%% %% %CopyrightBegin% %% %% Copyright Ericsson AB 2002-2009. All Rights Reserved. %% %% The contents of this file are subject to the Erlang Public License, %% Version 1.1, (the "License"); you may not use this file except in %% compliance with the License. You should have received a copy of the %% Erlang Public License along with this software. If not, it can be %% retrieved online at http://www.erlang.org/. %% %% Software distributed under the License is distributed on an "AS IS" %% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See %% the License for the specific language governing rights and limitations %% under the License. %% %% %CopyrightEnd% %% %% -module(asn1rt_per_bin_rt2ct). %% encoding / decoding of PER aligned -include("asn1_records.hrl"). -export([dec_fixup/3, cindex/3, list_to_record/2]). -export([setchoiceext/1, setext/1, fixoptionals/3, fixextensions/2, getext/1, getextension/2, skipextensions/3, getbit/1, getchoice/3 ]). -export([getoptionals/2, getoptionals2/2, set_choice/3, encode_integer/2, encode_integer/3 ]). -export([decode_integer/2, decode_integer/3, encode_small_number/1, decode_boolean/1, encode_length/2, decode_length/1, decode_length/2, encode_small_length/1, decode_small_length/1, decode_compact_bit_string/3]). -export([decode_enumerated/3, encode_bit_string/3, decode_bit_string/3 ]). -export([encode_octet_string/2, decode_octet_string/2, encode_null/1, decode_null/1, encode_object_identifier/1, decode_object_identifier/1, encode_real/1, decode_real/1, encode_relative_oid/1, decode_relative_oid/1, complete/1]). -export([encode_open_type/2, decode_open_type/2]). -export([encode_GeneralString/2, decode_GeneralString/2, encode_GraphicString/2, decode_GraphicString/2, encode_TeletexString/2, decode_TeletexString/2, encode_VideotexString/2, decode_VideotexString/2, encode_ObjectDescriptor/2, decode_ObjectDescriptor/1, encode_UTF8String/1,decode_UTF8String/1 ]). -export([decode_constrained_number/2, decode_constrained_number/3, decode_unconstrained_number/1, decode_semi_constrained_number/2, encode_unconstrained_number/1, decode_constrained_number/4, encode_octet_string/3, decode_octet_string/3, encode_known_multiplier_string/5, decode_known_multiplier_string/5, getoctets/2, getbits/2 % start_drv/1,start_drv2/1,init_drv/1 ]). -export([eint_positive/1]). -export([pre_complete_bits/2]). -define('16K',16384). -define('32K',32768). -define('64K',65536). %%-define(nodriver,true). dec_fixup(Terms,Cnames,RemBytes) -> dec_fixup(Terms,Cnames,RemBytes,[]). dec_fixup([novalue|T],[_Hc|Tc],RemBytes,Acc) -> dec_fixup(T,Tc,RemBytes,Acc); dec_fixup([{_Name,novalue}|T],[_Hc|Tc],RemBytes,Acc) -> dec_fixup(T,Tc,RemBytes,Acc); dec_fixup([H|T],[Hc|Tc],RemBytes,Acc) -> dec_fixup(T,Tc,RemBytes,[{Hc,H}|Acc]); dec_fixup([],_Cnames,RemBytes,Acc) -> {lists:reverse(Acc),RemBytes}. cindex(Ix,Val,Cname) -> case element(Ix,Val) of {Cname,Val2} -> Val2; X -> X end. %% converts a list to a record if necessary list_to_record(_,Tuple) when is_tuple(Tuple) -> Tuple; list_to_record(Name,List) when is_list(List) -> list_to_tuple([Name|List]). %%-------------------------------------------------------- %% setchoiceext(InRootSet) -> [{bit,X}] %% X is set to 1 when InRootSet==false %% X is set to 0 when InRootSet==true %% setchoiceext(true) -> [0]; setchoiceext(false) -> [1]. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% setext(true|false) -> CompleteList %% setext(false) -> % [{debug,ext},{bits,1,0}]; [0]; setext(true) -> % [{debug,ext},{bits,1,1}]; [1]. fixoptionals(OptList,_OptLength,Val) when is_tuple(Val) -> % Bits = fixoptionals(OptList,Val,0), % {Val,{bits,OptLength,Bits}}; % {Val,[10,OptLength,Bits]}; {Val,fixoptionals(OptList,Val,[])}; fixoptionals([],_,Acc) -> %% Optbits lists:reverse(Acc); fixoptionals([{Pos,DefVal}|Ot],Val,Acc) -> case element(Pos,Val) of asn1_DEFAULT -> fixoptionals(Ot,Val,[0|Acc]); DefVal -> fixoptionals(Ot,Val,[0|Acc]); _ -> fixoptionals(Ot,Val,[1|Acc]) end; fixoptionals([Pos|Ot],Val,Acc) -> case element(Pos,Val) of asn1_NOVALUE -> fixoptionals(Ot,Val,[0|Acc]); asn1_DEFAULT -> fixoptionals(Ot,Val,[0|Acc]); _ -> fixoptionals(Ot,Val,[1|Acc]) end. getext(Bytes) when is_bitstring(Bytes) -> getbit(Bytes). getextension(0, Bytes) -> {<<>>,Bytes}; getextension(1, Bytes) -> {Len,Bytes2} = decode_small_length(Bytes), getbits_as_binary(Len,Bytes2).% {Bin,Bytes3}. fixextensions({ext,ExtPos,ExtNum},Val) -> case fixextensions(ExtPos,ExtNum+ExtPos,Val,0) of 0 -> []; ExtBits -> [encode_small_length(ExtNum),pre_complete_bits(ExtNum,ExtBits)] end. fixextensions(Pos,MaxPos,_,Acc) when Pos >= MaxPos -> Acc; fixextensions(Pos,ExtPos,Val,Acc) -> Bit = case catch(element(Pos+1,Val)) of asn1_NOVALUE -> 0; asn1_NOEXTVALUE -> 0; {'EXIT',_} -> 0; _ -> 1 end, fixextensions(Pos+1,ExtPos,Val,(Acc bsl 1)+Bit). skipextensions(Bytes,Nr,ExtensionBitstr) when is_bitstring(ExtensionBitstr) -> Prev = Nr - 1, case ExtensionBitstr of <<_:Prev,1:1,_/bitstring>> -> {_,Bytes2} = decode_open_type(Bytes,[]), skipextensions(Bytes2, Nr+1, ExtensionBitstr); <<_:Prev,0:1,_/bitstring>> -> skipextensions(Bytes, Nr+1, ExtensionBitstr); _ -> Bytes end. getchoice(Bytes,1,0) -> % only 1 alternative is not encoded {0,Bytes}; getchoice(Bytes,_,1) -> decode_small_number(Bytes); getchoice(Bytes,NumChoices,0) -> decode_constrained_number(Bytes,{0,NumChoices-1}). %% old version kept for backward compatibility with generates from R7B01 getoptionals(Bytes,NumOpt) -> getbits_as_binary(NumOpt,Bytes). %% new version used in generates from r8b_patch/3 and later getoptionals2(Bytes,NumOpt) -> {_,_} = getbits(Bytes,NumOpt). %% getbits_as_binary(Num,Bytes) -> {Bin,Rest} %% Num = integer(), %% Bytes = bitstring(), %% Bin = bitstring(), %% Rest = bitstring() getbits_as_binary(Num,Bytes) when is_bitstring(Bytes) -> <> = Bytes, {BS,Rest}. getbits_as_list(Num,Bytes) when is_bitstring(Bytes) -> <> = Bytes, {[ B || <> <= BitStr],Rest}. getbit(Buffer) -> <> = Buffer, {B,Rest}. getbits(Buffer,Num) when is_bitstring(Buffer) -> <> = Buffer, {Bs,Rest}. align(Bin) when is_binary(Bin) -> Bin; align(BitStr) when is_bitstring(BitStr) -> AlignBits = bit_size(BitStr) rem 8, <<_:AlignBits,Rest/binary>> = BitStr, Rest. %% First align buffer, then pick the first Num octets. %% Returns octets as an integer with bit significance as in buffer. getoctets(Buffer,Num) when is_binary(Buffer) -> <> = Buffer, {Val,RestBin}; getoctets(Buffer,Num) when is_bitstring(Buffer) -> AlignBits = bit_size(Buffer) rem 8, <<_:AlignBits,Val:Num/integer-unit:8,RestBin/binary>> = Buffer, {Val,RestBin}. %% First align buffer, then pick the first Num octets. %% Returns octets as a binary getoctets_as_bin(Bin,Num) when is_binary(Bin) -> <> = Bin, {Octets,RestBin}; getoctets_as_bin(Bin,Num) when is_bitstring(Bin) -> AlignBits = bit_size(Bin) rem 8, <<_:AlignBits,Val:Num/binary,RestBin/binary>> = Bin, {Val,RestBin}. %% same as above but returns octets as a List getoctets_as_list(Buffer,Num) -> {Bin,Buffer2} = getoctets_as_bin(Buffer,Num), {binary_to_list(Bin),Buffer2}. