%%
%% %CopyrightBegin%
%% 
%% Copyright Ericsson AB 2001-2011. All Rights Reserved.
%% 
%% The contents of this file are subject to the Erlang Public License,
%% Version 1.1, (the "License"); you may not use this file except in
%% compliance with the License. You should have received a copy of the
%% Erlang Public License along with this software. If not, it can be
%% retrieved online at http://www.erlang.org/.
%% 
%% Software distributed under the License is distributed on an "AS IS"
%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
%% the License for the specific language governing rights and limitations
%% under the License.
%% 
%% %CopyrightEnd%
%%
%%
-module(asn1rt_per_bin).

%% encoding / decoding of PER aligned

-include("asn1_records.hrl").

-export([dec_fixup/3, cindex/3, list_to_record/2]).
-export([setchoiceext/1, setext/1, fixoptionals/2, fixoptionals/3, 
	 fixextensions/2, 
	 getext/1, getextension/2, skipextensions/3, getbit/1, getchoice/3 ]).
-export([getoptionals/2, getoptionals2/2, set_choice/3, encode_integer/2, encode_integer/3  ]).
-export([decode_integer/2, decode_integer/3, encode_small_number/1, encode_boolean/1, 
	 decode_boolean/1, encode_length/2, decode_length/1, decode_length/2,
	 encode_small_length/1, decode_small_length/1,
	 decode_compact_bit_string/3]).
-export([decode_enumerated/3, 
	 encode_bit_string/3, decode_bit_string/3  ]).
-export([encode_octet_string/2, decode_octet_string/2,
	 encode_null/1, decode_null/1,
	 encode_object_identifier/1, decode_object_identifier/1,
	 encode_real/1, decode_real/1,
	 encode_relative_oid/1, decode_relative_oid/1,
	 complete/1]).


-export([encode_open_type/2, decode_open_type/2]).

-export([encode_UniversalString/2, decode_UniversalString/2,
	 encode_PrintableString/2, decode_PrintableString/2,
	 encode_GeneralString/2, decode_GeneralString/2,
	 encode_GraphicString/2, decode_GraphicString/2,
	 encode_TeletexString/2, decode_TeletexString/2,
	 encode_VideotexString/2, decode_VideotexString/2,
	 encode_VisibleString/2, decode_VisibleString/2,
	 encode_UTF8String/1, decode_UTF8String/1,
	 encode_BMPString/2, decode_BMPString/2,
	 encode_IA5String/2, decode_IA5String/2,
	 encode_NumericString/2, decode_NumericString/2,
	 encode_ObjectDescriptor/2, decode_ObjectDescriptor/1
	]).
-export([complete_bytes/1, getbits/2, getoctets/2]).

-define('16K',16384).
-define('32K',32768).
-define('64K',65536).

dec_fixup(Terms,Cnames,RemBytes) ->
    dec_fixup(Terms,Cnames,RemBytes,[]).

dec_fixup([novalue|T],[_Hc|Tc],RemBytes,Acc) ->
    dec_fixup(T,Tc,RemBytes,Acc);
dec_fixup([{_Name,novalue}|T],[_Hc|Tc],RemBytes,Acc) ->
    dec_fixup(T,Tc,RemBytes,Acc);
dec_fixup([H|T],[Hc|Tc],RemBytes,Acc) ->
    dec_fixup(T,Tc,RemBytes,[{Hc,H}|Acc]);
dec_fixup([],_Cnames,RemBytes,Acc) ->
    {lists:reverse(Acc),RemBytes}.

cindex(Ix,Val,Cname) ->
    case element(Ix,Val) of
	{Cname,Val2} -> Val2;
	X -> X
    end.

%% converts a list to a record if necessary
list_to_record(_Name,Tuple) when is_tuple(Tuple) ->
    Tuple;
list_to_record(Name,List) when is_list(List) ->
    list_to_tuple([Name|List]).

%%--------------------------------------------------------
%% setchoiceext(InRootSet) -> [{bit,X}]
%% X  is set to  1 when InRootSet==false
%% X  is set to  0 when InRootSet==true
%%
setchoiceext(true) ->
    [{debug,choiceext},{bits,1,0}];
setchoiceext(false) ->
    [{debug,choiceext},{bits,1,1}].

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% setext(true|false) ->  CompleteList
%%

setext(false) ->
    [{debug,ext},{bits,1,0}];
setext(true) ->
    [{debug,ext},{bits,1,1}].


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% This version of fixoptionals/2 are left only because of 
%% backward compatibility with older generates

fixoptionals(OptList,Val) when is_tuple(Val) ->
    fixoptionals1(OptList,Val,[]);

fixoptionals(OptList,Val) when is_list(Val) ->
    fixoptionals1(OptList,Val,1,[],[]).

fixoptionals1([],Val,Acc) ->
    %% return {Val,Opt}
    {Val,lists:reverse(Acc)};
fixoptionals1([{_,Pos}|Ot],Val,Acc) ->
    case element(Pos+1,Val) of
	asn1_NOVALUE -> fixoptionals1(Ot,Val,[0|Acc]);
	asn1_DEFAULT -> fixoptionals1(Ot,Val,[0|Acc]);
	_ -> fixoptionals1(Ot,Val,[1|Acc])
    end.


fixoptionals1([{Name,Pos}|Ot],[{Name,Val}|Vt],_Opt,Acc1,Acc2) ->
    fixoptionals1(Ot,Vt,Pos+1,[1|Acc1],[{Name,Val}|Acc2]);
fixoptionals1([{_Name,Pos}|Ot],V,Pos,Acc1,Acc2) ->
    fixoptionals1(Ot,V,Pos+1,[0|Acc1],[asn1_NOVALUE|Acc2]);
fixoptionals1(O,[Vh|Vt],Pos,Acc1,Acc2) ->
    fixoptionals1(O,Vt,Pos+1,Acc1,[Vh|Acc2]);
fixoptionals1([],[Vh|Vt],Pos,Acc1,Acc2) ->
    fixoptionals1([],Vt,Pos+1,Acc1,[Vh|Acc2]);
fixoptionals1([],[],_,Acc1,Acc2) ->
						% return {Val,Opt}
    {list_to_tuple([asn1_RECORDNAME|lists:reverse(Acc2)]),lists:reverse(Acc1)}.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% This is the new fixoptionals/3 which is used by the new generates
%%
fixoptionals(OptList,OptLength,Val) when is_tuple(Val) ->
    Bits = fixoptionals(OptList,Val,0),
    {Val,{bits,OptLength,Bits}};

fixoptionals([],_Val,Acc) ->
    %% Optbits
    Acc;
fixoptionals([{Pos,DefVal}|Ot],Val,Acc) ->
    case element(Pos,Val) of
	asn1_DEFAULT -> fixoptionals(Ot,Val,Acc bsl 1);
	DefVal -> fixoptionals(Ot,Val,Acc bsl 1);
	_ -> fixoptionals(Ot,Val,(Acc bsl 1) + 1)
    end;
fixoptionals([Pos|Ot],Val,Acc) ->
    case element(Pos,Val) of
	asn1_NOVALUE -> fixoptionals(Ot,Val,Acc bsl 1);
	asn1_DEFAULT -> fixoptionals(Ot,Val,Acc bsl 1);
	_ -> fixoptionals(Ot,Val,(Acc bsl 1) + 1)
    end.


getext(Bytes) when is_tuple(Bytes) ->
    getbit(Bytes);
getext(Bytes) when is_binary(Bytes) ->
    getbit({0,Bytes}).

getextension(0, Bytes) ->
    {{},Bytes};
getextension(1, Bytes) ->
    {Len,Bytes2} = decode_small_length(Bytes),
    {Blist, Bytes3} = getbits_as_list(Len,Bytes2),
    {list_to_tuple(Blist),Bytes3}.

fixextensions({ext,ExtPos,ExtNum},Val) ->
    case fixextensions(ExtPos,ExtNum+ExtPos,Val,0) of
	0 -> [];
	ExtBits ->
	    [encode_small_length(ExtNum),{bits,ExtNum,ExtBits}]
    end.

fixextensions(Pos,MaxPos,_,Acc) when Pos >= MaxPos ->
    Acc;
fixextensions(Pos,ExtPos,Val,Acc) ->
    Bit = case catch(element(Pos+1,Val)) of
	      asn1_NOVALUE ->
		  0;
	      asn1_NOEXTVALUE ->
		  0;
	      {'EXIT',_} ->
		  0;
	      _ ->
		  1
	  end,
    fixextensions(Pos+1,ExtPos,Val,(Acc bsl 1)+Bit).

skipextensions(Bytes,Nr,ExtensionBitPattern) -> 
    case (catch element(Nr,ExtensionBitPattern)) of
	1 ->
	    {_,Bytes2} = decode_open_type(Bytes,[]),
	    skipextensions(Bytes2, Nr+1, ExtensionBitPattern);
	0 ->
	    skipextensions(Bytes, Nr+1, ExtensionBitPattern);
	{'EXIT',_} -> % badarg, no more extensions
	    Bytes
    end.


getchoice(Bytes,1,0) -> % only 1 alternative is not encoded
    {0,Bytes};
getchoice(Bytes,_,1) ->
    decode_small_number(Bytes);
getchoice(Bytes,NumChoices,0) ->
    decode_constrained_number(Bytes,{0,NumChoices-1}).

%% old version kept for backward compatibility with generates from R7B
getoptionals(Bytes,NumOpt) ->
    {Blist,Bytes1} = getbits_as_list(NumOpt,Bytes),
    {list_to_tuple(Blist),Bytes1}.

%% new version used in generates from r8b_patch/3 and later
getoptionals2(Bytes,NumOpt) ->
    getbits(Bytes,NumOpt).


%% getbits_as_binary(Num,Bytes) -> {{Unused,BinBits},RestBytes},
%% Num = integer(),
%% Bytes = list() | tuple(),
%% Unused = integer(),
%% BinBits = binary(),
%% RestBytes = tuple()
getbits_as_binary(Num,Bytes) when is_binary(Bytes) ->
    getbits_as_binary(Num,{0,Bytes});
getbits_as_binary(0,Buffer) ->
    {{0,<<>>},Buffer};
getbits_as_binary(Num,{0,Bin}) when Num > 16 ->
    Used = Num rem 8,
    Pad = (8 - Used) rem 8,
%    Nbytes = Num div 8,
    <<Bits:Num,_:Pad,RestBin/binary>> = Bin,
    {{Pad,<<Bits:Num,0:Pad>>},RestBin};
getbits_as_binary(Num,Buffer={_Used,_Bin}) -> % Unaligned buffer
    %% Num =< 16,
    {Bits2,Buffer2} = getbits(Buffer,Num),
    Pad = (8 - (Num rem 8)) rem 8,
    {{Pad,<<Bits2:Num,0:Pad>>},Buffer2}.


% integer_from_list(Int,[],BigInt) ->
%     BigInt;
% integer_from_list(Int,[H|T],BigInt) when Int < 8 ->
%     (BigInt bsl Int) bor (H bsr (8-Int));
% integer_from_list(Int,[H|T],BigInt) ->
%     integer_from_list(Int-8,T,(BigInt bsl 8) bor H).

getbits_as_list(Num,Bytes) when is_binary(Bytes) ->
    getbits_as_list(Num,{0,Bytes},[]);
getbits_as_list(Num,Bytes) ->
    getbits_as_list(Num,Bytes,[]).

