%% %% %CopyrightBegin% %% %% Copyright Ericsson AB 2012-2013. All Rights Reserved. %% %% The contents of this file are subject to the Erlang Public License, %% Version 1.1, (the "License"); you may not use this file except in %% compliance with the License. You should have received a copy of the %% Erlang Public License along with this software. If not, it can be %% retrieved online at http://www.erlang.org/. %% %% Software distributed under the License is distributed on an "AS IS" %% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See %% the License for the specific language governing rights and limitations %% under the License. %% %% %CopyrightEnd% %% %% -module(asn1rtt_uper). -export([setext/1, fixoptionals/3, fixextensions/2, skipextensions/3]). -export([set_choice/3, encode_integer/2, encode_integer/3]). -export([encode_small_number/1, encode_constrained_number/2, encode_boolean/1, encode_length/1, encode_length/2, encode_bit_string/3]). -export([encode_octet_string/1,encode_octet_string/2, encode_relative_oid/1, encode_object_identifier/1, complete/1, complete_NFP/1]). -export([encode_open_type/1]). -export([encode_UniversalString/3, encode_PrintableString/3, encode_GeneralString/2, encode_GraphicString/2, encode_TeletexString/2, encode_VideotexString/2, encode_VisibleString/3, encode_UTF8String/1, encode_BMPString/3, encode_IA5String/3, encode_NumericString/3, encode_ObjectDescriptor/2 ]). -define('16K',16384). -define('32K',32768). -define('64K',65536). %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% setext(true|false) -> CompleteList %% setext(false) -> <<0:1>>; setext(true) -> <<1:1>>. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% This is the new fixoptionals/3 which is used by the new generates %% fixoptionals(OptList,OptLength,Val) when is_tuple(Val) -> Bits = fixoptionals(OptList,Val,0), {Val,<>}; fixoptionals([],_Val,Acc) -> %% Optbits Acc; fixoptionals([{Pos,DefVal}|Ot],Val,Acc) -> case element(Pos,Val) of asn1_DEFAULT -> fixoptionals(Ot,Val,Acc bsl 1); DefVal -> fixoptionals(Ot,Val,Acc bsl 1); _ -> fixoptionals(Ot,Val,(Acc bsl 1) + 1) end; fixoptionals([Pos|Ot],Val,Acc) -> case element(Pos,Val) of asn1_NOVALUE -> fixoptionals(Ot,Val,Acc bsl 1); asn1_DEFAULT -> fixoptionals(Ot,Val,Acc bsl 1); _ -> fixoptionals(Ot,Val,(Acc bsl 1) + 1) end. fixextensions({ext,ExtPos,ExtNum},Val) -> case fixextensions(ExtPos,ExtNum+ExtPos,Val,0) of 0 -> []; ExtBits -> [encode_small_length(ExtNum),<>] end. fixextensions(Pos,MaxPos,_,Acc) when Pos >= MaxPos -> Acc; fixextensions(Pos,ExtPos,Val,Acc) -> Bit = case catch(element(Pos+1,Val)) of asn1_NOVALUE -> 0; asn1_NOEXTVALUE -> 0; {'EXIT',_} -> 0; _ -> 1 end, fixextensions(Pos+1,ExtPos,Val,(Acc bsl 1)+Bit). skipextensions(Bytes0, Nr, ExtensionBitstr) when is_bitstring(ExtensionBitstr) -> Prev = Nr - 1, case ExtensionBitstr of <<_:Prev,1:1,_/bitstring>> -> {Len,Bytes1} = decode_length(Bytes0), <<_:Len/binary,Bytes2/bitstring>> = Bytes1, skipextensions(Bytes2, Nr+1, ExtensionBitstr); <<_:Prev,0:1,_/bitstring>> -> skipextensions(Bytes0, Nr+1, ExtensionBitstr); _ -> Bytes0 end. