%% %% %CopyrightBegin% %% %% Copyright Ericsson AB 2007-2018. All Rights Reserved. %% %% Licensed under the Apache License, Version 2.0 (the "License"); %% you may not use this file except in compliance with the License. %% You may obtain a copy of the License at %% %% http://www.apache.org/licenses/LICENSE-2.0 %% %% Unless required by applicable law or agreed to in writing, software %% distributed under the License is distributed on an "AS IS" BASIS, %% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. %% See the License for the specific language governing permissions and %% limitations under the License. %% %% %CopyrightEnd% %% -module(beam_bsm). -export([module/2,format_error/1]). -import(lists, [member/2,foldl/3,reverse/1,sort/1,all/2]). %%% %%% We optimize bit syntax matching where the tail end of a binary is %%% matched out and immediately passed on to a bs_start_match2 instruction, %%% such as in this code sequence: %%% %%% func_info ... %%% L1 test bs_start_match2 {f,...} {x,0} Live SavePositions {x,0} %%% . . . %%% test bs_get_binary2 {f,...} {x,0} all 1 Flags {x,0} %%% . . . %%% call_only 2 L1 %%% %%% The sequence can be optimized simply by removing the bs_get_binary2 %%% instruction. Another example: %%% %%% func_info ... %%% L1 test bs_start_match2 {f,...} {x,0} Live SavePositions {x,0} %%% . . . %%% test bs_get_binary2 {f,...} {x,0} all 8 Flags {x,1} %%% . . . %%% move {x,1} {x,0} %%% call_only 2 L1 %%% %%% In this case, the bs_get_binary2 instruction must be replaced by %%% %%% test bs_unit {x,1} 8 %%% %%% to ensure that the match fail if the length of the binary in bits %%% is not evenly divisible by 8. %%% %%% Note that the bs_start_match2 instruction doesn't need to be in the same %%% function as the caller. It can be in the beginning of any function, or %%% follow the bs_get_binary2 instruction in the same function. The important %%% thing is that the match context register is not copied or built into %%% data structures or passed to BIFs. %%% -type label() :: beam_asm:label(). -type func_info() :: {beam_asm:reg(),boolean()}. -record(btb, {f :: gb_trees:tree(label(), func_info()), index :: beam_utils:code_index(), %{Label,Code} index (for liveness). ok_br=gb_sets:empty() :: gb_sets:set(label()), %Labels that are OK. must_not_save=false :: boolean(), %Must not save position when % optimizing (reaches % bs_context_to_binary). must_save=false :: boolean() %Must save position when optimizing. }). -spec module(beam_utils:module_code(), [compile:option()]) -> {'ok',beam_utils:module_code()}. module({Mod,Exp,Attr,Fs0,Lc}, Opts) -> FIndex = btb_index(Fs0), Fs = [function(F, FIndex) || F <- Fs0], Code = {Mod,Exp,Attr,Fs,Lc}, case proplists:get_bool(bin_opt_info, Opts) of true -> {ok,Code,collect_warnings(Fs)}; false -> {ok,Code} end. -spec format_error('bin_opt' | {'no_bin_opt', term()}) -> nonempty_string(). format_error(bin_opt) -> "OPTIMIZED: creation of sub binary delayed"; format_error({no_bin_opt,Reason}) -> lists:flatten(["NOT OPTIMIZED: "|format_error_1(Reason)]). %%% %%% Local functions. %%% function({function,Name,Arity,Entry,Is}, FIndex) -> try Index = beam_utils:index_labels(Is), D = #btb{f=FIndex,index=Index}, {function,Name,Arity,Entry,btb_opt_1(Is, D, [])} catch Class:Error:Stack -> io:fwrite("Function: ~w/~w\n", [Name,Arity]), erlang:raise(Class, Error, Stack) end. btb_opt_1([{test,bs_get_binary2,F,_,[Reg,{atom,all},U,Fs],Reg}=I0|Is], D, Acc0) -> case btb_reaches_match(Is, [Reg], D) of {error,Reason} -> Comment = btb_comment_no_opt(Reason, Fs), btb_opt_1(Is, D, [Comment,I0|Acc0]); {ok,MustSave} -> Comment = btb_comment_opt(Fs), Acc1 = btb_gen_save(MustSave, Reg, [Comment|Acc0]), Acc = case U of 1 -> Acc1; _ -> [{test,bs_test_unit,F,[Reg,U]}|Acc1] end, btb_opt_1(Is, D, Acc) end; btb_opt_1([{test,bs_get_binary2,F,_,[Ctx,{atom,all},U,Fs],Dst}=I0|Is0], D, Acc0) -> case btb_reaches_match(Is0, [Ctx,Dst], D) of {error,Reason} -> Comment = btb_comment_no_opt(Reason, Fs), btb_opt_1(Is0, D, [Comment,I0|Acc0]); {ok,MustSave} when U =:= 1 -> Comment = btb_comment_opt(Fs), Acc = btb_gen_save(MustSave, Ctx, [Comment|Acc0]), Is = prepend_move(Ctx, Dst, Is0), btb_opt_1(Is, D, Acc); {ok,MustSave} -> Comment = btb_comment_opt(Fs), Acc1 = btb_gen_save(MustSave, Ctx, [Comment|Acc0]), Acc = [{test,bs_test_unit,F,[Ctx,U]}|Acc1], Is = prepend_move(Ctx, Dst, Is0), btb_opt_1(Is, D, Acc) end; btb_opt_1([I|Is], D, Acc) -> %%io:format("~p\n", [I]), btb_opt_1(Is, D, [I|Acc]); btb_opt_1([], _, Acc) -> reverse(Acc). btb_gen_save(true, Reg, Acc) -> [{bs_save2,Reg,{atom,start}}|Acc]; btb_gen_save(false, _, Acc) -> Acc. prepend_move(Ctx, Dst, [{block,Bl0}|Is]) -> Bl = [{set,[Dst],[Ctx],move}|Bl0], [{block,Bl}|Is]; prepend_move(Ctx, Dst, Is) -> [{move,Ctx,Dst}|Is]. %% btb_reaches_match([Instruction], [Register], D) -> %% {ok,MustSave}|{error,Reason} %% %% The list of Registers should be a list of registers referencing a %% match context. The Register may contain one element if the %% bs_get_binary2 instruction looks like %% %% test bs_get_binary2 {f,...} Ctx all _ _ Ctx %% %% or two elements if the instruction looks like %% %% test bs_get_binary2 {f,...} Ctx all _ _ Dst %% %% This function determines whether the bs_get_binary2 instruction %% can be omitted (retaining the match context instead of creating %% a sub binary). %% %% The rule is that the match context ultimately must end up at a %% bs_start_match2 instruction and nowhere else. That it, it must not %% be passed to BIFs, or copied or put into data structures. There %% must only be one copy alive when the match context reaches the %% bs_start_match2 instruction. %% %% At a branch, we must follow all branches and make sure that the above %% rule is followed (or that the branch kills the match context). %% %% The MustSave return value will be true if control may end up at %% bs_context_to_binary instruction. Since that instruction uses the %% saved start position, we must use "bs_save2 Ctx start" to %% update the saved start position. An additional complication is that %% "bs_save2 Ctx start" must not be used if Dst and Ctx are %% different registers and both registers may be passed to %% a bs_context_to_binary instruction. %% btb_reaches_match(Is, RegList, D) -> try Regs = btb_regs_from_list(RegList), #btb{must_not_save=MustNotSave,must_save=MustSave} = btb_reaches_match_1(Is, Regs, D), case MustNotSave andalso MustSave of true -> btb_error(must_and_must_not_save); false -> {ok,MustSave} end catch throw:{error,_}=Error -> Error end. btb_reaches_match_1(Is, Regs, D) -> case btb_are_registers_empty(Regs) of false -> btb_reaches_match_2(Is, Regs, D); true -> %% The context was killed, which is OK. D end. btb_reaches_match_2([{block,Bl}|Is], Regs0, D) -> Regs = btb_reaches_match_block(Bl, Regs0), btb_reaches_match_1(Is, Regs, D); btb_reaches_match_2([{call,Arity,{f,Lbl}}|Is], Regs0, D) -> case is_tail_call(Is) of true -> Regs1 = btb_kill_not_live(Arity, Regs0), Regs = btb_kill_yregs(Regs1), btb_tail_call(Lbl, Regs, D); false -> btb_call(Arity, Lbl, Regs0, Is, D) end; btb_reaches_match_2([{apply,Arity}|Is], Regs, D) -> btb_call(Arity+2, apply, Regs, Is, D); btb_reaches_match_2([{call_fun,Live}=I|Is], Regs, D) -> btb_ensure_not_used([{x,Live}], I, Regs), btb_call(Live, I, Regs, Is, D); btb_reaches_match_2([{make_fun2,_,_,_,Live}|Is], Regs, D) -> btb_call(Live, make_fun2, Regs, Is, D); btb_reaches_match_2([{call_ext,Arity,Func}=I|Is], Regs0, D) -> %% Allow us scanning beyond