%% %% %CopyrightBegin% %% %% Copyright Ericsson AB 2012-2013. All Rights Reserved. %% %% The contents of this file are subject to the Erlang Public License, %% Version 1.1, (the "License"); you may not use this file except in %% compliance with the License. You should have received a copy of the %% Erlang Public License along with this software. If not, it can be %% retrieved online at http://www.erlang.org/. %% %% Software distributed under the License is distributed on an "AS IS" %% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See %% the License for the specific language governing rights and limitations %% under the License. %% %% %CopyrightEnd% %% %% -module(asn1rtt_per_common). -include("asn1_records.hrl"). -export([decode_fragmented/3, decode_compact_bit_string/1, decode_legacy_bit_string/1, decode_named_bit_string/2, decode_chars/2,decode_chars/3, decode_chars_16bit/1, decode_big_chars/2, decode_oid/1,decode_relative_oid/1, encode_chars/2,encode_chars/3, encode_chars_16bit/1,encode_big_chars/1, encode_fragmented/2, encode_oid/1,encode_relative_oid/1, encode_unconstrained_number/1, bitstring_from_positions/1,bitstring_from_positions/2, to_bitstring/1,to_bitstring/2, to_named_bitstring/1,to_named_bitstring/2, extension_bitmap/3]). -define('16K',16384). decode_fragmented(SegSz0, Buf0, Unit) -> SegSz = SegSz0 * Unit * ?'16K', <<Res:SegSz/bitstring,Buf/bitstring>> = Buf0, decode_fragmented_1(Buf, Unit, Res). decode_fragmented_1(<<0:1,N:7,Buf0/bitstring>>, Unit, Res) -> Sz = N*Unit, <<S:Sz/bitstring,Buf/bitstring>> = Buf0, {<<Res/bitstring,S/bitstring>>,Buf}; decode_fragmented_1(<<1:1,0:1,N:14,Buf0/bitstring>>, Unit, Res) -> Sz = N*Unit, <<S:Sz/bitstring,Buf/bitstring>> = Buf0, {<<Res/bitstring,S/bitstring>>,Buf}; decode_fragmented_1(<<1:1,1:1,SegSz0:6,Buf0/bitstring>>, Unit, Res0) -> SegSz = SegSz0 * Unit * ?'16K', <<Frag:SegSz/bitstring,Buf/bitstring>> = Buf0, Res = <<Res0/bitstring,Frag/bitstring>>, decode_fragmented_1(Buf, Unit, Res). decode_named_bit_string(Val, NNL) -> Bits = [B || <<B:1>> <= Val], decode_named_bit_string_1(0, Bits, NNL, []). decode_legacy_bit_string(Val) -> [B || <<B:1>> <= Val]. decode_compact_bit_string(Val) -> PadLen = (8 - (bit_size(Val) band 7)) band 7, {PadLen,<<Val/bitstring,0:PadLen>>}. decode_chars(Val, N) -> [C || <<C:N>> <= Val]. decode_chars(Val, N, Chars) -> [element(C+1, Chars) || <<C:N>> <= Val]. decode_chars_16bit(Val) -> Cs = [C || <<C:16>> <= Val], decode_chars_16bit_1(Cs). decode_big_chars(Val, N) -> decode_big_chars_1(decode_chars(Val, N)). decode_oid(Octets) -> [First|Rest] = dec_subidentifiers(Octets, 0, []), Idlist = if First < 40 -> [0,First|Rest]; First < 80 -> [1,First - 40|Rest]; true -> [2,First - 80|Rest] end, list_to_tuple(Idlist). decode_relative_oid(Octets) -> list_to_tuple(dec_subidentifiers(Octets, 0, [])). encode_chars(Val, NumBits) -> << <<C:NumBits>> || C <- Val >>. encode_chars(Val, NumBits, {Lb,Tab}) -> << <<(enc_char(C, Lb, Tab)):NumBits>> || C <- Val >>. encode_chars_16bit(Val) -> L = [case C of {0,0,A,B} -> [A,B]; C when is_integer(C) -> [0,C] end || C <- Val], iolist_to_binary(L). encode_big_chars(Val) -> L = [case