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% set_choice(Alt,Choices,Altnum) -> ListofBitSettings %% Alt = atom() %% Altnum = integer() | {integer(),integer()}% number of alternatives %% Choices = [atom()] | {[atom()],[atom()]} %% When Choices is a tuple the first list is the Rootset and the %% second is the Extensions and then Altnum must also be a tuple with the %% lengths of the 2 lists %% set_choice(Alt, {L1,L2}, {Len1,_Len2}) -> case set_choice_tag(Alt, L1) of N when is_integer(N), Len1 > 1 -> [<<0:1>>, % the value is in the root set encode_integer([{'ValueRange',{0,Len1-1}}],N)]; N when is_integer(N) -> <<0:1>>; % no encoding if only 0 or 1 alternative false -> [<<1:1>>, % extension value case set_choice_tag(Alt,L2) of N2 when is_integer(N2) -> encode_small_number(N2); false -> unknown_choice_alt end] end; set_choice(Alt,L,Len) -> case set_choice_tag(Alt,L) of N when is_integer(N), Len > 1 -> encode_integer([{'ValueRange',{0,Len-1}}],N); N when is_integer(N) -> []; % no encoding if only 0 or 1 alternative false -> [unknown_choice_alt] end. set_choice_tag(Alt,Choices) -> set_choice_tag(Alt,Choices,0). set_choice_tag(Alt,[Alt|_Rest],Tag) -> Tag; set_choice_tag(Alt,[_H|Rest],Tag) -> set_choice_tag(Alt,Rest,Tag+1); set_choice_tag(_Alt,[],_Tag) -> false. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% encode_open_type(Constraint, Value) -> CompleteList %% Value = list of bytes of an already encoded value (the list must be flat) %% | binary %% Contraint = not used in this version %% encode_open_type(Val) -> [encode_length(byte_size(Val)),Val]. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% encode_integer(Constraint,Value,NamedNumberList) -> CompleteList %% encode_integer(Constraint,Value) -> CompleteList %% encode_integer(Constraint,{Name,Value}) -> CompleteList %% %% encode_integer(C, V, NamedNumberList) when is_atom(V) -> case lists:keyfind(V, 1, NamedNumberList) of {_,NewV} -> encode_integer(C, NewV); false -> exit({error,{asn1,{namednumber,V}}}) end; encode_integer(C, V, _NamedNumberList) when is_integer(V) -> encode_integer(C, V). encode_integer([{Rc,_Ec}],Val) when is_tuple(Rc) -> try [<<0:1>>,encode_integer([Rc], Val)] catch _:{error,{asn1,_}} -> [<<1:1>>,encode_unconstrained_number(Val)] end; encode_integer(C, Val) when is_list(C) -> case get_constraint(C, 'SingleValue') of no -> encode_integer1(C,Val); V when is_integer(V), V =:= Val -> []; % a type restricted to a single value encodes to nothing V when is_list(V) -> case lists:member(Val,V) of true -> encode_integer1(C,Val); _ -> exit({error,{asn1,{illegal_value,Val}}}) end; _ -> exit({error,{asn1,{illegal_value,Val}}}) end. encode_integer1(C, Val) -> case VR = get_constraint(C, 'ValueRange') of no -> encode_unconstrained_number(Val); {Lb,'MAX'} when Lb =< Val -> encode_semi_constrained_number(Lb, Val); %% positive with range {Lb,Ub} when Val >= Lb, Ub >= Val -> encode_constrained_number(VR,Val); _ -> exit({error,{asn1,{illegal_value,VR,Val}}}) end. %% X.691:10.6 Encoding of a normally small non-negative whole number %% Use this for encoding of CHOICE index if there is an extension marker in %% the CHOICE encode_small_number(Val) when Val < 64 -> <>; encode_small_number(Val) -> [<<1:1>>|encode_semi_constrained_number(0, Val)]. %% X.691:10.7 Encoding of a semi-constrained whole number encode_semi_constrained_number(Lb, Val) -> %% encoding in minimum number of octets preceeded by a length Val2 = Val - Lb, Bin = eint_bin_positive(Val2), Size = byte_size(Bin), if Size < 128 -> [<>,Bin]; Size < 16384 -> [<<2:2,Size:14>>,Bin]; true -> [encode_length(Size),Bin] end. encode_constrained_number({Lb,Ub}, Val) when Val >= Lb, Ub >= Val -> Range = Ub - Lb + 1, Val2 = Val - Lb, NumBits = num_bits(Range), <>; encode_constrained_number(Range,Val) -> exit({error,{asn1,{integer_range,Range,value,Val}}}). %% X.691:10.8 Encoding of an unconstrained whole number encode_unconstrained_number(Val) when Val >= 0 -> Oct = eint_bin_2Cs(Val), Len = byte_size(Oct), if Len < 128 -> [<>,Oct]; % equiv with encode_length(undefined,Len) but faster Len < 16384 -> [<<2:2,Len:14>>,Oct]; true -> [encode_length(Len),<>,Oct] end; encode_unconstrained_number(Val) -> % negative Oct = enint(Val,[]), Len = byte_size(Oct), if Len < 128 -> [<>,Oct]; % equiv with encode_length(undefined,Len) but faster Len < 16384 -> [<<2:2,Len:14>>,Oct]; true -> [encode_length(Len),Oct] end. eint_bin_2Cs(Int) -> case eint_bin_positive(Int) of <> = Bin when B > 16#7f -> <<0,Bin/binary>>; Bin -> Bin end. %% returns the integer as a binary eint_bin_positive(Val) when Val < 16#100 -> <>; eint_bin_positive(Val) when Val < 16#10000 -> <>; eint_bin_positive(Val) when Val < 16#1000000 -> <>; eint_bin_positive(Val) when Val < 16#100000000 -> <>; eint_bin_positive(Val) -> list_to_binary([eint_bin_positive2(Val bsr 32),<>]). eint_bin_positive2(Val) when Val < 16#100 -> <>; eint_bin_positive2(Val) when Val < 16#10000 -> <>; eint_bin_positive2(Val) when Val < 16#1000000 -> <>; eint_bin_positive2(Val) when Val < 16#100000000 -> <>; eint_bin_positive2(Val) -> [eint_bin_positive2(Val bsr 32),<>]. enint(-1, [B1|T]) when B1 > 127 -> list_to_binary([B1|T]); enint(N, Acc) -> enint(N bsr 8, [N band 16#ff|Acc]). %% X.691:10.9 Encoding of a length determinant %%encode_small_length(undefined,Len) -> % null means no UpperBound %% encode_small_number(Len). %% X.691:10.9.3.5 %% X.691:10.9.3.7 encode_length(Len) -> % un-constrained if Len < 128 -> <>; Len < 16384 -> <<2:2,Len:14>>; true -> % should be able to endode length >= 16384 error({error,{asn1,{encode_length,{nyi,above_16k}}}}) end. encode_length({C,[]}, Len) -> case C of {Lb,Ub}=Vr when Lb =< Len, Len =< Ub -> [<<0:1>>|encode_constrained_number(Vr, Len)]; _ -> [<<1:1>>|encode_length(Len)] end; encode_length(Len, Len) -> []; encode_length(Vr, Len) -> encode_constrained_number(Vr, Len). %% X.691 10.9.3.4 (only used for length of bitmap that prefixes extension %% additions in a sequence or set encode_small_length(Len) when Len =< 64 -> <<(Len-1):7>>; encode_small_length(Len) -> [<<1:1>>,encode_length(Len)]. %% un-constrained decode_length(<<0:1,Oct:7,Rest/bitstring>>) -> {Oct,Rest}; decode_length(<<2:2,Val:14,Rest/bitstring>>) -> {Val,Rest}; decode_length(<<3:2,_:14,_Rest/bitstring>>) -> exit({error,{asn1,{decode_length,{nyi,above_16k}}}}). % X.691:11 encode_boolean(true) -> <<1:1>>; encode_boolean(false) -> <<0:1>>; encode_boolean(Val) -> exit({error,{asn1,{encode_boolean,Val}}}). %%============================================================================ %%============================================================================ %% Bitstring value, ITU_T X.690 Chapter 8.5 %%============================================================================ %%============================================================================ %%============================================================================ %% encode bitstring value %%============================================================================ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% bitstring NamedBitList %% Val can be of: %% - [identifiers] where only named identifers are set to one, %% the Constraint must then have some information of the %% bitlength. %% - [list of ones and zeroes] all bits %% - integer value representing the bitlist %% C is constraint Len, only valid when identifiers are present %% when the value is a list of {Unused,BinBits}, where %% Unused = integer(), %% BinBits = binary(). encode_bit_string(C, Bits, NamedBitList) when is_bitstring(Bits) -> PadLen = (8 - (bit_size(Bits) band 7)) band 7, Compact = {PadLen,<>}, encode_bit_string(C, Compact, NamedBitList); encode_bit_string(C, {Unused,BinBits}=Bin, NamedBitList) when is_integer(Unused), is_binary(BinBits) -> encode_bin_bit_string(C, Bin, NamedBitList); encode_bit_string(C, BitListVal, NamedBitList) -> encode_bit_string1(C, BitListVal, NamedBitList). %% when the value is a list of named bits encode_bit_string1(C, [FirstVal|_RestVal]=LoNB, NamedBitList) when is_atom(FirstVal) -> ToSetPos = get_all_bitposes(LoNB, NamedBitList, []), BitList = make_and_set_list(ToSetPos, 0), encode_bit_string1(C, BitList, NamedBitList); encode_bit_string1(C, [{bit,_No}|_RestVal]=BL, NamedBitList) -> ToSetPos = get_all_bitposes(BL, NamedBitList, []), BitList = make_and_set_list(ToSetPos, 0), encode_bit_string1(C, BitList, NamedBitList); %% when the value is a list of ones and zeroes encode_bit_string1(Int, BitListValue, _) when is_list(BitListValue), is_integer(Int) -> %% The type is constrained by a single value size constraint bit_list2bitstr(Int, BitListValue); encode_bit_string1(no, BitListValue, []) when is_list(BitListValue) -> Len = length(BitListValue), [encode_length(Len),bit_list2bitstr(Len,BitListValue)]; encode_bit_string1(C, BitListValue,[]) when is_list(BitListValue) -> Len = length(BitListValue), [encode_length(C, Len),bit_list2bitstr(Len,BitListValue)]; encode_bit_string1(no, BitListValue,_NamedBitList) when is_list(BitListValue) -> NewBitLVal = lists:reverse(lists:dropwhile(fun(0)->true;(1)->false end, lists:reverse(BitListValue))), Len = length(NewBitLVal), [encode_length(Len),bit_list2bitstr(Len,NewBitLVal)]; encode_bit_string1(C, BitListValue, _NamedBitList) when is_list(BitListValue) ->% C = {_,'MAX'} NewBitStr = bitstr_trailing_zeros(BitListValue, C), [encode_length(C, bit_size(NewBitStr)),NewBitStr]; %% when the value is an integer encode_bit_string1(C, IntegerVal, NamedBitList) when is_integer(IntegerVal)-> BitList = int_to_bitlist(IntegerVal), encode_bit_string1(C, BitList, NamedBitList). bit_list2bitstr(Len,BitListValue) -> case length(BitListValue) of Len -> << <> || B <- BitListValue>>; L when L > Len -> % truncate <<(<< <> || B <- BitListValue>>):Len/bitstring>>; L -> % Len > L -> pad <<(<< <> || B <- BitListValue>>)/bitstring,0:(Len-L)>> end. adjust_trailing_zeros(Len, Bin) when Len =:= bit_size(Bin) -> Bin; adjust_trailing_zeros(Len, Bin) when Len > bit_size(Bin) -> <>; adjust_trailing_zeros(Len,Bin) -> <>. bitstr_trailing_zeros(BitList, C) when is_integer(C) -> bitstr_trailing_zeros1(BitList, C, C); bitstr_trailing_zeros(BitList, {Lb,Ub}) when is_integer(Lb) -> bitstr_trailing_zeros1(BitList,Lb,Ub); bitstr_trailing_zeros(BitList, {{Lb,Ub},_}) when