedef.typespec, insert_once(check_functions,{list2name([T,check]),RefType}), InType = asn1ct_gen:get_inner(RefType#type.def), case type(InType) of {constructed,bif} -> lookahead_innertype([T],InType,RefType); Ref = #'Externaltypereference'{} -> lookahead_reference(Ref); _ -> ok end; lookahead_innertype(_,_,_) -> ok. lookahead_components(_,[]) -> ok; lookahead_components(Name,[C|Cs]) -> #'ComponentType'{name=Cname,typespec=Type} = C, InType = asn1ct_gen:get_inner(Type#type.def), case asn1ct_gen:type(InType) of {constructed,bif} -> case insert_once(check_functions, {list2name([Cname|Name] ++ [check]),Type}) of true -> lookahead_innertype([Cname|Name],InType,Type); _ -> ok end; #'Externaltypereference'{module=RefMod,type=RefName} -> Typedef = asn1_db:dbget(RefMod,RefName), RefType = Typedef#typedef.typespec, case insert_once(check_functions,{list2name([RefName,check]), RefType}) of true -> lookahead_innertype([RefName],InType,RefType); _ -> ok end; _ -> ok end, lookahead_components(Name,Cs). lookahead_sof(Name,SOF,SOFType) -> Type = case SOFType#type.def of {_,_Type} -> _Type; _Type -> _Type end, InnerType = asn1ct_gen:get_inner(Type#type.def), case asn1ct_gen:type(InnerType) of {constructed,bif} -> %% this is if a constructed type is defined in %% the SEQUENCE OF type NameList = [SOF|Name], insert_once(check_functions, {list2name(NameList ++ [check]),Type}), lookahead_innertype(NameList,InnerType,Type); Ref = #'Externaltypereference'{} -> lookahead_reference(Ref); _ -> ok end. lookahead_reference(#'Externaltypereference'{module=M,type=T}) -> Typedef = asn1_db:dbget(M,T), RefType = Typedef#typedef.typespec, InType = get_inner(RefType#type.def), case insert_once(check_functions, {list2name([T,check]),RefType}) of true -> lookahead_innertype([T],InType,RefType); _ -> ok end. insert_once(Table,Object) -> case asn1ct_table:lookup(Table, element(1, Object)) of [] -> asn1ct_table:insert(Table, Object); %returns true _ -> false end. unify_if_string(PrimType) -> case PrimType of 'NumericString' -> restrictedstring; 'PrintableString' -> restrictedstring; 'TeletexString' -> restrictedstring; 'T61String' -> restrictedstring; 'VideotexString' -> restrictedstring; 'IA5String' -> restrictedstring; 'UTCTime' -> restrictedstring; 'GeneralizedTime' -> restrictedstring; 'GraphicString' -> restrictedstring; 'VisibleString' -> restrictedstring; 'GeneralString' -> restrictedstring; 'UniversalString' -> restrictedstring; 'BMPString' -> restrictedstring; 'UTF8String' -> restrictedstring; Other -> Other end. get_inner(A) when is_atom(A) -> A; get_inner(Ext) when is_record(Ext,'Externaltypereference') -> Ext; get_inner(Tref) when is_record(Tref,typereference) -> Tref; get_inner({fixedtypevaluefield,_,Type}) -> if is_record(Type,type) -> get_inner(Type#type.def); true -> get_inner(Type) end; get_inner({typefield,TypeName}) -> TypeName; get_inner(#'ObjectClassFieldType'{type=Type}) -> % get_inner(Type); Type; get_inner(T) when is_tuple(T) -> case element(1,T) of Tuple when is_tuple(Tuple),element(1,Tuple) == objectclass -> case catch(lists:last(element(2,T))) of {valuefieldreference,FieldName} -> get_fieldtype(element(2,Tuple),FieldName); {typefieldreference,FieldName} -> get_fieldtype(element(2,Tuple),FieldName); {'EXIT',Reason} -> throw({asn1,{'internal error in get_inner/1',Reason}}) end; _ -> element(1,T) end. type(X) when is_record(X,'Externaltypereference') -> X; type(X) when is_record(X,typereference) -> X; type('ASN1_OPEN_TYPE') -> 'ASN1_OPEN_TYPE'; type({fixedtypevaluefield,_Name,Type}) when is_record(Type,type) -> type(get_inner(Type#type.def)); type({typefield,_}) -> 'ASN1_OPEN_TYPE'; type(X) -> %% io:format("asn1_types:type(~p)~n",[X]), case catch type2(X) of {'EXIT',_} -> {notype,X}; Normal -> Normal end. type2(X) -> case prim_bif(X) of true -> {primitive,bif}; false -> case construct_bif(X) of true -> {constructed,bif}; false -> {undefined,user} end end. prim_bif(X) -> lists:member(X,['INTEGER' , 