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% set_choice(Alt,Choices,Altnum) -> ListofBitSettings %% Alt = atom() %% Altnum = integer() | {integer(),integer()}% number of alternatives %% Choices = [atom()] | {[atom()],[atom()]} %% When Choices is a tuple the first list is the Rootset and the %% second is the Extensions and then Altnum must also be a tuple with the %% lengths of the 2 lists %% set_choice(Alt,{L1,L2},{Len1,_Len2}) -> case set_choice_tag(Alt,L1) of N when is_integer(N), Len1 > 1 -> % [{bits,1,0}, % the value is in the root set % encode_constrained_number({0,Len1-1},N)]; [0, % the value is in the root set encode_constrained_number({0,Len1-1},N)]; N when is_integer(N) -> % [{bits,1,0}]; % no encoding if only 0 or 1 alternative [0]; % no encoding if only 0 or 1 alternative false -> % [{bits,1,1}, % extension value [1, % extension value case set_choice_tag(Alt,L2) of N2 when is_integer(N2) -> encode_small_number(N2); false -> unknown_choice_alt end] end; set_choice(Alt,L,Len) -> case set_choice_tag(Alt,L) of N when is_integer(N), Len > 1 -> encode_constrained_number({0,Len-1},N); N when is_integer(N) -> []; % no encoding if only 0 or 1 alternative false -> [unknown_choice_alt] end. set_choice_tag(Alt,Choices) -> set_choice_tag(Alt,Choices,0). set_choice_tag(Alt,[Alt|_Rest],Tag) -> Tag; set_choice_tag(Alt,[_H|Rest],Tag) -> set_choice_tag(Alt,Rest,Tag+1); set_choice_tag(_Alt,[],_Tag) -> false. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% decode_fragmented_XXX; decode of values encoded fragmented according %% to ITU-T X.691 clause 10.9.3.8. The unit (XXX) is either bits, octets, %% characters or number of components (in a choice,sequence or similar). %% Buffer is a buffer binary(). %% C is the constrained length. %% If the buffer is not aligned, this function does that. decode_fragmented_bits(Buffer,C) when is_binary(Buffer) -> decode_fragmented_bits(Buffer,C,[]); decode_fragmented_bits(Buffer,C) when is_bitstring(Buffer) -> AlignBits = bit_size(Buffer) rem 8, <<_:AlignBits,Rest/binary>> = Buffer, decode_fragmented_bits(Rest,C,[]). decode_fragmented_bits(<<3:2,Len:6,Bin/binary>>,C,Acc) -> {Value,Bin2} = split_binary(Bin, Len * ?'16K'), % Len = 1 | 2 | 3 | 4 decode_fragmented_bits(Bin2,C,[Value|Acc]); decode_fragmented_bits(<<0:1,0:7,Bin/binary>>,C,Acc) -> BinBits = erlang:list_to_bitstring(lists:reverse(Acc)), case C of Int when is_integer(Int),C == bit_size(BinBits) -> {BinBits,Bin}; Int when is_integer(Int) -> exit({error,{asn1,{illegal_value,C,BinBits}}}) end; decode_fragmented_bits(<<0:1,Len:7,Bin/binary>>,C,Acc) -> <> = Bin, BinBits = erlang:list_to_bitstring([Value|Acc]), case C of Int when is_integer(Int),C == bit_size(BinBits) -> {BinBits,Rest}; Int when is_integer(Int) -> exit({error,{asn1,{illegal_value,C,BinBits}}}) end. decode_fragmented_octets(Bin,C) -> decode_fragmented_octets(Bin,C,[]). decode_fragmented_octets(<<3:2,Len:6,Bin/binary>>,C,Acc) -> {Value,Bin2} = split_binary(Bin,Len * ?'16K'), decode_fragmented_octets(Bin2,C,[Value|Acc]); decode_fragmented_octets(<<0:1,0:7,Bin/binary>>,C,Acc) -> Octets = list_to_binary(lists:reverse(Acc)), case C of Int when is_integer(Int), C == size(Octets) -> {Octets,Bin}; Int when is_integer(Int) -> exit({error,{asn1,{illegal_value,C,Octets}}}) end; decode_fragmented_octets(<<0:1,Len:7,Bin/binary>>,C,Acc) -> <> = Bin, BinOctets = list_to_binary(lists:reverse([Value|Acc])), case C of Int when is_integer(Int),size(BinOctets) == Int -> {BinOctets,Bin2}; Int when is_integer(Int) -> exit({error,{asn1,{illegal_value,C,BinOctets}}}) end. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% encode_open_type(Constraint, Value) -> CompleteList %% Value = list of bytes of an already encoded value (the list must be flat) %% | binary %% Contraint = not used in this version %% encode_open_type(_Constraint, Val) when is_list(Val) -> Bin = list_to_binary(Val), case size(Bin) of Size when Size>255 -> [encode_length(undefined,Size),[21,<>,Bin]]; Size -> [encode_length(undefined,Size),[20,Size,Bin]] end; encode_open_type(_Constraint, Val) when is_binary(Val) -> case size(Val) of Size when Size>255 -> [encode_length(undefined,size(Val)),[21,<>,Val]]; % octets implies align Size -> [encode_length(undefined,Size),[20,Size,Val]] end. %% the binary_to_list is not optimal but compatible with the current solution %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% decode_open_type(Buffer,Constraint) -> Value %% Constraint is not used in this version %% Buffer = [byte] with PER encoded data %% Value = [byte] with decoded data (which must be decoded again as some type) %% decode_open_type(Bytes, _Constraint) -> {Len,Bytes2} = decode_length(Bytes,undefined), getoctets_as_bin(Bytes2,Len). %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% encode_integer(Constraint,Value,NamedNumberList) -> CompleteList %% encode_integer(Constraint,Value) -> CompleteList %% encode_integer(Constraint,{Name,Value}) -> CompleteList %% %% encode_integer(C,V,NamedNumberList) when is_atom(V) -> case lists:keysearch(V,1,NamedNumberList) of {value,{_,NewV}} -> encode_integer(C,NewV); _ -> exit({error,{asn1,{namednumber,V}}}) end; encode_integer(C,V,_NamedNumberList) when is_integer(V) -> encode_integer(C,V); encode_integer(C,{Name,V},NamedNumberList) when is_atom(Name) -> encode_integer(C,V,NamedNumberList). encode_integer(C,{Name,Val}) when is_atom(Name) -> encode_integer(C,Val); encode_integer([{Rc,_Ec}],Val) when is_tuple(Rc) -> % XXX when is this invoked? First argument most often a list,...Ok this is the extension case...but it doesn't work. case (catch encode_integer([Rc],Val)) of {'EXIT',{error,{asn1,_}}} -> % [{bits,1,1},encode_unconstrained_number(Val)]; [1,encode_unconstrained_number(Val)]; Encoded -> % [{bits,1,0},Encoded] [0,Encoded] end; encode_integer([],Val) -> encode_unconstrained_number(Val); %% The constraint is the effective constraint, and in this case is a number encode_integer([{'SingleValue',V}],V) -> []; encode_integer([{'ValueRange',VR={Lb,Ub},Range,PreEnc}],Val) when Val >= Lb, Ub >= Val -> %% this case when NamedNumberList