is_integer(Lb) -> bitstr_trailing_zeros1(BitList, Lb, Ub); bitstr_trailing_zeros(BitList, _) -> bit_list2bitstr(length(BitList), BitList). bitstr_trailing_zeros1(BitList, Lb, Ub) -> case length(BitList) of Lb -> bit_list2bitstr(Lb, BitList); B when B < Lb -> bit_list2bitstr(Lb, BitList); D -> F = fun(L,LB,LB,_,_)->bit_list2bitstr(LB,lists:reverse(L)); ([0|R],L1,LB,UB,Fun)->Fun(R,L1-1,LB,UB,Fun); (L,L1,_,UB,_)when L1 =< UB -> bit_list2bitstr(L1,lists:reverse(L)); (_,_L1,_,_,_) ->exit({error,{list_length_BIT_STRING, BitList}}) end, F(lists:reverse(BitList),D,Lb,Ub,F) end. %% encode_bin_bit_string/3, when value is a tuple of Unused and BinBits. %% Unused = integer(),i.e. number unused bits in least sign. byte of %% BinBits = binary(). encode_bin_bit_string(C, {_,BinBits}, _NamedBitList) when is_integer(C), C =< 16 -> adjust_trailing_zeros(C, BinBits); encode_bin_bit_string(C, {_Unused,BinBits}, _NamedBitList) when is_integer(C) -> adjust_trailing_zeros(C, BinBits); encode_bin_bit_string(C, {_,_}=UnusedAndBin, NamedBitList) -> %% removes all trailing bits if NamedBitList is not empty BitStr = remove_trailing_bin(NamedBitList, UnusedAndBin), case C of {Lb,Ub} when is_integer(Lb),is_integer(Ub) -> [encode_length({Lb,Ub},bit_size(BitStr)),BitStr]; no -> [encode_length(bit_size(BitStr)),BitStr]; Sc -> [encode_length(Sc,bit_size(BitStr)),BitStr] end. remove_trailing_bin([], {Unused,Bin}) -> BS = bit_size(Bin)-Unused, <> = Bin, BitStr; remove_trailing_bin(_NamedNumberList, {_Unused,<<>>}) -> <<>>; remove_trailing_bin(NamedNumberList, {_Unused,Bin}) -> Size = byte_size(Bin)-1, <> = Bin, %% clear the Unused bits to be sure Unused1 = trailingZeroesInNibble(LastByte band 15), Unused2 = case Unused1 of 4 -> 4 + trailingZeroesInNibble(LastByte bsr 4); _ -> Unused1 end, case Unused2 of 8 -> remove_trailing_bin(NamedNumberList,{0,Bfront}); _ -> BS = bit_size(Bin) - Unused2, <> = Bin, BitStr end. trailingZeroesInNibble(0) -> 4; trailingZeroesInNibble(1) -> 0; trailingZeroesInNibble(2) -> 1; trailingZeroesInNibble(3) -> 0; trailingZeroesInNibble(4) -> 2; trailingZeroesInNibble(5) -> 0; trailingZeroesInNibble(6) -> 1; trailingZeroesInNibble(7) -> 0; trailingZeroesInNibble(8) -> 3; trailingZeroesInNibble(9) -> 0; trailingZeroesInNibble(10) -> 1; trailingZeroesInNibble(11) -> 0; trailingZeroesInNibble(12) -> %#1100 2; trailingZeroesInNibble(13) -> 0; trailingZeroesInNibble(14) -> 1; trailingZeroesInNibble(15) -> 0. %%%%%%%%%%%%%%% %% int_to_bitlist(Int) when is_integer(Int), Int > 0 -> [Int band 1 | int_to_bitlist(Int bsr 1)]; int_to_bitlist(0) -> []. %%%%%%%%%%%%%%%%%% %% get_all_bitposes([list of named bits to set], named_bit_db, []) -> %% [sorted_list_of_bitpositions_to_set] get_all_bitposes([{bit,ValPos}|Rest], NamedBitList, Ack) -> get_all_bitposes(Rest, NamedBitList, [ValPos | Ack ]); get_all_bitposes([Val | Rest], NamedBitList, Ack) -> case lists:keyfind(Val, 1, NamedBitList) of {_ValName, ValPos} -> get_all_bitposes(Rest, NamedBitList, [ValPos | Ack]); false -> exit({error,{asn1, {bitstring_namedbit, Val}}}) end; get_all_bitposes([], _NamedBitList, Ack) -> lists:sort(Ack). %%%%%%%%%%%%%%%%%% %% make_and_set_list([list of positions to set to 1])-> %% returns list with all in SetPos set. %% in positioning in list the first element is 0, the second 1 etc.., but %% make_and_set_list([XPos|SetPos], XPos) -> [1 | make_and_set_list(SetPos, XPos + 1)]; make_and_set_list([Pos|SetPos], XPos) -> [0 | make_and_set_list([Pos | SetPos], XPos + 1)]; make_and_set_list([], _) -> []. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% X.691:16 %% encode_octet_string(Val) %% encode_octet_string(Constraint, Val) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% encode_octet_string(Val) -> try [encode_length(length(Val)),list_to_binary(Val)] catch error:{error,{asn1,{encode_length,_}}} -> encode_fragmented_octet_string(Val) end. encode_octet_string(C, Val) -> case C of {_,_}=VR -> try [encode_length(VR, length(Val)),list_to_binary(Val)] catch error:{error,{asn1,{encode_length,_}}} -> encode_fragmented_octet_string(Val) end; Sv when is_integer(Sv), Sv =:= length(Val) -> % fixed length list_to_binary(Val) end. encode_fragmented_octet_string(Val) -> Bin = list_to_binary(Val), efos_1(Bin). efos_1(<>) -> [<<3:2,4:6>>,B|efos_1(T)]; efos_1(<>) -> [<<3:2,3:6>>,B|efos_1(T)]; efos_1(<>) -> [<<3:2,2:6>>,B|efos_1(T)]; efos_1(<>) -> [<<3:2,1:6>>,B|efos_1(T)]; efos_1(<>) -> Len = byte_size(B), [encode_length(Len),B]. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Restricted char string types %% (NumericString, PrintableString,VisibleString,IA5String,BMPString,UniversalString) %% X.691:26 and X.680:34-36 %%encode_restricted_string('BMPString',Constraints,Extension,Val) encode_restricted_string(Val) when is_list(Val)-> [encode_length(length(Val)),list_to_binary(Val)]. encode_known_multiplier_string(StringType, C, Pa, Val) -> Result = chars_encode(Pa, StringType, Val), case C of Ub when is_integer(Ub) -> Result; {_,_}=Range -> [encode_length(Range, length(Val)),Result]; no -> [encode_length(length(Val)),Result] end. encode_NumericString(C, Pa, Val) -> encode_known_multiplier_string('NumericString', C, Pa, Val). encode_PrintableString(C, Pa, Val) -> encode_known_multiplier_string('PrintableString', C, Pa, Val). encode_VisibleString(C, Pa, Val) -> % equivalent with ISO646String encode_known_multiplier_string('VisibleString', C, Pa, Val). encode_IA5String(C, Pa, Val) -> encode_known_multiplier_string('IA5String', C, Pa, Val). encode_BMPString(C, Pa, Val) -> encode_known_multiplier_string('BMPString', C, Pa, Val). encode_UniversalString(C, Pa, Val) -> encode_known_multiplier_string('UniversalString', C, Pa, Val). %% end of known-multiplier strings for which PER visible constraints are %% applied encode_GeneralString(_C,Val) -> encode_restricted_string(Val). encode_GraphicString(_C,Val) -> encode_restricted_string(Val). encode_ObjectDescriptor(_C,Val) -> encode_restricted_string(Val). encode_TeletexString(_C,Val) -> % equivalent with T61String encode_restricted_string(Val). encode_VideotexString(_C,Val) -> encode_restricted_string(Val). %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% chars_encode(C,StringType,Value) -> ValueList %% %% encodes chars according to the per rules taking the constraint PermittedAlphabet %% into account. %% This function does only encode the value part and NOT the length chars_encode(Pa, StringType, Value) -> case {StringType,Pa} of {'UniversalString',{_,_Sv}} -> exit({error,{asn1,{'not implemented',"UniversalString with PermittedAlphabet constraint"}}}); {'BMPString',{_,_Sv}} -> exit({error,{asn1,{'not implemented',"BMPString with PermittedAlphabet constraint"}}}); _ -> {NumBits,CharOutTab} = {get_NumBits(Pa, StringType), get_CharOutTab(Pa, StringType)}, chars_encode2(Value,NumBits,CharOutTab) end. chars_encode2([H|T],NumBits,{Min,Max,notab}) when H =< Max, H >= Min -> [<<(H-Min):NumBits>>|chars_encode2(T,NumBits,{Min,Max,notab})]; chars_encode2([H|T],NumBits,{Min,Max,Tab}) when H =< Max, H >= Min -> Ch = exit_if_false(H,element(H-Min+1,Tab)), [<>|chars_encode2(T,NumBits,{Min,Max,Tab})]; chars_encode2([{A,B,C,D}|T],NumBits,{Min,Max,notab}) -> %% no value range check here (ought to be, but very expensive) Ch = ((((((A bsl 8)+B) bsl 8)+C) bsl 8)+D)-Min, [<>|chars_encode2(T,NumBits,{Min,Max,notab})]; chars_encode2([{A,B,C,D}|T],NumBits,{Min,Max,Tab}) -> %% no value range check here (ought to be, but very expensive) Ch = exit_if_false({A,B,C,D},element(((((((A bsl 8)+B) bsl 8)+C) bsl 8)+D)-Min,Tab)), [<>|chars_encode2(T,NumBits,{Min,Max,notab})]; chars_encode2([H|_T],_,{_,_,_}) -> exit({error,{asn1,{illegal_char_value,H}}}); chars_encode2([],_,_) -> []. exit_if_false(V,false)-> exit({error,{asn1,{"illegal value according to Permitted alphabet constraint",V}}}); exit_if_false(_,V) ->V. get_NumBits(Pa, StringType) -> case Pa of {'SingleValue',Sv} -> charbits(length(Sv)); no -> case StringType of 'IA5String' -> charbits(128); % 16#00..16#7F 'VisibleString' -> charbits(95); % 16#20..16#7E 'PrintableString' -> charbits(74); % [$\s,$',$(,$),$+,$,,$-,$.,$/,"0123456789",$:,$=,$?,$A..$Z,$a..$z 'NumericString' -> charbits(11); % $ ,"0123456789" 'UniversalString' -> 32; 'BMPString' -> 16 end end. get_CharOutTab(Pa, StringType) -> case Pa of {'SingleValue',Sv} -> get_CharTab2(Pa, StringType, hd(Sv), lists:max(Sv), Sv); no -> case StringType of 'IA5String' -> {0,16#7F,notab}; 'VisibleString' -> get_CharTab2(Pa, StringType, 16#20, 16#7F, notab); 'PrintableString' -> Chars = lists:sort( " '()+,-./0123456789:=?ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"), get_CharTab2(Pa, StringType, hd(Chars), lists:max(Chars), Chars); 'NumericString' -> get_CharTab2(Pa, StringType, 16#20, $9, " 0123456789"); 'UniversalString' -> {0,16#FFFFFFFF,notab}; 'BMPString' -> {0,16#FFFF,notab} end end. get_CharTab2(C,StringType,Min,Max,Chars) -> BitValMax = (1 bsl get_NumBits(C,StringType))-1, if Max =< BitValMax -> {0,Max,notab}; true -> {Min,Max,create_char_tab(Min,Chars)} end. create_char_tab(Min,L) -> list_to_tuple(create_char_tab(Min,L,0)). create_char_tab(Min,[Min|T],V) -> [V|create_char_tab(Min+1,T,V+1)]; create_char_tab(_Min,[],_V) -> []; create_char_tab(Min,L,V) -> [false|create_char_tab(Min+1,L,V)]. %% See Table 20.3 in Dubuisson charbits(NumOfChars) when NumOfChars =< 2 -> 1; charbits(NumOfChars) when NumOfChars =< 4 -> 2; charbits(NumOfChars) when NumOfChars =< 8 -> 3; charbits(NumOfChars) when NumOfChars =< 16 -> 4; charbits(NumOfChars) when NumOfChars =< 32 -> 5; charbits(NumOfChars) when NumOfChars =< 64 -> 6; charbits(NumOfChars) when NumOfChars =< 128 -> 7; charbits(NumOfChars) when NumOfChars =< 256 -> 8; charbits(NumOfChars) when NumOfChars =< 512 -> 9; charbits(NumOfChars) when NumOfChars =< 1024 -> 10; charbits(NumOfChars) when NumOfChars =< 2048 -> 11; charbits(NumOfChars) when NumOfChars =< 4096 -> 12; charbits(NumOfChars) when NumOfChars =< 8192 -> 13; charbits(NumOfChars) when NumOfChars =< 16384 -> 14; charbits(NumOfChars) when NumOfChars =< 32768 -> 15; charbits(NumOfChars) when NumOfChars =< 65536 -> 