%% %% %CopyrightBegin% %% %% Copyright Ericsson AB 1999-2010. All Rights Reserved. %% %% The contents of this file are subject to the Erlang Public License, %% Version 1.1, (the "License"); you may not use this file except in %% compliance with the License. You should have received a copy of the %% Erlang Public License along with this software. If not, it can be %% retrieved online at http://www.erlang.org/. %% %% Software distributed under the License is distributed on an "AS IS" %% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See %% the License for the specific language governing rights and limitations %% under the License. %% %% %CopyrightEnd% %% %% Purpose : Partitions assembly instructions into basic blocks and %% optimizes them. -module(beam_block). -export([module/2]). -import(lists, [mapfoldl/3,reverse/1,reverse/2,foldl/3,member/2]). -define(MAXREG, 1024). module({Mod,Exp,Attr,Fs0,Lc0}, _Opt) -> {Fs,Lc} = mapfoldl(fun function/2, Lc0, Fs0), {ok,{Mod,Exp,Attr,Fs,Lc}}. function({function,Name,Arity,CLabel,Is0}, Lc0) -> try %% Extra labels may thwart optimizations. Is1 = beam_jump:remove_unused_labels(Is0), %% Collect basic blocks and optimize them. Is2 = blockify(Is1), Is3 = beam_utils:live_opt(Is2), Is4 = opt_blocks(Is3), Is5 = beam_utils:delete_live_annos(Is4), %% Optimize bit syntax. {Is,Lc} = bsm_opt(Is5, Lc0), %% Done. {{function,Name,Arity,CLabel,Is},Lc} catch Class:Error -> Stack = erlang:get_stacktrace(), io:fwrite("Function: ~w/~w\n", [Name,Arity]), erlang:raise(Class, Error, Stack) end. %% blockify(Instructions0) -> Instructions %% Collect sequences of instructions to basic blocks. %% Also do some simple optimations on instructions outside the blocks. blockify(Is) -> blockify(Is, []). blockify([{loop_rec,{f,Fail},{x,0}},{loop_rec_end,_Lbl},{label,Fail}|Is], Acc) -> %% Useless instruction sequence. blockify(Is, Acc); %% New bit syntax matching. blockify([{bs_save2,R,Point}=I,{bs_restore2,R,Point}|Is], Acc) -> blockify([I|Is], Acc); blockify([{bs_save2,R,Point}=I,{test,is_eq_exact,_,_}=Test, {bs_restore2,R,Point}|Is], Acc) -> blockify([I,Test|Is], Acc); %% Do other peep-hole optimizations. blockify([{test,is_atom,{f,Fail},[Reg]}=I| [{select_val,Reg,{f,Fail}, {list,[{atom,false},{f,_}=BrFalse, {atom,true}=AtomTrue,{f,_}=BrTrue]}}|Is]=Is0], [{block,Bl}|_]=Acc) -> case is_last_bool(Bl, Reg) of false -> blockify(Is0, [I|Acc]); true -> %% The last instruction is a boolean operator/guard BIF that can't fail. %% We can convert the three-way branch to a two-way branch (eliminating %% the reference to the failure label). blockify(Is, [{jump,BrTrue}, {test,is_eq_exact,BrFalse,[Reg,AtomTrue]}|Acc]) end; blockify([{test,is_atom,{f,Fail},[Reg]}=I| [{select_val,Reg,{f,Fail}, {list,[{atom,true}=AtomTrue,{f,_}=BrTrue, {atom,false},{f,_}=BrFalse]}}|Is]=Is0], [{block,Bl}|_]=Acc) -> case