encode_constrained_number(VR,Range,PreEnc,Val); encode_integer([{'ValueRange',{Lb,'MAX'}}],Val) -> encode_semi_constrained_number(Lb,Val); encode_integer([{'ValueRange',{'MIN',_}}],Val) -> encode_unconstrained_number(Val); encode_integer([{'ValueRange',VR={_Lb,_Ub}}],Val) -> encode_constrained_number(VR,Val); encode_integer(_,Val) -> exit({error,{asn1,{illegal_value,Val}}}). decode_integer(Buffer,Range,NamedNumberList) -> {Val,Buffer2} = decode_integer(Buffer,Range), case lists:keysearch(Val,2,NamedNumberList) of {value,{NewVal,_}} -> {NewVal,Buffer2}; _ -> {Val,Buffer2} end. decode_integer(Buffer,[{Rc,_Ec}]) when is_tuple(Rc) -> {Ext,Buffer2} = getext(Buffer), case Ext of 0 -> decode_integer(Buffer2,[Rc]); 1 -> decode_unconstrained_number(Buffer2) end; decode_integer(Buffer,undefined) -> decode_unconstrained_number(Buffer); decode_integer(Buffer,C) -> case get_constraint(C,'SingleValue') of V when is_integer(V) -> {V,Buffer}; _ -> decode_integer1(Buffer,C) end. decode_integer1(Buffer,C) -> case VR = get_constraint(C,'ValueRange') of no -> decode_unconstrained_number(Buffer); {Lb, 'MAX'} -> decode_semi_constrained_number(Buffer,Lb); {_Lb,_Ub} -> decode_constrained_number(Buffer,VR) end. %% X.691:10.6 Encoding of a normally small non-negative whole number %% Use this for encoding of CHOICE index if there is an extension marker in %% the CHOICE encode_small_number({Name,Val}) when is_atom(Name) -> encode_small_number(Val); encode_small_number(Val) when Val =< 63 -> % [{bits,1,0},{bits,6,Val}]; % [{bits,7,Val}]; % same as above but more efficient [10,7,Val]; % same as above but more efficient encode_small_number(Val) -> % [{bits,1,1},encode_semi_constrained_number(0,Val)]. [1,encode_semi_constrained_number(0,Val)]. decode_small_number(Bytes) -> {Bit,Bytes2} = getbit(Bytes), case Bit of 0 -> getbits(Bytes2,6); 1 -> decode_semi_constrained_number(Bytes2,0) end. %% X.691:10.7 Encoding of a semi-constrained whole number %% might be an optimization encode_semi_constrained_number(0,Val) -> encode_semi_constrained_number(C,{Name,Val}) when is_atom(Name) -> encode_semi_constrained_number(C,Val); encode_semi_constrained_number({Lb,'MAX'},Val) -> encode_semi_constrained_number(Lb,Val); encode_semi_constrained_number(Lb,Val) -> Val2 = Val - Lb, Oct = eint_positive(Val2), Len = length(Oct), if Len < 128 -> %{octets,[Len|Oct]}; % equiv with encode_length(undefined,Len) but faster [20,Len+1,[Len|Oct]]; Len < 256 -> [encode_length(undefined,Len),[20,Len,Oct]]; true -> [encode_length(undefined,Len),[21,<>,Oct]] end. decode_semi_constrained_number(Bytes,{Lb,_}) -> decode_semi_constrained_number(Bytes,Lb); decode_semi_constrained_number(Bytes,Lb) -> {Len,Bytes2} = decode_length(Bytes,undefined), {V,Bytes3} = getoctets(Bytes2,Len), {V+Lb,Bytes3}. encode_constrained_number({Lb,_Ub},_Range,{bits,N},Val) -> Val2 = Val-Lb, % {bits,N,Val2}; [10,N,Val2]; encode_constrained_number({Lb,_Ub},_Range,{octets,N},Val) when N < 256-> %% N is 8 or 16 (1 or 2 octets) Val2 = Val-Lb, % {octets,<>}; [20,N,Val2]; encode_constrained_number({Lb,_Ub},_Range,{octets,N},Val) -> % N>255 %% N is 8 or 16 (1 or 2 octets) Val2 = Val-Lb, % {octets,<>}; [21,<>,Val2]; encode_constrained_number({Lb,_Ub},Range,_,Val) -> Val2 = Val-Lb, if Range =< 16#1000000 -> % max 3 octets Octs = eint_positive(Val2), % [encode_length({1,3},size(Octs)),{octets,Octs}]; L = length(Octs), [encode_length({1,3},L),[20,L,Octs]]; Range =< 16#100000000 -> % max 4 octets Octs = eint_positive(Val2), % [encode_length({1,4},size(Octs)),{octets,Octs}]; L = length(Octs), [encode_length({1,4},L),[20,L,Octs]]; Range =< 16#10000000000 -> % max 5 octets Octs = eint_positive(Val2), % [encode_length({1,5},size(Octs)),{octets,Octs}]; L = length(Octs), [encode_length({1,5},L),[20,L,Octs]]; true -> exit({not_supported,{integer_range,Range}}) end. encode_constrained_number(Range,{Name,Val}) when is_atom(Name) -> encode_constrained_number(Range,Val); encode_constrained_number({Lb,Ub},Val) when Val >= Lb, Ub >= Val -> Range = Ub - Lb + 1, Val2 = Val - Lb, if Range == 1 -> []; Range == 2 -> % Size = {bits,1,Val2}; [Val2]; Range =< 4 -> % Size = {bits,2,Val2}; [10,2,Val2]; Range =< 8 -> [10,3,Val2]; Range =< 16 -> [10,4,Val2]; Range =< 32 -> [10,5,Val2]; Range =< 64 -> [10,6,Val2]; Range =< 128 -> [10,7,Val2]; Range =< 255 -> [10,8,Val2]; Range =< 256 -> % Size = {octets,[Val2]}; [20,1,Val2]; Range =< 65536 -> % Size = {octets,<>}; [20,2,<>]; Range =< 16#1000000 -> Octs = eint_positive(Val2), % [{bits,2,length(Octs)-1},{octets,Octs}]; Len = length(Octs), [10,2,Len-1,20,Len,Octs]; Range =< 16#100000000 -> Octs = eint_positive(Val2), Len = length(Octs), [10,2,Len-1,20,Len,Octs]; Range =< 16#10000000000 -> Octs = eint_positive(Val2), Len = length(Octs), [10,3,Len-1,20,Len,Octs]; true -> exit({not_supported,{integer_range,Range}}) end; encode_constrained_number({_,_},Val) -> exit({error,{asn1,{illegal_value,Val}}}). decode_constrained_number(Buffer,VR={Lb,Ub}) -> Range = Ub - Lb + 1, decode_constrained_number(Buffer,VR,Range). decode_constrained_number(Buffer,{Lb,_Ub},_Range,{bits,N}) -> {Val,Remain} = getbits(Buffer,N), {Val+Lb,Remain}; decode_constrained_number(Buffer,{Lb,_Ub},_Range,{octets,N}) -> {Val,Remain} = getoctets(Buffer,N), {Val+Lb,Remain}. decode_constrained_number(Buffer,{Lb,_Ub},Range) -> % Val2 = Val - Lb, {Val,Remain} = if Range == 1 -> {0,Buffer}; Range == 2 -> getbits(Buffer,1); Range =< 4 -> getbits(Buffer,2); Range =< 8 -> getbits(Buffer,3); Range =< 16 -> getbits(Buffer,4); Range =< 32 -> getbits(Buffer,5); Range =< 64 -> getbits(Buffer,6); Range =< 128 -> getbits(Buffer,7); Range =< 255 -> getbits(Buffer,8); Range =< 256 -> getoctets(Buffer,1); Range =< 65536 -> getoctets(Buffer,2); Range =< 16#1000000 -> {Len,Bytes2} = decode_length(Buffer,{1,3}), {Octs,Bytes3} = getoctets_as_bin(Bytes2,Len), {dec_pos_integer(Octs),Bytes3}; Range =< 16#100000000 -> {Len,Bytes2} = decode_length(Buffer,{1,4}), {Octs,Bytes3} = getoctets_as_bin(Bytes2,Len), {dec_pos_integer(Octs),Bytes3}; Range =< 16#10000000000 -> {Len,Bytes2} = decode_length(Buffer,{1,5}), {Octs,Bytes3} = getoctets_as_bin(Bytes2,Len), {dec_pos_integer(Octs),Bytes3}; true -> exit({not_supported,{integer_range,Range}}) end, {Val+Lb,Remain}. %% X.691:10.8 Encoding of an unconstrained whole number encode_unconstrained_number(Val) when Val >= 0 -> Oct = eint(Val,[]), Len = length(Oct), if Len < 128 -> %{octets,[Len|Oct]}; % equiv with encode_length(undefined,Len) but faster [20,Len+1,[Len|Oct]]; Len < 256 -> % [encode_length(undefined,Len),20,Len,Oct]; [20,Len+2,<<2:2,Len:14>>,Oct];% equiv with encode_length(undefined,Len) but faster true -> % [encode_length(undefined,Len),{octets,Oct}] [encode_length(undefined,Len),[21,<>,Oct]] end; encode_unconstrained_number(Val) -> % negative Oct = enint(Val,[]), Len = length(Oct), if Len < 128 -> % {octets,[Len|Oct]}; % equiv