%% %% %CopyrightBegin% %% %% Copyright Ericsson AB 2008-2010. All Rights Reserved. %% %% The contents of this file are subject to the Erlang Public License, %% Version 1.1, (the "License"); you may not use this file except in %% compliance with the License. You should have received a copy of the %% Erlang Public License along with this software. If not, it can be %% retrieved online at http://www.erlang.org/. %% %% Software distributed under the License is distributed on an "AS IS" %% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See %% the License for the specific language governing rights and limitations %% under the License. %% %% %CopyrightEnd% %% %% -module(asn1rt_uper_bin). %% encoding / decoding of PER unaligned -include("asn1_records.hrl"). %%-compile(export_all). -export([setext/1, fixoptionals/3, fixextensions/2, getext/1, getextension/2, skipextensions/3, getbit/1, getchoice/3 ]). -export([getoptionals2/2, set_choice/3, encode_integer/2, encode_integer/3 ]). -export([decode_integer/2, decode_integer/3, encode_small_number/1, encode_boolean/1, decode_boolean/1, encode_length/2, decode_length/1, decode_length/2, encode_small_length/1, decode_small_length/1, decode_compact_bit_string/3]). -export([decode_enumerated/3, encode_bit_string/3, decode_bit_string/3 ]). -export([encode_octet_string/2, decode_octet_string/2, encode_relative_oid/1, decode_relative_oid/1, encode_object_identifier/1, decode_object_identifier/1, encode_real/1, decode_real/1, complete/1, complete_NFP/1]). -export([encode_open_type/2, decode_open_type/2]). -export([encode_UniversalString/2, decode_UniversalString/2, encode_PrintableString/2, decode_PrintableString/2, encode_GeneralString/2, decode_GeneralString/2, encode_GraphicString/2, decode_GraphicString/2, encode_TeletexString/2, decode_TeletexString/2, encode_VideotexString/2, decode_VideotexString/2, encode_VisibleString/2, decode_VisibleString/2, encode_UTF8String/1, decode_UTF8String/1, encode_BMPString/2, decode_BMPString/2, encode_IA5String/2, decode_IA5String/2, encode_NumericString/2, decode_NumericString/2, encode_ObjectDescriptor/2, decode_ObjectDescriptor/1 ]). -define('16K',16384). -define('32K',32768). -define('64K',65536). %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% setext(true|false) -> CompleteList %% setext(false) -> <<0:1>>; setext(true) -> <<1:1>>. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% This is the new fixoptionals/3 which is used by the new generates %% fixoptionals(OptList,OptLength,Val) when is_tuple(Val) -> Bits = fixoptionals(OptList,Val,0), {Val,<>}; fixoptionals([],_Val,Acc) -> %% Optbits Acc; fixoptionals([{Pos,DefVal}|Ot],Val,Acc) -> case element(Pos,Val) of asn1_DEFAULT -> fixoptionals(Ot,Val,Acc bsl 1); DefVal -> fixoptionals(Ot,Val,Acc bsl 1); _ -> fixoptionals(Ot,Val,(Acc bsl 1) + 1) end; fixoptionals([Pos|Ot],Val,Acc) -> case element(Pos,Val) of asn1_NOVALUE -> fixoptionals(Ot,Val,Acc bsl 1); asn1_DEFAULT -> fixoptionals(Ot,Val,Acc bsl 1); _ -> fixoptionals(Ot,Val,(Acc bsl 1) + 1) end. getext(Bytes) when is_bitstring(Bytes) -> getbit(Bytes). getextension(0, Bytes) -> {{},Bytes}; getextension(1, Bytes) -> {Len,Bytes2} = decode_small_length(Bytes), {Blist, Bytes3} = getbits_as_list(Len,Bytes2), {list_to_tuple(Blist),Bytes3}. fixextensions({ext,ExtPos,ExtNum},Val) -> case fixextensions(ExtPos,ExtNum+ExtPos,Val,0) of 0 -> []; ExtBits -> [encode_small_length(ExtNum),<>] end. fixextensions(Pos,MaxPos,_,Acc) when Pos >= MaxPos -> Acc; fixextensions(Pos,ExtPos,Val,Acc) -> Bit = case catch(element(Pos+1,Val)) of asn1_NOVALUE -> 0; asn1_NOEXTVALUE -> 0; {'EXIT',_} -> 0; _ -> 1 end, fixextensions(Pos+1,ExtPos,Val,(Acc bsl 1)+Bit). skipextensions(Bytes,Nr,ExtensionBitPattern) -> case (catch element(Nr,ExtensionBitPattern)) of 1 -> {_,Bytes2} = decode_open_type(Bytes,[]), skipextensions(Bytes2, Nr+1, ExtensionBitPattern); 0 -> skipextensions(Bytes, Nr+1, ExtensionBitPattern); {'EXIT',_} -> % badarg, no more extensions Bytes end. getchoice(Bytes,1,0) -> % only 1 alternative is not encoded {0,Bytes}; getchoice(Bytes,_,1) -> decode_small_number(Bytes); getchoice(Bytes,NumChoices,0) -> decode_constrained_number(Bytes,{0,NumChoices-1}). %%%%%%%%%%%%%%% getoptionals2(Bytes,NumOpt) -> getbits(Bytes,NumOpt). %% getbits_as_binary(Num,Bytes) -> {{Unused,BinBits},RestBytes}, %% Num = integer(), %% Bytes = list() | tuple(), %% Unused = integer(), %% BinBits = binary(), %% RestBytes = tuple() getbits_as_binary(Num,Bytes) when is_bitstring(Bytes) -> <> = Bytes, {BS,Rest}. getbits_as_list(Num,Bytes) when is_bitstring(Bytes) -> <> = Bytes, {[ B || <> <= BitStr],Rest}. getbit(Buffer) -> <> = Buffer, {B,Rest}. getbits(Buffer,Num) when is_bitstring(Buffer) -> <> = Buffer, {Bs,Rest}. %% Pick the first Num octets. %% Returns octets as an integer with bit significance as in buffer. getoctets(Buffer,Num) when is_bitstring(Buffer) -> <> = Buffer, {Val,RestBitStr}. %% Pick the first Num octets. %% Returns octets as a binary getoctets_as_bin(Bin,Num) when is_bitstring(Bin) -> <> = Bin, {Octets,RestBin}. %% same as above but returns octets as a List getoctets_as_list(Buffer,Num) -> {Bin,Buffer2} = getoctets_as_bin(Buffer,Num), {binary_to_list(Bin),Buffer2}. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% set_choice(Alt,Choices,Altnum) -> ListofBitSettings %% Alt = atom() %% Altnum = integer() | {integer(),integer()}% number of alternatives %% Choices = [atom()] | {[atom()],[atom()]} %% When Choices is a tuple the first list is the Rootset and the %% second is the Extensions and then Altnum must also be a tuple with the %% lengths of the 2 lists %% set_choice(Alt,{L1,L2},{Len1,_Len2}) -> case set_choice_tag(Alt,L1) of N when is_integer(N), Len1 > 1 -> [<<0:1>>, % the value is in the root set encode_integer([{'ValueRange',{0,Len1-1}}],N)]; N when is_integer(N) -> <<0:1>>; % no encoding if only 0 or 1 alternative false -> [<<1:1>>, % extension value case set_choice_tag(Alt,L2) of N2 when is_integer(N2) -> encode_small_number(N2); false -> unknown_choice_alt end] end; set_choice(Alt,L,Len) -> case set_choice_tag(Alt,L) of N when is_integer(N), Len > 1 -> encode_integer([{'ValueRange',{0,Len-1}}],N); N when is_integer(N) -> []; % no encoding if only 0 or 1 alternative false -> [unknown_choice_alt] end. set_choice_tag(Alt,Choices) -> set_choice_tag(Alt,Choices,0). set_choice_tag(Alt,[Alt|_Rest],Tag) -> Tag; set_choice_tag(Alt,[_H|Rest],Tag) -> set_choice_tag(Alt,Rest,Tag+1); set_choice_tag(_Alt,[],_Tag) -> false. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% decode_fragmented_XXX; decode of values encoded fragmented according %% to ITU-T X.691 clause 10.9.3.8. The unit (XXX) is either bits, octets, %% characters or number of components (in a choice,sequence or similar). %% Buffer is a buffer {Used, Bin}. %% C is the constrained length. %% If the buffer is not aligned, this function does that. decode_fragmented_bits(Buffer,C) -> decode_fragmented_bits(Buffer,C,[]). decode_fragmented_bits(<<3:2,Len:6,BitStr/bitstring>>,C,Acc) -> %% {Value,Bin2} = split_binary(Bin, Len * ?'16K'), FragLen = (Len*?'16K') div 8, <> = BitStr, decode_fragmented_bits(BitStr2,C,[Value|Acc]); decode_fragmented_bits(<<0:1,0:7,BitStr/bitstring>>,C,Acc) -> BinBits = list_to_binary(lists:reverse(Acc)), case C of Int when is_integer(Int),C == size(BinBits) -> {BinBits,BitStr}; Int when is_integer(Int) -> exit({error,{asn1,{illegal_value,C,BinBits}}}) end; decode_fragmented_bits(<<0:1,Len:7,BitStr/bitstring>>,C,Acc) -> <> = BitStr, %% <> = Bin, ResBitStr = list_to_bitstring(lists:reverse([Val|Acc])), case C of Int when is_integer(Int),C == bit_size(ResBitStr) -> {ResBitStr,Rest}; Int when is_integer(Int) -> exit({error,{asn1,{illegal_value,C,ResBitStr}}}) end. decode_fragmented_octets({0,Bin},C) -> decode_fragmented_octets(Bin,C,[]). decode_fragmented_octets(<<3:2,Len:6,BitStr/bitstring>>,C,Acc) -> FragLen = Len * ?'16K', <> = BitStr, decode_fragmented_octets(Rest,C,[Value|Acc]); decode_fragmented_octets(<<0:1,0:7,Bin/bitstring>>,C,Acc) -> Octets = list_to_binary(lists:reverse(Acc)), case C of Int when is_integer(Int), C == size(Octets) -> {Octets,Bin}; Int when is_integer(Int) -> exit({error,{asn1,{illegal_value,C,Octets}}}) end; decode_fragmented_octets(<<0:1,Len:7,BitStr/bitstring>>,C,Acc) -> <> = BitStr, BinOctets = list_to_binary(lists:reverse([Value|Acc])), case C of Int when is_integer(Int),size(BinOctets) == Int -> {BinOctets,BitStr2}; Int when is_integer(Int) -> exit({error,{asn1,{illegal_value,C,BinOctets}}}) end. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% encode_open_type(Constraint, Value) -> CompleteList %% Value = list of bytes of an already encoded value (the list must be flat) %% | binary %% Contraint = not used in this version %% encode_open_type(C, Val) when is_list(Val) -> encode_open_type(C, list_to_binary(Val)); encode_open_type(_C, Val) when is_binary(Val) -> [encode_length(undefined,size(Val)),Val]. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% decode_open_type(Buffer,Constraint) -> Value %% Constraint is not used in this version %% Buffer = [byte] with PER encoded data %% Value = [byte] with decoded data (which must be decoded again as some type) %% decode_open_type(Bytes, _C) -> {Len,Bytes2} = decode_length(Bytes,undefined), getoctets_as_bin(Bytes2,Len). %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% encode_integer(Constraint,Value,NamedNumberList) -> CompleteList %% encode_integer(Constraint,Value) -> CompleteList %% encode_integer(Constraint,{Name,Value}) -> CompleteList %% %% encode_integer(C,V,NamedNumberList) when is_atom(V) -> case lists:keysearch(V,1,NamedNumberList) of {value,{_,NewV}} -> encode_integer(C,NewV); _ -> exit({error,{asn1,{namednumber,V}}}) end; encode_integer(C,V,_NamedNumberList) when is_integer(V) -> encode_integer(C,V); encode_integer(C,{Name,V},NamedNumberList) when is_atom(Name) -> encode_integer(C,V,NamedNumberList). encode_integer(C,{Name,Val}) when is_atom(Name) -> encode_integer(C,Val); encode_integer([{Rc,_Ec}],Val) when is_tuple(Rc) -> % XXX when is this invoked? First argument most often a list,...Ok this is the extension case...but it doesn't work. case (catch encode_integer([Rc],Val)) of {'EXIT',{error,{asn1,_}}} -> [<<1:1>>,encode_unconstrained_number(Val)]; Encoded -> [<<0:1>>,Encoded] end; encode_integer(C,Val ) when is_list(C) -> case get_constraint(C,'SingleValue') of no -> encode_integer1(C,Val); V when is_integer(V),V == Val -> []; % a type restricted to a single value encodes to nothing V when is_list(V) -> case lists:member(Val,V) of true -> encode_integer1(C,Val); _ -> exit({error,{asn1,{illegal_value,Val}}}) end; _ -> exit({error,{asn1,{illegal_value,Val}}}) end. encode_integer1(C, Val) -> case VR = get_constraint(C,'ValueRange') of no -> encode_unconstrained_number(Val); {Lb,'MAX'} -> encode_semi_constrained_number(Lb,Val); %% positive with range {Lb,Ub} when Val >= Lb, Ub >= Val -> encode_constrained_number(VR,Val); _ -> exit({error,{asn1,{illegal_value,VR,Val}}}) end. decode_integer(Buffer,Range,NamedNumberList) -> {Val,Buffer2} = decode_integer(Buffer,Range), case lists:keysearch(Val,2,NamedNumberList) of {value,{NewVal,_}} -> {NewVal,Buffer2}; _ -> {Val,Buffer2} end. decode_integer(Buffer,[{Rc,_Ec}]) when is_tuple(Rc) -> {Ext,Buffer2} = getext(Buffer), case Ext of 0 -> decode_integer(Buffer2,[Rc]); %% Value in root of constraint 1 -> decode_unconstrained_number(Buffer2) end; decode_integer(Buffer,undefined) -> decode_unconstrained_number(Buffer); decode_integer(Buffer,C) -> case get_constraint(C,'SingleValue') of V when is_integer(V) -> {V,Buffer}; V when is_list(V) -> {Val,Buffer2} = decode_integer1(Buffer,C), case lists:member(Val,V) of true -> {Val,Buffer2}; _ -> exit({error,{asn1,{illegal_value,Val}}}) end; _ -> decode_integer1(Buffer,C) end. decode_integer1(Buffer,C) -> case VR = get_constraint(C,'ValueRange') of no -> decode_unconstrained_number(Buffer); {Lb, 'MAX'} -> decode_semi_constrained_number(Buffer,Lb); {_,_} -> decode_constrained_number(Buffer,VR) end. %% X.691:10.6 Encoding