16; charbits(NumOfChars) when is_integer(NumOfChars) -> 16 + charbits1(NumOfChars bsr 16). charbits1(0) -> 0; charbits1(NumOfChars) -> 1 + charbits1(NumOfChars bsr 1). %% UTF8String encode_UTF8String(Val) when is_binary(Val) -> [encode_length(byte_size(Val)),Val]; encode_UTF8String(Val) -> Bin = list_to_binary(Val), encode_UTF8String(Bin). %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% encode_object_identifier(Val) -> CompleteList %% encode_object_identifier({Name,Val}) -> CompleteList %% Val -> {Int1,Int2,...,IntN} % N >= 2 %% Name -> atom() %% Int1 -> integer(0..2) %% Int2 -> integer(0..39) when Int1 (0..1) else integer() %% Int3-N -> integer() %% CompleteList -> [binary()|bitstring()|list()] %% encode_object_identifier(Val) -> OctetList = e_object_identifier(Val), Octets = list_to_binary(OctetList), % performs a flatten at the same time [encode_length(byte_size(Octets)),Octets]. %% This code is copied from asn1_encode.erl (BER) and corrected and modified e_object_identifier({'OBJECT IDENTIFIER',V}) -> e_object_identifier(V); e_object_identifier(V) when is_tuple(V) -> e_object_identifier(tuple_to_list(V)); %% E1 = 0|1|2 and (E2 < 40 when E1 = 0|1) e_object_identifier([E1,E2|Tail]) when E1 >= 0, E1 < 2, E2 < 40 ; E1==2 -> Head = 40*E1 + E2, % weird e_object_elements([Head|Tail],[]); e_object_identifier(Oid=[_,_|_Tail]) -> exit({error,{asn1,{'illegal_value',Oid}}}). e_object_elements([],Acc) -> lists:reverse(Acc); e_object_elements([H|T],Acc) -> e_object_elements(T,[e_object_element(H)|Acc]). e_object_element(Num) when Num < 128 -> [Num]; e_object_element(Num) -> [e_o_e(Num bsr 7)|[Num band 2#1111111]]. e_o_e(Num) when Num < 128 -> Num bor 2#10000000; e_o_e(Num) -> [e_o_e(Num bsr 7)|[(Num band 2#1111111) bor 2#10000000]]. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% encode_relative_oid(Val) -> CompleteList %% encode_relative_oid({Name,Val}) -> CompleteList encode_relative_oid(Val) when is_tuple(Val) -> encode_relative_oid(tuple_to_list(Val)); encode_relative_oid(Val) when is_list(Val) -> Octets = list_to_binary([e_object_element(X)||X <- Val]), [encode_length(byte_size(Octets)),Octets]. get_constraint([{Key,V}],Key) -> V; get_constraint([],_Key) -> no; get_constraint(C,Key) -> case lists:keyfind(Key, 1, C) of false -> no; {_,V} -> V end. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% complete(InList) -> ByteList %% Takes a coded list with bits and bytes and converts it to a list of bytes %% Should be applied as the last step at encode of a complete ASN.1 type %% complete(InList) when is_list(InList) -> case complete1(InList) of <<>> -> <<0>>; Res -> case bit_size(Res) band 7 of 0 -> Res; Bits -> <> end end; complete(Bin) when is_binary(Bin) -> case Bin of <<>> -> <<0>>; _ -> Bin end; complete(InList) when is_bitstring(InList) -> PadLen = 8 - (bit_size(InList) band 7), <>. complete1(L) when is_list(L) -> list_to_bitstring(L). %% Special version of complete that does not align the completed message. complete_NFP(InList) when is_list(InList) -> list_to_bitstring(InList); complete_NFP(InList) when is_bitstring(InList) -> InList. %% unaligned helpers %% 10.5.6 NOTE: If "range" satisfies the inequality 2^m < "range" =< %% 2^(m+1) then the number of bits = m + 1 num_bits(N) -> num_bits(N, 1, 0). num_bits(N,T,B) when N =< T -> B; num_bits(N,T,B) -> num_bits(N, T bsl 1, B+1).