with encode_length(undefined,Len) but faster [20,Len+1,[Len|Oct]];% equiv with encode_length(undefined,Len) but faster Len < 256 -> % [encode_length(undefined,Len),20,Len,Oct]; [20,Len+2,<<2:2,Len:14>>,Oct];% equiv with encode_length(undefined,Len) but faster true -> %[encode_length(undefined,Len),{octets,Oct}] [encode_length(undefined,Len),[21,<>,Oct]] end. %% used for positive Values which don't need a sign bit %% returns a list eint_positive(Val) -> case eint(Val,[]) of [0,B1|T] -> [B1|T]; T -> T end. eint(0, [B|Acc]) when B < 128 -> [B|Acc]; eint(N, Acc) -> eint(N bsr 8, [N band 16#ff| Acc]). enint(-1, [B1|T]) when B1 > 127 -> [B1|T]; enint(N, Acc) -> enint(N bsr 8, [N band 16#ff|Acc]). decode_unconstrained_number(Bytes) -> {Len,Bytes2} = decode_length(Bytes,undefined), {Ints,Bytes3} = getoctets_as_bin(Bytes2,Len), {dec_integer(Ints),Bytes3}. dec_pos_integer(Ints) -> decpint(Ints). dec_integer(Bin = <<0:1,_:7,_/binary>>) -> decpint(Bin); dec_integer(<<_:1,B:7,BitStr/bitstring>>) -> Size = bit_size(BitStr), <> = BitStr, (-128 + B) bsl bit_size(BitStr) bor I. decpint(Bin) -> Size = bit_size(Bin), <> = Bin, Int. %% X.691:10.9 Encoding of a length determinant %%encode_small_length(undefined,Len) -> % null means no UpperBound %% encode_small_number(Len). %% X.691:10.9.3.5 %% X.691:10.9.3.7 encode_length(undefined,Len) -> % un-constrained if Len < 128 -> % {octets,[Len]}; [20,1,Len]; Len < 16384 -> %{octets,<<2:2,Len:14>>}; [20,2,<<2:2,Len:14>>]; true -> % should be able to endode length >= 16384 i.e. fragmented length exit({error,{asn1,{encode_length,{nyi,above_16k}}}}) end; encode_length({0,'MAX'},Len) -> encode_length(undefined,Len); encode_length(Vr={Lb,Ub},Len) when Ub =< 65535 ,Lb >= 0 -> % constrained encode_constrained_number(Vr,Len); encode_length({Lb,_Ub},Len) when is_integer(Lb), Lb >= 0 -> % Ub > 65535 encode_length(undefined,Len); encode_length({Vr={Lb,Ub},Ext},Len) when Ub =< 65535 ,Lb >= 0,Len= %% constrained extensible [0,encode_constrained_number(Vr,Len)]; encode_length({{Lb,_},Ext},Len) when is_list(Ext) -> [1,encode_semi_constrained_number(Lb,Len)]; encode_length(SingleValue,_Len) when is_integer(SingleValue) -> []. %% X.691 10.9.3.4 (only used for length of bitmap that prefixes extension %% additions in a sequence or set encode_small_length(Len) when Len =< 64 -> %% [{bits,1,0},{bits,6,Len-1}]; % {bits,7,Len-1}; % the same as above but more efficient [10,7,Len-1]; encode_small_length(Len) -> % [{bits,1,1},encode_length(undefined,Len)]. [1,encode_length(undefined,Len)]. decode_small_length(Buffer) -> case getbit(Buffer) of {0,Remain} -> {Bits,Remain2} = getbits(Remain,6), {Bits+1,Remain2}; {1,Remain} -> decode_length(Remain,undefined) end. decode_length(Buffer) -> decode_length(Buffer,undefined). decode_length(Buffer,undefined) -> % un-constrained case align(Buffer) of <<0:1,Oct:7,Rest/binary>> -> {Oct,Rest}; <<2:2,Val:14,Rest/binary>> -> {Val,Rest}; <<3:2,_Val:14,_Rest/binary>> -> %% this case should be fixed exit({error,{asn1,{decode_length,{nyi,above_16k}}}}) end; decode_length(Buffer,{Lb,Ub}) when Ub =< 65535 ,Lb >= 0 -> % constrained decode_constrained_number(Buffer,{Lb,Ub}); decode_length(Buffer,{Lb,_Ub}) when is_integer(Lb), Lb >= 0 -> % Ub > 65535 decode_length(Buffer,undefined); decode_length(Buffer,{{Lb,Ub},Ext}) when is_list(Ext) -> case getbit(Buffer) of {0,Buffer2} -> decode_length(Buffer2, {Lb,Ub}); {1,Buffer2} -> decode_length(Buffer2, undefined) end; %When does this case occur with {_,_Lb,Ub} ?? % X.691:10.9.3.5 decode_length(Bin,{_,_Lb,_Ub}) -> % Unconstrained or large Ub NOTE! this case does not cover case when Ub > 65535 case Bin of <<0:1,Val:7,Rest/bitstring>> -> {Val,Rest}; _ -> case align(Bin) of <<2:2,Val:14,Rest/binary>> -> {Val,Rest}; <<3:2,_:14,_Rest/binary>> -> exit({error,{asn1,{decode_length,{nyi,length_above_64K}}}}) end end; decode_length(Buffer,SingleValue) when is_integer(SingleValue) -> {SingleValue,Buffer}. % X.691:11 decode_boolean(Buffer) -> %when record(Buffer,buffer) case getbit(Buffer) of {1,Remain} -> {true,Remain}; {0,Remain} -> {false,Remain} end. %% ENUMERATED with extension marker decode_enumerated(Buffer,C,{Ntup1,Ntup2}) when is_tuple(Ntup1), is_tuple(Ntup2) -> {Ext,Buffer2} = getext(Buffer), case Ext of 0 -> % not an extension value {Val,Buffer3} = decode_integer(Buffer2,C), case catch (element(Val+1,Ntup1)) of NewVal when is_atom(NewVal) -> {NewVal,Buffer3}; _Error -> exit({error,{asn1,{decode_enumerated,{Val,[Ntup1,Ntup2]}}}}) end; 1 -> % this an extension value {Val,Buffer3} = decode_small_number(Buffer2), case catch (element(Val+1,Ntup2)) of NewVal when is_atom(NewVal) -> {NewVal,Buffer3}; _ -> {{asn1_enum,Val},Buffer3} end end; decode_enumerated(Buffer,C,NamedNumberTup) when is_tuple(NamedNumberTup) -> {Val,Buffer2} = decode_integer(Buffer,C), case catch (element(Val+1,NamedNumberTup)) of NewVal when is_atom(NewVal) -> {NewVal,Buffer2}; _Error -> exit({error,{asn1,{decode_enumerated,{Val,NamedNumberTup}}}}) end. %%=============================================================================== %%=============================================================================== %%=============================================================================== %% Bitstring value, ITU_T X.690 Chapter 8.5 %%=============================================================================== %%=============================================================================== %%=============================================================================== %%=============================================================================== %% encode bitstring value %%=============================================================================== %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% bitstring NamedBitList %% Val can be of: %% - [identifiers] where only named identifers are set to one, %% the Constraint must then have some information of the %% bitlength. %% - [list of ones and zeroes] all bits %% - integer value representing the bitlist %% C is constraint Len, only valid when identifiers %% when the value is a list of {Unused,BinBits}, where %% Unused = integer(), %% BinBits = binary(). encode_bit_string(C,Bin={Unused,BinBits},NamedBitList) when is_integer(Unused), is_binary(BinBits) -> encode_bin_bit_string(C,Bin,NamedBitList); %% when the value is a list of named bits encode_bit_string(C, LoNB=[FirstVal | _RestVal], NamedBitList) when is_atom(FirstVal) -> ToSetPos = get_all_bitposes(LoNB, NamedBitList, []), BitList = make_and_set_list(ToSetPos,0), encode_bit_string(C,BitList,NamedBitList);% consider the constraint