%% %% %CopyrightBegin% %% %% Copyright Ericsson AB 2001-2011. All Rights Reserved. %% %% The contents of this file are subject to the Erlang Public License, %% Version 1.1, (the "License"); you may not use this file except in %% compliance with the License. You should have received a copy of the %% Erlang Public License along with this software. If not, it can be %% retrieved online at http://www.erlang.org/. %% %% Software distributed under the License is distributed on an "AS IS" %% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See %% the License for the specific language governing rights and limitations %% under the License. %% %% %CopyrightEnd% %% %% -module(asn1rt_per_bin). %% encoding / decoding of PER aligned -include("asn1_records.hrl"). -export([dec_fixup/3, cindex/3, list_to_record/2]). -export([setchoiceext/1, setext/1, fixoptionals/2, fixoptionals/3, fixextensions/2, getext/1, getextension/2, skipextensions/3, getbit/1, getchoice/3 ]). -export([getoptionals/2, getoptionals2/2, set_choice/3, encode_integer/2, encode_integer/3 ]). -export([decode_integer/2, decode_integer/3, encode_small_number/1, encode_boolean/1, decode_boolean/1, encode_length/2, decode_length/1, decode_length/2, encode_small_length/1, decode_small_length/1, decode_compact_bit_string/3]). -export([decode_enumerated/3, encode_bit_string/3, decode_bit_string/3 ]). -export([encode_octet_string/2, decode_octet_string/2, encode_null/1, decode_null/1, encode_object_identifier/1, decode_object_identifier/1, encode_real/1, decode_real/1, encode_relative_oid/1, decode_relative_oid/1, complete/1]). -export([encode_open_type/2, decode_open_type/2]). -export([encode_UniversalString/2, decode_UniversalString/2, encode_PrintableString/2, decode_PrintableString/2, encode_GeneralString/2, decode_GeneralString/2, encode_GraphicString/2, decode_GraphicString/2, encode_TeletexString/2, decode_TeletexString/2, encode_VideotexString/2, decode_VideotexString/2, encode_VisibleString/2, decode_VisibleString/2, encode_UTF8String/1, decode_UTF8String/1, encode_BMPString/2, decode_BMPString/2, encode_IA5String/2, decode_IA5String/2, encode_NumericString/2, decode_NumericString/2, encode_ObjectDescriptor/2, decode_ObjectDescriptor/1 ]). -export([complete_bytes/1, getbits/2, getoctets/2, minimum_bits/1]). -define('16K',16384). -define('32K',32768). -define('64K',65536). dec_fixup(Terms,Cnames,RemBytes) -> dec_fixup(Terms,Cnames,RemBytes,[]). dec_fixup([novalue|T],[_Hc|Tc],RemBytes,Acc) -> dec_fixup(T,Tc,RemBytes,Acc); dec_fixup([{_Name,novalue}|T],[_Hc|Tc],RemBytes,Acc) -> dec_fixup(T,Tc,RemBytes,Acc); dec_fixup([H|T],[Hc|Tc],RemBytes,Acc) -> dec_fixup(T,Tc,RemBytes,[{Hc,H}|Acc]); dec_fixup([],_Cnames,RemBytes,Acc) -> {lists:reverse(Acc),RemBytes}. cindex(Ix,Val,Cname) -> case element(Ix,Val) of {Cname,Val2} -> Val2; X -> X end. %% converts a list to a record if necessary list_to_record(_Name,Tuple) when is_tuple(Tuple) -> Tuple; list_to_record(Name,List) when is_list(List) -> list_to_tuple([Name|List]). %%-------------------------------------------------------- %% setchoiceext(InRootSet) -> [{bit,X}] %% X is set to 1 when InRootSet==false %% X is set to 0 when InRootSet==true %% setchoiceext(true) -> [{debug,choiceext},{bits,1,0}]; setchoiceext(false) -> [{debug,choiceext},{bits,1,1}]. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% setext(true|false) -> CompleteList %% setext(false) -> [{debug,ext},{bits,1,0}]; setext(true) -> [{debug,ext},{bits,1,1}]. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% This version of fixoptionals/2 are left only because of %% backward compatibility with older generates fixoptionals(OptList,Val) when is_tuple(Val) -> fixoptionals1(OptList,Val,[]); fixoptionals(OptList,Val) when is_list(Val) -> fixoptionals1(OptList,Val,1,[],[]). fixoptionals1([],Val,Acc) -> %% return {Val,Opt} {Val,lists:reverse(Acc)}; fixoptionals1([{_,Pos}|Ot],Val,Acc) -> case element(Pos+1,Val) of asn1_NOVALUE -> fixoptionals1(Ot,Val,[0|Acc]); asn1_DEFAULT -> fixoptionals1(Ot,Val,[0|Acc]); _ -> fixoptionals1(Ot,Val,[1|Acc]) end. fixoptionals1([{Name,Pos}|Ot],[{Name,Val}|Vt],_Opt,Acc1,Acc2) -> fixoptionals1(Ot,Vt,Pos+1,[1|Acc1],[{Name,Val}|Acc2]); fixoptionals1([{_Name,Pos}|Ot],V,Pos,Acc1,Acc2) -> fixoptionals1(Ot,V,Pos+1,[0|Acc1],[asn1_NOVALUE|Acc2]); fixoptionals1(O,[Vh|Vt],Pos,Acc1,Acc2) -> fixoptionals1(O,Vt,Pos+1,Acc1,[Vh|Acc2]); fixoptionals1([],[Vh|Vt],Pos,Acc1,Acc2) -> fixoptionals1([],Vt,Pos+1,Acc1,[Vh|Acc2]); fixoptionals1([],[],_,Acc1,Acc2) -> % return {Val,Opt} {list_to_tuple([asn1_RECORDNAME|lists:reverse(Acc2)]),lists:reverse(Acc1)}. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% This is the new fixoptionals/3 which is used by the new generates %% fixoptionals(OptList,OptLength,Val) when is_tuple(Val) -> Bits = fixoptionals(OptList,Val,0), {Val,{bits,OptLength,Bits}}; fixoptionals([],_Val,Acc) -> %% Optbits Acc; fixoptionals([{Pos,DefVal}|Ot],Val,Acc) -> case element(Pos,Val) of asn1_DEFAULT -> fixoptionals(Ot,Val,Acc bsl 1); DefVal -> fixoptionals(Ot,Val,Acc bsl 1); _ -> fixoptionals(Ot,Val,(Acc bsl 1) + 1) end; fixoptionals([Pos|Ot],Val,Acc) -> case element(Pos,Val) of asn1_NOVALUE -> fixoptionals(Ot,Val,Acc bsl 1); asn1_DEFAULT -> fixoptionals(Ot,Val,Acc bsl 1); _ -> fixoptionals(Ot,Val,(Acc bsl 1) + 1) end. getext(Bytes) when is_tuple(Bytes) -> getbit(Bytes); getext(Bytes) when is_binary(Bytes) -> getbit({0,Bytes}). getextension(0, Bytes) -> {{},Bytes}; getextension(1, Bytes) -> {Len,Bytes2} = decode_small_length(Bytes), {Blist, Bytes3} = getbits_as_list(Len,Bytes2), {list_to_tuple(Blist),Bytes3}. fixextensions({ext,ExtPos,ExtNum},Val) -> case fixextensions(ExtPos,ExtNum+ExtPos,Val,0) of 0 -> []; ExtBits -> [encode_small_length(ExtNum),{bits,ExtNum,ExtBits}] end. fixextensions(Pos,MaxPos,_,Acc) when Pos >= MaxPos -> Acc; fixextensions(Pos,ExtPos,Val,Acc) -> Bit = case catch(element(Pos+1,Val)) of asn1_NOVALUE -> 0; asn1_NOEXTVALUE -> 0; {'EXIT',_} -> 0; _ -> 1 end, fixextensions(Pos+1,ExtPos,Val,(Acc bsl 1)+Bit). skipextensions(Bytes,Nr,ExtensionBitPattern) -> case (catch element(Nr,ExtensionBitPattern)) of 1 -> {_,Bytes2} = decode_open_type(Bytes,[]), skipextensions(Bytes2, Nr+1, ExtensionBitPattern); 0 -> skipextensions(Bytes, Nr+1, ExtensionBitPattern); {'EXIT',_} -> % badarg, no more extensions Bytes end. getchoice(Bytes,1,0) -> % only 1 alternative is not encoded {0,Bytes}; getchoice(Bytes,_,1) -> decode_small_number(Bytes); getchoice(Bytes,NumChoices,0) -> decode_constrained_number(Bytes,{0,NumChoices-1}). %% old version kept for backward compatibility with generates from R7B getoptionals(Bytes,NumOpt) -> {Blist,Bytes1} = getbits_as_list(NumOpt,Bytes), {list_to_tuple(Blist),Bytes1}. %% new version used in generates from r8b_patch/3 and later getoptionals2(Bytes,NumOpt) -> getbits(Bytes,NumOpt). %% getbits_as_binary(Num,Bytes) -> {{Unused,BinBits},RestBytes}, %% Num = integer(), %% Bytes = list() | tuple(), %% Unused = integer(), %% BinBits = binary(), %% RestBytes = tuple() getbits_as_binary(Num,Bytes) when is_binary(Bytes) -> getbits_as_binary(Num,{0,Bytes}); getbits_as_binary(0,Buffer) -> {{0,<<>>},Buffer}; getbits_as_binary(Num,{0,Bin}) when Num > 16 -> Used = Num rem 8, Pad = (8 - Used) rem 8, % Nbytes = Num div 8, <> = Bin, {{Pad,<>},RestBin}; getbits_as_binary(Num,Buffer={_Used,_Bin}) -> % Unaligned buffer %% Num =< 16, {Bits2,Buffer2} = getbits(Buffer,Num), Pad = (8 - (Num rem 8)) rem 8, {{Pad,<>},Buffer2}. % integer_from_list(Int,[],BigInt) -> % BigInt; % integer_from_list(Int,[H|T],BigInt) when Int < 8 -> % (BigInt bsl Int) bor (H bsr (8-Int)); % integer_from_list(Int,[H|T],BigInt) -> % integer_from_list(Int-8,T,(BigInt bsl 8) bor H). getbits_as_list(Num,Bytes) when is_binary(Bytes) -> getbits_as_list(Num,{0,Bytes},[]); getbits_as_list(Num,Bytes) -> getbits_as_list(Num,Bytes,[]). %% If buffer is empty and nothing more will be picked. getbits_as_list(0, B, Acc) -> {lists:reverse(Acc),B}; %% If first byte in buffer is full and at least one byte will be picked, %% then pick one byte. getbits_as_list(N,{0,Bin},Acc) when N >= 8 -> <> = Bin, getbits_as_list(N-8,{0,Rest},[B0,B1,B2,B3,B4,B5,B6,B7|Acc]); getbits_as_list(N,{Used,Bin},Acc) when N >= 4, Used =< 4 -> NewUsed = Used + 4, Rem = 8 - NewUsed, <<_:Used,B3:1,B2:1,B1:1,B0:1,_:Rem, Rest/binary>> = Bin, NewRest = case Rem of 0 -> Rest; _ -> Bin end, getbits_as_list(N-4,{NewUsed rem 8,NewRest},[B0,B1,B2,B3|Acc]); getbits_as_list(N,{Used,Bin},Acc) when