of a normally small non-negative whole number %% Use this for encoding of CHOICE index if there is an extension marker in %% the CHOICE encode_small_number({Name,Val}) when is_atom(Name) -> encode_small_number(Val); encode_small_number(Val) when Val =< 63 -> <>; encode_small_number(Val) -> [<<1:1>>,encode_semi_constrained_number(0,Val)]. decode_small_number(Bytes) -> {Bit,Bytes2} = getbit(Bytes), case Bit of 0 -> getbits(Bytes2,6); 1 -> decode_semi_constrained_number(Bytes2,0) end. %% X.691:10.7 Encoding of a semi-constrained whole number %% might be an optimization encode_semi_constrained_number(0,Val) -> encode_semi_constrained_number(C,{Name,Val}) when is_atom(Name) -> encode_semi_constrained_number(C,Val); encode_semi_constrained_number({Lb,'MAX'},Val) -> encode_semi_constrained_number(Lb,Val); encode_semi_constrained_number(Lb,Val) -> %% encoding in minimum no of octets preceeded by a length Val2 = Val - Lb, %% NumBits = num_bits(Val2), Bin = eint_bin_positive(Val2), Size = size(Bin), if Size < 128 -> [<>,Bin]; % equiv with encode_length(undefined,Len) but faster Size < 16384 -> [<<2:2,Size:14>>,Bin]; true -> [encode_length(undefined,Size),Bin] end. decode_semi_constrained_number(Bytes,{Lb,_}) -> decode_semi_constrained_number(Bytes,Lb); decode_semi_constrained_number(Bytes,Lb) -> {Len,Bytes2} = decode_length(Bytes,undefined), {V,Bytes3} = getoctets(Bytes2,Len), {V+Lb,Bytes3}. encode_constrained_number(Range,{Name,Val}) when is_atom(Name) -> encode_constrained_number(Range,Val); encode_constrained_number({Lb,Ub},Val) when Val >= Lb, Ub >= Val -> Range = Ub - Lb + 1, Val2 = Val - Lb, NumBits = num_bits(Range), <>; encode_constrained_number(Range,Val) -> exit({error,{asn1,{integer_range,Range,value,Val}}}). decode_constrained_number(Buffer,{Lb,Ub}) -> Range = Ub - Lb + 1, NumBits = num_bits(Range), {Val,Remain} = getbits(Buffer,NumBits), {Val+Lb,Remain}. %% X.691:10.8 Encoding of an unconstrained whole number encode_unconstrained_number(Val) when Val >= 0 -> Oct = eint_bin_2Cs(Val), Len = size(Oct), if Len < 128 -> [<>,Oct]; % equiv with encode_length(undefined,Len) but faster Len < 16384 -> [<<2:2,Len:14>>,Oct]; true -> [encode_length(undefined,Len),<>,Oct] end; encode_unconstrained_number(Val) -> % negative Oct = enint(Val,[]), Len = size(Oct), if Len < 128 -> [<>,Oct]; % equiv with encode_length(undefined,Len) but faster Len < 16384 -> [<<2:2,Len:14>>,Oct]; true -> [encode_length(undefined,Len),Oct] end. eint_bin_2Cs(Int) -> case eint_bin_positive(Int) of Bin = <> when B > 16#7f -> <<0,Bin/binary>>; Bin -> Bin end. %% returns the integer as a binary eint_bin_positive(Val) when Val < 16#100 -> <>; eint_bin_positive(Val) when Val < 16#10000 -> <>; eint_bin_positive(Val) when Val < 16#1000000 -> <>; eint_bin_positive(Val) when Val < 16#100000000 -> <>; eint_bin_positive(Val) -> list_to_binary([eint_bin_positive2(Val bsr 32)|<>]). eint_bin_positive2(Val) when Val < 16#100 -> <>; eint_bin_positive2(Val) when Val < 16#10000 -> <>; eint_bin_positive2(Val) when Val < 16#1000000 -> <>; eint_bin_positive2(Val) when Val < 16#100000000 -> <>; eint_bin_positive2(Val) -> [eint_bin_positive2(Val bsr 32)|<>]. enint(-1, [B1|T]) when B1 > 127 -> list_to_binary([B1|T]); enint(N, Acc) -> enint(N bsr 8, [N band 16#ff|Acc]). decode_unconstrained_number(Bytes) -> {Len,Bytes2} = decode_length(Bytes,undefined), {Ints,Bytes3} = getoctets_as_bin(Bytes2,Len), {dec_integer(Ints),Bytes3}. dec_integer(Bin = <<0:1,_:7,_/bitstring>>) -> decpint(Bin); dec_integer(<<_:1,B:7,BitStr/bitstring>>) -> Size = bit_size(BitStr), <> = BitStr, (-128 + B) bsl bit_size(BitStr) bor I. decpint(Bin) -> Size = bit_size(Bin), <> = Bin, Int. %% X.691:10.9 Encoding of a length determinant %%encode_small_length(undefined,Len) -> % null means no UpperBound %% encode_small_number(Len). %% X.691:10.9.3.5 %% X.691:10.9.3.7 encode_length(undefined,Len) -> % un-constrained if Len < 128 -> <>; Len < 16384 -> <<2:2,Len:14>>; true -> % should be able to endode length >= 16384 error({error,{asn1,{encode_length,{nyi,above_16k}}}}) end; encode_length({0,'MAX'},Len) -> encode_length(undefined,Len); encode_length(Vr={Lb,Ub},Len) when Ub =< 65535 ,Lb >= 0 -> % constrained encode_constrained_number(Vr,Len); encode_length({Lb,_Ub},Len) when is_integer(Lb), Lb >= 0 -> % Ub > 65535 encode_length(undefined,Len); encode_length({Vr={Lb,Ub},Ext},Len) when Ub =< 65535 ,Lb >= 0, Len= %% constrained extensible [<<0:1>>,encode_constrained_number(Vr,Len)]; encode_length({{Lb,_Ub},Ext},Len) when is_list(Ext) -> [<<1:1>>,encode_semi_constrained_number(Lb,Len)]; encode_length(SingleValue,_Len) when is_integer(SingleValue) -> []. %% X.691 10.9.3.4 (only used for length of bitmap that prefixes extension %% additions in a sequence or set encode_small_length(Len) when Len =< 64 -> <<(Len-1):7>>; encode_small_length(Len) -> [<<1:1>>,encode_length(undefined,Len)]. decode_small_length(Buffer) -> case getbit(Buffer) of {0,Remain} -> {Bits,Remain2} = getbits(Remain,6), {Bits+1,Remain2}; {1,Remain} -> decode_length(Remain,undefined) end. decode_length(Buffer) -> decode_length(Buffer,undefined). %% un-constrained decode_length(<<0:1,Oct:7,Rest/bitstring>>,undefined) -> {Oct,Rest}; decode_length(<<2:2,Val:14,Rest/bitstring>>,undefined) -> {Val,Rest}; decode_length(<<3:2,_:14,_Rest/bitstring>>,undefined) -> exit({error,{asn1,{decode_length,{nyi,above_16k}}}}); decode_length(Buffer,{Lb,Ub}) when Ub =< 65535 ,Lb >= 0 -> % constrained decode_constrained_number(Buffer,{Lb,Ub}); decode_length(Buffer,{Lb,_}) when is_integer(Lb), Lb >= 0 -> % Ub > 65535 decode_length(Buffer,undefined); decode_length(Buffer,{VR={_Lb,_Ub},Ext}) when is_list(Ext) -> {0,Buffer2} = getbit(Buffer), decode_length(Buffer2, VR); %When does this case occur with {_,_Lb,Ub} ?? % X.691:10.9.3.5 decode_length(Bin,{_,_Lb,_Ub}) -> %when Len =< 127 -> % Unconstrained or large Ub NOTE! this case does not cover case when Ub > 65535 case Bin of <<0:1,Val:7,Rest/bitstring>> -> {Val,Rest}; <<2:2,Val:14,Rest/bitstring>> -> {Val,Rest}; <<3:2,_:14,_Rest/bitstring>> -> exit({error,{asn1,{decode_length,{nyi,length_above_64K}}}}) end; decode_length(Buffer,SingleValue) when is_integer(SingleValue) -> {SingleValue,Buffer}. % X.691:11 encode_boolean(true) -> <<1:1>>; encode_boolean(false) -> <<0:1>>; encode_boolean({Name,Val}) when is_atom(Name) -> encode_boolean(Val); encode_boolean(Val) -> exit({error,{asn1,{encode_boolean,Val}}}). decode_boolean(Buffer) -> %when record(Buffer,buffer) case getbit(Buffer) of {1,Remain} -> {true,Remain}; {0,Remain} -> {false,Remain} end. %% ENUMERATED with extension marker decode_enumerated(Buffer,C,{Ntup1,Ntup2}) when is_tuple(Ntup1), is_tuple(Ntup2) -> {Ext,Buffer2} = getext(Buffer), case Ext of 0 -> % not an extension value {Val,Buffer3} = decode_integer(Buffer2,C), case catch (element(Val+1,Ntup1)) of NewVal when is_atom(NewVal) -> {NewVal,Buffer3}; _Error -> exit({error,{asn1,{decode_enumerated,{Val,[Ntup1,Ntup2]}}}}) end; 1 -> % this an extension value {Val,Buffer3} = decode_small_number(Buffer2), case catch (element(Val+1,Ntup2)) of NewVal when is_atom(NewVal) -> {NewVal,Buffer3}; _ -> {{asn1_enum,Val},Buffer3} end end; decode_enumerated(Buffer,C,NamedNumberTup) when is_tuple(NamedNumberTup) -> {Val,Buffer2} = decode_integer(Buffer,C), case catch (element(Val+1,NamedNumberTup)) of NewVal when is_atom(NewVal) -> {NewVal,Buffer2}; _Error -> exit({error,{asn1,{decode_enumerated,{Val,NamedNumberTup}}}}) end. %%============================================================================ %%============================================================================ %% Bitstring value, ITU_T X.690 Chapter 8.5 %%============================================================================ %%============================================================================ %%============================================================================ %% encode bitstring value %%============================================================================ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% bitstring NamedBitList %% Val can be of: %% - [identifiers] where only named identifers are set to one, %% the Constraint must then have some information of the %% bitlength. %% - [list of ones and zeroes] all bits %% - integer value representing the bitlist %% C is constraint Len, only valid when identifiers %% when the value is a list of {Unused,BinBits}, where %% Unused = integer(), %% BinBits = binary(). encode_bit_string(C,Bin={Unused,BinBits},NamedBitList) when is_integer(Unused), is_binary(BinBits) -> encode_bin_bit_string(get_constraint(C,'SizeConstraint'),Bin,NamedBitList); encode_bit_string(C, BitListVal, NamedBitList) -> encode_bit_string1(get_constraint(C,'SizeConstraint'), BitListVal, NamedBitList). %% when the value is a list of named bits encode_bit_string1(C, LoNB=[FirstVal | _RestVal], NamedBitList) when is_atom(FirstVal) -> ToSetPos = get_all_bitposes(LoNB, NamedBitList, []), BitList = make_and_set_list(ToSetPos,0), encode_bit_string1(C,BitList,NamedBitList); encode_bit_string1(C, BL=[{bit,_No} | _RestVal], NamedBitList) -> ToSetPos = get_all_bitposes(BL, NamedBitList, []), BitList = make_and_set_list(ToSetPos,0), encode_bit_string1(C,BitList,NamedBitList); %% when the value is a list of ones and zeroes encode_bit_string1(Int, BitListValue, _) when is_list(BitListValue),is_integer(Int) -> %% The type is constrained by a single value size constraint bit_list2bitstr(Int,BitListValue); encode_bit_string1(no, BitListValue,[]) when is_list(BitListValue) -> Len = length(BitListValue), [encode_length(undefined,Len),bit_list2bitstr(Len,BitListValue)]; encode_bit_string1(C, BitListValue,[]) when is_list(BitListValue) -> Len = length(BitListValue), [encode_length(C,Len),bit_list2bitstr(Len,BitListValue)]; encode_bit_string1(no, BitListValue,_NamedBitList) when is_list(BitListValue) -> %% this case with an unconstrained BIT STRING can be made more efficient %% if the complete driver can take a special code so the length field %% is encoded there. NewBitLVal = lists:reverse(lists:dropwhile(fun(0)->true;(1)->false end, lists:reverse(BitListValue))), Len = length(NewBitLVal), [encode_length(undefined,Len),bit_list2bitstr(Len,NewBitLVal)]; encode_bit_string1(C,BitListValue,_NamedBitList) when is_list(BitListValue) ->% C = {_,'MAX'} NewBitStr = bitstr_trailing_zeros(BitListValue,C), [encode_length(C,bit_size(NewBitStr)),NewBitStr]; %% when the value is an integer encode_bit_string1(C, IntegerVal, NamedBitList) when is_integer(IntegerVal)-> BitList = int_to_bitlist(IntegerVal), encode_bit_string1(C,BitList,NamedBitList); %% when the value is a tuple encode_bit_string1(C,{Name,Val}, NamedBitList) when is_atom(Name) -> encode_bit_string1(C,Val,NamedBitList). bit_list2bitstr(Len,BitListValue) -> case length(BitListValue) of Len -> << <> ||B <- BitListValue>>; L when L > Len -> % truncate << << <> ||B <- BitListValue>> :Len/bitstring>>; L -> % Len > L -> pad << << <> ||B <- BitListValue>>/bitstring ,0:(Len-L)>> end. adjust_trailing_zeros(Len,Bin) when Len == bit_size(Bin) -> Bin; adjust_trailing_zeros(Len,Bin) when Len > bit_size(Bin) -> <>; adjust_trailing_zeros(Len,Bin) -> <>. bitstr_trailing_zeros(BitList,C) when is_integer(C) -> bitstr_trailing_zeros1(BitList,C,C); bitstr_trailing_zeros(BitList,{Lb,Ub}) when is_integer(Lb) -> bitstr_trailing_zeros1(BitList,Lb,Ub); bitstr_trailing_zeros(BitList,{{Lb,Ub},_}) when is_integer(Lb) -> bitstr_trailing_zeros1(BitList,Lb,Ub); bitstr_trailing_zeros(BitList,_) -> bit_list2bitstr(length(BitList),BitList). bitstr_trailing_zeros1(BitList,Lb,Ub) -> case length(BitList) of Lb -> bit_list2bitstr(Lb,BitList); B when B bit_list2bitstr(Lb,BitList); D -> F = fun(L,LB,LB,_,_)->bit_list2bitstr(LB,lists:reverse(L)); ([0|R],L1,LB,UB,Fun)->Fun(R,L1-1,LB,UB,Fun); (L,L1,_,UB,_)when L1 =< UB -> bit_list2bitstr(L1,lists:reverse(L)); (_,_L1,_,_,_) ->exit({error,{list_length_BIT_STRING, BitList}}) end, F(lists:reverse(BitList),D,Lb,Ub,F) end. %% encode_bin_bit_string/3, when value is a tuple of Unused and BinBits. %% Unused = integer(),i.e. number unused bits in least sign. byte of %% BinBits = binary(). encode_bin_bit_string(C,{_,BinBits},_NamedBitList) when is_integer(C),C=<16 -> adjust_trailing_zeros(C,BinBits); encode_bin_bit_string(C,{_Unused,BinBits},_NamedBitList) when is_integer(C) -> adjust_trailing_zeros(C,BinBits); encode_bin_bit_string(C,UnusedAndBin={_,_},NamedBitList) -> %% removes all trailing bits if NamedBitList is not empty BitStr = remove_trailing_bin(NamedBitList,UnusedAndBin), case C of {Lb,Ub} when is_integer(Lb),is_integer(Ub) -> [encode_length({Lb,Ub},bit_size(BitStr)),BitStr]; no -> [encode_length(undefined,bit_size(BitStr)),BitStr]; Sc -> [encode_length(Sc,bit_size(BitStr)),BitStr] end. remove_trailing_bin([], {Unused,Bin}) -> BS = bit_size(Bin)-Unused, <> = Bin, BitStr; remove_trailing_bin(_NamedNumberList,{_Unused,<<>>}) -> <<>>; remove_trailing_bin(NamedNumberList, {_Unused,Bin}) -> Size = size(Bin)-1, <> = Bin, %% clear the Unused bits to be sure Unused1 = trailingZeroesInNibble(LastByte band 15), Unused2 = case Unused1 of 4 -> 4 + trailingZeroesInNibble(LastByte bsr 4); _ -> Unused1 end, case Unused2 of 8 -> remove_trailing_bin(NamedNumberList,{0,Bfront}); _ -> BS = bit_size(Bin) - Unused2, <> = Bin, BitStr end. trailingZeroesInNibble(0) -> 4; trailingZeroesInNibble(1) -> 0; trailingZeroesInNibble(2) -> 1; trailingZeroesInNibble(3) -> 0; trailingZeroesInNibble(4) -> 2; trailingZeroesInNibble(5) -> 0; trailingZeroesInNibble(6) -> 1; trailingZeroesInNibble(7) -> 0; trailingZeroesInNibble(8) -> 3; trailingZeroesInNibble(9) -> 0; trailingZeroesInNibble(10) -> 1; trailingZeroesInNibble(11) -> 0; trailingZeroesInNibble(12) -> %#1100 2; trailingZeroesInNibble(13) -> 0; trailingZeroesInNibble(14) -> 1; trailingZeroesInNibble(15) -> 0. %%%%%%%%%%%%%%% %% The result is presented as a list of named bits (if possible) %% else as a tuple {Unused,Bits}. Unused is the number of unused %% bits, least significant bits in the last byte of Bits. Bits is %% the BIT STRING represented as a binary. %% decode_compact_bit_string(Buffer, C, NamedNumberList) -> case get_constraint(C,'SizeConstraint') of 0 -> % fixed length {{8,0},Buffer}; V when is_integer(V),V=<16 -> %fixed length 16 bits or less compact_bit_string(Buffer,V,NamedNumberList); V when is_integer(V),V=<65536 -> %fixed length > 16 bits compact_bit_string(Buffer,V,NamedNumberList); V when is_integer(V) -> % V > 65536 => fragmented value {Bin,Buffer2} = decode_fragmented_bits(Buffer,V), PadLen = (8 - (bit_size(Bin) rem 8)) rem 8, {{PadLen,<>},Buffer2}; %% {0,_} -> {{0,Bin},Buffer2}; %% {U,_} -> {{8-U,Bin},Buffer2} {Lb,Ub} when is_integer(Lb),is_integer(Ub) -> %% This case may demand decoding of fragmented length/value {Len,Bytes2} = decode_length(Buffer,{Lb,Ub}), compact_bit_string(Bytes2,Len,NamedNumberList); no -> %% This case may demand decoding of fragmented length/value {Len,Bytes2} = decode_length(Buffer,undefined), compact_bit_string(Bytes2,Len,NamedNumberList); Sc -> {Len,Bytes2} = decode_length(Buffer,Sc), compact_bit_string(Bytes2,Len,NamedNumberList) end. %%%%%%%%%%%%%%% %% The result is presented as a list of named bits (if possible) %% else as a list of 0 and 1. %% decode_bit_string(Buffer, C, NamedNumberList) -> case get_constraint(C,'SizeConstraint') of {Lb,Ub} when is_integer(Lb),is_integer(Ub) -> {Len,Bytes2} = decode_length(Buffer,{Lb,Ub}), bit_list_or_named(Bytes2,Len,NamedNumberList); no -> {Len,Bytes2} = decode_length(Buffer,undefined), bit_list_or_named(Bytes2,Len,NamedNumberList); 0 -> % fixed length {[],Buffer}; % nothing to encode V when is_integer(V),V=<16 -> % fixed length 16 bits or less bit_list_or_named(Buffer,V,NamedNumberList); V when is_integer(V),V=<65536 -> bit_list_or_named(Buffer,V,NamedNumberList); V when is_integer(V) -> {BinBits,_} = decode_fragmented_bits(Buffer,V), bit_list_or_named(BinBits,V,NamedNumberList); Sc -> % extension marker {Len,Bytes2} = decode_length(Buffer,Sc), bit_list_or_named(Bytes2,Len,NamedNumberList) end. %% if no named bits are declared we will return a %% {Unused,Bits}. Unused = integer(), %% Bits = binary(). compact_bit_string(Buffer,Len,[]) -> {BitStr,Rest} = getbits_as_binary(Len,Buffer), % {{Unused,BinBits},NewBuffer} PadLen = (8 - (bit_size(BitStr) rem 8)) rem 8, {{PadLen,<>},Rest}; compact_bit_string(Buffer,Len,NamedNumberList) -> bit_list_or_named(Buffer,Len,NamedNumberList). %% if no named bits are declared we will return a %% BitList = [0 | 1] bit_list_or_named(Buffer,Len,[]) -> getbits_as_list(Len,Buffer); %% if there are named bits declared we will return a named %% BitList where the names are atoms and unnamed bits represented %% as {bit,Pos} %% BitList = [atom() | {bit,Pos}] %% Pos = integer() bit_list_or_named(Buffer,Len,NamedNumberList) -> {BitList,Rest} = getbits_as_list(Len,Buffer), {bit_list_or_named1(0,BitList,NamedNumberList,[]), Rest}. bit_list_or_named1(Pos,[0|Bt],Names,Acc) -> bit_list_or_named1(Pos+1,Bt,Names,Acc); bit_list_or_named1(Pos,[1|Bt],Names,Acc) -> case lists:keysearch(Pos,2,Names) of {value,{Name,_}} -> bit_list_or_named1(Pos+1,Bt,Names,[Name|Acc]); _ -> bit_list_or_named1(Pos+1,Bt,Names,[{bit,Pos}|Acc]) end; bit_list_or_named1(_,[],_,Acc) -> lists:reverse(Acc). %%%%%%%%%%%%%%% %% int_to_bitlist(Int) when is_integer(Int), Int > 0 -> [Int band 1 | int_to_bitlist(Int bsr 1)]; int_to_bitlist(0) -> []. %%%%%%%%%%%%%%%%%% %% get_all_bitposes([list of named bits to set], named_bit_db, []) -> %% [sorted_list_of_bitpositions_to_set] get_all_bitposes([{bit,ValPos}|Rest], NamedBitList, Ack) -> get_all_bitposes(Rest, NamedBitList, [ValPos | Ack ]); get_all_bitposes([Val | Rest], NamedBitList, Ack) -> case lists:keysearch(Val, 1, NamedBitList) of {value, {_ValName, ValPos}} -> get_all_bitposes(Rest, NamedBitList, [ValPos | Ack]); _ -> exit({error,{asn1, {bitstring_namedbit, Val}}}) end; get_all_bitposes([], _NamedBitList, Ack) -> lists:sort(Ack). %%%%%%%%%%%%%%%%%% %% make_and_set_list([list of positions to set to 1])-> %% returns list with all in SetPos set. %% in positioning in list the first element is 0, the second 1 etc.., but %% make_and_set_list([XPos|SetPos], XPos) -> [1 | make_and_set_list(SetPos, XPos + 1)]; make_and_set_list([Pos|SetPos], XPos) -> [0 | make_and_set_list([Pos | SetPos], XPos + 1)]; make_and_set_list([], _) -> []. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% X.691:16 %% encode_octet_string(Constraint,Val) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% encode_octet_string(C,{_Name,Val}) -> encode_octet_string(C,Val); encode_octet_string(C,Val) -> case get_constraint(C,'SizeConstraint') of 0 -> <<>>; 1 -> list_to_binary(Val); 2 -> list_to_binary(Val); {_,_}=VR -> try [encode_length(VR, length(Val)),list_to_binary(Val)] catch error:{error,{asn1,{encode_length,_}}} -> encode_fragmented_octet_string(Val) end; Sv when is_integer(Sv), Sv =:= length(Val) -> % fixed length if Sv =< 65535 -> list_to_binary(Val); true -> encode_fragmented_octet_string(Val) end; Sv when is_list(Sv) -> try [encode_length({hd(Sv),lists:max(Sv)}, length(Val)),list_to_binary(Val)] catch error:{error,{asn1,{encode_length,_}}} -> encode_fragmented_octet_string(Val) end; no -> try [encode_length(undefined, length(Val)),list_to_binary(Val)] catch error:{error,{asn1,{encode_length,_}}} -> encode_fragmented_octet_string(Val) end end. encode_fragmented_octet_string(Val) -> Bin = list_to_binary(Val), efos_1(Bin). efos_1(<>) -> [<<3:2,4:6>>,B|efos_1(T)]; efos_1(<>) -> [<<3:2,3:6>>,B|efos_1(T)]; efos_1(<>) -> [<<3:2,2:6>>,B|efos_1(T)]; efos_1(<>) -> [<<3:2,1:6>>,B|efos_1(T)]; efos_1(<>) -> Len = byte_size(B), [encode_length(undefined, Len),B]. decode_octet_string(Bytes,C) -> decode_octet_string1(Bytes,get_constraint(C,'SizeConstraint')). decode_octet_string1(<>,1) -> {[B1],Bytes}; decode_octet_string1(<>,2) -> {[B1,B2],Bytes}; decode_octet_string1(Bytes,Sv) when is_integer(Sv),Sv=<65535 -> getoctets_as_list(Bytes,Sv); decode_octet_string1(Bytes,Sv) when is_integer(Sv) -> decode_fragmented_octets(Bytes,Sv); decode_octet_string1(Bytes,{Lb,Ub}) -> {Len,Bytes2} = decode_length(Bytes,{Lb,Ub}), getoctets_as_list(Bytes2,Len); decode_octet_string1(Bytes,Sv) when is_list(Sv) -> {Len,Bytes2} = decode_length(Bytes,{hd(Sv),lists:max(Sv)}), getoctets_as_list(Bytes2,Len); decode_octet_string1(Bytes,no) -> {Len,Bytes2} = decode_length(Bytes,undefined), getoctets_as_list(Bytes2,Len). %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Restricted char string types %% (NumericString, PrintableString,VisibleString,IA5String,BMPString,UniversalString) %% X.691:26 and X.680:34-36 %%encode_restricted_string('BMPString',Constraints,Extension,Val) encode_restricted_string({Name,Val}) when is_atom(Name) -> encode_restricted_string(Val); encode_restricted_string(Val) when is_list(Val)-> [encode_length(undefined,length(Val)),list_to_binary(Val)]. encode_known_multiplier_string(StringType,C,{Name,Val}) when is_atom(Name) -> encode_known_multiplier_string(StringType,C,Val); encode_known_multiplier_string(StringType,C,Val) -> Result = chars_encode(C,StringType,Val), NumBits = get_NumBits(C,StringType), case get_constraint(C,'SizeConstraint') of Ub when is_integer(Ub), Ub*NumBits =< 16 -> Result; 0 -> []; Ub when is_integer(Ub),Ub =<65535 -> % fixed length Result; {Ub,Lb} -> [encode_length({Ub,Lb},length(Val)),Result]; Vl when is_list(Vl) -> [encode_length({lists:min(Vl),lists:max(Vl)},length(Val)),Result]; no -> [encode_length(undefined,length(Val)),Result] end. decode_restricted_string(Bytes) -> {Len,Bytes2} = decode_length(Bytes,undefined), getoctets_as_list(Bytes2,Len). decode_known_multiplier_string(Bytes,StringType,C,_Ext) -> NumBits = get_NumBits(C,StringType), case get_constraint(C,'SizeConstraint') of Ub when is_integer(Ub), Ub*NumBits =< 16 -> chars_decode(Bytes,NumBits,StringType,C,Ub); Ub when is_integer(Ub),Ub =<65535 -> % fixed length chars_decode(Bytes,NumBits,StringType,C,Ub); 0 -> {[],Bytes}; Vl when is_list(Vl) -> {Len,Bytes1} = decode_length(Bytes,{hd(Vl),lists:max(Vl)}), chars_decode(Bytes1,NumBits,StringType,C,Len); no -> {Len,Bytes1} = decode_length(Bytes,undefined), chars_decode(Bytes1,NumBits,StringType,C,Len); {Lb,Ub}-> {Len,Bytes1} = decode_length(Bytes,{Lb,Ub}), chars_decode(Bytes1,NumBits,StringType,C,Len) end. encode_NumericString(C,Val) -> encode_known_multiplier_string('NumericString',C,Val). decode_NumericString(Bytes,C) -> decode_known_multiplier_string(Bytes,'NumericString',C,false). encode_PrintableString(C,Val) -> encode_known_multiplier_string('PrintableString',C,Val). decode_PrintableString(Bytes,C) -> decode_known_multiplier_string(Bytes,'PrintableString',C,false). encode_VisibleString(C,Val) -> % equivalent with ISO646String encode_known_multiplier_string('VisibleString',C,Val). decode_VisibleString(Bytes,C) -> decode_known_multiplier_string(Bytes,'VisibleString',C,false). encode_IA5String(C,Val) -> encode_known_multiplier_string('IA5String',C,Val). decode_IA5String(Bytes,C) -> decode_known_multiplier_string(Bytes,'IA5String',C,false). encode_BMPString(C,Val) -> encode_known_multiplier_string('BMPString',C,Val). decode_BMPString(Bytes,C) -> decode_known_multiplier_string(Bytes,'BMPString',C,false). encode_UniversalString(C,Val) -> encode_known_multiplier_string('UniversalString',C,Val). decode_UniversalString(Bytes,C) -> decode_known_multiplier_string(Bytes,'UniversalString',C,false). %% end of known-multiplier strings for which PER visible constraints are %% applied encode_GeneralString(_C,Val) -> encode_restricted_string(Val). decode_GeneralString(Bytes,_C) -> decode_restricted_string(Bytes). encode_GraphicString(_C,Val) -> encode_restricted_string(Val). decode_GraphicString(Bytes,_C) -> decode_restricted_string(Bytes). encode_ObjectDescriptor(_C,Val) -> encode_restricted_string(Val). decode_ObjectDescriptor(Bytes) -> decode_restricted_string(Bytes). encode_TeletexString(_C,Val) -> % equivalent with T61String encode_restricted_string(Val). decode_TeletexString(Bytes,_C) -> decode_restricted_string(Bytes). encode_VideotexString(_C,Val) -> encode_restricted_string(Val). decode_VideotexString(Bytes,_C) -> decode_restricted_string(Bytes). %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% getBMPChars(Bytes,Len) ->{BMPcharList,RemainingBytes} %% getBMPChars(Bytes,1) -> {O1,Bytes2} = getbits(Bytes,8), {O2,Bytes3} = getbits(Bytes2,8), if O1 == 0 -> {[O2],Bytes3}; true -> {[{0,0,O1,O2}],Bytes3} end; getBMPChars(Bytes,Len) -> getBMPChars(Bytes,Len,[]). getBMPChars(Bytes,0,Acc) -> {lists:reverse(Acc),Bytes}; getBMPChars(Bytes,Len,Acc) -> {Octs,Bytes1} = getoctets_as_list(Bytes,2), case Octs of [0,O2] -> getBMPChars(Bytes1,Len-1,[O2|Acc]); [O1,O2]-> getBMPChars(Bytes1,Len-1,[{0,0,O1,O2}|Acc]) end. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% chars_encode(C,StringType,Value) -> ValueList %% %% encodes chars according to the per rules taking the constraint PermittedAlphabet %% into account. %% This function does only encode the value part and NOT the length chars_encode(C,StringType,Value) -> case {StringType,get_constraint(C,'PermittedAlphabet')} of {'UniversalString',{_,_Sv}} -> exit({error,{asn1,{'not implemented',"UniversalString with PermittedAlphabet constraint"}}}); {'BMPString',{_,_Sv}} -> exit({error,{asn1,{'not implemented',"BMPString with PermittedAlphabet constraint"}}}); _ -> {NumBits,CharOutTab} = {get_NumBits(C,StringType),get_CharOutTab(C,StringType)}, chars_encode2(Value,NumBits,CharOutTab) end. chars_encode2([H|T],NumBits,{Min,Max,notab}) when H =< Max, H >= Min -> %%[{bits,NumBits,H-Min}|chars_encode2(T,NumBits,{Min,Max,notab})]; [<<(H-Min):NumBits>>|chars_encode2(T,NumBits,{Min,Max,notab})]; chars_encode2([H|T],NumBits,{Min,Max,Tab}) when H =< Max, H >= Min -> %% [{bits,NumBits,exit_if_false(H,element(H-Min+1,Tab))}|chars_encode2(T,NumBits,{Min,Max,Tab})]; Ch = exit_if_false(H,element(H-Min+1,Tab)), [<>|chars_encode2(T,NumBits,{Min,Max,Tab})]; chars_encode2([{A,B,C,D}|T],NumBits,{Min,Max,notab}) -> %% no value range check here (ought to be, but very expensive) %% [{bits,NumBits,((((((A bsl 8)+B) bsl 8)+C) bsl 8)+D)-Min}|chars_encode2(T,NumBits,{Min,Max,notab})]; Ch = ((((((A bsl 8)+B) bsl 8)+C) bsl 8)+D)-Min, [<>|chars_encode2(T,NumBits,{Min,Max,notab})]; chars_encode2([{A,B,C,D}|T],NumBits,{Min,Max,Tab}) -> %% no value range check here (ought to be, but very expensive) %% [{bits,NumBits,exit_if_false({A,B,C,D},element(((((((A bsl 8)+B) bsl 8)+C) bsl 8)+D)-Min,Tab))}|chars_encode2(T,NumBits,{Min,Max,notab})]; Ch = exit_if_false({A,B,C,D},element(((((((A bsl 8)+B) bsl 8)+C) bsl 8)+D)-Min,Tab)), [<>|chars_encode2(T,NumBits,{Min,Max,notab})]; chars_encode2([H|_T],_,{_,_,_}) -> exit({error,{asn1,{illegal_char_value,H}}}); chars_encode2([],_,_) -> []. exit_if_false(V,false)-> exit({error,{asn1,{"illegal value according to Permitted alphabet constraint",V}}}); exit_if_false(_,V) ->V. get_NumBits(C,StringType) -> case get_constraint(C,'PermittedAlphabet') of {'SingleValue',Sv} -> charbits(length(Sv)); no -> case StringType of 'IA5String' -> charbits(128); % 16#00..16#7F 'VisibleString' -> charbits(95); % 16#20..16#7E 'PrintableString' -> charbits(74); % [$\s,$',$(,$),$+,$,,$-,$.,$/,"0123456789",$:,$=,$?,$A..$Z,$a..$z 'NumericString' -> charbits(11); % $ ,"0123456789" 'UniversalString' -> 32; 'BMPString' -> 16 end end. get_CharOutTab(C,StringType) -> get_CharTab(C,StringType,out). get_CharInTab(C,StringType) -> get_CharTab(C,StringType,in). get_CharTab(C,StringType,InOut) -> case get_constraint(C,'PermittedAlphabet') of {'SingleValue',Sv} -> get_CharTab2(C,StringType,hd(Sv),lists:max(Sv),Sv,InOut); no -> case StringType of 'IA5String' -> {0,16#7F,notab}; 'VisibleString' -> get_CharTab2(C,StringType,16#20,16#7F,notab,InOut); 'PrintableString' -> Chars = lists:sort( " '()+,-./0123456789:=?ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"), get_CharTab2(C,StringType,hd(Chars),lists:max(Chars),Chars,InOut); 'NumericString' -> get_CharTab2(C,StringType,16#20,$9," 0123456789",InOut); 'UniversalString' -> {0,16#FFFFFFFF,notab}; 'BMPString' -> {0,16#FFFF,notab} end end. get_CharTab2(C,StringType,Min,Max,Chars,InOut) -> BitValMax = (1 bsl get_NumBits(C,StringType))-1, if Max =< BitValMax -> {0,Max,notab}; true -> case InOut of out -> {Min,Max,create_char_tab(Min,Chars)}; in -> {Min,Max,list_to_tuple(Chars)} end end. create_char_tab(Min,L) -> list_to_tuple(create_char_tab(Min,L,0)). create_char_tab(Min,[Min|T],V) -> [V|create_char_tab(Min+1,T,V+1)]; create_char_tab(_Min,[],_V) -> []; create_char_tab(Min,L,V) -> [false|create_char_tab(Min+1,L,V)]. %% See Table 20.3 in Dubuisson charbits(NumOfChars) when NumOfChars =< 2 -> 1; charbits(NumOfChars) when NumOfChars =< 4 -> 2; charbits(NumOfChars) when NumOfChars =< 8 -> 3; charbits(NumOfChars) when NumOfChars =< 16 -> 4; charbits(NumOfChars) when NumOfChars =< 32 -> 5; charbits(NumOfChars) when NumOfChars =< 64 -> 6; charbits(NumOfChars) when NumOfChars =< 128 -> 7; charbits(NumOfChars) when NumOfChars =< 256 -> 8; charbits(NumOfChars) when NumOfChars =< 512 -> 9; charbits(NumOfChars) when NumOfChars =< 1024 -> 10; charbits(NumOfChars) when NumOfChars =< 2048 -> 11; charbits(NumOfChars) when NumOfChars =< 4096 -> 12; charbits(NumOfChars) when NumOfChars =< 8192 -> 13; charbits(NumOfChars) when NumOfChars =< 16384 -> 14; charbits(NumOfChars) when NumOfChars =< 32768 -> 15; charbits(NumOfChars) when NumOfChars =< 65536 -> 16; charbits(NumOfChars) when is_integer(NumOfChars) -> 16 + charbits1(NumOfChars bsr 16). charbits1(0) -> 0; charbits1(NumOfChars) -> 1 + charbits1(NumOfChars bsr 1). chars_decode(Bytes,_,'BMPString',C,Len) -> case get_constraint(C,'PermittedAlphabet') of no -> getBMPChars(Bytes,Len); _ -> exit({error,{asn1, {'not implemented', "BMPString with PermittedAlphabet constraint"}}}) end; chars_decode(Bytes,NumBits,StringType,C,Len) -> CharInTab = get_CharInTab(C,StringType), chars_decode2(Bytes,CharInTab,NumBits,Len). chars_decode2(Bytes,CharInTab,NumBits,Len) -> chars_decode2(Bytes,CharInTab,NumBits,Len,[]). chars_decode2(Bytes,_CharInTab,_NumBits,0,Acc) -> {lists:reverse(Acc),Bytes}; chars_decode2(Bytes,{Min,Max,notab},NumBits,Len,Acc) when