is_last_bool(Bl, Reg) of false -> blockify(Is0, [I|Acc]); true -> blockify(Is, [{jump,BrTrue}, {test,is_eq_exact,BrFalse,[Reg,AtomTrue]}|Acc]) end; blockify([I|Is0]=IsAll, Acc) -> case is_bs_put(I) of true -> {BsPuts0,Is} = collect_bs_puts(IsAll), BsPuts = opt_bs_puts(BsPuts0), blockify(Is, reverse(BsPuts, Acc)); false -> case collect(I) of error -> blockify(Is0, [I|Acc]); Instr when is_tuple(Instr) -> {Block,Is} = collect_block(IsAll), blockify(Is, [{block,Block}|Acc]) end end; blockify([], Acc) -> reverse(Acc). is_last_bool([{set,[Reg],As,{bif,N,_}}], Reg) -> Ar = length(As), erl_internal:new_type_test(N, Ar) orelse erl_internal:comp_op(N, Ar) orelse erl_internal:bool_op(N, Ar); is_last_bool([_|Is], Reg) -> is_last_bool(Is, Reg); is_last_bool([], _) -> false. collect_block(Is) -> collect_block(Is, []). collect_block([{allocate_zero,Ns,R},{test_heap,Nh,R}|Is], Acc) -> collect_block(Is, [{set,[],[],{alloc,R,{no_opt,Ns,Nh,[]}}}|Acc]); collect_block([I|Is]=Is0, Acc) -> case collect(I) of error -> {reverse(Acc),Is0}; Instr -> collect_block(Is, [Instr|Acc]) end. collect({allocate_zero,N,R}) -> {set,[],[],{alloc,R,{zero,N,0,[]}}}; collect({test_heap,N,R}) -> {set,[],[],{alloc,R,{nozero,nostack,N,[]}}}; collect({bif,N,F,As,D}) -> {set,[D],As,{bif,N,F}}; collect({gc_bif,N,F,R,As,D}) -> {set,[D],As,{alloc,R,{gc_bif,N,F}}}; collect({move,S,D}) -> {set,[D],[S],move}; collect({put_list,S1,S2,D}) -> {set,[D],[S1,S2],put_list}; collect({put_tuple,A,D}) -> {set,[D],[],{put_tuple,A}}; collect({put,S}) -> {set,[],[S],put}; collect({get_tuple_element,S,I,D}) -> {set,[D],[S],{get_tuple_element,I}}; collect({set_tuple_element,S,D,I}) -> {set,[],[S,D],{set_tuple_element,I}}; collect({get_list,S,D1,D2}) -> {set,[D1,D2],[S],get_list}; collect(remove_message) -> {set,[],[],remove_message}; collect({'catch',R,L}) -> {set,[R],[],{'catch',L}}; collect(_) -> error. opt_blocks([{block,Bl0}|Is]) -> %% The live annotation at the beginning is not useful. [{'%live',_}|Bl] = Bl0, [{block,opt_block(Bl)}|opt_blocks(Is)]; opt_blocks([I|Is]) -> [I|opt_blocks(Is)]; opt_blocks([]) -> []. opt_block(Is0) -> %% We explicitly move any allocate instruction upwards before optimising %% moves, to avoid any potential problems with the calculation of live %% registers. Is1 = move_allocates(Is0), Is = find_fixpoint(fun opt/1, Is1), opt_alloc(Is). find_fixpoint(OptFun, Is0) -> case OptFun(Is0) of Is0 -> Is0; Is1 -> find_fixpoint(OptFun, Is1) end. %% move_allocates(Is0) -> Is %% Move allocates upwards in the instruction stream, in the hope of %% getting more possibilities for optimizing away moves later. move_allocates(Is) -> move_allocates_1(reverse(Is), []). move_allocates_1([{set,[],[],{alloc,_,_}=Alloc}|Is0], Acc0) -> {Is,Acc} = move_allocates_2(Alloc, Is0, Acc0), move_allocates_1(Is, Acc); move_allocates_1([I|Is], Acc) -> move_allocates_1(Is, [I|Acc]); move_allocates_1([], Is) -> Is. move_allocates_2({alloc,Live,Info}, [{set,[],[],{alloc,Live0,Info0}}|Is], Acc) -> Live = Live0, % Assertion. Alloc = {alloc,Live,combine_alloc(Info0, Info)}, move_allocates_2(Alloc, Is, Acc); move_allocates_2({alloc,Live,Info}=Alloc0, [I|Is]=Is0, Acc) -> case alloc_may_pass(I) of false -> {Is0,[{set,[],[],Alloc0}|Acc]}; true -> Alloc = {alloc,alloc_live_regs(I, Live),Info}, move_allocates_2(Alloc, Is, [I|Acc]) end; move_allocates_2(Alloc, [], Acc) -> {[],[{set,[],[],Alloc}|Acc]}. alloc_may_pass({set,_,_,{alloc,_,_}}) -> false; alloc_may_pass({set,_,_,{set_tuple_element,_}}) -> false; alloc_may_pass({set,_,_,put_list}) -> false; alloc_may_pass({set,_,_,{put_tuple,_}}) -> false; alloc_may_pass({set,_,_,put}) -> false; alloc_may_pass({set,_,_,_}) -> true. combine_alloc({_,Ns,Nh1,Init}, {_,nostack,Nh2,[]}) -> {zero,Ns,beam_utils:combine_heap_needs(Nh1, Nh2),Init}. %% opt([Instruction]) -> [Instruction] %% Optimize the instruction stream inside a basic block. opt([{set,[Dst],As,{bif,Bif,Fail}}=I1, {set,[Dst],[Dst],{bif,'not',Fail}}=I2|Is]) -> %% Get rid of the 'not' if the operation can be inverted. case inverse_comp_op(Bif) of none -> [I1,I2|opt(Is)]; RevBif -> [{set,[Dst],As,{bif,RevBif,Fail}}|opt(Is)] end; opt([{set,[X],[X],move}|Is]) -> opt(Is); opt([{set,[D1],[{integer,Idx1},Reg],{bif,element,{f,0}}}=I1, {set,[D2],[{integer,Idx2},Reg],{bif,element,{f,0}}}=I2|Is]) when Idx1 < Idx2, D1 =/= D2, D1 =/= Reg, D2 =/= Reg -> opt([I2,I1|Is]); opt([{set,Ds0,Ss,Op}|Is0]) -> {Ds,Is} = opt_moves(Ds0, Is0), [{set,Ds,Ss,Op}|opt(Is)]; opt([{'%live',_}=I|Is]) -> [I|opt(Is)]; opt([]) -> []. %% opt_moves([Dest], [Instruction]) -> {[Dest],[Instruction]} %% For each Dest, does the optimization described in opt_move/2. opt_moves([], Is0) -> {[],Is0}; opt_moves([D0]=Ds, Is0) -> case opt_move(D0, Is0) of not_possible -> {Ds,Is0}; {D1,Is} -> {[D1],Is} end; opt_moves([X0,Y0], Is0) -> {X,Is2} = case opt_move(X0, Is0) of not_possible -> {X0,Is0}; {Y0,_} -> {X0,Is0}; {_X1,_Is1} = XIs1 -> XIs1 end, case opt_move(Y0, Is2) of not_possible -> {[X,Y0],Is2}; {X,_} -> {[X,Y0],Is2}; {Y,Is} -> {[X,Y],Is} end. %% opt_move(Dest, [Instruction]) -> {UpdatedDest,[Instruction]} | not_possible %% If there is a {move,Dest,FinalDest} instruction %% in the instruction stream, remove the move instruction %% and let FinalDest be the destination. %% %% For this optimization to be safe, we must be sure that %% Dest will not be referenced in any other by other instructions %% in the rest of the instruction stream. Not even the indirect %% reference by an instruction that may allocate (such as %% test_heap/2 or a GC Bif) is allowed. opt_move(Dest, Is) -> opt_move_1(Dest, Is, ?MAXREG, []). opt_move_1(R, [{set,_,_,{alloc,Live,_}}|_]=Is, SafeRegs, Acc) when Live < SafeRegs -> %% Downgrade number of safe regs and rescan the instruction, as it most probably %% is a gc_bif instruction. opt_move_1(R, Is, Live, Acc); opt_move_1(R, [{set,[{x,X}=D],[R],move}|Is], SafeRegs, Acc) -> case X < SafeRegs andalso beam_utils:is_killed_block(R, Is) of true -> opt_move_2(D, Acc, Is); false -> not_possible end; opt_move_1(R, [{set,[D],[R],move}|Is], _SafeRegs, Acc) -> case beam_utils:is_killed_block(R, Is) of true -> opt_move_2(D, Acc, Is); false -> not_possible end; opt_move_1(R, [I|Is], SafeRegs, Acc) -> case is_transparent(R, I) of false -> not_possible; true -> opt_move_1(R, Is, SafeRegs, [I|Acc]) end. %% Reverse the instructions, while checking that there are no instructions that %% would interfere with using the new destination register chosen. opt_move_2(D, [I|Is], Acc) -> case is_transparent(D, I) of false -> not_possible; true -> opt_move_2(D, Is, [I|Acc]) end; opt_move_2(D, [], Acc) -> {D,Acc}. %% is_transparent(Register, Instruction) -> true | false %% Returns true if Instruction does not in any way references Register %% (even indirectly by an allocation instruction). %% Returns false if Instruction does reference Register, or we are %% not sure. is_transparent({x,X}, {set,_,_,{alloc,Live,_}}) when X < Live -> false; is_transparent(R, {set,Ds,Ss,_Op}) -> case member(R, Ds) of true -> false; false -> not member(R, Ss) end; is_transparent(_, _) -> false. %% opt_alloc(Instructions) -> Instructions' %% Optimises all allocate instructions. opt_alloc([{set,[],[],{alloc,R,{_,Ns,Nh,[]}}}|Is]) -> [{set,[],[],opt_alloc(Is, Ns, Nh, R)}|opt(Is)]; opt_alloc([I|Is]) -> [I|opt_alloc(Is)]; opt_alloc([]) -> []. %% opt_alloc(Instructions, FrameSize, HeapNeed, LivingRegs) -> [Instr] %% Generates the optimal sequence of instructions for %% allocating and initalizing the stack frame and needed heap. opt_alloc(_Is, nostack, Nh, LivingRegs) -> {alloc,LivingRegs,{nozero,nostack,Nh,[]}}; opt_alloc(Is, Ns, Nh, LivingRegs) -> InitRegs = init_yreg(Is, 0), case count_ones(InitRegs) of N when N*2 > Ns -> {alloc,LivingRegs,{nozero,Ns,Nh,gen_init(Ns, InitRegs)}}; _ -> {alloc,LivingRegs,{zero,Ns,Nh,[]}} end. gen_init(Fs, Regs) -> gen_init(Fs, Regs, 0, []). gen_init(SameFs, _Regs, SameFs, Acc) -> reverse(Acc); gen_init(Fs, Regs, Y, Acc) when Regs band 1 =:= 0 -> gen_init(Fs, Regs bsr 1, Y+1, [{init,{y,Y}}|Acc]); gen_init(Fs, Regs, Y, Acc) -> gen_init(Fs, Regs bsr 1, Y+1, Acc). %% init_yreg(Instructions, RegSet) -> RegSetInitialized %% Calculate the set of initialized y registers. init_yreg([{set,_,_,{bif,_,_}}|_], Reg) -> Reg; init_yreg([{set,_,_,{alloc,_,{gc_bif,_,_}}}|_], Reg) -> Reg; init_yreg([{set,Ds,_,_}|Is], Reg) -> init_yreg(Is, add_yregs(Ds, Reg)); init_yreg(_Is, Reg) -> Reg. add_yregs(Ys, Reg) -> foldl(fun(Y, R0) -> add_yreg(Y, R0) end, Reg, Ys). add_yreg({y,Y}, Reg) -> Reg bor (1 