%% If buffer is empty and nothing more will be picked.
getbits_as_list(0, B, Acc) ->
    {lists:reverse(Acc),B};
%% If first byte in buffer is full and at least one byte will be picked,
%% then pick one byte.
getbits_as_list(N,{0,Bin},Acc) when N >= 8 ->
    <<B7:1,B6:1,B5:1,B4:1,B3:1,B2:1,B1:1,B0:1,Rest/binary>> = Bin,
    getbits_as_list(N-8,{0,Rest},[B0,B1,B2,B3,B4,B5,B6,B7|Acc]);
getbits_as_list(N,{Used,Bin},Acc) when N >= 4, Used =< 4 ->
    NewUsed = Used + 4,
    Rem = 8 - NewUsed,
    <<_:Used,B3:1,B2:1,B1:1,B0:1,_:Rem, Rest/binary>> = Bin,
    NewRest = case Rem of 0 -> Rest; _ -> Bin end,
    getbits_as_list(N-4,{NewUsed rem 8,NewRest},[B0,B1,B2,B3|Acc]);
getbits_as_list(N,{Used,Bin},Acc) when N >= 2, Used =< 6  ->
    NewUsed = Used + 2,
    Rem = 8 - NewUsed,
    <<_:Used,B1:1,B0:1,_:Rem, Rest/binary>> = Bin,
    NewRest = case Rem of 0 -> Rest; _ -> Bin end,
    getbits_as_list(N-2,{NewUsed rem 8,NewRest},[B0,B1|Acc]);
getbits_as_list(N,{Used,Bin},Acc) when Used =< 7 ->
    NewUsed = Used + 1,
    Rem = 8 - NewUsed,
    <<_:Used,B0:1,_:Rem, Rest/binary>> = Bin,
    NewRest = case Rem of 0 -> Rest; _ -> Bin end,
    getbits_as_list(N-1,{NewUsed rem 8,NewRest},[B0|Acc]).


getbit({7,<<_:7,B:1,Rest/binary>>}) ->
    {B,{0,Rest}};
getbit({0,Buffer = <<B:1,_:7,_/binary>>}) ->
    {B,{1,Buffer}};
getbit({Used,Buffer}) ->
    Unused = (8 - Used) - 1,
    <<_:Used,B:1,_:Unused,_/binary>> = Buffer,
    {B,{Used+1,Buffer}};
getbit(Buffer) when is_binary(Buffer) ->
    getbit({0,Buffer}).


getbits({0,Buffer},Num) when (Num rem 8) == 0 ->
    <<Bits:Num,Rest/binary>> = Buffer,
    {Bits,{0,Rest}};
getbits({Used,Bin},Num) ->
    NumPlusUsed = Num + Used,
    NewUsed = NumPlusUsed rem 8,
    Unused = (8-NewUsed) rem 8,
    case Unused of
	0 ->
	    <<_:Used,Bits:Num,Rest/binary>> = Bin,
	    {Bits,{0,Rest}};
	_ ->
	    Bytes = NumPlusUsed div 8,
	    <<_:Used,Bits:Num,_UBits:Unused,_/binary>> = Bin,
	    <<_:Bytes/binary,Rest/binary>> = Bin,
	    {Bits,{NewUsed,Rest}}
    end;
getbits(Bin,Num) when is_binary(Bin) ->
    getbits({0,Bin},Num).



% getoctet(Bytes) when is_list(Bytes) ->
%     getoctet({0,Bytes});
% getoctet(Bytes) ->
%     %%    io:format("getoctet:Buffer = ~p~n",[Bytes]),
%     getoctet1(Bytes).

% getoctet1({0,[H|T]}) ->
%     {H,{0,T}};
% getoctet1({Pos,[_,H|T]}) ->
%     {H,{0,T}}.

align({0,L}) ->
    {0,L};
align({_Pos,<<_H,T/binary>>}) ->
    {0,T};
align(Bytes) ->
    {0,Bytes}.

%% First align buffer, then pick the first Num octets.
%% Returns octets as an integer with bit significance as in buffer.
getoctets({0,Buffer},Num) ->
    <<Val:Num/integer-unit:8,RestBin/binary>> = Buffer,
    {Val,{0,RestBin}};
getoctets({U,<<_Padding,Rest/binary>>},Num) when U /= 0 ->
    getoctets({0,Rest},Num);
getoctets(Buffer,Num) when is_binary(Buffer) ->
    getoctets({0,Buffer},Num).
% getoctets(Buffer,Num) ->
%     %%    io:format("getoctets:Buffer = ~p~nNum = ~p~n",[Buffer,Num]),
%     getoctets(Buffer,Num,0).

% getoctets(Buffer,0,Acc) ->
%     {Acc,Buffer};
% getoctets(Buffer,Num,Acc) ->
%     {Oct,NewBuffer} = getoctet(Buffer),
%     getoctets(NewBuffer,Num-1,(Acc bsl 8)+Oct). 

% getoctets_as_list(Buffer,Num) ->
%     getoctets_as_list(Buffer,Num,[]).

% getoctets_as_list(Buffer,0,Acc) ->
%     {lists:reverse(Acc),Buffer};
% getoctets_as_list(Buffer,Num,Acc) ->
%     {Oct,NewBuffer} = getoctet(Buffer),
%     getoctets_as_list(NewBuffer,Num-1,[Oct|Acc]).

%% First align buffer, then pick the first Num octets.
%% Returns octets as a binary
getoctets_as_bin({0,Bin},Num)->
    <<Octets:Num/binary,RestBin/binary>> = Bin,
    {Octets,{0,RestBin}};
getoctets_as_bin({_U,Bin},Num) ->
    <<_Padding,Octets:Num/binary,RestBin/binary>> = Bin,
    {Octets,{0,RestBin}};
getoctets_as_bin(Bin,Num) when is_binary(Bin) ->
    getoctets_as_bin({0,Bin},Num).

%% same as above but returns octets as a List
getoctets_as_list(Buffer,Num) ->
    {Bin,Buffer2} = getoctets_as_bin(Buffer,Num),
    {binary_to_list(Bin),Buffer2}.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% set_choice(Alt,Choices,Altnum) -> ListofBitSettings
%% Alt = atom()
%% Altnum = integer() | {integer(),integer()}% number of alternatives
%% Choices = [atom()] | {[atom()],[atom()]}
%% When Choices is a tuple the first list is the Rootset and the
%% second is the Extensions and then Altnum must also be a tuple with the
%% lengths of the 2 lists 
%%
set_choice(Alt,{L1,L2},{Len1,_Len2}) ->
    case set_choice_tag(Alt,L1) of
	N when is_integer(N), Len1 > 1 ->
	    [{bits,1,0}, % the value is in the root set
	     encode_integer([{'ValueRange',{0,Len1-1}}],N)];
	N when is_integer(N) ->
	    [{bits,1,0}]; % no encoding if only 0 or 1 alternative
	false ->
	    [{bits,1,1}, % extension value
	     case set_choice_tag(Alt,L2) of
		 N2 when is_integer(N2) ->
		     encode_small_number(N2);
		 false ->
		     unknown_choice_alt
	     end]
    end;
set_choice(Alt,L,Len) ->
    case set_choice_tag(Alt,L) of
	N when is_integer(N), Len > 1 ->
	    encode_integer([{'ValueRange',{0,Len-1}}],N);
	N when is_integer(N) ->
	    []; % no encoding if only 0 or 1 alternative
	false ->
	    [unknown_choice_alt]
    end.

set_choice_tag(Alt,Choices) ->
    set_choice_tag(Alt,Choices,0).

set_choice_tag(Alt,[Alt|_Rest],Tag) ->
    Tag;
set_choice_tag(Alt,[_H|Rest],Tag) ->
    set_choice_tag(Alt,Rest,Tag+1);
set_choice_tag(_Alt,[],_Tag) ->
    false.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% decode_fragmented_XXX; decode of values encoded fragmented according
%% to ITU-T X.691 clause 10.9.3.8. The unit (XXX) is either bits, octets,
%% characters or number of components (in a choice,sequence or similar).
%% Buffer is a buffer {Used, Bin}.
%% C is the constrained length.
%% If the buffer is not aligned, this function does that.
decode_fragmented_bits({0,Buffer},C) ->
    decode_fragmented_bits(Buffer,C,[]);
decode_fragmented_bits({_N,<<_,Bs/binary>>},C) ->
    decode_fragmented_bits(Bs,C,[]).

decode_fragmented_bits(<<3:2,Len:6,Bin/binary>>,C,Acc) ->
    {Value,Bin2} = split_binary(Bin, Len * ?'16K'),
    decode_fragmented_bits(Bin2,C,[Value,Acc]);
decode_fragmented_bits(<<0:1,0:7,Bin/binary>>,C,Acc) ->
    BinBits = list_to_binary(lists:reverse(Acc)),
    case C of
	Int when is_integer(Int),C == size(BinBits) ->
	    {BinBits,{0,Bin}};
	Int when is_integer(Int) ->
	    exit({error,{asn1,{illegal_value,C,BinBits}}})
    end;
decode_fragmented_bits(<<0:1,Len:7,Bin/binary>>,C,Acc) ->
    Result = {BinBits,{Used,_Rest}} =
	case (Len rem 8) of
	    0 -> 
		<<Value:Len/binary-unit:1,Bin2/binary>> = Bin,
		{list_to_binary(lists:reverse([Value|Acc])),{0,Bin2}};
	    Rem ->
		Bytes = Len div 8,
		U = 8 - Rem,
		<<Value:Bytes/binary-unit:8,Bits1:Rem,Bits2:U,Bin2/binary>> = Bin,
		{list_to_binary(lists:reverse([Bits1 bsl U,Value|Acc])),
		 {Rem,<<Bits2,Bin2/binary>>}}
	end,
    case C of
	 Int when is_integer(Int),C == (size(BinBits) - ((8 - Used) rem 8)) ->
	    Result;
	Int when is_integer(Int) ->
	    exit({error,{asn1,{illegal_value,C,BinBits}}})
    end.


decode_fragmented_octets({0,Bin},C) ->
    decode_fragmented_octets(Bin,C,[]).

decode_fragmented_octets(<<3:2,Len:6,Bin/binary>>,C,Acc) ->
    {Value,Bin2} = split_binary(Bin,Len * ?'16K'),
    decode_fragmented_octets(Bin2,C,[Value,Acc]);
decode_fragmented_octets(<<0:1,0:7,Bin/binary>>,C,Acc) ->
    Octets = list_to_binary(lists:reverse(Acc)),
    case C of
	Int when is_integer(Int), C == size(Octets) ->
	    {Octets,{0,Bin}};
	Int when is_integer(Int) ->
	    exit({error,{asn1,{illegal_value,C,Octets}}})
    end;
decode_fragmented_octets(<<0:1,Len:7,Bin/binary>>,C,Acc) ->
    <<Value:Len/binary-unit:8,Bin2/binary>> = Bin,
    BinOctets = list_to_binary(lists:reverse([Value|Acc])),
    case C of
	Int when is_integer(Int),size(BinOctets) == Int ->
	    {BinOctets,Bin2};
	Int when is_integer(Int) ->
	    exit({error,{asn1,{illegal_value,C,BinOctets}}})
    end.


    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% encode_open_type(Constraint, Value) -> CompleteList
%% Value = list of bytes of an already encoded value (the list must be flat)
%%         | binary
%% Contraint = not used in this version
%%
encode_open_type(_C, Val) when is_list(Val) ->
    Bin = list_to_binary(Val),
    [encode_length(undefined,size(Bin)),{octets,Bin}]; % octets implies align
encode_open_type(_C, Val) when is_binary(Val) ->
    [encode_length(undefined,size(Val)),{octets,Val}]. % octets implies align
%% the binary_to_list is not optimal but compatible with the current solution

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% decode_open_type(Buffer,Constraint) -> Value
%% Constraint is not used in this version
%% Buffer = [byte] with PER encoded data 
%% Value = [byte] with decoded data (which must be decoded again as some type)
%%
decode_open_type(Bytes, _C) ->
    {Len,Bytes2} = decode_length(Bytes,undefined),
    getoctets_as_bin(Bytes2,Len).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% encode_integer(Constraint,Value,NamedNumberList) -> CompleteList
%% encode_integer(Constraint,Value) -> CompleteList
%% encode_integer(Constraint,{Name,Value}) -> CompleteList
%% 
%%
encode_integer(C,V,NamedNumberList) when is_atom(V) ->
    case lists:keysearch(V,1,NamedNumberList) of
	{value,{_,NewV}} -> 
	    encode_integer(C,NewV);
	_ -> 
	    exit({error,{asn1,{namednumber,V}}})
    end;
encode_integer(C,V,_NamedNumberList) when is_integer(V) ->
    encode_integer(C,V);
encode_integer(C,{Name,V},NamedNumberList) when is_atom(Name) ->
    encode_integer(C,V,NamedNumberList).

encode_integer(C,{Name,Val}) when is_atom(Name) ->
    encode_integer(C,Val);

encode_integer([{Rc,_Ec}],Val) when is_tuple(Rc) -> % XXX when is this invoked? First argument most often a list,...Ok this is the extension case...but it doesn't work.
    case (catch encode_integer([Rc],Val)) of
	{'EXIT',{error,{asn1,_}}} ->
	    [{bits,1,1},encode_unconstrained_number(Val)];
	Encoded ->
	    [{bits,1,0},Encoded]
    end;
encode_integer(C,Val ) when is_list(C) ->
    case get_constraint(C,'SingleValue') of
	no ->
	    encode_integer1(C,Val);
	V when is_integer(V),V == Val ->
	    []; % a type restricted to a single value encodes to nothing
	V when is_list(V) ->
	    case lists:member(Val,V) of
		true ->
		    encode_integer1(C,Val);
		_ ->
		    exit({error,{asn1,{illegal_value,Val}}})
	    end;
	_ ->
	    exit({error,{asn1,{illegal_value,Val}}})
    end.