encode_bit_string(C, BL=[{bit,_} | _RestVal], NamedBitList) -> ToSetPos = get_all_bitposes(BL, NamedBitList, []), BitList = make_and_set_list(ToSetPos,0), encode_bit_string(C,BitList,NamedBitList); %% when the value is a list of ones and zeroes encode_bit_string(Int, BitListValue, _) when is_list(BitListValue),is_integer(Int),Int =< 16 -> %% The type is constrained by a single value size constraint %% range_check(Int,length(BitListValue)), [40,Int,length(BitListValue),BitListValue]; encode_bit_string(Int, BitListValue, _) when is_list(BitListValue),is_integer(Int), Int =< 255 -> %% The type is constrained by a single value size constraint %% range_check(Int,length(BitListValue)), [2,40,Int,length(BitListValue),BitListValue]; encode_bit_string(Int, BitListValue, _) when is_list(BitListValue),is_integer(Int), Int < ?'64K' -> {Code,DesiredLength,Length} = case length(BitListValue) of B1 when B1 > Int -> exit({error,{'BIT_STRING_length_greater_than_SIZE', Int,BitListValue}}); B1 when B1 =< 255,Int =< 255 -> {40,Int,B1}; B1 when B1 =< 255 -> {42,<>,B1}; B1 -> {43,<>,<>} end, %% The type is constrained by a single value size constraint [2,Code,DesiredLength,Length,BitListValue]; encode_bit_string(no, BitListValue,[]) when is_list(BitListValue) -> [encode_length(undefined,length(BitListValue)), 2,BitListValue]; encode_bit_string({{Fix,Fix},Ext}, BitListValue,[]) when is_integer(Fix), is_list(Ext) -> case length(BitListValue) of Len when Len =< Fix -> [0,encode_bit_string(Fix,BitListValue,[])]; _ -> [1,encode_bit_string(no,BitListValue,[])] end; encode_bit_string(C, BitListValue,[]) when is_list(BitListValue) -> [encode_length(C,length(BitListValue)), 2,BitListValue]; encode_bit_string(no, BitListValue,_NamedBitList) when is_list(BitListValue) -> %% this case with an unconstrained BIT STRING can be made more efficient %% if the complete driver can take a special code so the length field %% is encoded there. NewBitLVal = lists:reverse(lists:dropwhile(fun(0)->true;(1)->false end, lists:reverse(BitListValue))), [encode_length(undefined,length(NewBitLVal)), 2,NewBitLVal]; encode_bit_string({{Fix,Fix},Ext}, BitListValue,_NamedBitList) when is_integer(Fix), is_list(Ext) -> case length(BitListValue) of Len when Len =< Fix -> [0,encode_bit_string(Fix,BitListValue,_NamedBitList)]; _ -> [1,encode_bit_string(no,BitListValue,_NamedBitList)] end; encode_bit_string(C,BitListValue,_NamedBitList) when is_list(BitListValue) ->% C = {_,'MAX'} % NewBitLVal = lists:reverse(lists:dropwhile(fun(0)->true;(1)->false end, % lists:reverse(BitListValue))), NewBitLVal = bit_string_trailing_zeros(BitListValue,C), [encode_length(C,length(NewBitLVal)), 2,NewBitLVal]; %% when the value is an integer encode_bit_string(C, IntegerVal, NamedBitList) when is_integer(IntegerVal)-> BitList = int_to_bitlist(IntegerVal), encode_bit_string(C,BitList,NamedBitList); %% when the value is a tuple encode_bit_string(C,{Name,Val}, NamedBitList) when is_atom(Name) -> encode_bit_string(C,Val,NamedBitList). bit_string_trailing_zeros(BitList,C) when is_integer(C) -> bit_string_trailing_zeros1(BitList,C,C); bit_string_trailing_zeros(BitList,{Lb,Ub}) when is_integer(Lb) -> bit_string_trailing_zeros1(BitList,Lb,Ub); bit_string_trailing_zeros(BitList,{{Lb,Ub},_}) when is_integer(Lb) -> bit_string_trailing_zeros1(BitList,Lb,Ub); bit_string_trailing_zeros(BitList,_) -> BitList. bit_string_trailing_zeros1(BitList,Lb,Ub) -> case length(BitList) of Lb -> BitList; B when B BitList++lists:duplicate(Lb-B,0); D -> F = fun(L,LB,LB,_,_)->lists:reverse(L); ([0|R],L1,LB,UB,Fun)->Fun(R,L1-1,LB,UB,Fun); (L,L1,_,UB,_)when L1 =< UB -> lists:reverse(L); (_,_L1,_,_,_) ->exit({error,{list_length_BIT_STRING, BitList}}) end, F(lists:reverse(BitList),D,Lb,Ub,F) end. %% encode_bin_bit_string/3, when value is a tuple of Unused and BinBits. %% Unused = integer(),i.e. number unused bits in least sign. byte of %% BinBits = binary(). encode_bin_bit_string(C,{Unused,BinBits},_NamedBitList) when is_integer(C),C=<16 -> range_check(C,bit_size(BinBits) - Unused), [45,C,size(BinBits),BinBits]; encode_bin_bit_string(C,{Unused,BinBits},_NamedBitList) when is_integer(C), C =< 255 -> range_check(C,bit_size(BinBits) - Unused), [2,45,C,size(BinBits),BinBits]; encode_bin_bit_string(C,{Unused,BinBits},_NamedBitList) when is_integer(C), C =< 65535 -> range_check(C,bit_size(BinBits) - Unused), case size(BinBits) of Size when Size =< 255 -> [2,46,<>,Size,BinBits]; Size -> [2,47,<>,<>,BinBits] end; %% encode_bin_bit_string(C,{_Unused,BinBits},_NamedBitList) %% when is_integer(C) -> %% exit({error,{asn1, {bitstring_size, not_supported, C}}}); encode_bin_bit_string(C,UnusedAndBin={_,_},NamedBitList) -> % UnusedAndBin1 = {Unused1,Bin1} = {Unused1,Bin1} = %% removes all trailing bits if NamedBitList is not empty remove_trailing_bin(NamedBitList,UnusedAndBin), case C of {Lb,Ub} when is_integer(Lb),is_integer(Ub) -> % [encode_length({Lb,Ub},size(Bin1)*8 - Unused1), % align,UnusedAndBin1]; Size=size(Bin1), [encode_length({Lb,Ub},Size*8 - Unused1), 2,octets_unused_to_complete(Unused1,Size,Bin1)]; no -> Size=size(Bin1), [encode_length(undefined,Size*8 - Unused1), 2,octets_unused_to_complete(Unused1,Size,Bin1)]; {{Fix,Fix},Ext} when is_integer(Fix),is_list(Ext) -> %%[encode_length(Sc,size(Bin1)*8 - Unused1), case size(Bin1)*8 - Unused1 of Size when Size =< Fix -> [0,encode_bin_bit_string(Fix,UnusedAndBin,NamedBitList)]; _Size -> [1,encode_bin_bit_string(no,UnusedAndBin,NamedBitList)] end; Sc -> Size=size(Bin1), [encode_length(Sc,Size*8 - Unused1), 2,octets_unused_to_complete(Unused1,Size,Bin1)] end. range_check(C,C) when is_integer(C) -> ok; range_check(C1,C2) when is_integer(C1) -> exit({error,{asn1,{bit_string_out_of_range,{C1,C2}}}}). remove_trailing_bin([], {Unused,Bin}) -> {Unused,Bin}; remove_trailing_bin(_NamedNumberList,{_Unused,<<>>}) -> {0,<<>>}; remove_trailing_bin(NamedNumberList, {_Unused,Bin}) -> Size = size(Bin)-1, <> = Bin, %% clear the Unused bits to be sure % LastByte1 = LastByte band (((1 bsl Unused) -1) bxor 255),% why this??? Unused1 = trailingZeroesInNibble(LastByte band 15), Unused2 = case Unused1 of 4 -> 4 + trailingZeroesInNibble(LastByte bsr 4); _ -> Unused1 end, case Unused2 of 8 -> remove_trailing_bin(NamedNumberList,{0,Bfront}); _ -> {Unused2,Bin} end. trailingZeroesInNibble(0) -> 4; trailingZeroesInNibble(1) -> 0; trailingZeroesInNibble(2) -> 1; trailingZeroesInNibble(3) -> 0; trailingZeroesInNibble(4) -> 2; trailingZeroesInNibble(5) -> 0; trailingZeroesInNibble(6) -> 1; trailingZeroesInNibble(7) -> 0; trailingZeroesInNibble(8) -> 3; trailingZeroesInNibble(9) -> 0; trailingZeroesInNibble(10) -> 1; trailingZeroesInNibble(11) -> 