the call in case the match %% context is saved on the stack. case beam_jump:is_exit_instruction(I) of false -> btb_call(Arity, Func, Regs0, Is, D); true -> Regs = btb_kill_not_live(Arity, Regs0), btb_tail_call(Func, Regs, D) end; btb_reaches_match_2([{kill,Y}|Is], Regs, D) -> btb_reaches_match_1(Is, btb_kill([Y], Regs), D); btb_reaches_match_2([{deallocate,_}|Is], Regs0, D) -> Regs = btb_kill_yregs(Regs0), btb_reaches_match_1(Is, Regs, D); btb_reaches_match_2([return=I|_], Regs0, D) -> btb_ensure_not_used([{x,0}], I, Regs0), D; btb_reaches_match_2([{gc_bif,_,{f,F},Live,Ss,Dst}=I|Is], Regs0, D0) -> btb_ensure_not_used(Ss, I, Regs0), Regs1 = btb_kill_not_live(Live, Regs0), Regs = btb_kill([Dst], Regs1), D = btb_follow_branch(F, Regs, D0), btb_reaches_match_1(Is, Regs, D); btb_reaches_match_2([{bif,_,{f,F},Ss,Dst}=I|Is], Regs0, D0) -> btb_ensure_not_used(Ss, I, Regs0), Regs = btb_kill([Dst], Regs0), D = btb_follow_branch(F, Regs, D0), btb_reaches_match_1(Is, Regs, D); btb_reaches_match_2([{get_map_elements,{f,F},Src,{list,Ls}}=I|Is], Regs0, D0) -> {Ss,Ds} = beam_utils:split_even(Ls), btb_ensure_not_used([Src|Ss], I, Regs0), Regs = btb_kill(Ds, Regs0), D = btb_follow_branch(F, Regs, D0), btb_reaches_match_1(Is, Regs, D); btb_reaches_match_2([{test,bs_start_match2,{f,F},Live,[Ctx,_],Ctx}=I|Is], Regs0, D0) -> CtxRegs = btb_context_regs(Regs0), case member(Ctx, CtxRegs) of false -> %% This bs_start_match2 instruction does not use "our" %% match state. Therefore we can continue the search %% for another bs_start_match2 instruction. D = btb_follow_branch(F, Regs0, D0), Regs = btb_kill_not_live(Live, Regs0), btb_reaches_match_2(Is, Regs, D); true -> %% OK. This instruction will use "our" match state, %% but we must make sure that all other copies of the %% match state are killed in the code that follows %% the instruction. (We know that the fail branch cannot %% be taken in this case.) OtherCtxRegs = CtxRegs -- [Ctx], case btb_are_all_unused(OtherCtxRegs, Is, D0) of false -> btb_error({OtherCtxRegs,not_all_unused_after,I}); true -> D0 end end; btb_reaches_match_2([{test,bs_start_match2,{f,F},Live,[Bin,_],Ctx}|Is], Regs0, D0) -> CtxRegs = btb_context_regs(Regs0), case member(Bin, CtxRegs) orelse member(Ctx, CtxRegs) of false -> %% This bs_start_match2 does not reference any copy of the %% match state. Therefore it can safely be passed on the %% way to another (perhaps more suitable) bs_start_match2 %% instruction. D = btb_follow_branch(F, Regs0, D0), Regs = btb_kill_not_live(Live, Regs0), btb_reaches_match_2(Is, Regs, D); true -> %% This variant of the bs_start_match2 instruction does %% not accept a match state as source. btb_error(unsuitable_bs_start_match) end; btb_reaches_match_2([{test,_,{f,F},Ss}=I|Is], Regs, D0) -> btb_ensure_not_used(Ss, I, Regs), D = btb_follow_branch(F, Regs, D0), btb_reaches_match_1(Is, Regs, D); btb_reaches_match_2([{test,_,{f,F},_,Ss,_}=I|Is], Regs, D0) -> btb_ensure_not_used(Ss, I, Regs), D = btb_follow_branch(F, Regs, D0), btb_reaches_match_1(Is, Regs, D); btb_reaches_match_2([{select,_,Src,{f,F},Conds}=I|Is], Regs, D0) -> btb_ensure_not_used([Src], I, Regs), D1 = btb_follow_branch(F, Regs, D0), D = btb_follow_branches(Conds, Regs, D1), btb_reaches_match_1(Is, Regs, D); btb_reaches_match_2([{jump,{f,Lbl}}|_], Regs, #btb{index=Li}=D) -> Is = fetch_code_at(Lbl, Li), btb_reaches_match_2(Is, Regs, D); btb_reaches_match_2([{label,_}|Is], Regs, D) -> btb_reaches_match_2(Is, Regs, D); btb_reaches_match_2([{bs_init,{f,0},_,_,Ss,Dst}=I|Is], Regs, D) -> btb_ensure_not_used(Ss, I, Regs), btb_reaches_match_1(Is, btb_kill([Dst], Regs), D); btb_reaches_match_2([{bs_put,{f,0},_,Ss}=I|Is], Regs, D) -> btb_ensure_not_used(Ss, I, Regs), btb_reaches_match_1(Is, Regs, D); btb_reaches_match_2([{bs_restore2,Src,_}=I|Is], Regs0, D) -> case