C of {_,_,_,_} -> tuple_to_list(C); C when is_integer(C) -> [<<0,0,0>>,C] end || C <- Val], iolist_to_binary(L). encode_fragmented(Bin, Unit) -> encode_fragmented_1(Bin, Unit, 4). encode_oid(Val) when is_tuple(Val) -> encode_oid(tuple_to_list(Val)); encode_oid(Val) -> iolist_to_binary(e_object_identifier(Val)). encode_relative_oid(Val) when is_tuple(Val) -> encode_relative_oid(tuple_to_list(Val)); encode_relative_oid(Val) when is_list(Val) -> list_to_binary([e_object_element(X)||X <- Val]). encode_unconstrained_number(Val) when Val >= 0 -> if Val < 16#80 -> [1,Val]; Val < 16#100 -> [<<2,0>>,Val]; true -> case binary:encode_unsigned(Val) of <<0:1,_/bitstring>>=Bin -> case byte_size(Bin) of Sz when Sz < 128 -> [Sz,Bin]; Sz when Sz < 16384 -> [<<2:2,Sz:14>>,Bin] end; <<1:1,_/bitstring>>=Bin -> case byte_size(Bin)+1 of Sz when Sz < 128 -> [Sz,0,Bin]; Sz when Sz < 16384 -> [<<2:2,Sz:14,0:8>>,Bin] end end end; encode_unconstrained_number(Val) -> Oct = enint(Val, []), Len = length(Oct), if Len < 128 -> [Len|Oct]; Len < 16384 -> [<<2:2,Len:14>>|Oct] end. %% bitstring_from_positions([Position]) -> BitString %% Given an unsorted list of bit positions (0..MAX), construct %% a BIT STRING. The rightmost bit will always be a one. bitstring_from_positions([]) -> <<>>; bitstring_from_positions([_|_]=L0) -> L1 = lists:sort(L0), L = diff(L1, -1), << <<1:(N+0)>> || N <- L >>. %% bitstring_from_positions([Position], Lb) -> BitString %% Given an unsorted list of bit positions (0..MAX) and a lower bound %% for the number of bits, construct BIT STRING (zero-padded on the %% right side if needed). bitstring_from_positions(L0, Lb) -> L1 = lists:sort(L0), L = diff(L1, -1, Lb-1), << <<B:(N+0)>> || {B,N} <- L >>. %% to_bitstring(Val) -> BitString %% Val = BitString | {Unused,Binary} | [OneOrZero] | Integer %% Given one of the possible representations for a BIT STRING, %% return a bitstring (without adding or removing any zero bits %% at the right end). to_bitstring({0,Bs}) when is_binary(Bs) -> Bs; to_bitstring({Unused,Bs0}) when is_binary(Bs0) -> Sz = bit_size(Bs0) - Unused, <<Bs:Sz/bits,_/bits>> = Bs0, Bs; to_bitstring(Bs) when is_bitstring(Bs) -> Bs; to_bitstring(Int) when is_integer(Int), Int >= 0 -> L = int_to_bitlist(Int), << <<B:1>> || B <- L >>; to_bitstring(L) when is_list(L) -> << <<B:1>> || B <- L >>. %% to_bitstring(Val, Lb) -> BitString %% Val = BitString | {Unused,Binary} | [OneOrZero] | Integer %% Lb = Integer %% Given one of the possible representations for a BIT STRING %% and the lower bound for the number of bits, %% return a bitstring at least Lb bits long (padded with zeroes %% if needed). to_bitstring({0,Bs}, Lb) when is_binary(Bs) -> case bit_size(Bs) of Sz when Sz < Lb -> <<Bs/bits,0:(Lb-Sz)>>; _ -> Bs end; to_bitstring({Unused,Bs0}, Lb) when is_binary(Bs0) -> Sz = bit_size(Bs0) - Unused, if Sz < Lb -> <<Bs0:Sz/bits,0:(Lb-Sz)>>; true -> <<Bs:Sz/bits,_/bits>> = Bs0, Bs end; to_bitstring(Bs, Lb) when is_bitstring(Bs) -> adjust_size(Bs, Lb); to_bitstring(Int, Lb) when is_integer(Int), Int >= 0 -> L = int_to_bitlist(Int), Bs = << <<B:1>> || B <- L >>, adjust_size(Bs, Lb); to_bitstring(L, Lb) when