encode_integer1(C, Val) ->		    
    case VR = get_constraint(C,'ValueRange') of
	no ->
	    encode_unconstrained_number(Val);
	{Lb,'MAX'} ->
	    encode_semi_constrained_number(Lb,Val);
	%% positive with range
	{Lb,Ub} when Val >= Lb,
		     Ub >= Val ->
	    encode_constrained_number(VR,Val);
	_ ->
	    exit({error,{asn1,{illegal_value,VR,Val}}})
    end.

decode_integer(Buffer,Range,NamedNumberList) ->
    {Val,Buffer2} = decode_integer(Buffer,Range),
    case lists:keysearch(Val,2,NamedNumberList) of
	{value,{NewVal,_}} -> {NewVal,Buffer2};
	_ -> {Val,Buffer2}
    end.

decode_integer(Buffer,[{Rc,_Ec}]) when is_tuple(Rc) ->
    {Ext,Buffer2} = getext(Buffer),
    case Ext of
	0 -> decode_integer(Buffer2,[Rc]);
	1 -> decode_unconstrained_number(Buffer2)
    end;
decode_integer(Buffer,undefined) ->
    decode_unconstrained_number(Buffer);
decode_integer(Buffer,C) ->
    case get_constraint(C,'SingleValue') of
	V when is_integer(V) ->
	    {V,Buffer};
	V when is_list(V) ->
	    {Val,Buffer2} = decode_integer1(Buffer,C),
	    case lists:member(Val,V) of
		true ->
		    {Val,Buffer2};
		_ -> 
		    exit({error,{asn1,{illegal_value,Val}}})
	    end;
	_ ->
	    decode_integer1(Buffer,C)
    end.

decode_integer1(Buffer,C) ->
    case VR = get_constraint(C,'ValueRange') of
	no ->
	    decode_unconstrained_number(Buffer);
	{Lb, 'MAX'} ->
	    decode_semi_constrained_number(Buffer,Lb);
	{_,_} ->
	    decode_constrained_number(Buffer,VR)
    end.

						% X.691:10.6 Encoding of a normally small non-negative whole number
						% Use this for encoding of CHOICE index if there is an extension marker in 
						% the CHOICE
encode_small_number({Name,Val}) when is_atom(Name) ->
    encode_small_number(Val);
encode_small_number(Val) when Val =< 63 ->
%    [{bits,1,0},{bits,6,Val}];
    [{bits,7,Val}]; % same as above but more efficient
encode_small_number(Val) ->
    [{bits,1,1},encode_semi_constrained_number(0,Val)].

decode_small_number(Bytes) ->
    {Bit,Bytes2} = getbit(Bytes),
    case Bit of
	0 -> 
	    getbits(Bytes2,6);
	1 ->
	    decode_semi_constrained_number(Bytes2,0)
    end.

%% X.691:10.7 Encoding of a semi-constrained whole number
%% might be an optimization encode_semi_constrained_number(0,Val) ->
encode_semi_constrained_number(C,{Name,Val}) when is_atom(Name) ->
    encode_semi_constrained_number(C,Val);
encode_semi_constrained_number({Lb,'MAX'},Val) ->
    encode_semi_constrained_number(Lb,Val);
encode_semi_constrained_number(Lb,Val) ->
    Val2 = Val - Lb,
    Oct = eint_positive(Val2),
    Len = length(Oct),
    if 
	Len < 128 ->
	    {octets,[Len|Oct]}; % equiv with encode_length(undefined,Len) but faster
	true ->
	    [encode_length(undefined,Len),{octets,Oct}]
    end.

decode_semi_constrained_number(Bytes,{Lb,_}) ->
    decode_semi_constrained_number(Bytes,Lb);
decode_semi_constrained_number(Bytes,Lb) ->
    {Len,Bytes2} = decode_length(Bytes,undefined),
    {V,Bytes3} = getoctets(Bytes2,Len),
    {V+Lb,Bytes3}.

encode_constrained_number(Range,{Name,Val}) when is_atom(Name) ->
    encode_constrained_number(Range,Val);
encode_constrained_number({Lb,Ub},Val) when Val >= Lb, Ub >= Val -> 
    Range = Ub - Lb + 1,
    Val2 = Val - Lb,
    if 
	Range  == 1 ->
	    [];
	Range  == 2 ->
	    {bits,1,Val2};
	Range  =< 4 -> 
	    {bits,2,Val2};
	Range  =< 8 ->
	    {bits,3,Val2};
	Range  =< 16 ->
	    {bits,4,Val2};
	Range  =< 32 ->
	    {bits,5,Val2};
	Range  =< 64 ->
	    {bits,6,Val2};
	Range  =< 128 ->
	    {bits,7,Val2};
	Range  =< 255 ->
	    {bits,8,Val2};
	Range  =< 256 ->
	    {octets,[Val2]};
	Range  =< 65536 ->
	    {octets,<<Val2:16>>};
	Range =< 16#1000000  ->
	    Octs = eint_positive(Val2),
	    [{bits,2,length(Octs)-1},{octets,Octs}];
	Range =< 16#100000000  ->
	    Octs = eint_positive(Val2),
	    [{bits,2,length(Octs)-1},{octets,Octs}];
	Range =< 16#10000000000  ->
	    Octs = eint_positive(Val2),
	    [{bits,3,length(Octs)-1},{octets,Octs}];
	true  ->
	    exit({not_supported,{integer_range,Range}})
    end;
encode_constrained_number(Range,Val) -> 
    exit({error,{asn1,{integer_range,Range,value,Val}}}).


decode_constrained_number(Buffer,{Lb,Ub}) ->
    Range = Ub - Lb + 1,
						%    Val2 = Val - Lb,
    {Val,Remain} = 
	if 
	    Range  == 1 ->
		{0,Buffer};
	    Range  == 2 ->
		getbits(Buffer,1);
	    Range  =< 4 -> 
		getbits(Buffer,2);
	    Range  =< 8 ->
		getbits(Buffer,3);
	    Range  =< 16 ->
		getbits(Buffer,4);
	    Range  =< 32 ->
		getbits(Buffer,5);
	    Range  =< 64 ->
		getbits(Buffer,6);
	    Range  =< 128 ->
		getbits(Buffer,7);
	    Range  =< 255 ->
		getbits(Buffer,8);
	    Range  =< 256 ->
		getoctets(Buffer,1);
	    Range  =< 65536 ->
		getoctets(Buffer,2);
	    Range =< 16#1000000  ->
		{Len,Bytes2} = decode_length(Buffer,{1,3}),
		{Octs,Bytes3} = getoctets_as_list(Bytes2,Len),
		{dec_pos_integer(Octs),Bytes3};
	    Range =< 16#100000000  ->
		{Len,Bytes2} = decode_length(Buffer,{1,4}),
		{Octs,Bytes3} = getoctets_as_list(Bytes2,Len),
		{dec_pos_integer(Octs),Bytes3};
	    Range =< 16#10000000000  ->
		{Len,Bytes2} = decode_length(Buffer,{1,5}),
		{Octs,Bytes3} = getoctets_as_list(Bytes2,Len),
		{dec_pos_integer(Octs),Bytes3};
	    true  ->
		exit({not_supported,{integer_range,Range}})
	end,
    {Val+Lb,Remain}.

%% X.691:10.8 Encoding of an unconstrained whole number

encode_unconstrained_number(Val) when Val >= 0 ->
    Oct = eint(Val,[]),
    Len = length(Oct),
    if 
	Len < 128 ->
	    {octets,[Len|Oct]}; % equiv with encode_length(undefined,Len) but faster
	true ->
	    [encode_length(undefined,Len),{octets,Oct}]
    end;
encode_unconstrained_number(Val) -> % negative
    Oct = enint(Val,[]),
    Len = length(Oct),
    if 
	Len < 128 ->
	    {octets,[Len|Oct]}; % equiv with encode_length(undefined,Len) but faster
	true ->
	    [encode_length(undefined,Len),{octets,Oct}]
    end.


%% used for positive Values which don't need a sign bit
%% returns a binary
eint_positive(Val) ->
    case eint(Val,[]) of
	[0,B1|T] ->
	    [B1|T];
	T -> 
	    T
    end.


eint(0, [B|Acc]) when B < 128 ->
    [B|Acc];
eint(N, Acc) ->
    eint(N bsr 8, [N band 16#ff| Acc]).

enint(-1, [B1|T]) when B1 > 127 ->
    [B1|T];
enint(N, Acc) ->
    enint(N bsr 8, [N band 16#ff|Acc]).

decode_unconstrained_number(Bytes) ->
    {Len,Bytes2} = decode_length(Bytes,undefined),
    {Ints,Bytes3} = getoctets_as_list(Bytes2,Len),
    {dec_integer(Ints),Bytes3}.

dec_pos_integer(Ints) ->
    decpint(Ints, 8 * (length(Ints) - 1)).
dec_integer(Ints) when hd(Ints) band 255 =< 127 -> %% Positive number
    decpint(Ints, 8 * (length(Ints) - 1));
dec_integer(Ints) ->                        %% Negative
    decnint(Ints,  8 * (length(Ints) - 1)).

decpint([Byte|Tail], Shift) ->
    (Byte bsl Shift) bor decpint(Tail, Shift-8);
decpint([], _) -> 0.

decnint([Byte|Tail], Shift) ->
    (-128 + (Byte band 127) bsl Shift) bor decpint(Tail, Shift-8).

% minimum_octets(Val) ->
%     minimum_octets(Val,[]).

% minimum_octets(Val,Acc) when Val > 0 -> 
%     minimum_octets((Val bsr 8),[Val band 16#FF|Acc]);
% minimum_octets(0,Acc) ->
%     Acc.


%% X.691:10.9 Encoding of a length determinant
%%encode_small_length(undefined,Len) -> % null means no UpperBound
%%    encode_small_number(Len).

%% X.691:10.9.3.5 
%% X.691:10.9.3.7
encode_length(undefined,Len) -> % un-constrained
    if 
	Len < 128 ->
	    {octets,[Len]};
	Len < 16384 ->
	    {octets,<<2:2,Len:14>>};
	true  -> % should be able to endode length >= 16384
	    exit({error,{asn1,{encode_length,{nyi,above_16k}}}})
    end;

encode_length({0,'MAX'},Len) ->
    encode_length(undefined,Len);
encode_length(Vr={Lb,Ub},Len) when Ub =< 65535 ,Lb >= 0 -> % constrained
    encode_constrained_number(Vr,Len);
encode_length({Lb,_Ub},Len) when is_integer(Lb), Lb >= 0 -> % Ub > 65535
    encode_length(undefined,Len);
encode_length({Vr={Lb,Ub},Ext},Len) 
  when Ub =< 65535 ,Lb >= 0, Len=<Ub, is_list(Ext) -> 
    %% constrained extensible
    [{bits,1,0},encode_constrained_number(Vr,Len)];
encode_length({{Lb,_Ub},Ext},Len) when is_list(Ext) ->
    [{bits,1,1},encode_semi_constrained_number(Lb,Len)];
encode_length(SingleValue,_Len) when is_integer(SingleValue) ->
    [].

%% X.691 10.9.3.4 (only used for length of bitmap that prefixes extension 
%% additions in a sequence or set
encode_small_length(Len) when Len =< 64 ->
%%    [{bits,1,0},{bits,6,Len-1}];
    {bits,7,Len-1}; % the same as above but more efficient
encode_small_length(Len) ->
    [{bits,1,1},encode_length(undefined,Len)].