'ENUMERATED', 'REAL', 'OBJECT IDENTIFIER', 'RELATIVE-OID', 'ANY', 'NULL', 'BIT STRING' , 'OCTET STRING' , 'ObjectDescriptor', 'NumericString', 'TeletexString', 'T61String', 'VideotexString', 'UTCTime', 'GeneralizedTime', 'GraphicString', 'VisibleString', 'GeneralString', 'PrintableString', 'IA5String', 'UniversalString', 'UTF8String', 'BMPString', 'ENUMERATED', 'BOOLEAN']). construct_bif(T) -> lists:member(T,['SEQUENCE' , 'SEQUENCE OF' , 'CHOICE' , 'SET' , 'SET OF']). def_to_tag(#tag{class=Class,number=Number}) -> {Class,Number}; def_to_tag(#'ObjectClassFieldType'{type=Type}) -> case Type of T when is_tuple(T),element(1,T)==fixedtypevaluefield -> {'UNIVERSAL',get_inner(Type)}; _ -> [] end; def_to_tag(Def) -> {'UNIVERSAL',get_inner(Def)}. %% Information Object Class type_from_object(X) -> case (catch lists:last(element(2,X))) of {'EXIT',_} -> {notype,X}; Normal -> Normal end. get_fieldtype([],_FieldName)-> {no_type,no_name}; get_fieldtype([Field|Rest],FieldName) -> case element(2,Field) of FieldName -> case element(1,Field) of fixedtypevaluefield -> {element(1,Field),FieldName,element(3,Field)}; _ -> {element(1,Field),FieldName} end; _ -> get_fieldtype(Rest,FieldName) end. get_fieldcategory([],_FieldName) -> no_cat; get_fieldcategory([Field|Rest],FieldName) -> case element(2,Field) of FieldName -> element(1,Field); _ -> get_fieldcategory(Rest,FieldName) end. get_typefromobject(Type) when is_record(Type,type) -> case Type#type.def of {{objectclass,_,_},TypeFrObj} when is_list(TypeFrObj) -> {_,FieldName} = lists:last(TypeFrObj), FieldName; _ -> {no_field} end. get_classfieldcategory(Type,FieldName) -> case (catch Type#type.def) of {{obejctclass,Fields,_},_} -> get_fieldcategory(Fields,FieldName); {'EXIT',_} -> no_cat; _ -> no_cat end. %% Information Object Class %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Convert a list of name parts to something that can be output by emit %% %% used to output function names in generated code. list2name(L) -> NewL = list2name1(L), lists:concat(lists:reverse(NewL)). list2name1([{ptype,H1},H2|T]) -> [H1,"_",list2name([H2|T])]; list2name1([H1,H2|T]) -> [H1,"_",list2name([H2|T])]; list2name1([{ptype,H}|_T]) -> [H]; list2name1([H|_T]) -> [H]; list2name1([]) -> []. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Convert a list of name parts to something that can be output by emit %% stops at {ptype,Pname} i.e Pname whill be the first part of the name %% used to output record names in generated code. list2rname(L) -> NewL = list2rname1(L), lists:concat(lists:reverse(NewL)). list2rname1([{ptype,H1},_H2|_T]) -> [H1]; list2rname1([H1,H2|T]) -> [H1,"_",list2name([H2|T])]; list2rname1([{ptype,H}|_T]) -> [H]; list2rname1([H|_T]) -> [H]; list2rname1([]) -> []. constructed_suffix(_,#'SEQUENCE'{pname=Ptypename}) when Ptypename =/= false -> {ptype, Ptypename}; constructed_suffix(_,#'SET'{pname=Ptypename}) when Ptypename =/= false -> {ptype,Ptypename}; constructed_suffix('SEQUENCE OF',_) -> 'SEQOF'; constructed_suffix('SET OF',_) -> 'SETOF'. erule(ber) -> ber; erule(per) -> per; erule(uper) -> per. index2suffix(0) -> ""; index2suffix(N) -> lists:concat(["_",N]). ct_gen_module(ber) -> asn1ct_gen_ber_bin_v2; ct_gen_module(per) -> asn1ct_gen_per_rt2ct; ct_gen_module(uper) -> asn1ct_gen_per. ct_constructed_module(ber) -> asn1ct_constructed_ber_bin_v2; ct_constructed_module(per) -> asn1ct_constructed_per; ct_constructed_module(uper) -> asn1ct_constructed_per. get_constraint(C,Key) -> case lists:keysearch(Key,1,C) of false -> no; {value,{_,V}} -> V; {value,Cnstr} -> Cnstr end. ensure_atom(Atom) when is_atom(Atom) -> Atom; ensure_atom(List) when is_list(List) -> list_to_atom(List). get_record_name_prefix() -> case lists:keysearch(record_name_prefix,1,get(encoding_options)) of false -> ""; {value,{_,Prefix}} -> Prefix end. get_macro_name_prefix() -> case lists:keysearch(macro_name_prefix,1,get(encoding_options)) of false -> ""; {value,{_,Prefix}} -> Prefix end.