0; trailingZeroesInNibble(12) -> %#1100 2; trailingZeroesInNibble(13) -> 0; trailingZeroesInNibble(14) -> 1; trailingZeroesInNibble(15) -> 0. %%%%%%%%%%%%%%% %% The result is presented as a list of named bits (if possible) %% else as a tuple {Unused,Bits}. Unused is the number of unused %% bits, least significant bits in the last byte of Bits. Bits is %% the BIT STRING represented as a binary. %% decode_compact_bit_string(Buffer, C, NamedNumberList) -> case get_constraint(C,'SizeConstraint') of 0 -> % fixed length {{8,0},Buffer}; V when is_integer(V),V=<16 -> %fixed length 16 bits or less compact_bit_string(Buffer,V,NamedNumberList); V when is_integer(V),V=<65536 -> %fixed length > 16 bits Bytes2 = align(Buffer), compact_bit_string(Bytes2,V,NamedNumberList); V when is_integer(V) -> % V > 65536 => fragmented value {BitStr,Buffer2} = decode_fragmented_bits(Buffer,V), case bit_size(BitStr) band 7 of 0 -> {{0,BitStr},Buffer2}; N -> {{8-N,<>},Buffer2} end; {Lb,Ub} when is_integer(Lb),is_integer(Ub) -> %% This case may demand decoding of fragmented length/value {Len,Bytes2} = decode_length(Buffer,{Lb,Ub}), Bytes3 = align(Bytes2), compact_bit_string(Bytes3,Len,NamedNumberList); no -> %% This case may demand decoding of fragmented length/value {Len,Bytes2} = decode_length(Buffer,undefined), Bytes3 = align(Bytes2), compact_bit_string(Bytes3,Len,NamedNumberList); {{Fix,Fix},Ext} = Sc when is_integer(Fix), is_list(Ext) -> case decode_length(Buffer,Sc) of {Len,Bytes2} when Len > Fix -> Bytes3 = align(Bytes2), compact_bit_string(Bytes3,Len,NamedNumberList); {Len,Bytes2} when Len > 16 -> Bytes3 = align(Bytes2), compact_bit_string(Bytes3,Len,NamedNumberList); {Len,Bytes2} -> compact_bit_string(Bytes2,Len,NamedNumberList) end; Sc -> {Len,Bytes2} = decode_length(Buffer,Sc), Bytes3 = align(Bytes2), compact_bit_string(Bytes3,Len,NamedNumberList) end. %%%%%%%%%%%%%%% %% The result is presented as a list of named bits (if possible) %% else as a list of 0 and 1. %% decode_bit_string(Buffer, C, NamedNumberList) -> case get_constraint(C,'SizeConstraint') of {Lb,Ub} when is_integer(Lb),is_integer(Ub) -> {Len,Bytes2} = decode_length(Buffer,{Lb,Ub}), Bytes3 = align(Bytes2), bit_list_or_named(Bytes3,Len,NamedNumberList); no -> {Len,Bytes2} = decode_length(Buffer,undefined), Bytes3 = align(Bytes2), bit_list_or_named(Bytes3,Len,NamedNumberList); 0 -> % fixed length {[],Buffer}; % nothing to encode V when is_integer(V),V=<16 -> % fixed length 16 bits or less bit_list_or_named(Buffer,V,NamedNumberList); V when is_integer(V),V=<65536 -> Bytes2 = align(Buffer), bit_list_or_named(Bytes2,V,NamedNumberList); V when is_integer(V) -> Bytes2 = align(Buffer), {BinBits,_Bytes3} = decode_fragmented_bits(Bytes2,V), bit_list_or_named(BinBits,V,NamedNumberList); {{Fix,Fix},Ext} =Sc when is_integer(Fix), is_list(Ext) -> case decode_length(Buffer,Sc) of {Len,Bytes2} when Len > Fix -> Bytes3 = align(Bytes2), bit_list_or_named(Bytes3,Len,NamedNumberList); {Len,Bytes2} when Len > 16 -> Bytes3 = align(Bytes2), bit_list_or_named(Bytes3,Len,NamedNumberList); {Len,Bytes2} -> bit_list_or_named(Bytes2,Len,NamedNumberList) end; Sc -> % extension marker {Len,Bytes2} = decode_length(Buffer,Sc), Bytes3 = align(Bytes2), bit_list_or_named(Bytes3,Len,NamedNumberList) end. %% if no named bits are declared we will return a %% {Unused,Bits}. Unused = integer(), %% Bits = binary(). compact_bit_string(Buffer,Len,[]) -> {BitStr,Rest} = getbits_as_binary(Len,Buffer), % {{Unused,BinBits},NewBuffer} PadLen = (8 - (bit_size(BitStr) rem 8)) rem 8, {{PadLen,<>},Rest}; compact_bit_string(Buffer,Len,NamedNumberList) -> bit_list_or_named(Buffer,Len,NamedNumberList). %% if no named bits are declared we will return a %% BitList = [0 | 1] bit_list_or_named(Buffer,Len,[]) -> getbits_as_list(Len,Buffer); %% if there are named bits declared we will return a named %% BitList where the names are atoms and unnamed bits represented %% as {bit,Pos} %% BitList = [atom() | {bit,Pos}] %% Pos = integer() bit_list_or_named(Buffer,Len,NamedNumberList) -> {BitList,Rest} = getbits_as_list(Len,Buffer), {bit_list_or_named1(0,BitList,NamedNumberList,[]), Rest}. bit_list_or_named1(Pos,[0|Bt],Names,Acc) -> bit_list_or_named1(Pos+1,Bt,Names,Acc); bit_list_or_named1(Pos,[1|Bt],Names,Acc) -> case lists:keysearch(Pos,2,Names) of {value,{Name,_}} -> bit_list_or_named1(Pos+1,Bt,Names,[Name|Acc]); _ -> bit_list_or_named1(Pos+1,Bt,Names,[{bit,Pos}|Acc]) end; bit_list_or_named1(_Pos,[],_Names,Acc) -> lists:reverse(Acc). %%%%%%%%%%%%%%% %% int_to_bitlist(Int) when is_integer(Int), Int > 0 -> [Int band 1 | int_to_bitlist(Int bsr 1)]; int_to_bitlist(0) -> []. %%%%%%%%%%%%%%%%%% %% get_all_bitposes([list of named bits to set], named_bit_db, []) -> %% [sorted_list_of_bitpositions_to_set] get_all_bitposes([{bit,ValPos}|Rest], NamedBitList, Ack) -> get_all_bitposes(Rest, NamedBitList, [ValPos | Ack ]); get_all_bitposes([Val | Rest], NamedBitList, Ack) -> case lists:keysearch(Val, 1, NamedBitList) of {value, {_ValName, ValPos}} -> get_all_bitposes(Rest, NamedBitList, [ValPos | Ack]); _ -> exit({error,{asn1, {bitstring_namedbit, Val}}}) end; get_all_bitposes([], _NamedBitList, Ack) -> lists:sort(Ack). %%%%%%%%%%%%%%%%%% %% make_and_set_list([list of positions to set to 1])-> %% returns list with all in SetPos set. %% in positioning in list the first element is 0, the second 1 etc.., but %% make_and_set_list([XPos|SetPos], XPos) -> [1 | make_and_set_list(SetPos, XPos + 1)]; make_and_set_list([Pos|SetPos], XPos) -> [0 | make_and_set_list([Pos | SetPos], XPos + 1)]; make_and_set_list([], _) -> []. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% X.691:16 %% encode_octet_string(Constraint,ExtensionMarker,Val) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% encode_octet_string(C,Val) -> encode_octet_string(C,false,Val). encode_octet_string(C,Bool,{_Name,Val}) -> encode_octet_string(C,Bool,Val); encode_octet_string(_C,true,_Val) -> exit({error,{asn1,{'not_supported',extensionmarker}}}); encode_octet_string(SZ={_,_},false,Val) -> % [encode_length(SZ,length(Val)),align, % {octets,Val}]; Len = length(Val), [encode_length(SZ,Len),2, octets_to_complete(Len,Val)]; encode_octet_string(SZ,false,Val) when is_list(SZ) -> Len = length(Val), [encode_length({hd(SZ),lists:max(SZ)},Len),2, octets_to_complete(Len,Val)]; encode_octet_string(no,false,Val) -> Len = length(Val), [encode_length(undefined,Len),2, octets_to_complete(Len,Val)]; encode_octet_string(C,_,_) -> exit({error,{not_implemented,C}}). decode_octet_string(Bytes,Range) -> decode_octet_string(Bytes,Range,false). decode_octet_string(<>,1,false) -> %% {B1,Bytes2} = getbits(Bytes,8), {[B1],Bytes}; decode_octet_string(<>,2,false) -> %% {Bs,Bytes2}= getbits(Bytes,16), %% {binary_to_list(<>),Bytes2}; {[B1,B2],Bytes}; decode_octet_string(Bytes,Sv,false) when