% decode_small_length({Used,<<_:Used,0:1,Num:6,_:((8-Used+1) rem 8),Rest/binary>>}) ->
%     case Buffer of
% 	<<_:Used,0:1,Num:6,_:((8-Used+1) rem 8),Rest/binary>> ->
% 	    {Num,
%     case getbit(Buffer) of
% 	{0,Remain} -> 
% 	    {Bits,Remain2} = getbits(Remain,6),
% 	    {Bits+1,Remain2};
% 	{1,Remain} -> 
% 	    decode_length(Remain,undefined)
%     end.

decode_small_length(Buffer) ->
    case getbit(Buffer) of
	{0,Remain} -> 
	    {Bits,Remain2} = getbits(Remain,6),
	    {Bits+1,Remain2};
	{1,Remain} -> 
	    decode_length(Remain,undefined)
    end.

decode_length(Buffer) ->
    decode_length(Buffer,undefined).

decode_length(Buffer,undefined)  -> % un-constrained
    {0,Buffer2} = align(Buffer),
    case Buffer2 of
	<<0:1,Oct:7,Rest/binary>> ->
	    {Oct,{0,Rest}};
	<<2:2,Val:14,Rest/binary>> ->
	    {Val,{0,Rest}};
	<<3:2,_:14,_Rest/binary>> ->
	    %% this case should be fixed
	    exit({error,{asn1,{decode_length,{nyi,above_16k}}}})
    end;
%%    {Bits,_} = getbits(Buffer2,2),
%     case Bits of
% 	2 -> 
% 	    {Val,Bytes3} = getoctets(Buffer2,2),
% 	    {(Val band 16#3FFF),Bytes3};
% 	3 -> 
% 	    exit({error,{asn1,{decode_length,{nyi,above_16k}}}});
% 	_ ->
% 	    {Val,Bytes3} = getoctet(Buffer2),
% 	    {Val band 16#7F,Bytes3}
%     end;

decode_length(Buffer,{Lb,Ub}) when Ub =< 65535 ,Lb >= 0 -> % constrained
    decode_constrained_number(Buffer,{Lb,Ub});
decode_length(Buffer,{Lb,_}) when is_integer(Lb), Lb >= 0 -> % Ub > 65535
    decode_length(Buffer,undefined);
decode_length(Buffer,{VR={_Lb,_Ub},Ext}) when is_list(Ext) ->
    case getbit(Buffer) of
	{0,Buffer2} ->
	    decode_length(Buffer2, VR);
	{1,Buffer2} ->
	    decode_length(Buffer2, undefined)
    end;
%%     {0,Buffer2} = getbit(Buffer),
%%     decode_length(Buffer2, VR);
	

%When does this case occur with {_,_Lb,Ub} ??
% X.691:10.9.3.5 
decode_length({Used,Bin},{_,_Lb,_Ub}) -> %when Len =< 127 -> % Unconstrained or large Ub NOTE! this case does not cover case when Ub > 65535
    Unused = (8-Used) rem 8,
    case Bin of
	<<_:Used,0:1,Val:7,R:Unused,Rest/binary>> -> 
	    {Val,{Used,<<R,Rest/binary>>}};
	<<_:Used,_:Unused,2:2,Val:14,Rest/binary>> -> 
	    {Val, {0,Rest}};
	<<_:Used,_:Unused,3:2,_:14,_Rest/binary>> -> 
	    exit({error,{asn1,{decode_length,{nyi,length_above_64K}}}})
    end;
% decode_length(Buffer,{_,_Lb,Ub}) -> %when Len =< 127 -> % Unconstrained or large Ub
%     case getbit(Buffer) of
% 	{0,Remain} -> 
% 	    getbits(Remain,7);
% 	{1,Remain} -> 
% 	    {Val,Remain2} = getoctets(Buffer,2),
% 	    {Val band 2#0111111111111111, Remain2}
%     end;
decode_length(Buffer,SingleValue) when is_integer(SingleValue) ->
    {SingleValue,Buffer}.


						% X.691:11
encode_boolean(true) ->
    {bits,1,1};
encode_boolean(false) ->
    {bits,1,0};
encode_boolean({Name,Val}) when is_atom(Name) ->
    encode_boolean(Val);
encode_boolean(Val) ->
    exit({error,{asn1,{encode_boolean,Val}}}).

decode_boolean(Buffer) -> %when record(Buffer,buffer)
    case getbit(Buffer) of
	{1,Remain} -> {true,Remain};
	{0,Remain} -> {false,Remain}
    end.


%% ENUMERATED with extension marker
decode_enumerated(Buffer,C,{Ntup1,Ntup2}) when is_tuple(Ntup1), is_tuple(Ntup2) ->
    {Ext,Buffer2} = getext(Buffer),
    case Ext of
	0 -> % not an extension value
	    {Val,Buffer3} = decode_integer(Buffer2,C),
	    case catch (element(Val+1,Ntup1)) of
		NewVal when is_atom(NewVal) -> {NewVal,Buffer3};
		_Error -> exit({error,{asn1,{decode_enumerated,{Val,[Ntup1,Ntup2]}}}})
	    end;
	1 -> % this an extension value
	    {Val,Buffer3} = decode_small_number(Buffer2),
	    case catch (element(Val+1,Ntup2)) of
		NewVal when is_atom(NewVal) -> {NewVal,Buffer3};
		_ -> {{asn1_enum,Val},Buffer3}
	    end
    end;

decode_enumerated(Buffer,C,NamedNumberTup) when is_tuple(NamedNumberTup) ->
    {Val,Buffer2} = decode_integer(Buffer,C),
    case catch (element(Val+1,NamedNumberTup)) of
	NewVal when is_atom(NewVal) -> {NewVal,Buffer2};
	_Error -> exit({error,{asn1,{decode_enumerated,{Val,NamedNumberTup}}}})
    end.

%%===============================================================================
%%===============================================================================
%%===============================================================================
%% Bitstring value, ITU_T X.690 Chapter 8.5
%%===============================================================================
%%===============================================================================
%%===============================================================================

%%===============================================================================
%% encode bitstring value
%%===============================================================================



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% bitstring NamedBitList
%% Val can be  of:
%% - [identifiers] where only named identifers are set to one, 
%%   the Constraint must then have some information of the 
%%   bitlength.
%% - [list of ones and zeroes] all bits 
%% - integer value representing the bitlist
%% C is constraint Len, only valid when identifiers


%% when the value is a list of {Unused,BinBits}, where 
%% Unused = integer(),
%% BinBits = binary().

encode_bit_string(C,Bin={Unused,BinBits},NamedBitList) when is_integer(Unused),
							    is_binary(BinBits) ->
    encode_bin_bit_string(C,Bin,NamedBitList);

%% when the value is a list of named bits
encode_bit_string(C, LoNB=[FirstVal | _RestVal], NamedBitList) when is_atom(FirstVal) ->
    ToSetPos = get_all_bitposes(LoNB, NamedBitList, []),
    BitList = make_and_set_list(ToSetPos,0),
    encode_bit_string(C,BitList,NamedBitList);

encode_bit_string(C, BL=[{bit,_No} | _RestVal], NamedBitList) ->
    ToSetPos = get_all_bitposes(BL, NamedBitList, []),
    BitList = make_and_set_list(ToSetPos,0),
    encode_bit_string(C,BitList,NamedBitList);

%% when the value is a list of ones and zeroes

% encode_bit_string(C, BitListValue, NamedBitList) when is_list(BitListValue) ->
%     Bl1 = 
% 	case NamedBitList of
% 	    [] ->  % dont remove trailing zeroes
% 		BitListValue;
% 	    _ -> % first remove any trailing zeroes
% 		lists:reverse(lists:dropwhile(fun(0)->true;(1)->false end,
% 					      lists:reverse(BitListValue)))
% 	end,
%     BitList = [{bit,X} || X <- Bl1],
% %%    BListLen = length(BitList),
%     case get_constraint(C,'SizeConstraint') of
% 	0 -> % fixed length
% 	    []; % nothing to encode
% 	V when is_integer(V),V=<16 -> % fixed length 16 bits or less
% 	    pad_list(V,BitList);
% 	V when is_integer(V) -> % fixed length 16 bits or more
% 	    [align,pad_list(V,BitList)]; % should be another case for V >= 65537
% 	{Lb,Ub} when is_integer(Lb),is_integer(Ub) ->	    
% 	    [encode_length({Lb,Ub},length(BitList)),align,BitList];
% 	no ->
% 	    [encode_length(undefined,length(BitList)),align,BitList];
% 	Sc -> % extension marker
% 	    [encode_length(Sc,length(BitList)),align,BitList]
%     end;
encode_bit_string(C, BitListValue, NamedBitList) when is_list(BitListValue) ->
    BitListToBinary = 
	%% fun that transforms a list of 1 and 0 to a tuple:
	%% {UnusedBitsInLastByte, Binary}
	fun([1|T],Acc,N,Fun) ->
		Fun(T,(Acc bsl 1)+1,N+1,Fun);
	   ([0|T],Acc,N,Fun) ->
		Fun(T,(Acc bsl 1),N+1,Fun);
	   ([_H|_T],_,_,_) ->
		exit({error,{asn1,{bitstring_bitlist,BitListValue}}});
	   ([],Acc,N,_) -> 
		Unused = (8 - (N rem 8)) rem 8,
		{Unused,<<Acc:N,0:Unused>>}
	end,
    UnusedAndBin =
	case NamedBitList of
	    [] ->  % dont remove trailing zeroes
		BitListToBinary(BitListValue,0,0,BitListToBinary);
	    _ ->
		BitListToBinary(lists:reverse(
			       lists:dropwhile(fun(0)->true;(_)->false end,
					       lists:reverse(BitListValue))),
			     0,0,BitListToBinary)
	end,
    encode_bin_bit_string(C,UnusedAndBin,NamedBitList);

%% when the value is an integer
encode_bit_string(C, IntegerVal, NamedBitList) when is_integer(IntegerVal)->
    BitList = int_to_bitlist(IntegerVal),
    encode_bit_string(C,BitList,NamedBitList);

%% when the value is a tuple
encode_bit_string(C,{Name,Val}, NamedBitList) when is_atom(Name) ->
    encode_bit_string(C,Val,NamedBitList).


%% encode_bin_bit_string/3, when value is a tuple of Unused and BinBits.
%% Unused = integer(),i.e. number unused bits in least sign. byte of
%% BinBits = binary().


encode_bin_bit_string(C,UnusedAndBin={_Unused,_BinBits},NamedBitList) ->
    Constr = get_constraint(C,'SizeConstraint'),
    UnusedAndBin1 = {Unused1,Bin1} = 
	remove_trailing_bin(NamedBitList,UnusedAndBin,lower_bound(Constr)),
    case Constr of
	0 ->
	    [];
	V when is_integer(V),V=<16 ->
	    {Unused2,Bin2} = pad_list(V,UnusedAndBin1),
	    <<BitVal:V,_:Unused2>> = Bin2,
	    {bits,V,BitVal};
	V when is_integer(V) ->
	    [align, pad_list(V, UnusedAndBin1)];
	{Lb,Ub} when is_integer(Lb),is_integer(Ub) ->
	    [encode_length({Lb,Ub},size(Bin1)*8 - Unused1),
	     align,UnusedAndBin1];
	{{Fix,Fix},L} when is_integer(Fix),is_list(L) ->
	    %% X.691 � 15.6, the rest of this paragraph is covered by
	    %% the last, ie. Sc, clause in this case
	    case (size(Bin1)*8)-Unused1 of
		Size when Size =< Fix, Fix =< 16 ->
		    {Unused2,Bin2} = pad_list(Fix,UnusedAndBin),
		    <<BitVal:Fix,_:Unused2>> = Bin2,
		    [{bits,1,0},{bits,Fix,BitVal}];
		Size when Size =< Fix ->
		    [{bits,1,0},align, pad_list(Fix, UnusedAndBin1)];
		Size ->
		    [{bits,1,1},encode_length(undefined,Size),
		     align,UnusedAndBin1]
	    end;
	no ->
	    [encode_length(undefined,size(Bin1)*8 - Unused1),
	     align,UnusedAndBin1];
	Sc ->
	    [encode_length(Sc,size(Bin1)*8 - Unused1),
	     align,UnusedAndBin1]
    end.


remove_trailing_bin([], {Unused,Bin},_) ->
    {Unused,Bin};
remove_trailing_bin(_NamedNumberList,{_Unused,<<>>},C) ->
    case C of
	Int when is_integer(Int),Int > 0 ->
	    %% this padding see OTP-4353
	    pad_list(Int,{0,<<>>});
	_ -> {0,<<>>}
    end;
remove_trailing_bin(NamedNumberList, {_Unused,Bin},C) ->
    Size = size(Bin)-1,
    <<Bfront:Size/binary, LastByte:8>> = Bin,
    %% clear the Unused bits to be sure
    Unused1 = trailingZeroesInNibble(LastByte band 15),
    Unused2 = 
	case Unused1 of 
	    4 ->
		4 + trailingZeroesInNibble(LastByte bsr 4);
	    _ -> Unused1
	end,
    case Unused2 of
	8 ->
	    remove_trailing_bin(NamedNumberList,{0,Bfront},C);
	_ ->
	    case C of
		Int when is_integer(Int),Int > ((size(Bin)*8)-Unused2) ->
		    %% this padding see OTP-4353
		    pad_list(Int,{Unused2,Bin});
		_ -> {Unused2,Bin}
	    end
    end.


trailingZeroesInNibble(0) ->
    4;
trailingZeroesInNibble(1) ->
    0;
trailingZeroesInNibble(2) ->
    1;
trailingZeroesInNibble(3) ->
    0;
trailingZeroesInNibble(4) ->
    2;
trailingZeroesInNibble(5) ->
    0;
trailingZeroesInNibble(6) ->
    1;
trailingZeroesInNibble(7) ->
    0;
trailingZeroesInNibble(8) ->
    3;
trailingZeroesInNibble(9) ->
    0;
trailingZeroesInNibble(10) ->
    1;
trailingZeroesInNibble(11) ->
    0;
trailingZeroesInNibble(12) -> %#1100
    2;
trailingZeroesInNibble(13) ->
    0;
trailingZeroesInNibble(14) ->
    1;
trailingZeroesInNibble(15) ->
    0.

lower_bound({{Lb,_},_}) when is_integer(Lb) ->
    Lb;
lower_bound({Lb,_}) when is_integer(Lb) ->
    Lb;
lower_bound(C) ->
    C.