bsl Y); add_yreg(_, Reg) -> Reg. count_ones(Bits) -> count_ones(Bits, 0). count_ones(0, Acc) -> Acc; count_ones(Bits, Acc) -> count_ones(Bits bsr 1, Acc + (Bits band 1)). %% Calculate the new number of live registers when we move an allocate %% instruction upwards, passing a 'set' instruction. alloc_live_regs({set,Ds,Ss,_}, Regs0) -> Rset = x_live(Ss, x_dead(Ds, (1 bsl Regs0)-1)), live_regs(Rset). live_regs(Regs) -> live_regs_1(0, Regs). live_regs_1(N, 0) -> N; live_regs_1(N, Regs) -> live_regs_1(N+1, Regs bsr 1). x_dead([{x,N}|Rs], Regs) -> x_dead(Rs, Regs band (bnot (1 bsl N))); x_dead([_|Rs], Regs) -> x_dead(Rs, Regs); x_dead([], Regs) -> Regs. x_live([{x,N}|Rs], Regs) -> x_live(Rs, Regs bor (1 bsl N)); x_live([_|Rs], Regs) -> x_live(Rs, Regs); x_live([], Regs) -> Regs. %% inverse_comp_op(Op) -> none|RevOp inverse_comp_op('=:=') -> '=/='; inverse_comp_op('=/=') -> '=:='; inverse_comp_op('==') -> '/='; inverse_comp_op('/=') -> '=='; inverse_comp_op('>') -> '=<'; inverse_comp_op('<') -> '>='; inverse_comp_op('>=') -> '<'; inverse_comp_op('=<') -> '>'; inverse_comp_op(_) -> none. %%% %%% Evaluation of constant bit fields. %%% is_bs_put({bs_put_integer,_,_,_,_,_}) -> true; is_bs_put({bs_put_float,_,_,_,_,_}) -> true; is_bs_put(_) -> false. collect_bs_puts(Is) -> collect_bs_puts_1(Is, []). collect_bs_puts_1([I|Is]=Is0, Acc) -> case is_bs_put(I) of false -> {reverse(Acc),Is0}; true -> collect_bs_puts_1(Is, [I|Acc]) end. opt_bs_puts(Is) -> opt_bs_1(Is, []). opt_bs_1([{bs_put_float,Fail,{integer,Sz},1,Flags0,Src}=I0|Is], Acc) -> try eval_put_float(Src, Sz, Flags0) of <<Int:Sz>> -> Flags = force_big(Flags0), I = {bs_put_integer,Fail,{integer,Sz},1,Flags,{integer,Int}}, opt_bs_1([I|Is], Acc) catch error:_ -> opt_bs_1(Is, [I0|Acc]) end; opt_bs_1([{bs_put_integer,_,{integer,8},1,_,{integer,_}}|_]=IsAll, Acc0) -> {Is,Acc} = bs_collect_string(IsAll, Acc0), opt_bs_1(Is, Acc); opt_bs_1([{bs_put_integer,Fail,{integer,Sz},1,F,{integer,N}}=I|Is0], Acc) when Sz > 8 -> case field_endian(F) of big -> %% We can do this optimization for any field size without risk %% for code explosion. case bs_split_int(N, Sz, Fail, Is0) of no_split -> opt_bs_1(Is0, [I|Acc]); Is -> opt_bs_1(Is, Acc) end; little when Sz < 128 -> %% We only try to optimize relatively small fields, to avoid %% an explosion in code size. <<Int:Sz>> = <<N:Sz/little>>, Flags = force_big(F), Is = [{bs_put_integer,Fail,{integer,Sz},1, Flags,{integer,Int}}|Is0], opt_bs_1(Is, Acc); _ -> %native or too wide little field opt_bs_1(Is0, [I|Acc]) end; opt_bs_1([{Op,Fail,{integer,Sz},U,F,Src}|Is], Acc) when U > 1 -> opt_bs_1([{Op,Fail,{integer,U*Sz},1,F,Src}|Is], Acc); opt_bs_1([I|Is], Acc) -> opt_bs_1(Is, [I|Acc]); opt_bs_1([], Acc) -> reverse(Acc). eval_put_float(Src, Sz, Flags) when Sz =< 256 -> %Only evaluate if Sz is reasonable. Val = value(Src), case