is_integer(Sv),Sv=<65535 -> %% Bytes2 = align(Bytes), %% getoctets_as_list aligns buffer before it picks octets getoctets_as_list(Bytes,Sv); decode_octet_string(Bytes,Sv,false) when is_integer(Sv) -> Bytes2 = align(Bytes), decode_fragmented_octets(Bytes2,Sv); decode_octet_string(Bytes,{Lb,Ub},false) -> {Len,Bytes2} = decode_length(Bytes,{Lb,Ub}), %% Bytes3 = align(Bytes2), getoctets_as_list(Bytes2,Len); decode_octet_string(Bytes,Sv,false) when is_list(Sv) -> {Len,Bytes2} = decode_length(Bytes,{hd(Sv),lists:max(Sv)}), %% Bytes3 = align(Bytes2), getoctets_as_list(Bytes2,Len); decode_octet_string(Bytes,no,false) -> {Len,Bytes2} = decode_length(Bytes,undefined), %% Bytes3 = align(Bytes2), getoctets_as_list(Bytes2,Len). %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Restricted char string types %% (NumericString, PrintableString,VisibleString,IA5String,BMPString,UniversalString) %% X.691:26 and X.680:34-36 %%encode_restricted_string(aligned,'BMPString',Constraints,Extension,Val) encode_restricted_string(aligned,{Name,Val}) when is_atom(Name) -> encode_restricted_string(aligned,Val); encode_restricted_string(aligned,Val) when is_list(Val)-> Len = length(Val), [encode_length(undefined,Len),octets_to_complete(Len,Val)]. encode_known_multiplier_string(StringType,SizeC,NumBits,CharOutTab,{Name,Val}) when is_atom(Name) -> encode_known_multiplier_string(StringType,SizeC,NumBits,CharOutTab,Val); encode_known_multiplier_string(_StringType,SizeC,NumBits,CharOutTab,Val) -> Result = chars_encode2(Val,NumBits,CharOutTab), case SizeC of Ub when is_integer(Ub), Ub*NumBits =< 16 -> Result; Ub when is_integer(Ub),Ub =<65535 -> % fixed length [2,Result]; {Ub,Lb} -> [encode_length({Ub,Lb},length(Val)),2,Result]; no -> [encode_length(undefined,length(Val)),2,Result] end. decode_restricted_string(Bytes,aligned) -> {Len,Bytes2} = decode_length(Bytes,undefined), getoctets_as_list(Bytes2,Len). decode_known_multiplier_string(StringType,SizeC,NumBits,CharInTab,Bytes) -> case SizeC of Ub when is_integer(Ub), Ub*NumBits =< 16 -> chars_decode(Bytes,NumBits,StringType,CharInTab,Ub); Ub when is_integer(Ub),Ub =<65535 -> % fixed length Bytes1 = align(Bytes), chars_decode(Bytes1,NumBits,StringType,CharInTab,Ub); Vl when is_list(Vl) -> {Len,Bytes1} = decode_length(Bytes,{hd(Vl),lists:max(Vl)}), Bytes2 = align(Bytes1), chars_decode(Bytes2,NumBits,StringType,CharInTab,Len); no -> {Len,Bytes1} = decode_length(Bytes,undefined), Bytes2 = align(Bytes1), chars_decode(Bytes2,NumBits,StringType,CharInTab,Len); {Lb,Ub}-> {Len,Bytes1} = decode_length(Bytes,{Lb,Ub}), Bytes2 = align(Bytes1), chars_decode(Bytes2,NumBits,StringType,CharInTab,Len) end. encode_GeneralString(_C,Val) -> encode_restricted_string(aligned,Val). decode_GeneralString(Bytes,_C) -> decode_restricted_string(Bytes,aligned). encode_GraphicString(_C,Val) -> encode_restricted_string(aligned,Val). decode_GraphicString(Bytes,_C) -> decode_restricted_string(Bytes,aligned). encode_ObjectDescriptor(_C,Val) -> encode_restricted_string(aligned,Val). decode_ObjectDescriptor(Bytes) -> decode_restricted_string(Bytes,aligned). encode_TeletexString(_C,Val) -> % equivalent with T61String encode_restricted_string(aligned,Val). decode_TeletexString(Bytes,_C) -> decode_restricted_string(Bytes,aligned). encode_VideotexString(_C,Val) -> encode_restricted_string(aligned,Val). decode_VideotexString(Bytes,_C) -> decode_restricted_string(Bytes,aligned). %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% getBMPChars(Bytes,Len) ->{BMPcharList,RemainingBytes} %% getBMPChars(<>, 0, Acc) -> {lists:reverse(Acc),T}; getBMPChars(<<0,O2,Bytes1/bitstring>>, Len, Acc) -> getBMPChars(Bytes1,Len-1,[O2|Acc]); getBMPChars(<>, Len, Acc) -> getBMPChars(Bytes1,Len-1,[{0,0,O1,O2}|Acc]). %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% chars_encode(C,StringType,Value) -> ValueList %% %% encodes chars according to the per rules taking the constraint PermittedAlphabet %% into account. %% This function does only encode the value part and NOT the length % chars_encode(C,StringType,Value) -> % case {StringType,get_constraint(C,'PermittedAlphabet')} of % {'UniversalString',{_,Sv}} -> % exit({error,{asn1,{'not implemented',"UniversalString with PermittedAlphabet constraint"}}}); % {'BMPString',{_,Sv}} -> % exit({error,{asn1,{'not implemented',"BMPString with PermittedAlphabet constraint"}}}); % _ -> % {NumBits,CharOutTab} = {get_NumBits(C,StringType),get_CharOutTab(C,StringType)}, % chars_encode2(Value,NumBits,CharOutTab) % end. chars_encode2([H|T],NumBits,T1={Min,Max,notab}) when H =< Max, H >= Min -> % [[10,NumBits,H-Min]|chars_encode2(T,NumBits,T1)]; [pre_complete_bits(NumBits,H-Min)|chars_encode2(T,NumBits,T1)]; chars_encode2([H|T],NumBits,T1={Min,Max,Tab}) when H =< Max, H >= Min -> % [[10,NumBits,element(H-Min+1,Tab)]|chars_encode2(T,NumBits,T1)]; [pre_complete_bits(NumBits,exit_if_false(H,element(H-Min+1,Tab)))| chars_encode2(T,NumBits,T1)]; chars_encode2([{A,B,C,D}|T],NumBits,T1={Min,_Max,notab}) -> %% no value range check here (ought to be, but very expensive) % [{bits,NumBits,(A*B*C*D)-Min}|chars_encode2(T,NumBits,{Min,Max,notab})]; % [[10,NumBits,((((((A bsl 8)+B) bsl 8)+C) bsl 8)+D)-Min]|chars_encode2(T,NumBits,T1)]; [pre_complete_bits(NumBits, ((((((A bsl 8)+B) bsl 8)+C) bsl 8)+D)-Min)| chars_encode2(T,NumBits,T1)]; chars_encode2([H={A,B,C,D}|T],NumBits,{Min,Max,Tab}) -> %% no value range check here (ought to be, but very expensive) [pre_complete_bits(NumBits,exit_if_false(H,element(((((((A bsl 8)+B) bsl 8)+C) bsl 8)+D)-Min,Tab)))|chars_encode2(T,NumBits,{Min,Max,notab})]; chars_encode2([H|_T],_NumBits,{_Min,_Max,_Tab}) -> exit({error,{asn1,{illegal_char_value,H}}}); chars_encode2([],_,_) -> []. exit_if_false(V,false)-> exit({error,{asn1,{"illegal value according to Permitted alphabet constraint",V}}}); exit_if_false(_,V) ->V. pre_complete_bits(NumBits,Val) when NumBits =< 8 -> [10,NumBits,Val]; pre_complete_bits(NumBits,Val) when NumBits =< 16 -> [10,NumBits-8,Val bsr 8,10,8,(Val band 255)]; pre_complete_bits(NumBits,Val) when NumBits =< 2040 -> % 255 * 8 % LBUsed = NumBits rem 8, % {Unused,Len} = case (8 - LBUsed) of % 8 -> {0,NumBits div 8}; % U -> {U,(NumBits div 8) + 1} % end, % NewVal = Val bsr LBUsed, % [30,Unused,Len,<>]. Unused = (8 - (NumBits rem 8)) rem 8, Len = NumBits + Unused, [30,Unused,Len div 8,<<(Val bsl