%%%%%%%%%%%%%%%
%% The result is presented as a list of named bits (if possible)
%% else as a tuple {Unused,Bits}. Unused is the number of unused
%% bits, least significant bits in the last byte of Bits. Bits is
%% the BIT STRING represented as a binary.
%% 
decode_compact_bit_string(Buffer, C, NamedNumberList) ->
    case get_constraint(C,'SizeConstraint') of
	0 -> % fixed length
	    {{8,0},Buffer};
	V when is_integer(V),V=<16 -> %fixed length 16 bits or less
	    compact_bit_string(Buffer,V,NamedNumberList);
	V when is_integer(V),V=<65536 -> %fixed length > 16 bits
	    Bytes2 = align(Buffer),
	    compact_bit_string(Bytes2,V,NamedNumberList);
	V when is_integer(V) -> % V > 65536 => fragmented value
	    {Bin,Buffer2} = decode_fragmented_bits(Buffer,V),
	    case Buffer2 of
		{0,_} -> {{0,Bin},Buffer2};
		{U,_} -> {{8-U,Bin},Buffer2}
	    end;
	{Lb,Ub} when is_integer(Lb),is_integer(Ub) ->
	    %% This case may demand decoding of fragmented length/value
	    {Len,Bytes2} = decode_length(Buffer,{Lb,Ub}),
	    Bytes3 = align(Bytes2),
	    compact_bit_string(Bytes3,Len,NamedNumberList);
	no ->
	    %% This case may demand decoding of fragmented length/value
	    {Len,Bytes2} = decode_length(Buffer,undefined),
	    Bytes3 = align(Bytes2),
	    compact_bit_string(Bytes3,Len,NamedNumberList);
	{{Fix,Fix},L} = Sc when is_list(L), is_integer(Fix), Fix =< 16 ->
	    %% X.691 �15.6, special case of extension marker
	    case decode_length(Buffer,Sc) of
		{Len,Bytes2} when Len > Fix ->
		    Bytes3 = align(Bytes2),
		    compact_bit_string(Bytes3,Len,NamedNumberList);
		{Len,Bytes2} ->
		    compact_bit_string(Bytes2,Len,NamedNumberList)
	    end;
	Sc ->
	    {Len,Bytes2} = decode_length(Buffer,Sc),
	    Bytes3 = align(Bytes2),
	    compact_bit_string(Bytes3,Len,NamedNumberList)
    end.


%%%%%%%%%%%%%%%
%% The result is presented as a list of named bits (if possible)
%% else as a list of 0 and 1.
%% 
decode_bit_string(Buffer, C, NamedNumberList) ->
    case get_constraint(C,'SizeConstraint') of
	{Lb,Ub} when is_integer(Lb),is_integer(Ub) ->
	    {Len,Bytes2} = decode_length(Buffer,{Lb,Ub}),
	    Bytes3 = align(Bytes2),
	    bit_list_or_named(Bytes3,Len,NamedNumberList);
	no ->
	    {Len,Bytes2} = decode_length(Buffer,undefined),
	    Bytes3 = align(Bytes2),
	    bit_list_or_named(Bytes3,Len,NamedNumberList);
	0 -> % fixed length
	    {[],Buffer}; % nothing to encode
	V when is_integer(V),V=<16 -> % fixed length 16 bits or less
	    bit_list_or_named(Buffer,V,NamedNumberList);
	V when is_integer(V),V=<65536 ->
	    Bytes2 = align(Buffer),
	    bit_list_or_named(Bytes2,V,NamedNumberList);
	V when is_integer(V) ->
	    Bytes2 = align(Buffer),
	    {BinBits,_} = decode_fragmented_bits(Bytes2,V),
	    bit_list_or_named(BinBits,V,NamedNumberList);
	{{Fix,Fix},L} = Sc when is_list(L), is_integer(Fix), Fix =< 16 ->
	    %% X.691 �15.6, special case of extension marker
	    case decode_length(Buffer,Sc) of
		{Len,Bytes2} when Len > Fix ->
		     Bytes3 = align(Bytes2),
		    bit_list_or_named(Bytes3,Len,NamedNumberList);
		{Len,Bytes2} when Len > 16 ->
		     Bytes3 = align(Bytes2),
		    bit_list_or_named(Bytes3,Len,NamedNumberList);
		{Len,Bytes2} ->
		    bit_list_or_named(Bytes2,Len,NamedNumberList)
	    end;
	Sc -> %% X.691 �15.6, extension marker
	    {Len,Bytes2} = decode_length(Buffer,Sc),
	    Bytes3 = align(Bytes2),
	    bit_list_or_named(Bytes3,Len,NamedNumberList)
    end.


%% if no named bits are declared we will return a
%% {Unused,Bits}. Unused = integer(),
%% Bits = binary().
compact_bit_string(Buffer,Len,[]) ->
    getbits_as_binary(Len,Buffer); % {{Unused,BinBits},NewBuffer}
compact_bit_string(Buffer,Len,NamedNumberList) ->
    bit_list_or_named(Buffer,Len,NamedNumberList).


%% if no named bits are declared we will return a
%% BitList = [0 | 1]

bit_list_or_named(Buffer,Len,[]) ->
    getbits_as_list(Len,Buffer);

%% if there are named bits declared we will return a named
%% BitList where the names are atoms and unnamed bits represented
%% as {bit,Pos}
%% BitList = [atom() | {bit,Pos}]
%% Pos = integer()

bit_list_or_named(Buffer,Len,NamedNumberList) ->
    {BitList,Rest} = getbits_as_list(Len,Buffer),
    {bit_list_or_named1(0,BitList,NamedNumberList,[]), Rest}.

bit_list_or_named1(Pos,[0|Bt],Names,Acc) ->
    bit_list_or_named1(Pos+1,Bt,Names,Acc);
bit_list_or_named1(Pos,[1|Bt],Names,Acc) ->
    case lists:keysearch(Pos,2,Names) of
	{value,{Name,_}} ->
	    bit_list_or_named1(Pos+1,Bt,Names,[Name|Acc]);
	_  -> 
	    bit_list_or_named1(Pos+1,Bt,Names,[{bit,Pos}|Acc])
    end;
bit_list_or_named1(_,[],_,Acc) ->
    lists:reverse(Acc).



%%%%%%%%%%%%%%%
%% 

int_to_bitlist(Int) when is_integer(Int), Int > 0 ->
    [Int band 1 | int_to_bitlist(Int bsr 1)];
int_to_bitlist(0) ->
    [].


%%%%%%%%%%%%%%%%%%
%% get_all_bitposes([list of named bits to set], named_bit_db, []) ->
%%   [sorted_list_of_bitpositions_to_set]

get_all_bitposes([{bit,ValPos}|Rest], NamedBitList, Ack) ->
    get_all_bitposes(Rest, NamedBitList, [ValPos | Ack ]);

get_all_bitposes([Val | Rest], NamedBitList, Ack) ->
    case lists:keysearch(Val, 1, NamedBitList) of
	{value, {_ValName, ValPos}} ->
	    get_all_bitposes(Rest, NamedBitList, [ValPos | Ack]);
	_ ->
	    exit({error,{asn1, {bitstring_namedbit, Val}}})
    end;
get_all_bitposes([], _NamedBitList, Ack) ->
    lists:sort(Ack).

%%%%%%%%%%%%%%%%%%
%% make_and_set_list([list of positions to set to 1])->
%% returns list with all in SetPos set.
%% in positioning in list the first element is 0, the second 1 etc.., but
%% 

make_and_set_list([XPos|SetPos], XPos) ->
    [1 | make_and_set_list(SetPos, XPos + 1)];
make_and_set_list([Pos|SetPos], XPos) ->
    [0 | make_and_set_list([Pos | SetPos], XPos + 1)];
make_and_set_list([], _) ->
    [].

%%%%%%%%%%%%%%%%%
%% pad_list(N,BitList) -> PaddedList
%% returns a padded (with trailing {bit,0} elements) list of length N
%% if Bitlist contains more than N significant bits set an exit asn1_error 
%% is generated

pad_list(N,In={Unused,Bin}) ->
    pad_list(N, size(Bin)*8 - Unused, In).
    
pad_list(N,Size,In={_,_}) when N < Size ->
    exit({error,{asn1,{range_error,{bit_string,In}}}});
pad_list(N,Size,{Unused,Bin}) when N > Size, Unused > 0 ->
    pad_list(N,Size+1,{Unused-1,Bin});
pad_list(N,Size,{_Unused,Bin}) when N > Size ->
    pad_list(N,Size+1,{7,<<Bin/binary,0>>});
pad_list(N,N,In={_,_}) ->
    In.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% X.691:16
%% encode_octet_string(Constraint,ExtensionMarker,Val)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

encode_octet_string(C,Val) ->
    encode_octet_string2(C,Val).

encode_octet_string2(C,{_Name,Val}) ->
    encode_octet_string2(C,Val);
encode_octet_string2(C,Val) ->
    case get_constraint(C,'SizeConstraint') of
	0 ->
	    [];
	1 ->
	    [V] = Val,
	    {bits,8,V};
	2 ->
	    [V1,V2] = Val,
	    [{bits,8,V1},{bits,8,V2}];
	Sv when Sv =<65535, Sv == length(Val) -> % fixed length
	    {octets,Val};
	{Lb,Ub}  ->
	    [encode_length({Lb,Ub},length(Val)),{octets,Val}];
	Sv when is_list(Sv) ->
	    [encode_length({hd(Sv),lists:max(Sv)},length(Val)),{octets,Val}];
	no  ->
	    [encode_length(undefined,length(Val)),{octets,Val}]
    end.

decode_octet_string(Bytes,Range) ->
    decode_octet_string(Bytes,Range,false).

decode_octet_string(Bytes,C,false) ->
    case get_constraint(C,'SizeConstraint') of
	0 ->
	    {[],Bytes};
	1 ->
	    {B1,Bytes2} = getbits(Bytes,8),
	    {[B1],Bytes2};
	2 ->
	    {Bs,Bytes2}= getbits(Bytes,16),
	    {binary_to_list(<<Bs:16>>),Bytes2};
	{_,0} ->
	    {[],Bytes};
	Sv when is_integer(Sv), Sv =<65535 -> % fixed length
	    getoctets_as_list(Bytes,Sv);
	Sv when is_integer(Sv) -> % fragmented encoding
	    Bytes2 = align(Bytes),
	    decode_fragmented_octets(Bytes2,Sv);
	{Lb,Ub}  ->
	    {Len,Bytes2} = decode_length(Bytes,{Lb,Ub}),
	    getoctets_as_list(Bytes2,Len);
	Sv when is_list(Sv) ->
	    {Len,Bytes2} = decode_length(Bytes,{hd(Sv),lists:max(Sv)}),
	    getoctets_as_list(Bytes2,Len);
	no  ->
	    {Len,Bytes2} = decode_length(Bytes,undefined),
	    getoctets_as_list(Bytes2,Len)
    end.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Restricted char string types 
%% (NumericString, PrintableString,VisibleString,IA5String,BMPString,UniversalString)
%% X.691:26 and X.680:34-36
%%encode_restricted_string(aligned,'BMPString',Constraints,Extension,Val)


encode_restricted_string(aligned,{Name,Val}) when is_atom(Name) ->
    encode_restricted_string(aligned,Val);

encode_restricted_string(aligned,Val) when is_list(Val)->
    [encode_length(undefined,length(Val)),{octets,Val}].