NumBits > 8 -> {Char,Bytes2} = getbits(Bytes,NumBits), Result = if Char < 256 -> Char; true -> list_to_tuple(binary_to_list(<>)) end, chars_decode2(Bytes2,{Min,Max,notab},NumBits,Len -1,[Result|Acc]); chars_decode2(Bytes,{Min,Max,notab},NumBits,Len,Acc) -> {Char,Bytes2} = getbits(Bytes,NumBits), chars_decode2(Bytes2,{Min,Max,notab},NumBits,Len -1,[Char+Min|Acc]); %% BMPString and UniversalString with PermittedAlphabet is currently not supported chars_decode2(Bytes,{Min,Max,CharInTab},NumBits,Len,Acc) -> {Char,Bytes2} = getbits(Bytes,NumBits), chars_decode2(Bytes2,{Min,Max,CharInTab},NumBits,Len -1,[element(Char+1,CharInTab)|Acc]). %% UTF8String encode_UTF8String(Val) when is_binary(Val) -> [encode_length(undefined,size(Val)),Val]; encode_UTF8String(Val) -> Bin = list_to_binary(Val), encode_UTF8String(Bin). decode_UTF8String(Bytes) -> {Len,Bytes2} = decode_length(Bytes,undefined), getoctets_as_bin(Bytes2,Len). %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% encode_object_identifier(Val) -> CompleteList %% encode_object_identifier({Name,Val}) -> CompleteList %% Val -> {Int1,Int2,...,IntN} % N >= 2 %% Name -> atom() %% Int1 -> integer(0..2) %% Int2 -> integer(0..39) when Int1 (0..1) else integer() %% Int3-N -> integer() %% CompleteList -> [binary()|bitstring()|list()] %% encode_object_identifier({Name,Val}) when is_atom(Name) -> encode_object_identifier(Val); encode_object_identifier(Val) -> OctetList = e_object_identifier(Val), Octets = list_to_binary(OctetList), % performs a flatten at the same time [encode_length(undefined,size(Octets)),Octets]. %% This code is copied from asn1_encode.erl (BER) and corrected and modified e_object_identifier({'OBJECT IDENTIFIER',V}) -> e_object_identifier(V); e_object_identifier({Cname,V}) when is_atom(Cname),is_tuple(V) -> e_object_identifier(tuple_to_list(V)); e_object_identifier({Cname,V}) when is_atom(Cname),is_list(V) -> e_object_identifier(V); e_object_identifier(V) when is_tuple(V) -> e_object_identifier(tuple_to_list(V)); %% E1 = 0|1|2 and (E2 < 40 when E1 = 0|1) e_object_identifier([E1,E2|Tail]) when E1 >= 0, E1 < 2, E2 < 40 ; E1==2 -> Head = 40*E1 + E2, % weird e_object_elements([Head|Tail],[]); e_object_identifier(Oid=[_,_|_Tail]) -> exit({error,{asn1,{'illegal_value',Oid}}}). e_object_elements([],Acc) -> lists:reverse(Acc); e_object_elements([H|T],Acc) -> e_object_elements(T,[e_object_element(H)|Acc]). e_object_element(Num) when Num < 128 -> [Num]; e_object_element(Num) -> [e_o_e(Num bsr 7)|[Num band 2#1111111]]. e_o_e(Num) when Num < 128 -> Num bor 2#10000000; e_o_e(Num) -> [e_o_e(Num bsr 7)|[(Num band 2#1111111) bor 2#10000000]]. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% decode_object_identifier(Bytes) -> {ObjId,RemainingBytes} %% ObjId -> {integer(),integer(),...} % at least 2 integers %% RemainingBytes -> [integer()] when integer() (0..255) decode_object_identifier(Bytes) -> {Len,Bytes2} = decode_length(Bytes,undefined), {Octs,Bytes3} = getoctets_as_list(Bytes2,Len), [First|Rest] = dec_subidentifiers(Octs,0,[]), Idlist = if First < 40 -> [0,First|Rest]; First < 80 -> [1,First - 40|Rest]; true -> [2,First - 80|Rest] end, {list_to_tuple(Idlist),Bytes3}. dec_subidentifiers([H|T],Av,Al) when H >=16#80 -> dec_subidentifiers(T,(Av bsl 7) + (H band 16#7F),Al); dec_subidentifiers([H|T],Av,Al) -> dec_subidentifiers(T,0,[(Av bsl 7) + H |Al]); dec_subidentifiers([],_Av,Al) -> lists:reverse(Al). %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% encode_relative_oid(Val) -> CompleteList %% encode_relative_oid({Name,Val}) -> CompleteList encode_relative_oid({Name,Val}) when is_atom(Name) -> encode_relative_oid(Val); encode_relative_oid(Val) when is_tuple(Val) -> encode_relative_oid(tuple_to_list(Val)); encode_relative_oid(Val) when is_list(Val) -> Octets = list_to_binary([e_object_element(X)||X <- Val]), [encode_length(undefined,size(Octets)),Octets]. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% decode_relative_oid(Val) -> CompleteList %% decode_relative_oid({Name,Val}) -> CompleteList decode_relative_oid(Bytes) -> {Len,Bytes2} = decode_length(Bytes,undefined), {Octs,Bytes3} = getoctets_as_list(Bytes2,Len), ObjVals = dec_subidentifiers(Octs,0,[]), {list_to_tuple(ObjVals),Bytes3}. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% encode_real(Val) -> CompleteList %% encode_real({Name,Val}) -> CompleteList encode_real({Name,Val}) when is_atom(Name) -> encode_real(Val); encode_real(Real) -> {EncVal,Len} = ?RT_COMMON:encode_real([],Real), [encode_length(undefined,Len),EncVal]. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% decode_real(Val) -> {REALvalue,Rest} %% decode_real({Name,Val}) -> {REALvalue,Rest} decode_real(Bytes) -> {Len,Bytes2} = decode_length(Bytes,undefined), <> = Bytes2, {RealVal,Rest,Len} = ?RT_COMMON:decode_real(Bytes3,Len), {RealVal,Rest}. get_constraint([{Key,V}],Key) -> V; get_constraint([],_Key) -> no; get_constraint(C,Key) -> case lists:keysearch(Key,1,C) of false -> no; {value,{_,V}} -> V end. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% complete(InList) -> ByteList %% Takes a coded list with bits and bytes and converts it to a list of bytes %% Should be applied as the last step at encode of a complete ASN.1 type %% complete(InList) when is_list(InList) -> case complete1(InList) of <<>> -> <<0>>; Res -> case bit_size(Res) band 7 of 0 -> Res; Bits -> <> end end; complete(InList) when is_binary(InList) -> InList; complete(InList) when is_bitstring(InList) -> PadLen = 8 - (bit_size(InList) band 7), <>. complete1(L) when is_list(L) -> list_to_bitstring(L). %% Special version of complete that does not align the completed message. complete_NFP(InList) when is_list(InList) -> list_to_bitstring(InList); complete_NFP(InList) when is_bitstring(InList) -> InList. %% unaligned helpers %% 10.5.6 NOTE: If "range" satisfies the inequality 2^m < "range" =< %% 2^(m+1) then the number of bits = m + 1 num_bits(N) -> num_bits(N,1,0). num_bits(N,T,B) when N=B; num_bits(N,T,B) ->num_bits(N,T bsl 1, B+1).