Unused):Len>>]. chars_decode(Bytes,_,'BMPString',_,Len) -> getBMPChars(Bytes,Len,[]); chars_decode(Bytes,NumBits,_StringType,CharInTab,Len) -> chars_decode2(Bytes,CharInTab,NumBits,Len). chars_decode2(Bytes,CharInTab,NumBits,Len) -> chars_decode2(Bytes,CharInTab,NumBits,Len,[]). chars_decode2(Bytes,_CharInTab,_NumBits,0,Acc) -> {lists:reverse(Acc),Bytes}; chars_decode2(Bytes,{Min,Max,notab},NumBits,Len,Acc) when NumBits > 8 -> {Char,Bytes2} = getbits(Bytes,NumBits), Result = if Char < 256 -> Char; true -> list_to_tuple(binary_to_list(<>)) end, chars_decode2(Bytes2,{Min,Max,notab},NumBits,Len -1,[Result|Acc]); chars_decode2(Bytes,{Min,Max,notab},NumBits,Len,Acc) -> {Char,Bytes2} = getbits(Bytes,NumBits), chars_decode2(Bytes2,{Min,Max,notab},NumBits,Len -1,[Char+Min|Acc]); %% BMPString and UniversalString with PermittedAlphabet is currently not supported chars_decode2(Bytes,{Min,Max,CharInTab},NumBits,Len,Acc) -> {Char,Bytes2} = getbits(Bytes,NumBits), chars_decode2(Bytes2,{Min,Max,CharInTab},NumBits,Len -1,[element(Char+1,CharInTab)|Acc]). % X.691:17 encode_null(_Val) -> []. % encodes to nothing %encode_null({Name,Val}) when is_atom(Name) -> % encode_null(Val). decode_null(Bytes) -> {'NULL',Bytes}. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% encode_UTF8String(Val) -> CompleteList %% Val -> <> %% CompleteList -> [apropriate codes and values for driver complete] %% encode_UTF8String(Val) when is_binary(Val) -> [encode_length(undefined,size(Val)), octets_to_complete(size(Val),Val)]; encode_UTF8String(Val) -> encode_UTF8String(list_to_binary(Val)). %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% decode_UTF8String(Bytes) -> {Utf8Binary,RemainingBytes} %% Utf8Binary -> <> %% RemainingBytes -> <> decode_UTF8String(Bytes) -> {Len,Bytes2} = decode_length(Bytes,undefined), {_Bin,_Bytes3} = getoctets_as_bin(Bytes2,Len). %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% encode_object_identifier(Val) -> CompleteList %% encode_object_identifier({Name,Val}) -> CompleteList %% Val -> {Int1,Int2,...,IntN} % N >= 2 %% Name -> atom() %% Int1 -> integer(0..2) %% Int2 -> integer(0..39) when Int1 (0..1) else integer() %% Int3-N -> integer() %% CompleteList -> [{bits,8,Val}|{octets,Ol}|align|...] %% encode_object_identifier({Name,Val}) when is_atom(Name) -> encode_object_identifier(Val); encode_object_identifier(Val) -> OctetList = e_object_identifier(Val), Octets = list_to_binary(OctetList), [encode_length(undefined,size(Octets)), octets_to_complete(size(Octets),Octets)]. e_object_identifier({'OBJECT IDENTIFIER',V}) -> e_object_identifier(V); e_object_identifier({Cname,V}) when is_atom(Cname),is_tuple(V) -> e_object_identifier(tuple_to_list(V)); e_object_identifier({Cname,V}) when is_atom(Cname),is_list(V) -> e_object_identifier(V); e_object_identifier(V) when is_tuple(V) -> e_object_identifier(tuple_to_list(V)); %% E1 = 0|1|2 and (E2 < 40 when E1 = 0|1) e_object_identifier([E1,E2|Tail]) when E1 >= 0, E1 < 2, E2 < 40 ; E1==2 -> Head = 40*E1 + E2, % weird e_object_elements([Head|Tail],[]); e_object_identifier(Oid=[_,_|_Tail]) -> exit({error,{asn1,{'illegal_value',Oid}}}). e_object_elements([],Acc) -> lists:reverse(Acc); e_object_elements([H|T],Acc) -> e_object_elements(T,[e_object_element(H)|Acc]). e_object_element(Num) when Num < 128 -> [Num]; e_object_element(Num) -> [e_o_e(Num bsr 7)|[Num band 2#1111111]]. e_o_e(Num) when Num < 128 -> Num bor 2#10000000; e_o_e(Num) -> [e_o_e(Num bsr 7)|[(Num band 2#1111111) bor 2#10000000]]. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% decode_object_identifier(Bytes) -> {ObjId,RemainingBytes} %% ObjId -> {integer(),integer(),...} % at least 2 integers %% RemainingBytes -> [integer()] when integer() (0..255) decode_object_identifier(Bytes) -> {Len,Bytes2} = decode_length(Bytes,undefined), {Octs,Bytes3} = getoctets_as_list(Bytes2,Len), [First|Rest] = dec_subidentifiers(Octs,0,[]), Idlist = if First < 40 -> [0,First|Rest]; First < 80 -> [1,First - 40|Rest]; true -> [2,First - 80|Rest] end, {list_to_tuple(Idlist),Bytes3}. dec_subidentifiers([H|T],Av,Al) when H >=16#80 -> dec_subidentifiers(T,(Av bsl 7) + (H band 16#7F),Al); dec_subidentifiers([H|T],Av,Al) -> dec_subidentifiers(T,0,[(Av bsl 7) + H |Al]); dec_subidentifiers([],_Av,Al) -> lists:reverse(Al). %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% encode_relative_oid(Val) -> CompleteList %% encode_relative_oid({Name,Val}) -> CompleteList encode_relative_oid({Name,Val}) when is_atom(Name) -> encode_relative_oid(Val); encode_relative_oid(Val) when is_tuple(Val) -> encode_relative_oid(tuple_to_list(Val)); encode_relative_oid(Val) when is_list(Val) -> Octets = list_to_binary([e_object_element(X)||X <- Val]), [encode_length(undefined,size(Octets)), octets_to_complete(size(Octets),Octets)]. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% decode_relative_oid(Val) -> CompleteList %% decode_relative_oid({Name,Val}) -> CompleteList decode_relative_oid(Bytes) -> {Len,Bytes2} = decode_length(Bytes,undefined), {Octs,Bytes3} = getoctets_as_list(Bytes2,Len), ObjVals = dec_subidentifiers(Octs,0,[]), {list_to_tuple(ObjVals),Bytes3}. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% encode_real(Val) -> CompleteList %% encode_real({Name,Val}) -> CompleteList encode_real({Name,Val}) when is_atom(Name) -> encode_real(Val); encode_real(Real) -> {EncVal,Len} = ?RT_COMMON:encode_real([],Real), [encode_length(undefined,Len),octets_to_complete(size(EncVal),EncVal)]. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% decode_real(Val) -> {REALvalue,Rest} %% decode_real({Name,Val}) -> {REALvalue,Rest} decode_real(Bytes) -> {Len,Bytes2} = decode_length(Bytes,undefined), {RealVal,Rest,Len} = ?RT_COMMON:decode_real(Bytes2,Len), {RealVal,Rest}. get_constraint([{Key,V}],Key) -> V; get_constraint([],_) -> no; get_constraint(C,Key) -> case lists:keysearch(Key,1,C) of false -> no; {value,{_,V}} -> V end. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% complete(InList) -> ByteList %% Takes a coded list with bits and bytes and converts it to a list of bytes %% Should be applied as the last step at encode of a complete ASN.1 type %% -ifdef(nodriver). complete(L) -> erlang_complete(L). -else. %% asn1-1.7 complete(L) -> case asn1rt_nif:encode_per_complete(L) of {error, Reason} -> handle_error(Reason, L); Else when is_binary(Else) -> Else end. handle_error([],_)-> exit({error,{asn1,{"memory allocation problem in driver"}}}); handle_error($1,L) -> % error in complete in driver exit({error,{asn1,L}}); handle_error(ErrL,L) -> exit({error,{asn1,ErrL,L}}). -endif. octets_to_complete(Len,Val) when Len < 256 -> [20,Len,Val]; octets_to_complete(Len,Val) -> [21,<>,Val]. octets_unused_to_complete(Unused,Len,Val) when Len < 256 -> [30,Unused,Len,Val]; octets_unused_to_complete(Unused,Len,Val) -> [31,Unused,<>,Val].