encode_known_multiplier_string(aligned,StringType,C,_Ext,{Name,Val}) when is_atom(Name) ->
    encode_known_multiplier_string(aligned,StringType,C,false,Val);

encode_known_multiplier_string(aligned,StringType,C,_Ext,Val) ->
    Result = chars_encode(C,StringType,Val),
    NumBits = get_NumBits(C,StringType),
    case get_constraint(C,'SizeConstraint') of
	Ub when is_integer(Ub), Ub*NumBits =< 16  ->
	    Result;
	0 ->
	    [];
	Ub when is_integer(Ub),Ub =<65535 -> % fixed length
	    [align,Result];
	{Ub,Lb} ->
	    [encode_length({Ub,Lb},length(Val)),align,Result];
	Vl when is_list(Vl) ->
	    [encode_length({lists:min(Vl),lists:max(Vl)},length(Val)),align,Result];
	no  ->
	    [encode_length(undefined,length(Val)),align,Result]
    end.

decode_restricted_string(Bytes,aligned) ->
    {Len,Bytes2} = decode_length(Bytes,undefined),
    getoctets_as_list(Bytes2,Len).

decode_known_multiplier_string(Bytes,aligned,StringType,C,_Ext) ->
    NumBits = get_NumBits(C,StringType),
    case get_constraint(C,'SizeConstraint') of
	Ub when is_integer(Ub), Ub*NumBits =< 16  ->
	    chars_decode(Bytes,NumBits,StringType,C,Ub);
	Ub when is_integer(Ub),Ub =<65535 -> % fixed length
	    Bytes1 = align(Bytes),
	    chars_decode(Bytes1,NumBits,StringType,C,Ub);
	0 ->
	    {[],Bytes};
	Vl when is_list(Vl) ->
	    {Len,Bytes1} = decode_length(Bytes,{hd(Vl),lists:max(Vl)}),
	    Bytes2 = align(Bytes1),
	    chars_decode(Bytes2,NumBits,StringType,C,Len);
	no  ->
	    {Len,Bytes1} = decode_length(Bytes,undefined),
	    Bytes2 = align(Bytes1),
	    chars_decode(Bytes2,NumBits,StringType,C,Len);
	{Lb,Ub}->
	    {Len,Bytes1} = decode_length(Bytes,{Lb,Ub}),
	    Bytes2 = align(Bytes1),
	    chars_decode(Bytes2,NumBits,StringType,C,Len)
    end.


encode_NumericString(C,Val) ->
    encode_known_multiplier_string(aligned,'NumericString',C,false,Val).
decode_NumericString(Bytes,C) ->
    decode_known_multiplier_string(Bytes,aligned,'NumericString',C,false).

encode_PrintableString(C,Val) ->
    encode_known_multiplier_string(aligned,'PrintableString',C,false,Val).
decode_PrintableString(Bytes,C) ->
    decode_known_multiplier_string(Bytes,aligned,'PrintableString',C,false).

encode_VisibleString(C,Val) -> % equivalent with ISO646String
    encode_known_multiplier_string(aligned,'VisibleString',C,false,Val).
decode_VisibleString(Bytes,C) ->
    decode_known_multiplier_string(Bytes,aligned,'VisibleString',C,false).

encode_IA5String(C,Val) ->
    encode_known_multiplier_string(aligned,'IA5String',C,false,Val).
decode_IA5String(Bytes,C) ->
    decode_known_multiplier_string(Bytes,aligned,'IA5String',C,false).

encode_BMPString(C,Val) ->
    encode_known_multiplier_string(aligned,'BMPString',C,false,Val).
decode_BMPString(Bytes,C) ->
    decode_known_multiplier_string(Bytes,aligned,'BMPString',C,false).

encode_UniversalString(C,Val) ->
    encode_known_multiplier_string(aligned,'UniversalString',C,false,Val).
decode_UniversalString(Bytes,C) ->
    decode_known_multiplier_string(Bytes,aligned,'UniversalString',C,false).

    
%% end of known-multiplier strings for which PER visible constraints are
%% applied

encode_GeneralString(_C,Val) ->
    encode_restricted_string(aligned,Val).
decode_GeneralString(Bytes,_C) ->
    decode_restricted_string(Bytes,aligned).

encode_GraphicString(_C,Val) ->
    encode_restricted_string(aligned,Val).
decode_GraphicString(Bytes,_C) ->
    decode_restricted_string(Bytes,aligned).

encode_ObjectDescriptor(_C,Val) ->
    encode_restricted_string(aligned,Val).
decode_ObjectDescriptor(Bytes) ->
    decode_restricted_string(Bytes,aligned).

encode_TeletexString(_C,Val) -> % equivalent with T61String
    encode_restricted_string(aligned,Val).
decode_TeletexString(Bytes,_C) ->
    decode_restricted_string(Bytes,aligned).

encode_VideotexString(_C,Val) ->
    encode_restricted_string(aligned,Val).
decode_VideotexString(Bytes,_C) ->
    decode_restricted_string(Bytes,aligned).




%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% getBMPChars(Bytes,Len) ->{BMPcharList,RemainingBytes}
%%
getBMPChars(Bytes,1) ->
    {O1,Bytes2} = getbits(Bytes,8),
    {O2,Bytes3} = getbits(Bytes2,8),
    if 
	O1 == 0 ->
	    {[O2],Bytes3};
	true ->
	    {[{0,0,O1,O2}],Bytes3}
    end;
getBMPChars(Bytes,Len) ->
    getBMPChars(Bytes,Len,[]).

getBMPChars(Bytes,0,Acc) ->
    {lists:reverse(Acc),Bytes};
getBMPChars(Bytes,Len,Acc) ->
    {Octs,Bytes1} = getoctets_as_list(Bytes,2),
    case Octs of
	[0,O2] ->
	    getBMPChars(Bytes1,Len-1,[O2|Acc]);
	[O1,O2]->
	    getBMPChars(Bytes1,Len-1,[{0,0,O1,O2}|Acc])
    end.


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% chars_encode(C,StringType,Value) -> ValueList
%%
%% encodes chars according to the per rules taking the constraint PermittedAlphabet 
%% into account.
%% This function does only encode the value part and NOT the length

chars_encode(C,StringType,Value) ->
    case {StringType,get_constraint(C,'PermittedAlphabet')} of
	{'UniversalString',{_,_Sv}} ->
	    exit({error,{asn1,{'not implemented',"UniversalString with PermittedAlphabet constraint"}}});
	{'BMPString',{_,_Sv}} ->
	    exit({error,{asn1,{'not implemented',"BMPString with PermittedAlphabet constraint"}}});
	_ ->
	    {NumBits,CharOutTab} = {get_NumBits(C,StringType),get_CharOutTab(C,StringType)}, 
	    chars_encode2(Value,NumBits,CharOutTab)
    end.

chars_encode2([H|T],NumBits,{Min,Max,notab}) when  H =< Max, H >= Min ->
    [{bits,NumBits,H-Min}|chars_encode2(T,NumBits,{Min,Max,notab})];
chars_encode2([H|T],NumBits,{Min,Max,Tab}) when H =< Max, H >= Min ->
    [{bits,NumBits,exit_if_false(H,element(H-Min+1,Tab))}|chars_encode2(T,NumBits,{Min,Max,Tab})];
chars_encode2([{A,B,C,D}|T],NumBits,{Min,Max,notab}) -> 
    %% no value range check here (ought to be, but very expensive)
%    [{bits,NumBits,(A*B*C*D)-Min}|chars_encode2(T,NumBits,{Min,Max,notab})];
    [{bits,NumBits,((((((A bsl 8)+B) bsl 8)+C) bsl 8)+D)-Min}|chars_encode2(T,NumBits,{Min,Max,notab})];
chars_encode2([{A,B,C,D}|T],NumBits,{Min,Max,Tab}) -> 
    %% no value range check here (ought to be, but very expensive)
%    [{bits,NumBits,element((A*B*C*D)-Min,Tab)}|chars_encode2(T,NumBits,{Min,Max,notab})];
    [{bits,NumBits,exit_if_false({A,B,C,D},element(((((((A bsl 8)+B) bsl 8)+C) bsl 8)+D)-Min,Tab))}|chars_encode2(T,NumBits,{Min,Max,notab})];
chars_encode2([H|_T],_,{_,_,_}) ->
    exit({error,{asn1,{illegal_char_value,H}}});
chars_encode2([],_,_) ->
    [].

exit_if_false(V,false)->
    exit({error,{asn1,{"illegal value according to Permitted alphabet constraint",V}}});
exit_if_false(_,V) ->V.


get_NumBits(C,StringType) ->
    case get_constraint(C,'PermittedAlphabet') of
	{'SingleValue',Sv} ->
	    charbits(length(Sv),aligned);
	no ->
	    case StringType of
		'IA5String' ->
		    charbits(128,aligned); % 16#00..16#7F
		'VisibleString' ->
		    charbits(95,aligned); % 16#20..16#7E
		'PrintableString' ->
		    charbits(74,aligned); % [$\s,$',$(,$),$+,$,,$-,$.,$/,"0123456789",$:,$=,$?,$A..$Z,$a..$z
		'NumericString' ->
		    charbits(11,aligned); % $ ,"0123456789"
		'UniversalString' ->
		    32;
		'BMPString' ->
		    16
	    end
    end.

%%Maybe used later
%%get_MaxChar(C,StringType) ->
%%    case get_constraint(C,'PermittedAlphabet') of
%%	{'SingleValue',Sv} ->
%%	    lists:nth(length(Sv),Sv);
%%	no ->
%%	    case StringType of
%%		'IA5String' ->
%%		    16#7F; % 16#00..16#7F
%%		'VisibleString' ->
%%		    16#7E; % 16#20..16#7E
%%		'PrintableString' ->
%%		    $z; % [$\s,$',$(,$),$+,$,,$-,$.,$/,"0123456789",$:,$=,$?,$A..$Z,$a..$z
%%		'NumericString' ->
%%		    $9; % $ ,"0123456789"
%%		'UniversalString' ->
%%		    16#ffffffff;
%%		'BMPString' ->
%%		    16#ffff
%%	    end
%%    end.

%%Maybe used later
%%get_MinChar(C,StringType) ->
%%    case get_constraint(C,'PermittedAlphabet') of
%%	{'SingleValue',Sv} ->
%%	    hd(Sv);
%%	no ->
%%	    case StringType of
%%		'IA5String' ->
%%		    16#00; % 16#00..16#7F
%%		'VisibleString' ->
%%		    16#20; % 16#20..16#7E
%%		'PrintableString' ->
%%		    $\s; % [$\s,$',$(,$),$+,$,,$-,$.,$/,"0123456789",$:,$=,$?,$A..$Z,$a..$z
%%		'NumericString' ->
%%		    $\s; % $ ,"0123456789"
%%		'UniversalString' ->
%%		    16#00;
%%		'BMPString' ->
%%		    16#00
%%	    end
%%    end.

get_CharOutTab(C,StringType) ->
    get_CharTab(C,StringType,out).

get_CharInTab(C,StringType) ->
    get_CharTab(C,StringType,in).

get_CharTab(C,StringType,InOut) ->
    case get_constraint(C,'PermittedAlphabet') of
	{'SingleValue',Sv} ->
	    get_CharTab2(C,StringType,hd(Sv),lists:max(Sv),Sv,InOut);
	no ->
	    case StringType of
		'IA5String' ->
		    {0,16#7F,notab};
		'VisibleString' ->
		    get_CharTab2(C,StringType,16#20,16#7F,notab,InOut);
		'PrintableString' ->
		    Chars = lists:sort(
			      " '()+,-./0123456789:=?ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"),
		    get_CharTab2(C,StringType,hd(Chars),lists:max(Chars),Chars,InOut);
		'NumericString' ->
		    get_CharTab2(C,StringType,16#20,$9," 0123456789",InOut);
		'UniversalString' ->
		    {0,16#FFFFFFFF,notab};
		'BMPString' ->
		    {0,16#FFFF,notab}
	    end
    end.

get_CharTab2(C,StringType,Min,Max,Chars,InOut) ->
    BitValMax = (1 bsl get_NumBits(C,StringType))-1,
    if
	Max =< BitValMax ->
	    {0,Max,notab};
	true ->
	    case InOut of
		out ->
		    {Min,Max,create_char_tab(Min,Chars)};
		in  ->
		    {Min,Max,list_to_tuple(Chars)}
	    end
    end.

create_char_tab(Min,L) ->
    list_to_tuple(create_char_tab(Min,L,0)).
create_char_tab(Min,[Min|T],V) ->
    [V|create_char_tab(Min+1,T,V+1)];
create_char_tab(_Min,[],_V) ->
    [];
create_char_tab(Min,L,V) ->
    [false|create_char_tab(Min+1,L,V)].