is_list(L) -> Bs = << <<B:1>> || B <- L >>, adjust_size(Bs, Lb). %% to_named_bitstring(Val) -> BitString %% Val = BitString | {Unused,Binary} | [OneOrZero] | Integer %% Given one of the possible representations for a BIT STRING, %% return a bitstring where any trailing zeroes have been stripped. to_named_bitstring(Val) -> Bs = to_bitstring(Val), bs_drop_trailing_zeroes(Bs). %% to_named_bitstring(Val, Lb) -> BitString %% Val = BitString | {Unused,Binary} | [OneOrZero] | Integer %% Lb = Integer %% Given one of the possible representations for a BIT STRING %% and the lower bound for the number of bits, %% return a bitstring that is at least Lb bits long. There will %% be zeroes at the right only if needed to reach the lower bound %% for the number of bits. to_named_bitstring({0,Bs}, Lb) when is_binary(Bs) -> adjust_trailing_zeroes(Bs, Lb); to_named_bitstring({Unused,Bs0}, Lb) when is_binary(Bs0) -> Sz = bit_size(Bs0) - Unused, <<Bs:Sz/bits,_/bits>> = Bs0, adjust_trailing_zeroes(Bs, Lb); to_named_bitstring(Bs, Lb) when is_bitstring(Bs) -> adjust_trailing_zeroes(Bs, Lb); to_named_bitstring(Val, Lb) -> %% Obsolete representations: list or integer. Optimize %% for correctness, not speed. adjust_trailing_zeroes(to_bitstring(Val), Lb). extension_bitmap(Val, Pos, Limit) -> extension_bitmap(Val, Pos, Limit, 0). %%% %%% Internal functions. %%% decode_named_bit_string_1(Pos, [0|Bt], Names, Acc) -> decode_named_bit_string_1(Pos+1, Bt, Names, Acc); decode_named_bit_string_1(Pos, [1|Bt], Names, Acc) -> case lists:keyfind(Pos, 2, Names) of {Name,_} -> decode_named_bit_string_1(Pos+1, Bt, Names, [Name|Acc]); false -> decode_named_bit_string_1(Pos+1, Bt, Names, [{bit,Pos}|Acc]) end; decode_named_bit_string_1(_Pos, [], _Names, Acc) -> lists:reverse(Acc). decode_chars_16bit_1([H|T]) when H < 256 -> [H|decode_chars_16bit_1(T)]; decode_chars_16bit_1([H|T]) -> [{0,0,H bsr 8,H band 255}|decode_chars_16bit_1(T)]; decode_chars_16bit_1([]) -> []. decode_big_chars_1([H|T]) when H < 256 -> [H|decode_big_chars_1(T)]; decode_big_chars_1([H|T]) -> [list_to_tuple(binary_to_list(<<H:32>>))|decode_big_chars_1(T)]; decode_big_chars_1([]) -> []. dec_subidentifiers([H|T], Av, Al) when H >=16#80 -> dec_subidentifiers(T, (Av bsl 7) bor (H band 16#7F), Al); dec_subidentifiers([H|T], Av, Al) -> dec_subidentifiers(T, 0, [(Av bsl 7) bor H|Al]); dec_subidentifiers([], _Av, Al) -> lists:reverse(Al). enc_char(C0, Lb, Tab) -> try element(C0-Lb, Tab) of ill -> illegal_char_error(); C -> C catch error:badarg -> illegal_char_error() end. illegal_char_error() -> error({error,{asn1,"value forbidden by FROM constraint"}}). encode_fragmented_1(Bin, Unit, N) -> SegSz = Unit * N * ?'16K', case Bin of <<B:SegSz/bitstring,T/bitstring>> -> [<<3:2,N:6>>,B|encode_fragmented_1(T, Unit, N)]; _ when N > 1 -> encode_fragmented_1(Bin, Unit, N-1); _ -> case bit_size(Bin) div Unit of Len when Len < 128 -> [Len,Bin]; Len when Len < 16384 -> [<<2:2,Len:14>>,Bin] end end. %% E1 = 0|1|2 and (E2 < 40 when E1 = 0|1) e_object_identifier([E1,E2|Tail]) when E1 >= 0, E1 < 2, E2 < 40; E1 =:= 2 -> Head = 40*E1 + E2, e_object_elements([Head|Tail], []); e_object_identifier([_,_|_Tail]=Oid) -> exit({error,{asn1,{'illegal_value',Oid}}}). e_object_elements([], Acc) -> lists:reverse(Acc); e_object_elements([H|T], Acc) -> e_object_elements(T, [e_object_element(H)|Acc]). e_object_element(Num) when Num < 128 -> [Num]; e_object_element(Num) -> [e_o_e(Num bsr 7)|[Num band 2#1111111]]. e_o_e(Num) when Num < 128 -> Num bor 2#10000000; e_o_e(Num) -> [e_o_e(Num bsr 7)|[(Num band 2#1111111) bor 2#10000000]]. enint(-1, [B1|T]) when B1 > 127 -> [B1|T]; enint(N, Acc) -> enint(N bsr 8, [N band 16#ff|Acc]). diff([H|T], Prev) -> [H-Prev|diff(T, H)]; diff([], _) -> []. diff([H|T], Prev, Last) -> [{1,H-Prev}|diff(T, H, Last)]; diff([], Prev, Last) when Last >= Prev -> [{0,Last-Prev}]; diff([], _, _) -> []. int_to_bitlist(0) -> []; int_to_bitlist(Int) -> [Int band 1|int_to_bitlist(Int bsr 1)]. adjust_size(Bs, Lb) -> case bit_size(Bs) of Sz when Sz < Lb -> <<Bs:Sz/bits,0:(Lb-Sz)>>; _ -> Bs end. adjust_trailing_zeroes(Bs0, Lb) -> case bit_size(Bs0) of Sz when Sz < Lb -> %% Too short - pad with zeroes. <<Bs0:Sz/bits,0:(Lb-Sz)>>; Lb -> %% Exactly the right size - nothing to do. Bs0; _ -> %% Longer than the lower bound - drop trailing zeroes. <<_:Lb/bits,Tail/bits>> = Bs0, Sz = Lb + bit_size(bs_drop_trailing_zeroes(Tail)), <<Bs:Sz/bits,_/bits>> = Bs0, Bs end. bs_drop_trailing_zeroes(Bs) -> bs_drop_trailing_zeroes(Bs, bit_size(Bs)). bs_drop_trailing_zeroes(Bs0, Sz0) when Sz0 < 8 -> <<Byte:Sz0>> = Bs0, Sz = Sz0 - ntz(Byte), <<Bs:Sz/bits,_/bits>> = Bs0, Bs; bs_drop_trailing_zeroes(Bs0, Sz0) -> Sz1 = Sz0 - 8, <<Bs1:Sz1/bits,Byte:8>> = Bs0, case ntz(Byte) of 8 -> bs_drop_trailing_zeroes(Bs1, Sz1); Ntz -> Sz = Sz0 - Ntz, <<Bs:Sz/bits,_:Ntz/bits>> = Bs0, Bs end. %% ntz(Byte) -> Number of trailing zeroes. ntz(Byte) -> %% The table was calculated like this: %% NTZ = fun (B, N, NTZ) when B band 1 =:= 0 -> NTZ(B bsr 1, N+1, NTZ); (_, N, _) -> N end. %% io:format("~w\n", [list_to_tuple([NTZ(B+256, 0, NTZ) || B <- lists:seq(0, 255)])]). T = {8,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0, 4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0, 5,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0, 4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0, 6,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0, 4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0, 5,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0, 4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0, 7,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0, 4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0, 5,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0, 4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0, 6,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0, 4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0, 5,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0, 4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0}, element(Byte+1, T). extension_bitmap(_Val, Pos, Limit, Acc) when Pos >= Limit -> Acc; extension_bitmap(Val, Pos, Limit, Acc) -> Bit = case element(Pos, Val) of asn1_NOVALUE -> 0; _ -> 1 end, extension_bitmap(Val, Pos+1, Limit, (Acc bsl 1) bor Bit).