N >= 2, Used =< 6 -> NewUsed = Used + 2, Rem = 8 - NewUsed, <<_:Used,B1:1,B0:1,_:Rem, Rest/binary>> = Bin, NewRest = case Rem of 0 -> Rest; _ -> Bin end, getbits_as_list(N-2,{NewUsed rem 8,NewRest},[B0,B1|Acc]); getbits_as_list(N,{Used,Bin},Acc) when Used =< 7 -> NewUsed = Used + 1, Rem = 8 - NewUsed, <<_:Used,B0:1,_:Rem, Rest/binary>> = Bin, NewRest = case Rem of 0 -> Rest; _ -> Bin end, getbits_as_list(N-1,{NewUsed rem 8,NewRest},[B0|Acc]). getbit({7,<<_:7,B:1,Rest/binary>>}) -> {B,{0,Rest}}; getbit({0,Buffer = <>}) -> {B,{1,Buffer}}; getbit({Used,Buffer}) -> Unused = (8 - Used) - 1, <<_:Used,B:1,_:Unused,_/binary>> = Buffer, {B,{Used+1,Buffer}}; getbit(Buffer) when is_binary(Buffer) -> getbit({0,Buffer}). getbits({0,Buffer},Num) when (Num rem 8) == 0 -> <> = Buffer, {Bits,{0,Rest}}; getbits({Used,Bin},Num) -> NumPlusUsed = Num + Used, NewUsed = NumPlusUsed rem 8, Unused = (8-NewUsed) rem 8, case Unused of 0 -> <<_:Used,Bits:Num,Rest/binary>> = Bin, {Bits,{0,Rest}}; _ -> Bytes = NumPlusUsed div 8, <<_:Used,Bits:Num,_UBits:Unused,_/binary>> = Bin, <<_:Bytes/binary,Rest/binary>> = Bin, {Bits,{NewUsed,Rest}} end; getbits(Bin,Num) when is_binary(Bin) -> getbits({0,Bin},Num). % getoctet(Bytes) when is_list(Bytes) -> % getoctet({0,Bytes}); % getoctet(Bytes) -> % %% io:format("getoctet:Buffer = ~p~n",[Bytes]), % getoctet1(Bytes). % getoctet1({0,[H|T]}) -> % {H,{0,T}}; % getoctet1({Pos,[_,H|T]}) -> % {H,{0,T}}. align({0,L}) -> {0,L}; align({_Pos,<<_H,T/binary>>}) -> {0,T}; align(Bytes) -> {0,Bytes}. %% First align buffer, then pick the first Num octets. %% Returns octets as an integer with bit significance as in buffer. getoctets({0,Buffer},Num) -> <> = Buffer, {Val,{0,RestBin}}; getoctets({U,<<_Padding,Rest/binary>>},Num) when U /= 0 -> getoctets({0,Rest},Num); getoctets(Buffer,Num) when is_binary(Buffer) -> getoctets({0,Buffer},Num). % getoctets(Buffer,Num) -> % %% io:format("getoctets:Buffer = ~p~nNum = ~p~n",[Buffer,Num]), % getoctets(Buffer,Num,0). % getoctets(Buffer,0,Acc) -> % {Acc,Buffer}; % getoctets(Buffer,Num,Acc) -> % {Oct,NewBuffer} = getoctet(Buffer), % getoctets(NewBuffer,Num-1,(Acc bsl 8)+Oct). % getoctets_as_list(Buffer,Num) -> % getoctets_as_list(Buffer,Num,[]). % getoctets_as_list(Buffer,0,Acc) -> % {lists:reverse(Acc),Buffer}; % getoctets_as_list(Buffer,Num,Acc) -> % {Oct,NewBuffer} = getoctet(Buffer), % getoctets_as_list(NewBuffer,Num-1,[Oct|Acc]). %% First align buffer, then pick the first Num octets. %% Returns octets as a binary getoctets_as_bin({0,Bin},Num)-> <> = Bin, {Octets,{0,RestBin}}; getoctets_as_bin({_U,Bin},Num) -> <<_Padding,Octets:Num/binary,RestBin/binary>> = Bin, {Octets,{0,RestBin}}; getoctets_as_bin(Bin,Num) when is_binary(Bin) -> getoctets_as_bin({0,Bin},Num). %% same as above but returns octets as a List getoctets_as_list(Buffer,Num) -> {Bin,Buffer2} = getoctets_as_bin(Buffer,Num), {binary_to_list(Bin),Buffer2}. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% set_choice(Alt,Choices,Altnum) -> ListofBitSettings %% Alt = atom() %% Altnum = integer() | {integer(),integer()}% number of alternatives %% Choices = [atom()] | {[atom()],[atom()]} %% When Choices is a tuple the first list is the Rootset and the %% second is the Extensions and then Altnum must also be a tuple with the %% lengths of the 2 lists %% set_choice(Alt,{L1,L2},{Len1,_Len2}) -> case set_choice_tag(Alt,L1) of N when is_integer(N), Len1 > 1 -> [{bits,1,0}, % the value is in the root set encode_integer([{'ValueRange',{0,Len1-1}}],N)]; N when is_integer(N) -> [{bits,1,0}]; % no encoding if only 0 or 1 alternative false -> [{bits,1,1}, % extension value case set_choice_tag(Alt,L2) of N2 when is_integer(N2) -> encode_small_number(N2); false -> unknown_choice_alt end] end; set_choice(Alt,L,Len) -> case set_choice_tag(Alt,L) of N when is_integer(N), Len > 1 -> encode_integer([{'ValueRange',{0,Len-1}}],N); N when is_integer(N) -> []; % no encoding if only 0 or 1 alternative false -> [unknown_choice_alt] end. set_choice_tag(Alt,Choices) -> set_choice_tag(Alt,Choices,0). set_choice_tag(Alt,[Alt|_Rest],Tag) -> Tag; set_choice_tag(Alt,[_H|Rest],Tag) -> set_choice_tag(Alt,Rest,Tag+1); set_choice_tag(_Alt,[],_Tag) -> false. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% decode_fragmented_XXX; decode of values encoded fragmented according %% to ITU-T X.691 clause 10.9.3.8. The unit (XXX) is either bits, octets, %% characters or number of components (in a choice,sequence or similar). %% Buffer is a buffer {Used, Bin}. %% C is the constrained length. %% If the buffer is not aligned, this function does that. decode_fragmented_bits({0,Buffer},C) -> decode_fragmented_bits(Buffer,C,[]); decode_fragmented_bits({_N,<<_,Bs/binary>>},C) -> decode_fragmented_bits(Bs,C,[]). decode_fragmented_bits(<<3:2,Len:6,Bin/binary>>,C,Acc) -> {Value,Bin2} = split_binary(Bin, Len * ?'16K'), decode_fragmented_bits(Bin2,C,[Value,Acc]); decode_fragmented_bits(<<0:1,0:7,Bin/binary>>,C,Acc) -> BinBits = list_to_binary(lists:reverse(Acc)), case C of Int when is_integer(Int),C == size(BinBits) -> {BinBits,{0,Bin}}; Int when is_integer(Int) -> exit({error,{asn1,{illegal_value,C,BinBits}}}) end; decode_fragmented_bits(<<0:1,Len:7,Bin/binary>>,C,Acc) -> Result = {BinBits,{Used,_Rest}} = case (Len rem 8) of 0 -> <> = Bin, {list_to_binary(lists:reverse([Value|Acc])),{0,Bin2}}; Rem -> Bytes = Len div 8, U = 8 - Rem, <> = Bin, {list_to_binary(lists:reverse([Bits1 bsl U,Value|Acc])), {Rem,<>}} end, case C of Int when is_integer(Int),C == (size(BinBits) - ((8 - Used) rem 8)) -> Result; Int when is_integer(Int) -> exit({error,{asn1,{illegal_value,C,BinBits}}}) end. decode_fragmented_octets({0,Bin},C) -> decode_fragmented_octets(Bin,C,[]). decode_fragmented_octets(<<3:2,Len:6,Bin/binary>>,C,Acc) -> {Value,Bin2} = split_binary(Bin,Len * ?'16K'), decode_fragmented_octets(Bin2,C,[Value,Acc]); decode_fragmented_octets(<<0:1,0:7,Bin/binary>>,C,Acc) -> Octets = list_to_binary(lists:reverse(Acc)), case C of Int when is_integer(Int), C == size(Octets) -> {Octets,{0,Bin}}; Int when is_integer(Int) -> exit({error,{asn1,{illegal_value,C,Octets}}}) end; decode_fragmented_octets(<<0:1,Len:7,Bin/binary>>,C,Acc) -> <> = Bin, BinOctets = list_to_binary(lists:reverse([Value|Acc])), case C of Int when is_integer(Int),size(BinOctets) == Int -> {BinOctets,Bin2}; Int when is_integer(Int) -> exit({error,{asn1,{illegal_value,C,BinOctets}}}) end. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% encode_open_type(Constraint, Value) -> CompleteList %% Value = list of bytes of an already encoded value (the list must be flat) %% | binary %% Contraint = not used in this version %% encode_open_type(_C, Val) when is_list(Val) -> Bin = list_to_binary(Val), [encode_length(undefined,size(Bin)),{octets,Bin}]; % octets implies align encode_open_type(_C, Val) when is_binary(Val) -> [encode_length(undefined,size(Val)),{octets,Val}]. % octets implies align %% the binary_to_list is not optimal but compatible with the current solution %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% decode_open_type(Buffer,Constraint) -> Value %% Constraint is not used in this version %% Buffer = [byte] with PER encoded data %% Value = [byte] with decoded data (which must be decoded again as some type) %% decode_open_type(Bytes, _C) -> {Len,Bytes2} = decode_length(Bytes,undefined), getoctets_as_bin(Bytes2,Len). %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% encode_integer(Constraint,Value,NamedNumberList) -> CompleteList %% encode_integer(Constraint,Value) -> CompleteList %% encode_integer(Constraint,{Name,Value}) -> CompleteList %% %% encode_integer(C,V,NamedNumberList) when is_atom(V) -> case lists:keysearch(V,1,NamedNumberList) of {value,{_,NewV}} -> encode_integer(C,NewV); _ -> exit({error,{asn1,{namednumber,V}}}) end; encode_integer(C,V,_NamedNumberList) when is_integer(V) -> encode_integer(C,V); encode_integer(C,{Name,V},NamedNumberList) when is_atom(Name) -> encode_integer(C,V,NamedNumberList). encode_integer(C,{Name,Val}) when is_atom(Name) -> encode_integer(C,Val); encode_integer([{Rc,_Ec}],Val) when is_tuple(Rc) -> % XXX when is this invoked? First argument most often a list,...Ok this is the extension case...but it doesn't work. case (catch encode_integer([Rc],Val)) of {'EXIT',{error,{asn1,_}}} -> [{bits,1,1},encode_unconstrained_number(Val)]; Encoded -> [{bits,1,0},Encoded] end; encode_integer(C,Val ) when