%% This very inefficient and should be moved to compiletime
charbits(NumOfChars,aligned) ->
    case charbits(NumOfChars) of
	1 -> 1;
	2 -> 2;
	B when B =< 4 -> 4;
	B when B =< 8 -> 8;
	B when B =< 16 -> 16; 
	B when B =< 32 -> 32
    end.

charbits(NumOfChars) when NumOfChars =< 2 -> 1;
charbits(NumOfChars) when NumOfChars =< 4 -> 2;
charbits(NumOfChars) when NumOfChars =< 8 -> 3;
charbits(NumOfChars) when NumOfChars =< 16 -> 4;
charbits(NumOfChars) when NumOfChars =< 32 -> 5;
charbits(NumOfChars) when NumOfChars =< 64 -> 6;
charbits(NumOfChars) when NumOfChars =< 128 -> 7;
charbits(NumOfChars) when NumOfChars =< 256 -> 8;
charbits(NumOfChars) when NumOfChars =< 512 -> 9;
charbits(NumOfChars) when NumOfChars =< 1024 -> 10;
charbits(NumOfChars) when NumOfChars =< 2048 -> 11;
charbits(NumOfChars) when NumOfChars =< 4096 -> 12;
charbits(NumOfChars) when NumOfChars =< 8192 -> 13;
charbits(NumOfChars) when NumOfChars =< 16384 -> 14;
charbits(NumOfChars) when NumOfChars =< 32768 -> 15;
charbits(NumOfChars) when NumOfChars =< 65536 -> 16;
charbits(NumOfChars) when is_integer(NumOfChars) ->
    16 + charbits1(NumOfChars bsr 16).

charbits1(0) ->
    0;
charbits1(NumOfChars) ->
    1 + charbits1(NumOfChars bsr 1).


chars_decode(Bytes,_,'BMPString',C,Len) ->
    case get_constraint(C,'PermittedAlphabet') of
	no ->
	    getBMPChars(Bytes,Len);
	_ ->
	    exit({error,{asn1,
			 {'not implemented',
			  "BMPString with PermittedAlphabet constraint"}}})
    end;
chars_decode(Bytes,NumBits,StringType,C,Len) ->	
    CharInTab = get_CharInTab(C,StringType),
    chars_decode2(Bytes,CharInTab,NumBits,Len).


chars_decode2(Bytes,CharInTab,NumBits,Len) ->
    chars_decode2(Bytes,CharInTab,NumBits,Len,[]).

chars_decode2(Bytes,_CharInTab,_NumBits,0,Acc) ->
    {lists:reverse(Acc),Bytes};
chars_decode2(Bytes,{Min,Max,notab},NumBits,Len,Acc) when NumBits > 8 ->
    {Char,Bytes2} = getbits(Bytes,NumBits),
    Result = 
	if
	    Char < 256 -> Char;
	    true ->
		list_to_tuple(binary_to_list(<<Char:32>>))
	end,
    chars_decode2(Bytes2,{Min,Max,notab},NumBits,Len -1,[Result|Acc]);
% chars_decode2(Bytes,{Min,Max,notab},NumBits,Len,Acc) when NumBits > 8 ->
%     {Char,Bytes2} = getbits(Bytes,NumBits),
%     Result = case minimum_octets(Char+Min) of
% 		 [NewChar] -> NewChar;
% 		 [C1,C2] -> {0,0,C1,C2};
% 		 [C1,C2,C3] -> {0,C1,C2,C3};
% 		 [C1,C2,C3,C4] -> {C1,C2,C3,C4}
% 	     end,
%     chars_decode2(Bytes2,{Min,Max,notab},NumBits,Len -1,[Result|Acc]);
chars_decode2(Bytes,{Min,Max,notab},NumBits,Len,Acc) ->
    {Char,Bytes2} = getbits(Bytes,NumBits),
    chars_decode2(Bytes2,{Min,Max,notab},NumBits,Len -1,[Char+Min|Acc]);

%% BMPString and UniversalString with PermittedAlphabet is currently not supported
chars_decode2(Bytes,{Min,Max,CharInTab},NumBits,Len,Acc) ->
    {Char,Bytes2} = getbits(Bytes,NumBits),
    chars_decode2(Bytes2,{Min,Max,CharInTab},NumBits,Len -1,[element(Char+1,CharInTab)|Acc]).


%% UTF8String
encode_UTF8String(Val) when is_binary(Val) ->
    [encode_length(undefined,size(Val)),{octets,Val}];
encode_UTF8String(Val) ->
    Bin = list_to_binary(Val),
    encode_UTF8String(Bin).

decode_UTF8String(Bytes) ->
    {Len,Bytes2} = decode_length(Bytes,undefined),
    {Octs,Bytes3} = getoctets_as_list(Bytes2,Len),
    {list_to_binary(Octs),Bytes3}.
    

						% X.691:17 
encode_null(_) -> []. % encodes to nothing
%encode_null({Name,Val}) when is_atom(Name) ->
%    encode_null(Val).

decode_null(Bytes) ->
    {'NULL',Bytes}.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% encode_object_identifier(Val) -> CompleteList
%% encode_object_identifier({Name,Val}) -> CompleteList
%% Val -> {Int1,Int2,...,IntN} % N >= 2
%% Name -> atom()
%% Int1 -> integer(0..2)
%% Int2 -> integer(0..39) when Int1 (0..1) else integer()
%% Int3-N -> integer()
%% CompleteList -> [{bits,8,Val}|{octets,Ol}|align|...]
%%
encode_object_identifier({Name,Val}) when is_atom(Name) ->
    encode_object_identifier(Val);
encode_object_identifier(Val) ->
    OctetList = e_object_identifier(Val),
    Octets = list_to_binary(OctetList), % performs a flatten at the same time
    [{debug,object_identifier},encode_length(undefined,size(Octets)),{octets,Octets}].

%% This code is copied from asn1_encode.erl (BER) and corrected and modified 

e_object_identifier({'OBJECT IDENTIFIER',V}) ->
    e_object_identifier(V);
e_object_identifier({Cname,V}) when is_atom(Cname),is_tuple(V) ->
    e_object_identifier(tuple_to_list(V));
e_object_identifier({Cname,V}) when is_atom(Cname),is_list(V) ->
    e_object_identifier(V);
e_object_identifier(V) when is_tuple(V) ->
    e_object_identifier(tuple_to_list(V));

%% E1 = 0|1|2 and (E2 < 40 when E1 = 0|1) 
e_object_identifier([E1,E2|Tail]) when E1 >= 0, E1 < 2, E2 < 40 ; E1==2 ->
    Head = 40*E1 + E2,  % weird
    e_object_elements([Head|Tail],[]);
e_object_identifier(Oid=[_,_|_Tail]) ->
    exit({error,{asn1,{'illegal_value',Oid}}}).

e_object_elements([],Acc) ->
    lists:reverse(Acc);
e_object_elements([H|T],Acc) ->
    e_object_elements(T,[e_object_element(H)|Acc]).

e_object_element(Num) when Num < 128 ->
    [Num];
e_object_element(Num) ->
    [e_o_e(Num bsr 7)|[Num band 2#1111111]].
e_o_e(Num) when Num < 128 ->
    Num bor 2#10000000;
e_o_e(Num) ->
    [e_o_e(Num bsr 7)|[(Num band 2#1111111) bor 2#10000000]].



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% decode_object_identifier(Bytes) -> {ObjId,RemainingBytes}
%% ObjId -> {integer(),integer(),...} % at least 2 integers
%% RemainingBytes -> [integer()] when integer() (0..255)
decode_object_identifier(Bytes) ->
    {Len,Bytes2} = decode_length(Bytes,undefined),
    {Octs,Bytes3} = getoctets_as_list(Bytes2,Len),
    [First|Rest] = dec_subidentifiers(Octs,0,[]),
    Idlist = if
		 First < 40 ->
		     [0,First|Rest];
		 First < 80 ->
		     [1,First - 40|Rest];
		 true ->
		     [2,First - 80|Rest]
	     end,
    {list_to_tuple(Idlist),Bytes3}.

dec_subidentifiers([H|T],Av,Al) when H >=16#80 ->
    dec_subidentifiers(T,(Av bsl 7) + (H band 16#7F),Al);
dec_subidentifiers([H|T],Av,Al) ->
    dec_subidentifiers(T,0,[(Av bsl 7) + H |Al]);
dec_subidentifiers([],_Av,Al) ->
    lists:reverse(Al).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% encode_relative_oid(Val) -> CompleteList
%% encode_relative_oid({Name,Val}) -> CompleteList
encode_relative_oid({Name,Val}) when is_atom(Name) ->
    encode_relative_oid(Val);
encode_relative_oid(Val) when is_tuple(Val) ->
    encode_relative_oid(tuple_to_list(Val));
encode_relative_oid(Val) when is_list(Val) ->
    Octets = list_to_binary([e_object_element(X)||X <- Val]),
    [encode_length(undefined,size(Octets)),{octets,Octets}].
    
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% decode_relative_oid(Val) -> {ROID,Rest}
%% decode_relative_oid({Name,Val}) -> {ROID,Rest}
decode_relative_oid(Bytes) ->
    {Len,Bytes2} = decode_length(Bytes,undefined),
    {Octs,Bytes3} = getoctets_as_list(Bytes2,Len),
    ObjVals = dec_subidentifiers(Octs,0,[]),
    {list_to_tuple(ObjVals),Bytes3}.


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% encode_real(Val) -> CompleteList
%% encode_real({Name,Val}) -> CompleteList
encode_real({Name,Val}) when is_atom(Name) ->
    encode_real(Val);
encode_real(Real) ->
    {EncVal,Len} = ?RT_COMMON:encode_real([],Real),
    [encode_length(undefined,Len),{octets,EncVal}].


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% decode_real(Val) -> {REALvalue,Rest}
%% decode_real({Name,Val}) -> {REALvalue,Rest}
decode_real(Bytes) ->
    {Len,{0,Bytes2}} = decode_length(Bytes,undefined),
    {RealVal,Rest,Len} = ?RT_COMMON:decode_real(Bytes2,Len),
    {RealVal,{0,Rest}}.
    

get_constraint([{Key,V}],Key) ->
    V;
get_constraint([],_Key) ->
    no;
get_constraint(C,Key) ->
    case lists:keysearch(Key,1,C) of
	false ->
	    no;
	{value,{_,V}} -> 
	    V
    end.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% complete(InList) -> ByteList
%% Takes a coded list with bits and bytes and converts it to a list of bytes
%% Should be applied as the last step at encode of a complete ASN.1 type
%%

% complete(L) ->
%     case complete1(L) of
% 	{[],0} ->
% 	    <<0>>;
% 	{Acc,0} ->
% 	    lists:reverse(Acc);
% 	{[Hacc|Tacc],Acclen}  -> % Acclen >0
% 	    Rest = 8 - Acclen,
% 	    NewHacc = Hacc bsl Rest,	       
% 	    lists:reverse([NewHacc|Tacc])
%     end.


% complete1(InList) when is_list(InList) ->
%     complete1(InList,[]);
% complete1(InList) ->
%     complete1([InList],[]).