field_endian(Flags) of little -> <<Val:Sz/little-float-unit:1>>; big -> <<Val:Sz/big-float-unit:1>> %% native intentionally not handled here - we can't optimize it. end. value({integer,I}) -> I; value({float,F}) -> F. bs_collect_string(Is, [{bs_put_string,Len,{string,Str}}|Acc]) -> bs_coll_str_1(Is, Len, reverse(Str), Acc); bs_collect_string(Is, Acc) -> bs_coll_str_1(Is, 0, [], Acc). bs_coll_str_1([{bs_put_integer,_,{integer,Sz},U,_,{integer,V}}|Is], Len, StrAcc, IsAcc) when U*Sz =:= 8 -> Byte = V band 16#FF, bs_coll_str_1(Is, Len+1, [Byte|StrAcc], IsAcc); bs_coll_str_1(Is, Len, StrAcc, IsAcc) -> {Is,[{bs_put_string,Len,{string,reverse(StrAcc)}}|IsAcc]}. field_endian({field_flags,F}) -> field_endian_1(F). field_endian_1([big=E|_]) -> E; field_endian_1([little=E|_]) -> E; field_endian_1([native=E|_]) -> E; field_endian_1([_|Fs]) -> field_endian_1(Fs). force_big({field_flags,F}) -> {field_flags,force_big_1(F)}. force_big_1([big|_]=Fs) -> Fs; force_big_1([little|Fs]) -> [big|Fs]; force_big_1([F|Fs]) -> [F|force_big_1(Fs)]. bs_split_int(0, Sz, _, _) when Sz > 64 -> %% We don't want to split in this case because the %% string will consist of only zeroes. no_split; bs_split_int(-1, Sz, _, _) when Sz > 64 -> %% We don't want to split in this case because the %% string will consist of only 255 bytes. no_split; bs_split_int(N, Sz, Fail, Acc) -> FirstByteSz = case Sz rem 8 of 0 -> 8; Rem -> Rem end, bs_split_int_1(N, FirstByteSz, Sz, Fail, Acc). bs_split_int_1(-1, _, Sz, Fail, Acc) when Sz > 64 -> I = {bs_put_integer,Fail,{integer,Sz},1,{field_flags,[big]},{integer,-1}}, [I|Acc]; bs_split_int_1(0, _, Sz, Fail, Acc) when Sz > 64 -> I = {bs_put_integer,Fail,{integer,Sz},1,{field_flags,[big]},{integer,0}}, [I|Acc]; bs_split_int_1(N, ByteSz, Sz, Fail, Acc) when Sz > 0 -> Mask = (1 bsl ByteSz) - 1, I = {bs_put_integer,Fail,{integer,ByteSz},1, {field_flags,[big]},{integer,N band Mask}}, bs_split_int_1(N bsr ByteSz, 8, Sz-ByteSz, Fail, [I|Acc]); bs_split_int_1(_, _, _, _, Acc) -> Acc. %%% %%% Optimization of new bit syntax matching: get rid %%% of redundant bs_restore2/2 instructions across select_val %%% instructions, as well as a few other simple peep-hole optimizations. %%% bsm_opt(Is0, Lc0) -> {Is1,D0,Lc} = bsm_scan(Is0, [], Lc0, []), Is2 = case D0 of [] -> Is1; _ -> D = gb_trees:from_orddict(orddict:from_list(D0)), bsm_reroute(Is1, D, none, []) end, Is = beam_clean:bs_clean_saves(Is2), {bsm_opt_2(Is, []),Lc}. bsm_scan([{label,L}=Lbl,{bs_restore2,_,Save}=R|Is], D0, Lc, Acc0) -> D = [{{L,Save},Lc}|D0], Acc = [{label,Lc},R,Lbl|Acc0], bsm_scan(Is, D, Lc+1, Acc); bsm_scan([I|Is], D, Lc, Acc) -> bsm_scan(Is, D, Lc, [I|Acc]); bsm_scan([], D, Lc, Acc) -> {reverse(Acc),D,Lc}. bsm_reroute([{bs_save2,Reg,Save}=I|Is], D, _, Acc) -> bsm_reroute(Is, D, {Reg,Save}, [I|Acc]); bsm_reroute([{bs_restore2,Reg,Save}=I|Is], D, _, Acc) -> bsm_reroute(Is, D, {Reg,Save}, [I|Acc]); bsm_reroute([{label,_}=I|Is], D, S, Acc) -> bsm_reroute(Is, D, S, [I|Acc]); bsm_reroute([{select_val,Reg,F0,{list,Lbls0}}|Is], D, {_,Save}=S, Acc0) -> [F|Lbls] = bsm_subst_labels([F0|Lbls0], Save, D), Acc = [{select_val,Reg,F,{list,Lbls}}|Acc0], bsm_reroute(Is, D, S, Acc); bsm_reroute([{test,TestOp,F0,TestArgs}=I|Is], D, {_,Save}=S, Acc0) -> F = bsm_subst_label(F0, Save, D), Acc = [{test,TestOp,F,TestArgs}|Acc0], case bsm_not_bs_test(I) of true -> %% The test instruction will not update the bit offset for the %% binary being matched. Therefore the save position can be kept. bsm_reroute(Is, D, S, Acc); false -> %% The test instruction might update the bit offset. Kill our %% remembered Save position. bsm_reroute(Is, D, none, Acc) end; bsm_reroute([{test,TestOp,F0,Live,TestArgs,Dst}|Is], D, {_,Save}, Acc0) -> F = bsm_subst_label(F0, Save, D), Acc = [{test,TestOp,F,Live,TestArgs,Dst}|Acc0], %% The test instruction will update the bit offset. Kill our %% remembered Save position. bsm_reroute(Is, D, none, Acc); bsm_reroute([{block,[{set,[],[],{alloc,_,_}}]}=Bl, {bs_context_to_binary,_}=I|Is], D, S, Acc) -> %% To help further bit syntax optimizations. bsm_reroute([I,Bl|Is], D, S, Acc); bsm_reroute([I|Is], D, _, Acc) -> bsm_reroute(Is, D, none, [I|Acc]); bsm_reroute([], _, _, Acc) -> reverse(Acc). bsm_opt_2([{test,bs_test_tail2,F,[Ctx,Bits]}|Is], [{test,bs_skip_bits2,F,[Ctx,{integer,I},Unit,_Flags]}|Acc]) -> bsm_opt_2(Is, [{test,bs_test_tail2,F,[Ctx,Bits+I*Unit]}|Acc]); bsm_opt_2([{test,bs_skip_bits2,F,[Ctx,{integer,I1},Unit1,_]}|Is], [{test,bs_skip_bits2,F,[Ctx,{integer,I2},Unit2,Flags]}|Acc]) -> bsm_opt_2(Is, [{test,bs_skip_bits2,F, [Ctx,{integer,I1*Unit1+I2*Unit2},1,Flags]}|Acc]); bsm_opt_2([{test,bs_match_string,F,[Ctx,Bin1]}, {test,bs_match_string,F,[Ctx,Bin2]}|Is], Acc) -> I = {test,bs_match_string,F,[Ctx,<<Bin1/bitstring,Bin2/bitstring>>]}, bsm_opt_2([I|Is], Acc); bsm_opt_2([I|Is], Acc) -> bsm_opt_2(Is, [I|Acc]); bsm_opt_2([], Acc) -> reverse(Acc). %% bsm_not_bs_test({test,Name,_,Operands}) -> true|false. %% Test whether is the test is a "safe", i.e. does not move the %% bit offset for a binary. %% %% 'true' means that the test is safe, 'false' that we don't know or %% that the test moves the offset (e.g. bs_get_integer2). bsm_not_bs_test({test,bs_test_tail2,_,[_,_]}) -> true; bsm_not_bs_test(Test) -> beam_utils:is_pure_test(Test). bsm_subst_labels(Fs, Save, D) -> bsm_subst_labels_1(Fs, Save, D, []). bsm_subst_labels_1([F|Fs], Save, D, Acc) -> bsm_subst_labels_1(Fs, Save, D, [bsm_subst_label(F, Save, D)|Acc]); bsm_subst_labels_1([], _, _, Acc) -> reverse(Acc). bsm_subst_label({f,Lbl0}=F, Save, D) -> case gb_trees:lookup({Lbl0,Save}, D) of {value,Lbl} -> {f,Lbl}; none -> F end; bsm_subst_label(Other, _, _) -> Other.