is_list(C) -> case get_constraint(C,'SingleValue') of no -> encode_integer1(C,Val); V when is_integer(V),V == Val -> []; % a type restricted to a single value encodes to nothing V when is_list(V) -> case lists:member(Val,V) of true -> encode_integer1(C,Val); _ -> exit({error,{asn1,{illegal_value,Val}}}) end; _ -> exit({error,{asn1,{illegal_value,Val}}}) end. encode_integer1(C, Val) -> case VR = get_constraint(C,'ValueRange') of no -> encode_unconstrained_number(Val); {Lb,'MAX'} -> encode_semi_constrained_number(Lb,Val); %% positive with range {Lb,Ub} when Val >= Lb, Ub >= Val -> encode_constrained_number(VR,Val); _ -> exit({error,{asn1,{illegal_value,VR,Val}}}) end. decode_integer(Buffer,Range,NamedNumberList) -> {Val,Buffer2} = decode_integer(Buffer,Range), case lists:keysearch(Val,2,NamedNumberList) of {value,{NewVal,_}} -> {NewVal,Buffer2}; _ -> {Val,Buffer2} end. decode_integer(Buffer,[{Rc,_Ec}]) when is_tuple(Rc) -> {Ext,Buffer2} = getext(Buffer), case Ext of 0 -> decode_integer(Buffer2,[Rc]); 1 -> decode_unconstrained_number(Buffer2) end; decode_integer(Buffer,undefined) -> decode_unconstrained_number(Buffer); decode_integer(Buffer,C) -> case get_constraint(C,'SingleValue') of V when is_integer(V) -> {V,Buffer}; V when is_list(V) -> {Val,Buffer2} = decode_integer1(Buffer,C), case lists:member(Val,V) of true -> {Val,Buffer2}; _ -> exit({error,{asn1,{illegal_value,Val}}}) end; _ -> decode_integer1(Buffer,C) end. decode_integer1(Buffer,C) -> case VR = get_constraint(C,'ValueRange') of no -> decode_unconstrained_number(Buffer); {Lb, 'MAX'} -> decode_semi_constrained_number(Buffer,Lb); {_,_} -> decode_constrained_number(Buffer,VR) end. % X.691:10.6 Encoding of a normally small non-negative whole number % Use this for encoding of CHOICE index if there is an extension marker in % the CHOICE encode_small_number({Name,Val}) when is_atom(Name) -> encode_small_number(Val); encode_small_number(Val) when Val =< 63 -> % [{bits,1,0},{bits,6,Val}]; [{bits,7,Val}]; % same as above but more efficient encode_small_number(Val) -> [{bits,1,1},encode_semi_constrained_number(0,Val)]. decode_small_number(Bytes) -> {Bit,Bytes2} = getbit(Bytes), case Bit of 0 -> getbits(Bytes2,6); 1 -> decode_semi_constrained_number(Bytes2,0) end. %% X.691:10.7 Encoding of a semi-constrained whole number %% might be an optimization encode_semi_constrained_number(0,Val) -> encode_semi_constrained_number(C,{Name,Val}) when is_atom(Name) -> encode_semi_constrained_number(C,Val); encode_semi_constrained_number({Lb,'MAX'},Val) -> encode_semi_constrained_number(Lb,Val); encode_semi_constrained_number(Lb,Val) -> Val2 = Val - Lb, Oct = eint_positive(Val2), Len = length(Oct), if Len < 128 -> {octets,[Len|Oct]}; % equiv with encode_length(undefined,Len) but faster true -> [encode_length(undefined,Len),{octets,Oct}] end. decode_semi_constrained_number(Bytes,{Lb,_}) -> decode_semi_constrained_number(Bytes,Lb); decode_semi_constrained_number(Bytes,Lb) -> {Len,Bytes2} = decode_length(Bytes,undefined), {V,Bytes3} = getoctets(Bytes2,Len), {V+Lb,Bytes3}. encode_constrained_number(Range,{Name,Val}) when is_atom(Name) -> encode_constrained_number(Range,Val); encode_constrained_number({Lb,Ub},Val) when Val >= Lb, Ub >= Val -> Range = Ub - Lb + 1, Val2 = Val - Lb, if Range == 1 -> []; Range == 2 -> {bits,1,Val2}; Range =< 4 -> {bits,2,Val2}; Range =< 8 -> {bits,3,Val2}; Range =< 16 -> {bits,4,Val2}; Range =< 32 -> {bits,5,Val2}; Range =< 64 -> {bits,6,Val2}; Range =< 128 -> {bits,7,Val2}; Range =< 255 -> {bits,8,Val2}; Range =< 256 -> {octets,[Val2]}; Range =< 65536 -> {octets,<>}; Range =< (1 bsl (255*8)) -> Octs = binary:encode_unsigned(Val2), RangeOcts = binary:encode_unsigned(Range - 1), OctsLen = erlang:byte_size(Octs), RangeOctsLen = erlang:byte_size(RangeOcts), LengthBitsNeeded = minimum_bits(RangeOctsLen - 1), [{bits, LengthBitsNeeded, OctsLen - 1}, {octets, Octs}]; true -> exit({not_supported,{integer_range,Range}}) end; encode_constrained_number(Range,Val) -> exit({error,{asn1,{integer_range,Range,value,Val}}}). %% For some reason the minimum bits needed in the length field in encoding of %% constrained whole numbers must always be atleast 2? minimum_bits(N) when N < 4 -> 2; minimum_bits(N) when N < 8 -> 3; minimum_bits(N) when N < 16 -> 4; minimum_bits(N) when N < 32 -> 5; minimum_bits(N) when N < 64 -> 6; minimum_bits(N) when N < 128 -> 7; minimum_bits(_N) -> 8. decode_constrained_number(Buffer,{Lb,Ub}) -> Range = Ub - Lb + 1, % Val2 = Val - Lb, {Val,Remain} = if Range == 1 -> {0,Buffer}; Range == 2 -> getbits(Buffer,1); Range =< 4 -> getbits(Buffer,2); Range =< 8 -> getbits(Buffer,3); Range =< 16 -> getbits(Buffer,4); Range =< 32 -> getbits(Buffer,5); Range =< 64 -> getbits(Buffer,6); Range =< 128 -> getbits(Buffer,7); Range =< 255 -> getbits(Buffer,8); Range =< 256 -> getoctets(Buffer,1); Range =< 65536 -> getoctets(Buffer,2); Range =< (1 bsl (255*8)) -> OList = binary:bin_to_list(binary:encode_unsigned(Range - 1)), RangeOctLen = length(OList), {Len, Bytes} = decode_length(Buffer, {1, RangeOctLen}), {Octs, RestBytes} = getoctets_as_list(Bytes, Len), {binary:decode_unsigned(binary:list_to_bin(Octs)), RestBytes}; true -> exit({not_supported,{integer_range,Range}}) end, {Val+Lb,Remain}. %% X.691:10.8 Encoding of an unconstrained whole number encode_unconstrained_number(Val) when Val >= 0 -> Oct = eint(Val,[]), Len = length(Oct), if Len < 128 -> {octets,[Len|Oct]}; % equiv with encode_length(undefined,Len) but faster true -> [encode_length(undefined,Len),{octets,Oct}] end; encode_unconstrained_number(Val) -> % negative Oct = enint(Val,[]), Len = length(Oct), if Len < 128 -> {octets,[Len|Oct]}; % equiv with encode_length(undefined,Len) but faster true -> [encode_length(undefined,Len),{octets,Oct}] end. %% used for positive Values which don't need a sign bit %% returns a binary eint_positive(Val) -> case eint(Val,[]) of [0,B1|T] -> [B1|T]; T -> T end. eint(0, [B|Acc]) when B < 128 -> [B|Acc]; eint(N, Acc) -> eint(N bsr 8, [N band 16#ff| Acc]). enint(-1, [B1|T]) when B1 > 127 -> [B1|T]; enint(N, Acc) -> enint(N bsr 8, [N band 16#ff|Acc]). decode_unconstrained_number(Bytes) -> {Len,Bytes2} = decode_length(Bytes,undefined), {Ints,Bytes3} = getoctets_as_list(Bytes2,Len), {dec_integer(Ints),Bytes3}. dec_pos_integer(Ints) -> decpint(Ints, 8 * (length(Ints) - 1)). dec_integer(Ints) when hd(Ints) band 255 =< 127 -> %% Positive number decpint(Ints, 8 * (length(Ints) - 1)); dec_integer(Ints) -> %% Negative decnint(Ints, 8 * (length(Ints) - 1)). decpint([Byte|Tail], Shift) -> (Byte bsl Shift) bor decpint(Tail, Shift-8); decpint([], _) -> 0. decnint([Byte|Tail], Shift) -> (-128 + (Byte band 127) bsl Shift) bor decpint(Tail, Shift-8). % minimum_octets(Val) -> % minimum_octets(Val,[]). % minimum_octets(Val,Acc) when Val > 0 -> % minimum_octets((Val bsr 8),[Val band 16#FF|Acc]); % minimum_octets(0,Acc) -> % Acc. %% X.691:10.9 Encoding of a length determinant %%encode_small_length(undefined,Len) -> % null means no UpperBound %% encode_small_number(Len). %% X.691:10.9.3.5 %% X.691:10.9.3.7 encode_length(undefined,Len) -> % un-constrained if Len < 128 -> {octets,[Len]}; Len < 16384 -> {octets,<<2:2,Len:14>>}; true -> % should be able to endode length >= 16384 exit({error,{asn1,{encode_length,{nyi,above_16k}}}}) end; encode_length({0,'MAX'},Len) -> encode_length(undefined,Len); encode_length(Vr={Lb,Ub},Len) when Ub =< 65535 ,Lb >= 0 -> % constrained encode_constrained_number(Vr,Len); encode_length({Lb,_Ub},Len) when is_integer(Lb), Lb >= 0 -> % Ub > 65535 encode_length(undefined,Len); encode_length({Vr={Lb,Ub},Ext},Len) when Ub =< 65535 ,Lb >= 0, Len= %% constrained extensible [{bits,1,0},encode_constrained_number(Vr,Len)]; encode_length({{Lb,_Ub},Ext},Len) when is_list(Ext) -> [{bits,1,1},encode_semi_constrained_number(Lb,Len)]; encode_length(SingleValue,_Len) when is_integer(SingleValue) -> []. %% X.691 10.9.3.4 (only used for length of bitmap that prefixes extension %% additions in a sequence or set encode_small_length(Len) when Len =< 64 -> %% [{bits,1,0},{bits,6,Len-1}]; {bits,7,Len-1}; % the same as above but more efficient encode_small_length(Len) -> [{bits,1,1},encode_length(undefined,Len)]. % decode_small_length({Used,<<_:Used,0:1,Num:6,_:((8-Used+1) rem 8),Rest/binary>>}) -> % case Buffer of % <<_:Used,0:1,Num:6,_:((8-Used+1) rem 8),Rest/binary>> -> % {Num, % case getbit(Buffer) of % {0,Remain} -> % {Bits,Remain2} = getbits(Remain,6), % {Bits+1,Remain2}; % {1,Remain} -> % decode_length(Remain,undefined) % end. decode_small_length(Buffer) -> case getbit(Buffer) of {0,Remain} -> {Bits,Remain2} = getbits(Remain,6), {Bits+1,Remain2}; {1,Remain} -> decode_length(Remain,undefined) end. decode_length(Buffer) -> decode_length(Buffer,undefined). decode_length(Buffer,undefined) -> % un-constrained {0,Buffer2} = align(Buffer), case Buffer2 of <<0:1,Oct:7,Rest/binary>> -> {Oct,{0,Rest}}; <<2:2,Val:14,Rest/binary>> -> {Val,{0,Rest}}; <<3:2,_:14,_Rest/binary>> -> %% this case should be fixed exit({error,{asn1,{decode_length,{nyi,above_16k}}}}) end; %% {Bits,_} = getbits(Buffer2,2), % case Bits of % 2 -> % {Val,Bytes3} = getoctets(Buffer2,2), % {(Val band 16#3FFF),Bytes3}; % 3 -> % exit({error,{asn1,{decode_length,{nyi,above_16k}}}}); % _ -> % {Val,Bytes3} = getoctet(Buffer2), % {Val band 16#7F,Bytes3} % end; decode_length(Buffer,{Lb,Ub}) when Ub =< 65535 ,Lb >= 0 -> % constrained decode_constrained_number(Buffer,{Lb,Ub}); decode_length(Buffer,{Lb,_}) when is_integer(Lb), Lb >= 0 -> % Ub > 65535 decode_length(Buffer,undefined); decode_length(Buffer,{VR={_Lb,_Ub},Ext}) when is_list(Ext) -> case getbit(Buffer) of {0,Buffer2} -> decode_length(Buffer2, VR); {1,Buffer2} -> decode_length(Buffer2, undefined) end; %% {0,Buffer2} = getbit(Buffer), %% decode_length(Buffer2, VR); %When does this case occur with {_,_Lb,Ub} ?? % X.691:10.9.3.5 decode_length({Used,Bin},{_,_Lb,_Ub}) -> %when Len =< 127 -> % Unconstrained or large Ub NOTE! this case does not cover case when Ub > 65535 Unused = (8-Used) rem 8, case Bin of <<_:Used,0:1,Val:7,R:Unused,Rest/binary>> -> {Val,{Used,<>}}; <<_:Used,_:Unused,2:2,Val:14,Rest/binary>> -> {Val, {0,Rest}}; <<_:Used,_:Unused,3:2,_:14,_Rest/binary>> -> exit({error,{asn1,{decode_length,{nyi,length_above_64K}}}}) end; % decode_length(Buffer,{_,_Lb,Ub}) -> %when Len =< 127 -> % Unconstrained or large Ub % case getbit(Buffer) of % {0,Remain} -> % getbits(Remain,7); % {1,Remain} -> % {Val,Remain2} = getoctets(Buffer,2), % {Val band 2#0111111111111111, Remain2} % end; decode_length(Buffer,SingleValue) when is_integer(SingleValue) -> {SingleValue,Buffer}. % X.691:11 encode_boolean(true) -> {bits,1,1}; encode_boolean(false) -> {bits,1,0}; encode_boolean({Name,Val}) when is_atom(Name) -> encode_boolean(Val); encode_boolean(Val) -> exit({error,{asn1,{encode_boolean,Val}}}). decode_boolean(Buffer) -> %when record(Buffer,buffer) case getbit(Buffer) of {1,Remain} -> {true,Remain}; {0,Remain} -> {false,Remain} end. %% ENUMERATED with extension marker decode_enumerated(Buffer,C,{Ntup1,Ntup2}) when is_tuple(Ntup1), is_tuple(Ntup2) -> {Ext,Buffer2} = getext(Buffer), case Ext of 0 -> % not an extension value {Val,Buffer3} = decode_integer(Buffer2,C), case catch (element(Val+1,Ntup1)) of NewVal when is_atom(NewVal) -> {NewVal,Buffer3}; _Error -> exit({error,{asn1,{decode_enumerated,{Val,[Ntup1,Ntup2]}}}}) end; 1 -> % this an extension value {Val,Buffer3} = decode_small_number(Buffer2), case catch (element(Val+1,Ntup2)) of NewVal when is_atom(NewVal) -> {NewVal,Buffer3}; _ -> {{asn1_enum,Val},Buffer3} end end; decode_enumerated(Buffer,C,NamedNumberTup) when is_tuple(NamedNumberTup) -> {Val,Buffer2} = decode_integer(Buffer,C), case catch (element(Val+1,NamedNumberTup)) of NewVal when is_atom(NewVal) -> {NewVal,Buffer2}; _Error -> exit({error,{asn1,{decode_enumerated,{Val,NamedNumberTup}}}}) end. %%=============================================================================== %%=============================================================================== %%=============================================================================== %% Bitstring value, ITU_T X.690 Chapter 8.5 %%=============================================================================== %%=============================================================================== %%=============================================================================== %%=============================================================================== %% encode bitstring value %%=============================================================================== %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% bitstring NamedBitList %% Val can be of: %% - [identifiers] where only named identifers are set to one, %% the Constraint must then have some information of the %% bitlength. %% - [list of ones and zeroes] all bits %% - integer value representing the bitlist %% C is constraint Len, only valid when identifiers %% when the value is a list of {Unused,BinBits}, where %% Unused = integer(), %% BinBits = binary(). encode_bit_string(C,Bin={Unused,BinBits},NamedBitList) when is_integer(Unused), is_binary(BinBits) -> encode_bin_bit_string(C,Bin,NamedBitList); %% when the value is a list of named bits encode_bit_string(C, LoNB=[FirstVal | _RestVal], NamedBitList) when is_atom(FirstVal) -> ToSetPos = get_all_bitposes(LoNB, NamedBitList, []), BitList = make_and_set_list(ToSetPos,0), encode_bit_string(C,BitList,NamedBitList); encode_bit_string(C, BL=[{bit,_No} | _RestVal], NamedBitList) -> ToSetPos = get_all_bitposes(BL, NamedBitList, []), BitList = make_and_set_list(ToSetPos,0), encode_bit_string(C,BitList,NamedBitList); %% when the value is a list of ones and zeroes % encode_bit_string(C, BitListValue, NamedBitList) when is_list(BitListValue) -> % Bl1 = % case NamedBitList of % [] -> % dont remove trailing zeroes % BitListValue; % _ -> % first remove any trailing zeroes % lists:reverse(lists:dropwhile(fun(0)->true;(1)->false end, % lists:reverse(BitListValue))) % end, % BitList = [{bit,X} || X <- Bl1], % %% BListLen = length(BitList), % case get_constraint(C,'SizeConstraint') of % 0 -> % fixed length % []; % nothing to encode % V when is_integer(V),V=<16 -> % fixed length 16 bits or less % pad_list(V,BitList); % V when is_integer(V) -> % fixed length 16 bits or more % [align,pad_list(V,BitList)]; % should be another case for V >= 65537 % {Lb,Ub} when is_integer(Lb),is_integer(Ub) -> % [encode_length({Lb,Ub},length(BitList)),align,BitList]; % no -> % [encode_length(undefined,length(BitList)),align,BitList]; % Sc -> % extension marker % [encode_length(Sc,length(BitList)),align,BitList] % end; encode_bit_string(C, BitListValue, NamedBitList) when is_list(BitListValue) -> BitListToBinary = %% fun that transforms a list of 1 and 0 to a tuple: %% {UnusedBitsInLastByte, Binary} fun([1|T],Acc,N,Fun) -> Fun(T,(Acc bsl 1)+1,N+1,Fun); ([0|T],Acc,N,Fun) -> Fun(T,(Acc bsl 1),N+1,Fun); ([_H|_T],_,_,_) -> exit({error,{asn1,{bitstring_bitlist,BitListValue}}}); ([],Acc,N,_) -> Unused = (8 - (N rem 8)) rem 8, {Unused,<>} end, UnusedAndBin = case NamedBitList of [] -> % dont remove trailing zeroes BitListToBinary(BitListValue,0,0,BitListToBinary); _ -> BitListToBinary(lists:reverse( lists:dropwhile(fun(0)->true;(_)->false end, lists:reverse(BitListValue))), 0,0,BitListToBinary) end, encode_bin_bit_string(C,UnusedAndBin,NamedBitList); %% when the value is an integer encode_bit_string(C, IntegerVal, NamedBitList) when is_integer(IntegerVal)-> BitList = int_to_bitlist(IntegerVal), encode_bit_string(C,BitList,NamedBitList); %% when the value is a tuple encode_bit_string(C,{Name,Val}, NamedBitList) when is_atom(Name) -> encode_bit_string(C,Val,NamedBitList). %% encode_bin_bit_string/3, when value is a tuple of Unused and BinBits. %% Unused = integer(),i.e. number unused bits in least sign. byte of %% BinBits = binary(). encode_bin_bit_string(C,UnusedAndBin={_Unused,_BinBits},NamedBitList) -> Constr = get_constraint(C,'SizeConstraint'), UnusedAndBin1 = {Unused1,Bin1} = remove_trailing_bin(NamedBitList,UnusedAndBin,lower_bound(Constr)), case Constr of 0 -> []; V when is_integer(V),V=<16 -> {Unused2,Bin2} = pad_list(V,UnusedAndBin1), <> = Bin2, {bits,V,BitVal}; V when is_integer(V) -> [align, pad_list(V, UnusedAndBin1)]; {Lb,Ub} when is_integer(Lb),is_integer(Ub) -> [encode_length({Lb,Ub},size(Bin1)*8 - Unused1), align,UnusedAndBin1]; {{Fix,Fix},L} when is_integer(Fix),is_list(L) -> %% X.691 § 15.6, the rest of this paragraph is covered by %% the last, ie. Sc, clause in this case case (size(Bin1)*8)-Unused1 of Size when Size =< Fix, Fix =< 16 -> {Unused2,Bin2} = pad_list(Fix,UnusedAndBin), <> = Bin2, [{bits,1,0},{bits,Fix,BitVal}]; Size when Size =< Fix -> [{bits,1,0},align, pad_list(Fix, UnusedAndBin1)]; Size -> [{bits,1,1},encode_length(undefined,Size), align,UnusedAndBin1] end; no -> [encode_length(undefined,size(Bin1)*8 - Unused1), align,UnusedAndBin1]; Sc -> [encode_length(Sc,size(Bin1)*8 - Unused1), align,UnusedAndBin1] end. remove_trailing_bin([], {Unused,Bin},_) -> {Unused,Bin}; remove_trailing_bin(_NamedNumberList,{_Unused,<<>>},C) -> case C of Int when is_integer(Int),Int > 0 -> %% this padding see OTP-4353 pad_list(Int,{0,<<>>}); _ -> {0,<<>>} end; remove_trailing_bin(NamedNumberList, {_Unused,Bin},C) -> Size = size(Bin)-1, <> = Bin, %% clear the Unused bits to be sure Unused1 = trailingZeroesInNibble(LastByte band 15), Unused2 = case Unused1 of 4 -> 4 + trailingZeroesInNibble(LastByte bsr 4); _ -> Unused1 end, case Unused2 of 8 -> remove_trailing_bin(NamedNumberList,{0,Bfront},C); _ -> case C of Int when is_integer(Int),Int > ((size(Bin)*8)-Unused2) -> %% this padding see OTP-4353 pad_list(Int,{Unused2,Bin}); _ -> {Unused2,Bin} end end. trailingZeroesInNibble(0) -> 4; trailingZeroesInNibble(1) -> 0; trailingZeroesInNibble(2) -> 1; trailingZeroesInNibble(3) -> 0; trailingZeroesInNibble(4) -> 2; trailingZeroesInNibble(5) -> 0; trailingZeroesInNibble(6) -> 1; trailingZeroesInNibble(7) -> 0; trailingZeroesInNibble(8) -> 3; trailingZeroesInNibble(9) -> 0; trailingZeroesInNibble(10) -> 1; trailingZeroesInNibble(11) -> 0; trailingZeroesInNibble(12) -> %#1100 2; trailingZeroesInNibble(13) -> 0; trailingZeroesInNibble(14) -> 1; trailingZeroesInNibble(15) -> 0. lower_bound({{Lb,_},_}) when is_integer(Lb) -> Lb; lower_bound({Lb,_}) when is_integer(Lb) -> Lb; lower_bound(C) -> C. %%%%%%%%%%%%%%% %% The result is presented as a list of named bits (if possible) %% else as a tuple {Unused,Bits}. Unused is the number of unused %% bits, least significant bits in the last byte of Bits. Bits is %% the BIT STRING represented as a binary. %% decode_compact_bit_string(Buffer, C, NamedNumberList) -> case get_constraint(C,'SizeConstraint') of 0 -> % fixed length {{8,0},Buffer}; V when is_integer(V),V=<16 -> %fixed length 16 bits or less compact_bit_string(Buffer,V,NamedNumberList); V when is_integer(V),V=<65536 -> %fixed length > 16 bits Bytes2 = align(Buffer), compact_bit_string(Bytes2,V,NamedNumberList); V when is_integer(V) -> % V > 65536 => fragmented value {Bin,Buffer2} = decode_fragmented_bits(Buffer,V), case Buffer2 of {0,_} -> {{0,Bin},Buffer2}; {U,_} -> {{8-U,Bin},Buffer2} end; {Lb,Ub} when is_integer(Lb),is_integer(Ub) -> %% This case may demand decoding of fragmented length/value {Len,Bytes2} = decode_length(Buffer,{Lb,Ub}), Bytes3 = align(Bytes2), compact_bit_string(Bytes3,Len,NamedNumberList); no -> %% This case may demand decoding of fragmented length/value {Len,Bytes2} = decode_length(Buffer,undefined), Bytes3 = align(Bytes2), compact_bit_string(Bytes3,Len,NamedNumberList); {{Fix,Fix},L} = Sc when is_list(L), is_integer(Fix), Fix =< 16 -> %% X.691 §15.6, special case of extension marker case decode_length(Buffer,Sc) of {Len,Bytes2} when Len > Fix -> Bytes3 = align(Bytes2), compact_bit_string(Bytes3,Len,NamedNumberList); {Len,Bytes2} -> compact_bit_string(Bytes2,Len,NamedNumberList) end; Sc -> {Len,Bytes2} = decode_length(Buffer,Sc), Bytes3 = align(Bytes2), compact_bit_string(Bytes3,Len,NamedNumberList) end. %%%%%%%%%%%%%%% %% The result is presented as a list of named bits (if possible) %% else as a list of 0 and 1. %% decode_bit_string(Buffer, C, NamedNumberList) -> case get_constraint(C,'SizeConstraint') of {Lb,Ub} when is_integer(Lb),is_integer(Ub) -> {Len,Bytes2} = decode_length(Buffer,{Lb,Ub}), Bytes3 = align(Bytes2), bit_list_or_named(Bytes3,Len,NamedNumberList); no -> {Len,Bytes2} = decode_length(Buffer,undefined), Bytes3 = align(Bytes2), bit_list_or_named(Bytes3,Len,NamedNumberList); 0 -> % fixed length {[],Buffer}; % nothing to encode V when is_integer(V),V=<16 -> % fixed length 16 bits or less bit_list_or_named(Buffer,V,NamedNumberList); V when is_integer(V),V=<65536 -> Bytes2 = align(Buffer), bit_list_or_named(Bytes2,V,NamedNumberList); V when is_integer(V) -> Bytes2 = align(Buffer), {BinBits,_} = decode_fragmented_bits(Bytes2,V), bit_list_or_named(BinBits,V,NamedNumberList); {{Fix,Fix},L} = Sc when is_list(L), is_integer(Fix), Fix =< 16 -> %% X.691 §15.6, special case of extension marker case decode_length(Buffer,Sc) of {Len,Bytes2} when Len > Fix -> Bytes3 = align(Bytes2), bit_list_or_named(Bytes3,Len,NamedNumberList); {Len,Bytes2} when Len > 16 -> Bytes3 = align(Bytes2), bit_list_or_named(Bytes3,Len,NamedNumberList); {Len,Bytes2} -> bit_list_or_named(Bytes2,Len,NamedNumberList) end; Sc -> %% X.691 §15.6, extension marker {Len,Bytes2} = decode_length(Buffer,Sc), Bytes3 = align(Bytes2), bit_list_or_named(Bytes3,Len,NamedNumberList) end. %% if no named bits are declared we will return a %% {Unused,Bits}. Unused = integer(), %% Bits = binary(). compact_bit_string(Buffer,Len,[]) -> getbits_as_binary(Len,Buffer); % {{Unused,BinBits},NewBuffer} compact_bit_string(Buffer,Len,NamedNumberList) -> bit_list_or_named(Buffer,Len,NamedNumberList). %% if no named bits are declared we will return a %% BitList = [0 | 1] bit_list_or_named(Buffer,Len,[]) -> getbits_as_list(Len,Buffer); %% if there are named bits declared we will return a named %% BitList where the names are atoms and unnamed bits represented %% as {bit,Pos} %% BitList = [atom() | {bit,Pos}] %% Pos = integer() bit_list_or_named(Buffer,Len,NamedNumberList) -> {BitList,Rest} = getbits_as_list(Len,Buffer), {bit_list_or_named1(0,BitList,NamedNumberList,[]), Rest}. bit_list_or_named1(Pos,[0|Bt],Names,Acc) -> bit_list_or_named1(Pos+1,Bt,Names,Acc); bit_list_or_named1(Pos,[1|Bt],Names,Acc) -> case lists:keysearch(Pos,2,Names) of {value,{Name,_}} -> bit_list_or_named1(Pos+1,Bt,Names,[Name|Acc]); _ -> bit_list_or_named1(Pos+1,Bt,Names,[{bit,Pos}|Acc]) end; bit_list_or_named1(_,[],_,Acc) -> lists:reverse(Acc). %%%%%%%%%%%%%%% %% int_to_bitlist(Int) when is_integer(Int), Int > 0 -> [Int band 1 | int_to_bitlist(Int bsr 1)]; int_to_bitlist(0) -> []. %%%%%%%%%%%%%%%%%% %% get_all_bitposes([list of named bits to set], named_bit_db, []) -> %% [sorted_list_of_bitpositions_to_set] get_all_bitposes([{bit,ValPos}|Rest], NamedBitList, Ack) -> get_all_bitposes(Rest, NamedBitList, [ValPos | Ack ]); get_all_bitposes([Val | Rest], NamedBitList, Ack) -> case lists:keysearch(Val, 1, NamedBitList) of {value, {_ValName, ValPos}} -> get_all_bitposes(Rest, NamedBitList, [ValPos | Ack]); _ -> exit({error,{asn1, {bitstring_namedbit, Val}}}) end; get_all_bitposes([], _NamedBitList, Ack) -> lists:sort(Ack). %%%%%%%%%%%%%%%%%% %% make_and_set_list([list of positions to set to 1])-> %% returns list with all in SetPos set. %% in positioning in list the first element is 0, the second 1 etc.., but %% make_and_set_list([XPos|SetPos], XPos) -> [1 | make_and_set_list(SetPos, XPos + 1)]; make_and_set_list([Pos|SetPos], XPos) -> [0 | make_and_set_list([Pos | SetPos], XPos + 1)]; make_and_set_list([], _) -> []. %%%%%%%%%%%%%%%%% %% pad_list(N,BitList) -> PaddedList %% returns a padded (with trailing {bit,0} elements) list of length N %% if Bitlist contains more than N significant bits set an exit asn1_error %% is generated pad_list(N,In={Unused,Bin}) -> pad_list(N, size(Bin)*8 - Unused, In). pad_list(N,Size,In={_,_}) when N < Size -> exit({error,{asn1,{range_error,{bit_string,In}}}}); pad_list(N,Size,{Unused,Bin}) when N > Size, Unused > 0 -> pad_list(N,Size+1,{Unused-1,Bin}); pad_list(N,Size,{_Unused,Bin}) when N > Size -> pad_list(N,Size+1,{7,<>}); pad_list(N,N,In={_,_}) -> In. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% X.691:16 %% encode_octet_string(Constraint,ExtensionMarker,Val) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% encode_octet_string(C,Val) -> encode_octet_string2(C,Val). encode_octet_string2(C,{_Name,Val}) -> encode_octet_string2(C,Val); encode_octet_string2(C,Val) -> case get_constraint(C,'SizeConstraint') of 0 -> []; 1 -> [V] = Val, {bits,8,V}; 2 -> [V1,V2] = Val, [{bits,8,V1},{bits,8,V2}]; Sv when Sv =<65535, Sv == length(Val) -> % fixed length {octets,Val}; {Lb,Ub} -> [encode_length({Lb,Ub},length(Val)),{octets,Val}]; Sv when is_list(Sv) -> [encode_length({hd(Sv),lists:max(Sv)},length(Val)),{octets,Val}]; no -> [encode_length(undefined,length(Val)),{octets,Val}] end. decode_octet_string(Bytes,Range) -> decode_octet_string(Bytes,Range,false). decode_octet_string(Bytes,C,false) -> case get_constraint(C,'SizeConstraint') of 0 -> {[],Bytes}; 1 -> {B1,Bytes2} = getbits(Bytes,8), {[B1],Bytes2}; 2 -> {Bs,Bytes2}= getbits(Bytes,16), {binary_to_list(<>),Bytes2}; {_,0} -> {[],Bytes}; Sv when is_integer(Sv), Sv =<65535 -> % fixed length getoctets_as_list(Bytes,Sv); Sv when is_integer(Sv) -> % fragmented encoding Bytes2 = align(Bytes), decode_fragmented_octets(Bytes2,Sv); {Lb,Ub} -> {Len,Bytes2} = decode_length(Bytes,{Lb,Ub}), getoctets_as_list(Bytes2,Len); Sv when is_list(Sv) -> {Len,Bytes2} = decode_length(Bytes,{hd(Sv),lists:max(Sv)}), getoctets_as_list(Bytes2,Len); no -> {Len,Bytes2} = decode_length(Bytes,undefined), getoctets_as_list(Bytes2,Len) end. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Restricted char string types %% (NumericString, PrintableString,VisibleString,IA5String,BMPString,UniversalString) %% X.691:26 and X.680:34-36 %%encode_restricted_string(aligned,'BMPString',Constraints,Extension,Val) encode_restricted_string(aligned,{Name,Val}) when is_atom(Name) -> encode_restricted_string(aligned,Val); encode_restricted_string(aligned,Val) when is_list(Val)-> [encode_length(undefined,length(Val)),{octets,Val}]. encode_known_multiplier_string(aligned,StringType,C,_Ext,{Name,Val}) when is_atom(Name) -> encode_known_multiplier_string(aligned,StringType,C,false,Val); encode_known_multiplier_string(aligned,StringType,C,_Ext,Val) -> Result = chars_encode(C,StringType,Val), NumBits = get_NumBits(C,StringType), case get_constraint(C,'SizeConstraint') of Ub when is_integer(Ub), Ub*NumBits =< 16 -> Result; 0 -> []; Ub when is_integer(Ub),Ub =<65535 -> % fixed length [align,Result]; {Ub,Lb} -> [encode_length({Ub,Lb},length(Val)),align,Result]; Vl when is_list(Vl) -> [encode_length({lists:min(Vl),lists:max(Vl)},length(Val)),align,Result]; no -> [encode_length(undefined,length(Val)),align,Result] end. decode_restricted_string(Bytes,aligned) -> {Len,Bytes2} = decode_length(Bytes,undefined), getoctets_as_list(Bytes2,Len). decode_known_multiplier_string(Bytes,aligned,StringType,C,_Ext) -> NumBits = get_NumBits(C,StringType), case get_constraint(C,'SizeConstraint') of Ub when is_integer(Ub), Ub*NumBits =< 16 -> chars_decode(Bytes,NumBits,StringType,C,Ub); Ub when is_integer(Ub),Ub =<65535 -> % fixed length Bytes1 = align(Bytes), chars_decode(Bytes1,NumBits,StringType,C,Ub); 0 -> {[],Bytes}; Vl when is_list(Vl) -> {Len,Bytes1} = decode_length(Bytes,{hd(Vl),lists:max(Vl)}), Bytes2 = align(Bytes1), chars_decode(Bytes2,NumBits,StringType,C,Len); no -> {Len,Bytes1} = decode_length(Bytes,undefined), Bytes2 = align(Bytes1), chars_decode(Bytes2,NumBits,StringType,C,Len); {Lb,Ub}-> {Len,Bytes1} = decode_length(Bytes,{Lb,Ub}), Bytes2 = align(Bytes1), chars_decode(Bytes2,NumBits,StringType,C,Len) end. encode_NumericString(C,Val) -> encode_known_multiplier_string(aligned,'NumericString',C,false,Val). decode_NumericString(Bytes,C) -> decode_known_multiplier_string(Bytes,aligned,'NumericString',C,false). encode_PrintableString(C,Val) -> encode_known_multiplier_string(aligned,'PrintableString',C,false,Val). decode_PrintableString(Bytes,C) -> decode_known_multiplier_string(Bytes,aligned,'PrintableString',C,false). encode_VisibleString(C,Val) -> % equivalent with ISO646String encode_known_multiplier_string(aligned,'VisibleString',C,false,Val). decode_VisibleString(Bytes,C) -> decode_known_multiplier_string(Bytes,aligned,'VisibleString',C,false). encode_IA5String(C,Val) -> encode_known_multiplier_string(aligned,'IA5String',C,false,Val). decode_IA5String(Bytes,C) -> decode_known_multiplier_string(Bytes,aligned,'IA5String',C,false). encode_BMPString(C,Val) -> encode_known_multiplier_string(aligned,'BMPString',C,false,Val). decode_BMPString(Bytes,C) -> decode_known_multiplier_string(Bytes,aligned,'BMPString',C,false). encode_UniversalString(C,Val) -> encode_known_multiplier_string(aligned,'UniversalString',C,false,Val). decode_UniversalString(Bytes,C) -> decode_known_multiplier_string(Bytes,aligned,'UniversalString',C,false). %% end of known-multiplier strings for which PER visible constraints are %% applied encode_GeneralString(_C,Val) -> encode_restricted_string(aligned,Val). decode_GeneralString(Bytes,_C) -> decode_restricted_string(Bytes,aligned). encode_GraphicString(_C,Val) -> encode_restricted_string(aligned,Val). decode_GraphicString(Bytes,_C) -> decode_restricted_string(Bytes,aligned). encode_ObjectDescriptor(_C,Val) -> encode_restricted_string(aligned,Val). decode_ObjectDescriptor(Bytes) -> decode_restricted_string(Bytes,aligned). encode_TeletexString(_C,Val) -> % equivalent with T61String encode_restricted_string(aligned,Val). decode_TeletexString(Bytes,_C) -> decode_restricted_string(Bytes,aligned). encode_VideotexString(_C,Val) -> encode_restricted_string(aligned,Val). decode_VideotexString(Bytes,_C) -> decode_restricted_string(Bytes,aligned). %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% getBMPChars(Bytes,Len) ->{BMPcharList,RemainingBytes} %% getBMPChars(Bytes,1) -> {O1,Bytes2} = getbits(Bytes,8), {O2,Bytes3} = getbits(Bytes2,8), if O1 == 0 -> {[O2],Bytes3}; true -> {[{0,0,O1,O2}],Bytes3} end; getBMPChars(Bytes,Len) -> getBMPChars(Bytes,Len,[]). getBMPChars(Bytes,0,Acc) -> {lists:reverse(Acc),Bytes}; getBMPChars(Bytes,Len,Acc) -> {Octs,Bytes1} = getoctets_as_list(Bytes,2), case Octs of [0,O2] -> getBMPChars(Bytes1,Len-1,[O2|Acc]); [O1,O2]-> getBMPChars(Bytes1,Len-1,[{0,0,O1,O2}|Acc]) end. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% chars_encode(C,StringType,Value) -> ValueList %% %% encodes chars according to the per rules taking the constraint PermittedAlphabet %% into account. %% This function does only encode the value part and NOT the length chars_encode(C,StringType,Value) -> case {StringType,get_constraint(C,'PermittedAlphabet')} of {'UniversalString',{_,_Sv}} -> exit({error,{asn1,{'not implemented',"UniversalString with PermittedAlphabet constraint"}}}); {'BMPString',{_,_Sv}} -> exit({error,{asn1,{'not implemented',"BMPString with PermittedAlphabet constraint"}}}); _ -> {NumBits,CharOutTab} = {get_NumBits(C,StringType),get_CharOutTab(C,StringType)}, chars_encode2(Value,NumBits,CharOutTab) end. chars_encode2([H|T],NumBits,{Min,Max,notab}) when H =< Max, H >= Min -> [{bits,NumBits,H-Min}|chars_encode2(T,NumBits,{Min,Max,notab})]; chars_encode2([H|T],NumBits,{Min,Max,Tab}) when H =< Max, H >= Min -> [{bits,NumBits,exit_if_false(H,element(H-Min+1,Tab))}|chars_encode2(T,NumBits,{Min,Max,Tab})]; chars_encode2([{A,B,C,D}|T],NumBits,{Min,Max,notab}) -> %% no value range check here (ought to be, but very expensive) % [{bits,NumBits,(A*B*C*D)-Min}|chars_encode2(T,NumBits,{Min,Max,notab})]; [{bits,NumBits,((((((A bsl 8)+B) bsl 8)+C) bsl 8)+D)-Min}|chars_encode2(T,NumBits,{Min,Max,notab})]; chars_encode2([{A,B,C,D}|T],NumBits,{Min,Max,Tab}) -> %% no value range check here (ought to be, but very expensive) % [{bits,NumBits,element((A*B*C*D)-Min,Tab)}|chars_encode2(T,NumBits,{Min,Max,notab})]; [{bits,NumBits,exit_if_false({A,B,C,D},element(((((((A bsl 8)+B) bsl 8)+C) bsl 8)+D)-Min,Tab))}|chars_encode2(T,NumBits,{Min,Max,notab})]; chars_encode2([H|_T],_,{_,_,_}) -> exit({error,{asn1,{illegal_char_value,H}}}); chars_encode2([],_,_) -> []. exit_if_false(V,false)-> exit({error,{asn1,{"illegal value according to Permitted alphabet constraint",V}}}); exit_if_false(_,V) ->V. get_NumBits(C,StringType) -> case get_constraint(C,'PermittedAlphabet') of {'SingleValue',Sv} -> charbits(length(Sv),aligned); no -> case StringType of 'IA5String' -> charbits(128,aligned); % 16#00..16#7F 'VisibleString' -> charbits(95,aligned); % 16#20..16#7E 'PrintableString' -> charbits(74,aligned); % [$\s,$',$(,$),$+,$,,$-,$.,$/,"0123456789",$:,$=,$?,$A..$Z,$a..$z 'NumericString' -> charbits(11,aligned); % $ ,"0123456789" 'UniversalString' -> 32; 'BMPString' -> 16 end end. %%Maybe used later %%get_MaxChar(C,StringType) -> %% case get_constraint(C,'PermittedAlphabet') of %% {'SingleValue',Sv} -> %% lists:nth(length(Sv),Sv); %% no -> %% case StringType of %% 'IA5String' -> %% 16#7F; % 16#00..16#7F %% 'VisibleString' -> %% 16#7E; % 16#20..16#7E %% 'PrintableString' -> %% $z; % [$\s,$',$(,$),$+,$,,$-,$.,$/,"0123456789",$:,$=,$?,$A..$Z,$a..$z %% 'NumericString' -> %% $9; % $ ,"0123456789" %% 'UniversalString' -> %% 16#ffffffff; %% 'BMPString' -> %% 16#ffff %% end %% end. %%Maybe used later %%get_MinChar(C,StringType) -> %% case get_constraint(C,'PermittedAlphabet') of %% {'SingleValue',Sv} -> %% hd(Sv); %% no -> %% case StringType of %% 'IA5String' -> %% 16#00; % 16#00..16#7F %% 'VisibleString' -> %% 16#20; % 16#20..16#7E %% 'PrintableString' -> %% $\s; % [$\s,$',$(,$),$+,$,,$-,$.,$/,"0123456789",$:,$=,$?,$A..