% complete1([{debug,_}|T], Acc) ->
%     complete1(T,Acc);
% complete1([H|T],Acc) when is_list(H) ->
%     {NewH,NewAcclen} = complete1(H,Acc),
%     complete1(T,NewH,NewAcclen);

% complete1([{0,Bin}|T],Acc,0) when is_binary(Bin) ->
%     complete1(T,[Bin|Acc],0);
% complete1([{Unused,Bin}|T],Acc,0) when is_integer(Unused),is_binary(Bin) ->
%     Size = size(Bin)-1,
%     <<Bs:Size/binary,B>> = Bin,
%     complete1(T,[(B bsr Unused),Bs|Acc],8-Unused);
% complete1([{Unused,Bin}|T],[Hacc|Tacc],Acclen) when is_integer(Unused),is_binary(Bin) ->
%     Rest = 8 - Acclen,
%     Used = 8 - Unused,
%     case size(Bin) of
% 	1 ->
% 	    if
% 		Rest >= Used ->
% 		    <<B:Used,_:Unused>> = Bin,
% 		    complete1(T,[(Hacc bsl Used) + B|Tacc],
% 			     (Acclen+Used) rem 8);
% 		true ->
% 		    LeftOver = 8 - Rest - Unused,
% 		    <<Val2:Rest,Val1:LeftOver,_:Unused>> = Bin,
% 		    complete1(T,[Val1,(Hacc bsl Rest) + Val2|Tacc],
% 			     (Acclen+Used) rem 8)
% 	    end;
% 	N ->
% 	    if 
% 		Rest == Used ->
% 		    N1 = N - 1,
% 		    <<B:Rest,Bs:N1/binary,_:Unused>> = Bin,
% 		    complete1(T,[Bs,(Hacc bsl Rest) + B|Tacc],0);
% 		Rest > Used ->
% 		    N1 = N - 2,
% 		    N2 = (8 - Rest) + Used,
% 		    <<B1:Rest,Bytes:N1/binary,B2:N2,_:Unused>> = Bin,
% 		    complete1(T,[B2,Bytes,(Hacc bsl Rest) + B1|Tacc],
% 			     (Acclen + Used) rem 8);
% 		true -> % Rest < Used
% 		    N1 = N - 1,
% 		    N2 = Used - Rest,
% 		    <<B1:Rest,Bytes:N1/binary,B2:N2,_:Unused>> = Bin,
% 		    complete1(T,[B2,Bytes,(Hacc bsl Rest) + B1|Tacc],
% 			     (Acclen + Used) rem 8)
% 	    end
%     end;
	    
% %complete1([{octets,N,Val}|T],Acc,Acclen) when N =< 4 ,is_integer(Val) ->
% %    complete1([{octets,<<Val:N/unit:8>>}|T],Acc,Acclen);
% complete1([{octets,N,Val}|T],Acc,Acclen) when N =< 4 ,is_integer(Val) ->
%    Newval = case N of
% 		 1 -> 
% 		     Val4 = Val band 16#FF,
% 		     [Val4];
% 		 2 -> 
% 		     Val3 = (Val bsr 8) band 16#FF,
% 		     Val4 = Val band 16#FF,
% 		     [Val3,Val4];
% 		 3 ->
% 		     Val2 = (Val bsr 16) band 16#FF,
% 		     Val3 = (Val bsr 8) band 16#FF,
% 		     Val4 = Val band 16#FF,
% 		     [Val2,Val3,Val4];
% 		 4 ->
% 		     Val1 = (Val bsr 24) band 16#FF,
% 		     Val2 = (Val bsr 16) band 16#FF,
% 		     Val3 = (Val bsr 8) band 16#FF,
% 		     Val4 = Val band 16#FF,
% 		     [Val1,Val2,Val3,Val4]
% 	     end,
%    complete1([{octets,Newval}|T],Acc,Acclen);

% complete1([{octets,Bin}|T],Acc,Acclen) when is_binary(Bin) ->
%     Rest = 8 - Acclen,
%     if 
% 	Rest == 8 ->
% 	    complete1(T,[Bin|Acc],0);
% 	true ->
% 	    [Hacc|Tacc]=Acc,
% 	    complete1(T,[Bin, Hacc bsl Rest|Tacc],0)
%     end;

% complete1([{octets,Oct}|T],Acc,Acclen) when is_list(Oct) ->
%     Rest = 8 - Acclen,
%     if 
% 	Rest == 8 ->
% 	    complete1(T,[list_to_binary(Oct)|Acc],0);
% 	true ->
% 	    [Hacc|Tacc]=Acc,
% 	    complete1(T,[list_to_binary(Oct), Hacc bsl Rest|Tacc],0)
%     end;

% complete1([{bit,Val}|T], Acc, Acclen) ->
%     complete1([{bits,1,Val}|T],Acc,Acclen);
% complete1([{octet,Val}|T], Acc, Acclen) ->
%     complete1([{octets,1,Val}|T],Acc,Acclen);

% complete1([{bits,N,Val}|T], Acc, 0) when N =< 8 ->
%     complete1(T,[Val|Acc],N);
% complete1([{bits,N,Val}|T], [Hacc|Tacc], Acclen) when N =< 8 ->
%     Rest = 8 - Acclen,
%     if 
% 	Rest >= N ->
% 	    complete1(T,[(Hacc bsl N) + Val|Tacc],(Acclen+N) rem 8);
% 	true -> 
% 	    Diff = N - Rest, 
% 	    NewHacc = (Hacc bsl Rest) + (Val bsr Diff),
% 	    Mask = element(Diff,{1,3,7,15,31,63,127,255}),
% 	    complete1(T,[(Val band Mask),NewHacc|Tacc],(Acclen+N) rem 8)
%     end;
% complete1([{bits,N,Val}|T], Acc, Acclen) -> % N > 8
%     complete1([{bits,N-8,Val bsr 8},{bits,8,Val band 255}|T],Acc,Acclen);

% complete1([align|T],Acc,0) ->
%     complete1(T,Acc,0);
% complete1([align|T],[Hacc|Tacc],Acclen) ->
%     Rest = 8 - Acclen,
%     complete1(T,[Hacc bsl Rest|Tacc],0);
% complete1([{octets,N,Val}|T],Acc,Acclen) when is_list(Val) -> % no security check here 
%     complete1([{octets,Val}|T],Acc,Acclen);

% complete1([],Acc,Acclen) ->
%     {Acc,Acclen}.


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% complete(InList) -> ByteList
%% Takes a coded list with bits and bytes and converts it to a list of bytes
%% Should be applied as the last step at encode of a complete ASN.1 type
%%

complete(L) ->
    case complete1(L) of
	{[],[]} ->
	    <<0>>;
	{Acc,[]} ->
	    Acc;
	{Acc,Bacc}  ->
	    [Acc|complete_bytes(Bacc)]
    end.

%% this function builds the ugly form of lists [E1|E2] to avoid having to reverse it at the end.
%% this is done because it is efficient and that the result always will be sent on a port or
%% converted by means of list_to_binary/1
complete1(InList) when is_list(InList) ->
    complete1(InList,[],[]);
complete1(InList) ->
    complete1([InList],[],[]).

complete1([],Acc,Bacc) ->
    {Acc,Bacc};
complete1([H|T],Acc,Bacc) when is_list(H) ->
    {NewH,NewBacc} = complete1(H,Acc,Bacc),
    complete1(T,NewH,NewBacc);

complete1([{octets,Bin}|T],Acc,[]) ->
    complete1(T,[Acc|Bin],[]);

complete1([{octets,Bin}|T],Acc,Bacc) ->
    complete1(T,[Acc|[complete_bytes(Bacc),Bin]],[]);

complete1([{debug,_}|T], Acc,Bacc) ->
    complete1(T,Acc,Bacc);

complete1([{bits,N,Val}|T],Acc,Bacc) ->
    complete1(T,Acc,complete_update_byte(Bacc,Val,N));

complete1([{bit,Val}|T],Acc,Bacc) ->
    complete1(T,Acc,complete_update_byte(Bacc,Val,1));

complete1([align|T],Acc,[]) ->
    complete1(T,Acc,[]);
complete1([align|T],Acc,Bacc) ->
    complete1(T,[Acc|complete_bytes(Bacc)],[]);
complete1([{0,Bin}|T],Acc,[]) when is_binary(Bin) ->
    complete1(T,[Acc|Bin],[]);
complete1([{Unused,Bin}|T],Acc,[]) when is_integer(Unused),is_binary(Bin) ->
    Size = size(Bin)-1,
    <<Bs:Size/binary,B>> = Bin,
    NumBits = 8-Unused,
    complete1(T,[Acc|Bs],[[B bsr Unused]|NumBits]);
complete1([{Unused,Bin}|T],Acc,Bacc) when is_integer(Unused),is_binary(Bin) ->
    Size = size(Bin)-1,
    <<Bs:Size/binary,B>> = Bin,
    NumBits = 8 - Unused,
    Bf = complete_bytes(Bacc),
    complete1(T,[Acc|[Bf,Bs]],[[B bsr Unused]|NumBits]).


complete_update_byte([],Val,Len) ->
    complete_update_byte([[0]|0],Val,Len);
complete_update_byte([[Byte|Bacc]|NumBits],Val,Len) when NumBits + Len == 8 ->
    [[0,((Byte bsl Len) + Val) band 255|Bacc]|0];
complete_update_byte([[Byte|Bacc]|NumBits],Val,Len) when NumBits + Len > 8  ->
    Rem = 8 - NumBits,
    Rest = Len - Rem,
    complete_update_byte([[0,((Byte bsl Rem) + (Val bsr Rest)) band 255 |Bacc]|0],Val,Rest);
complete_update_byte([[Byte|Bacc]|NumBits],Val,Len) ->
    [[((Byte bsl Len) + Val) band 255|Bacc]|NumBits+Len].

 
complete_bytes([[_Byte|Bacc]|0]) ->
    lists:reverse(Bacc);
complete_bytes([[Byte|Bacc]|NumBytes]) ->
    lists:reverse([(Byte bsl (8-NumBytes)) band 255|Bacc]);
complete_bytes([]) ->
    [].

% complete_bytes(L) ->
%     complete_bytes1(lists:reverse(L),[],[],0,0).

% complete_bytes1([H={V,B}|T],Acc,ReplyAcc,NumBits,NumFields) when ((NumBits+B) rem 8) == 0 ->
% 	    NewReplyAcc = [complete_bytes2([H|Acc],0)|ReplyAcc],
% 	    complete_bytes1(T,[],NewReplyAcc,0,0);
% complete_bytes1([H={V,B}|T],Acc,ReplyAcc,NumBits,NumFields)  when NumFields == 7; (NumBits+B) div 8 > 0 ->
%     Rem = (NumBits+B) rem 8,
%     NewReplyAcc = [complete_bytes2([{V bsr Rem,B - Rem}|Acc],0)|ReplyAcc],
%     complete_bytes1([{V,Rem}|T],[],NewReplyAcc,0,0);
% complete_bytes1([H={V,B}|T],Acc,ReplyAcc,NumBits,NumFields)  ->
%     complete_bytes1(T,[H|Acc],ReplyAcc,NumBits+B,NumFields+1);
% complete_bytes1([],[],ReplyAcc,_,_) ->
%     lists:reverse(ReplyAcc);
% complete_bytes1([],Acc,ReplyAcc,NumBits,_) ->
%     PadBits = case NumBits rem 8 of
% 		  0 -> 0;
% 		  Rem -> 8 - Rem
% 	      end,
%     lists:reverse([complete_bytes2(Acc,PadBits)|ReplyAcc]).


% complete_bytes2([{V1,B1}],PadBits) ->
%     <<V1:B1,0:PadBits>>;
% complete_bytes2([{V2,B2},{V1,B1}],PadBits) ->
%     <<V1:B1,V2:B2,0:PadBits>>;
% complete_bytes2([{V3,B3},{V2,B2},{V1,B1}],PadBits) ->
%     <<V1:B1,V2:B2,V3:B3,0:PadBits>>;
% complete_bytes2([{V4,B4},{V3,B3},{V2,B2},{V1,B1}],PadBits) ->
%     <<V1:B1,V2:B2,V3:B3,V4:B4,0:PadBits>>;
% complete_bytes2([{V5,B5},{V4,B4},{V3,B3},{V2,B2},{V1,B1}],PadBits) ->
%     <<V1:B1,V2:B2,V3:B3,V4:B4,V5:B5,0:PadBits>>;
% complete_bytes2([{V6,B6},{V5,B5},{V4,B4},{V3,B3},{V2,B2},{V1,B1}],PadBits) ->
%     <<V1:B1,V2:B2,V3:B3,V4:B4,V5:B5,V6:B6,0:PadBits>>;
% complete_bytes2([{V7,B7},{V6,B6},{V5,B5},{V4,B4},{V3,B3},{V2,B2},{V1,B1}],PadBits) ->
%     <<V1:B1,V2:B2,V3:B3,V4:B4,V5:B5,V6:B6,V7:B7,0:PadBits>>;
% complete_bytes2([{V8,B8},{V7,B7},{V6,B6},{V5,B5},{V4,B4},{V3,B3},{V2,B2},{V1,B1}],PadBits) ->
%     <<V1:B1,V2:B2,V3:B3,V4:B4,V5:B5,V6:B6,V7:B7,V8:B8,0:PadBits>>.