$Z,$a..$z %% 'NumericString' -> %% $\s; % $ ,"0123456789" %% 'UniversalString' -> %% 16#00; %% 'BMPString' -> %% 16#00 %% end %% end. get_CharOutTab(C,StringType) -> get_CharTab(C,StringType,out). get_CharInTab(C,StringType) -> get_CharTab(C,StringType,in). get_CharTab(C,StringType,InOut) -> case get_constraint(C,'PermittedAlphabet') of {'SingleValue',Sv} -> get_CharTab2(C,StringType,hd(Sv),lists:max(Sv),Sv,InOut); no -> case StringType of 'IA5String' -> {0,16#7F,notab}; 'VisibleString' -> get_CharTab2(C,StringType,16#20,16#7F,notab,InOut); 'PrintableString' -> Chars = lists:sort( " '()+,-./0123456789:=?ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"), get_CharTab2(C,StringType,hd(Chars),lists:max(Chars),Chars,InOut); 'NumericString' -> get_CharTab2(C,StringType,16#20,$9," 0123456789",InOut); 'UniversalString' -> {0,16#FFFFFFFF,notab}; 'BMPString' -> {0,16#FFFF,notab} end end. get_CharTab2(C,StringType,Min,Max,Chars,InOut) -> BitValMax = (1 bsl get_NumBits(C,StringType))-1, if Max =< BitValMax -> {0,Max,notab}; true -> case InOut of out -> {Min,Max,create_char_tab(Min,Chars)}; in -> {Min,Max,list_to_tuple(Chars)} end end. create_char_tab(Min,L) -> list_to_tuple(create_char_tab(Min,L,0)). create_char_tab(Min,[Min|T],V) -> [V|create_char_tab(Min+1,T,V+1)]; create_char_tab(_Min,[],_V) -> []; create_char_tab(Min,L,V) -> [false|create_char_tab(Min+1,L,V)]. %% This very inefficient and should be moved to compiletime charbits(NumOfChars,aligned) -> case charbits(NumOfChars) of 1 -> 1; 2 -> 2; B when B =< 4 -> 4; B when B =< 8 -> 8; B when B =< 16 -> 16; B when B =< 32 -> 32 end. charbits(NumOfChars) when NumOfChars =< 2 -> 1; charbits(NumOfChars) when NumOfChars =< 4 -> 2; charbits(NumOfChars) when NumOfChars =< 8 -> 3; charbits(NumOfChars) when NumOfChars =< 16 -> 4; charbits(NumOfChars) when NumOfChars =< 32 -> 5; charbits(NumOfChars) when NumOfChars =< 64 -> 6; charbits(NumOfChars) when NumOfChars =< 128 -> 7; charbits(NumOfChars) when NumOfChars =< 256 -> 8; charbits(NumOfChars) when NumOfChars =< 512 -> 9; charbits(NumOfChars) when NumOfChars =< 1024 -> 10; charbits(NumOfChars) when NumOfChars =< 2048 -> 11; charbits(NumOfChars) when NumOfChars =< 4096 -> 12; charbits(NumOfChars) when NumOfChars =< 8192 -> 13; charbits(NumOfChars) when NumOfChars =< 16384 -> 14; charbits(NumOfChars) when NumOfChars =< 32768 -> 15; charbits(NumOfChars) when NumOfChars =< 65536 -> 16; charbits(NumOfChars) when is_integer(NumOfChars) -> 16 + charbits1(NumOfChars bsr 16). charbits1(0) -> 0; charbits1(NumOfChars) -> 1 + charbits1(NumOfChars bsr 1). chars_decode(Bytes,_,'BMPString',C,Len) -> case get_constraint(C,'PermittedAlphabet') of no -> getBMPChars(Bytes,Len); _ -> exit({error,{asn1, {'not implemented', "BMPString with PermittedAlphabet constraint"}}}) end; chars_decode(Bytes,NumBits,StringType,C,Len) -> CharInTab = get_CharInTab(C,StringType), chars_decode2(Bytes,CharInTab,NumBits,Len). chars_decode2(Bytes,CharInTab,NumBits,Len) -> chars_decode2(Bytes,CharInTab,NumBits,Len,[]). chars_decode2(Bytes,_CharInTab,_NumBits,0,Acc) -> {lists:reverse(Acc),Bytes}; chars_decode2(Bytes,{Min,Max,notab},NumBits,Len,Acc) when NumBits > 8 -> {Char,Bytes2} = getbits(Bytes,NumBits), Result = if Char < 256 -> Char; true -> list_to_tuple(binary_to_list(<>)) end, chars_decode2(Bytes2,{Min,Max,notab},NumBits,Len -1,[Result|Acc]); % chars_decode2(Bytes,{Min,Max,notab},NumBits,Len,Acc) when NumBits > 8 -> % {Char,Bytes2} = getbits(Bytes,NumBits), % Result = case minimum_octets(Char+Min) of % [NewChar] -> NewChar; % [C1,C2] -> {0,0,C1,C2}; % [C1,C2,C3] -> {0,C1,C2,C3}; % [C1,C2,C3,C4] -> {C1,C2,C3,C4} % end, % chars_decode2(Bytes2,{Min,Max,notab},NumBits,Len -1,[Result|Acc]); chars_decode2(Bytes,{Min,Max,notab},NumBits,Len,Acc) -> {Char,Bytes2} = getbits(Bytes,NumBits), chars_decode2(Bytes2,{Min,Max,notab},NumBits,Len -1,[Char+Min|Acc]); %% BMPString and UniversalString with PermittedAlphabet is currently not supported chars_decode2(Bytes,{Min,Max,CharInTab},NumBits,Len,Acc) -> {Char,Bytes2} = getbits(Bytes,NumBits), chars_decode2(Bytes2,{Min,Max,CharInTab},NumBits,Len -1,[element(Char+1,CharInTab)|Acc]). %% UTF8String encode_UTF8String(Val) when is_binary(Val) -> [encode_length(undefined,size(Val)),{octets,Val}]; encode_UTF8String(Val) -> Bin = list_to_binary(Val), encode_UTF8String(Bin). decode_UTF8String(Bytes) -> {Len,Bytes2} = decode_length(Bytes,undefined), {Octs,Bytes3} = getoctets_as_list(Bytes2,Len), {list_to_binary(Octs),Bytes3}. % X.691:17 encode_null(_) -> []. % encodes to nothing %encode_null({Name,Val}) when is_atom(Name) -> % encode_null(Val). decode_null(Bytes) -> {'NULL',Bytes}. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% encode_object_identifier(Val) -> CompleteList %% encode_object_identifier({Name,Val}) -> CompleteList %% Val -> {Int1,Int2,...,IntN} % N >= 2 %% Name -> atom() %% Int1 -> integer(0..2) %% Int2 -> integer(0..39) when Int1 (0..1) else integer() %% Int3-N -> integer() %% CompleteList -> [{bits,8,Val}|{octets,Ol}|align|...] %% encode_object_identifier({Name,Val}) when is_atom(Name) -> encode_object_identifier(Val); encode_object_identifier(Val) -> OctetList = e_object_identifier(Val), Octets = list_to_binary(OctetList), % performs a flatten at the same time [{debug,object_identifier},encode_length(undefined,size(Octets)),{octets,Octets}]. %% This code is copied from asn1_encode.erl (BER) and corrected and modified e_object_identifier({'OBJECT IDENTIFIER',V}) -> e_object_identifier(V); e_object_identifier({Cname,V}) when is_atom(Cname),is_tuple(V) -> e_object_identifier(tuple_to_list(V)); e_object_identifier({Cname,V}) when is_atom(Cname),is_list(V) -> e_object_identifier(V); e_object_identifier(V) when is_tuple(V) -> e_object_identifier(tuple_to_list(V)); %% E1 = 0|1|2 and (E2 < 40 when E1 = 0|1) e_object_identifier([E1,E2|Tail]) when E1 >= 0, E1 < 2, E2 < 40 ; E1==2 -> Head = 40*E1 + E2, % weird e_object_elements([Head|Tail],[]); e_object_identifier(Oid=[_,_|_Tail]) -> exit({error,{asn1,{'illegal_value',Oid}}}). e_object_elements([],Acc) -> lists:reverse(Acc); e_object_elements([H|T],Acc) -> e_object_elements(T,[e_object_element(H)|Acc]). e_object_element(Num) when Num < 128 -> [Num]; e_object_element(Num) -> [e_o_e(Num bsr 7)|[Num band 2#1111111]]. e_o_e(Num) when Num < 128 -> Num bor 2#10000000; e_o_e(Num) -> [e_o_e(Num bsr 7)|[(Num band 2#1111111) bor 2#10000000]]. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% decode_object_identifier(Bytes) -> {ObjId,RemainingBytes} %% ObjId -> {integer(),integer(),...} % at least 2 integers %% RemainingBytes -> [integer()] when integer() (0..255) decode_object_identifier(Bytes) -> {Len,Bytes2} = decode_length(Bytes,undefined), {Octs,Bytes3} = getoctets_as_list(Bytes2,Len), [First|Rest] = dec_subidentifiers(Octs,0,[]), Idlist = if First < 40 -> [0,First|Rest]; First < 80 -> [1,First - 40|Rest]; true -> [2,First - 80|Rest] end, {list_to_tuple(Idlist),Bytes3}. dec_subidentifiers([H|T],Av,Al) when H >=16#80 -> dec_subidentifiers(T,(Av bsl 7) + (H band 16#7F),Al); dec_subidentifiers([H|T],Av,Al) -> dec_subidentifiers(T,0,[(Av bsl 7) + H |Al]); dec_subidentifiers([],_Av,Al) -> lists:reverse(Al). %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% encode_relative_oid(Val) -> CompleteList %% encode_relative_oid({Name,Val}) -> CompleteList encode_relative_oid({Name,Val}) when is_atom(Name) -> encode_relative_oid(Val); encode_relative_oid(Val) when is_tuple(Val) -> encode_relative_oid(tuple_to_list(Val)); encode_relative_oid(Val) when is_list(Val) -> Octets = list_to_binary([e_object_element(X)||X <- Val]), [encode_length(undefined,size(Octets)),{octets,Octets}]. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% decode_relative_oid(Val) -> {ROID,Rest} %% decode_relative_oid({Name,Val}) -> {ROID,Rest} decode_relative_oid(Bytes) -> {Len,Bytes2} = decode_length(Bytes,undefined), {Octs,Bytes3} = getoctets_as_list(Bytes2,Len), ObjVals = dec_subidentifiers(Octs,0,[]), {list_to_tuple(ObjVals),Bytes3}. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% encode_real(Val) -> CompleteList %% encode_real({Name,Val}) -> CompleteList encode_real({Name,Val}) when is_atom(Name) -> encode_real(Val); encode_real(Real) -> {EncVal,Len} = ?RT_COMMON:encode_real([],Real), [encode_length(undefined,Len),{octets,EncVal}]. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% decode_real(Val) -> {REALvalue,Rest} %% decode_real({Name,Val}) -> {REALvalue,Rest} decode_real(Bytes) -> {Len,{0,Bytes2}} = decode_length(Bytes,undefined), {RealVal,Rest,Len} = ?RT_COMMON:decode_real(Bytes2,Len), {RealVal,{0,Rest}}. get_constraint([{Key,V}],Key) -> V; get_constraint([],_Key) -> no; get_constraint(C,Key) -> case lists:keysearch(Key,1,C) of false -> no; {value,{_,V}} -> V end. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% complete(InList) -> ByteList %% Takes a coded list with bits and bytes and converts it to a list of bytes %% Should be applied as the last step at encode of a complete ASN.1 type %% % complete(L) -> % case complete1(L) of % {[],0} -> % <<0>>; % {Acc,0} -> % lists:reverse(Acc); % {[Hacc|Tacc],Acclen} -> % Acclen >0 % Rest = 8 - Acclen, % NewHacc = Hacc bsl Rest, % lists:reverse([NewHacc|Tacc]) % end. % complete1(InList) when is_list(InList) -> % complete1(InList,[]); % complete1(InList) -> % complete1([InList],[]). % complete1([{debug,_}|T], Acc) -> % complete1(T,Acc); % complete1([H|T],Acc) when is_list(H) -> % {NewH,NewAcclen} = complete1(H,Acc), % complete1(T,NewH,NewAcclen); % complete1([{0,Bin}|T],Acc,0) when is_binary(Bin) -> % complete1(T,[Bin|Acc],0); % complete1([{Unused,Bin}|T],Acc,0) when is_integer(Unused),is_binary(Bin) -> % Size = size(Bin)-1, % <> = Bin, % complete1(T,[(B bsr Unused),Bs|Acc],8-Unused); % complete1([{Unused,Bin}|T],[Hacc|Tacc],Acclen) when is_integer(Unused),is_binary(Bin) -> % Rest = 8 - Acclen, % Used = 8 - Unused, % case size(Bin) of % 1 -> % if % Rest >= Used -> % <> = Bin, % complete1(T,[(Hacc bsl Used) + B|Tacc], % (Acclen+Used) rem 8); % true -> % LeftOver = 8 - Rest - Unused, % <> = Bin, % complete1(T,[Val1,(Hacc bsl Rest) + Val2|Tacc], % (Acclen+Used) rem 8) % end; % N -> % if % Rest == Used -> % N1 = N - 1, % <> = Bin, % complete1(T,[Bs,(Hacc bsl Rest) + B|Tacc],0); % Rest > Used -> % N1 = N - 2, % N2 = (8 - Rest) + Used, % <> = Bin, % complete1(T,[B2,Bytes,(Hacc bsl Rest) + B1|Tacc], % (Acclen + Used) rem 8); % true -> % Rest < Used % N1 = N - 1, % N2 = Used - Rest, % <> = Bin, % complete1(T,[B2,Bytes,(Hacc bsl Rest) + B1|Tacc], % (Acclen + Used) rem 8) % end % end; % %complete1([{octets,N,Val}|T],Acc,Acclen) when N =< 4 ,is_integer(Val) -> % % complete1([{octets,<>}|T],Acc,Acclen); % complete1([{octets,N,Val}|T],Acc,Acclen) when N =< 4 ,is_integer(Val) -> % Newval = case N of % 1 -> % Val4 = Val band 16#FF, % [Val4]; % 2 -> % Val3 = (Val bsr 8) band 16#FF, % Val4 = Val band 16#FF, % [Val3,Val4]; % 3 -> % Val2 = (Val bsr 16) band 16#FF, % Val3 = (Val bsr 8) band 16#FF, % Val4 = Val band 16#FF, % [Val2,Val3,Val4]; % 4 -> % Val1 = (Val bsr 24) band 16#FF, % Val2 = (Val bsr 16) band 16#FF, % Val3 = (Val bsr 8) band 16#FF, % Val4 = Val band 16#FF, % [Val1,Val2,Val3,Val4] % end, % complete1([{octets,Newval}|T],Acc,Acclen); % complete1([{octets,Bin}|T],Acc,Acclen) when is_binary(Bin) -> % Rest = 8 - Acclen, % if % Rest == 8 -> % complete1(T,[Bin|Acc],0); % true -> % [Hacc|Tacc]=Acc, % complete1(T,[Bin, Hacc bsl Rest|Tacc],0) % end; % complete1([{octets,Oct}|T],Acc,Acclen) when is_list(Oct) -> % Rest = 8 - Acclen, % if % Rest == 8 -> % complete1(T,[list_to_binary(Oct)|Acc],0); % true -> % [Hacc|Tacc]=Acc, % complete1(T,[list_to_binary(Oct), Hacc bsl Rest|Tacc],0) % end; % complete1([{bit,Val}|T], Acc, Acclen) -> % complete1([{bits,1,Val}|T],Acc,Acclen); % complete1([{octet,Val}|T], Acc, Acclen) -> % complete1([{octets,1,Val}|T],Acc,Acclen); % complete1([{bits,N,Val}|T], Acc, 0) when N =< 8 -> % complete1(T,[Val|Acc],N); % complete1([{bits,N,Val}|T], [Hacc|Tacc], Acclen) when N =< 8 -> % Rest = 8 - Acclen, % if % Rest >= N -> % complete1(T,[(Hacc bsl N) + Val|Tacc],(Acclen+N) rem 8); % true -> % Diff = N - Rest, % NewHacc = (Hacc bsl Rest) + (Val bsr Diff), % Mask = element(Diff,{1,3,7,15,31,63,127,255}), % complete1(T,[(Val band Mask),NewHacc|Tacc],(Acclen+N) rem 8) % end; % complete1([{bits,N,Val}|T], Acc, Acclen) -> % N > 8 % complete1([{bits,N-8,Val bsr 8},{bits,8,Val band 255}|T],Acc,Acclen); % complete1([align|T],Acc,0) -> % complete1(T,Acc,0); % complete1([align|T],[Hacc|Tacc],Acclen) -> % Rest = 8 - Acclen, % complete1(T,[Hacc bsl Rest|Tacc],0); % complete1([{octets,N,Val}|T],Acc,Acclen) when is_list(Val) -> % no security check here % complete1([{octets,Val}|T],Acc,Acclen); % complete1([],Acc,Acclen) -> % {Acc,Acclen}. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% complete(InList) -> ByteList %% Takes a coded list with bits and bytes and converts it to a list of bytes %% Should be applied as the last step at encode of a complete ASN.1 type %% complete(L) -> case complete1(L) of {[],[]} -> <<0>>; {Acc,[]} -> Acc; {Acc,Bacc} -> [Acc|complete_bytes(Bacc)] end. %% this function builds the ugly form of lists [E1|E2] to avoid having to reverse it at the end. %% this is done because it is efficient and that the result always will be sent on a port or %% converted by means of list_to_binary/1 complete1(InList) when is_list(InList) -> complete1(InList,[],[]); complete1(InList) -> complete1([InList],[],[]). complete1([],Acc,Bacc) -> {Acc,Bacc}; complete1([H|T],Acc,Bacc) when is_list(H) -> {NewH,NewBacc} = complete1(H,Acc,Bacc), complete1(T,NewH,NewBacc); complete1([{octets,Bin}|T],Acc,[]) -> complete1(T,[Acc|Bin],[]); complete1([{octets,Bin}|T],Acc,Bacc) -> complete1(T,[Acc|[complete_bytes(Bacc),Bin]],[]); complete1([{debug,_}|T], Acc,Bacc) -> complete1(T,Acc,Bacc); complete1([{bits,N,Val}|T],Acc,Bacc) -> complete1(T,Acc,complete_update_byte(Bacc,Val,N)); complete1([{bit,Val}|T],Acc,Bacc) -> complete1(T,Acc,complete_update_byte(Bacc,Val,1)); complete1([align|T],Acc,[]) -> complete1(T,Acc,[]); complete1([align|T],Acc,Bacc) -> complete1(T,[Acc|complete_bytes(Bacc)],[]); complete1([{0,Bin}|T],Acc,[]) when is_binary(Bin) -> complete1(T,[Acc|Bin],[]); complete1([{Unused,Bin}|T],Acc,[]) when is_integer(Unused),is_binary(Bin) -> Size = size(Bin)-1, <> = Bin, NumBits = 8-Unused, complete1(T,[Acc|Bs],[[B bsr Unused]|NumBits]); complete1([{Unused,Bin}|T],Acc,Bacc) when is_integer(Unused),is_binary(Bin) -> Size = size(Bin)-1, <> = Bin, NumBits = 8 - Unused, Bf = complete_bytes(Bacc), complete1(T,[Acc|[Bf,Bs]],[[B bsr Unused]|NumBits]). complete_update_byte([],Val,Len) -> complete_update_byte([[0]|0],Val,Len); complete_update_byte([[Byte|Bacc]|NumBits],Val,Len) when NumBits + Len == 8 -> [[0,((Byte bsl Len) + Val) band 255|Bacc]|0]; complete_update_byte([[Byte|Bacc]|NumBits],Val,Len) when NumBits + Len > 8 -> Rem = 8 - NumBits, Rest = Len - Rem, complete_update_byte([[0,((Byte bsl Rem) + (Val bsr Rest)) band 255 |Bacc]|0],Val,Rest); complete_update_byte([[Byte|Bacc]|NumBits],Val,Len) -> [[((Byte bsl Len) + Val) band 255|Bacc]|NumBits+Len]. complete_bytes([[_Byte|Bacc]|0]) -> lists:reverse(Bacc); complete_bytes([[Byte|Bacc]|NumBytes]) -> lists:reverse([(Byte bsl (8-NumBytes)) band 255|Bacc]); complete_bytes([]) -> []. % complete_bytes(L) -> % complete_bytes1(lists:reverse(L),[],[],0,0). % complete_bytes1([H={V,B}|T],Acc,ReplyAcc,NumBits,NumFields) when ((NumBits+B) rem 8) == 0 -> % NewReplyAcc = [complete_bytes2([H|Acc],0)|ReplyAcc], % complete_bytes1(T,[],NewReplyAcc,0,0); % complete_bytes1([H={V,B}|T],Acc,ReplyAcc,NumBits,NumFields) when NumFields == 7; (NumBits+B) div 8 > 0 -> % Rem = (NumBits+B) rem 8, % NewReplyAcc = [complete_bytes2([{V bsr Rem,B - Rem}|Acc],0)|ReplyAcc], % complete_bytes1([{V,Rem}|T],[],NewReplyAcc,0,0); % complete_bytes1([H={V,B}|T],Acc,ReplyAcc,NumBits,NumFields) -> % complete_bytes1(T,[H|Acc],ReplyAcc,NumBits+B,NumFields+1); % complete_bytes1([],[],ReplyAcc,_,_) -> % lists:reverse(ReplyAcc); % complete_bytes1([],Acc,ReplyAcc,NumBits,_) -> % PadBits = case NumBits rem 8 of % 0 -> 0; % Rem -> 8 - Rem % end, % lists:reverse([complete_bytes2(Acc,PadBits)|ReplyAcc]). % complete_bytes2([{V1,B1}],PadBits) -> % <>; % complete_bytes2([{V2,B2},{V1,B1}],PadBits) -> % <>; % complete_bytes2([{V3,B3},{V2,B2},{V1,B1}],PadBits) -> % <>; % complete_bytes2([{V4,B4},{V3,B3},{V2,B2},{V1,B1}],PadBits) -> % <>; % complete_bytes2([{V5,B5},{V4,B4},{V3,B3},{V2,B2},{V1,B1}],PadBits) -> % <>; % complete_bytes2([{V6,B6},{V5,B5},{V4,B4},{V3,B3},{V2,B2},{V1,B1}],PadBits) -> % <>; % complete_bytes2([{V7,B7},{V6,B6},{V5,B5},{V4,B4},{V3,B3},{V2,B2},{V1,B1}],PadBits) -> % <>; % complete_bytes2([{V8,B8},{V7,B7},{V6,B6},{V5,B5},{V4,B4},{V3,B3},{V2,B2},{V1,B1}],PadBits) -> % <>.