btb_contains_context(Src, Regs0) of false -> btb_reaches_match_1(Is, Regs0, D); true -> %% Check that all other copies of the context registers %% are unused by the following instructions. Regs = btb_kill([Src], Regs0), CtxRegs = btb_context_regs(Regs), case btb_are_all_unused(CtxRegs, Is, D) of false -> btb_error({CtxRegs,not_all_unused_after,I}); true -> D#btb{must_not_save=true} end end; btb_reaches_match_2([{bs_context_to_binary,Src}=I|Is], Regs0, D) -> case btb_contains_context(Src, Regs0) of false -> btb_reaches_match_1(Is, Regs0, D); true -> %% Check that all other copies of the context registers %% are unused by the following instructions. Regs = btb_kill([Src], Regs0), CtxRegs = btb_context_regs(Regs), case btb_are_all_unused(CtxRegs, Is, D) of false -> btb_error({CtxRegs,not_all_unused_after,I}); true -> D#btb{must_not_save=true} end end; btb_reaches_match_2([{badmatch,Src}=I|_], Regs, D) -> btb_ensure_not_used([Src], I, Regs), D; btb_reaches_match_2([{case_end,Src}=I|_], Regs, D) -> btb_ensure_not_used([Src], I, Regs), D; btb_reaches_match_2([if_end|_], _Regs, D) -> D; btb_reaches_match_2([{func_info,_,_,Arity}=I|_], Regs0, D) -> Regs = btb_kill_yregs(btb_kill_not_live(Arity, Regs0)), case btb_context_regs(Regs) of [] -> D; _ -> {binary_used_in,I} end; btb_reaches_match_2([{line,_}|Is], Regs, D) -> btb_reaches_match_1(Is, Regs, D); btb_reaches_match_2([I|_], Regs, _) -> btb_error({btb_context_regs(Regs),I,not_handled}). is_tail_call([{deallocate,_}|_]) -> true; is_tail_call([return|_]) -> true; is_tail_call(_) -> false. btb_call(Arity, Lbl, Regs0, Is, D0) -> Regs = btb_kill_not_live(Arity, Regs0), case btb_are_x_registers_empty(Regs) of false -> %% There is a match context in one of the x registers. %% First handle the call as if it were a tail call. D = btb_tail_call(Lbl, Regs, D0), %% No problem so far (the called function can handle a %% match context). Now we must make sure that we don't %% have any copies of the match context tucked away in an %% y register. RegList = btb_context_regs(Regs), case [R || {y,_}=R <- RegList] of [] -> D; [_|_] -> btb_error({multiple_uses,RegList}) end; true -> %% No match context in any x register. It could have been %% saved to an y register, so continue to scan the code following %% the call. btb_reaches_match_1(Is, Regs, D0) end. btb_tail_call(Lbl, Regs, #btb{f=Ftree,must_save=MustSave0}=D) -> %% Ignore any y registers here. case [R || {x,_}=R <- btb_context_regs(Regs)] of [] -> D; [{x,_}=Reg] -> case gb_trees:lookup(Lbl, Ftree) of {value,{Reg,MustSave}} -> D#btb{must_save=MustSave0 or MustSave}; _ when is_integer(Lbl) -> btb_error({{label,Lbl},no_suitable_bs_start_match}); _ -> btb_error({binary_used_in,Lbl}) end; [_|_] when not is_integer(Lbl) -> btb_error({binary_used_in,Lbl}); [_|_]=RegList -> btb_error({multiple_uses,RegList}) end. %% btb_follow_branches([Cond], Regs, D) -> D' %% Recursively follow all the branches. btb_follow_branches([{f,Lbl}|T], Regs, D0) -> D = btb_follow_branch(Lbl, Regs, D0), btb_follow_branches(T, Regs, D); btb_follow_branches([_|T], Regs, D) -> btb_follow_branches(T, Regs, D); btb_follow_branches([], _, D) -> D. %% btb_follow_branch(Lbl, Regs, D) -> D' %% Recursively follow the branch. btb_follow_branch(0, _Regs, D) -> D; btb_follow_branch(Lbl, Regs, #btb{ok_br=Br0,index=Li}=D) -> Key = {Lbl,Regs}, case gb_sets:is_member(Key, Br0) of true -> %% We have already followed this branch and it was OK. D; false -> %% New branch. Try it. Is = fetch_code_at(Lbl, Li), #btb{ok_br=Br,must_not_save=MustNotSave,must_save=MustSave} = btb_reaches_match_1(Is, Regs, D), %% Since we got back, this branch is OK. D#btb{ok_br=gb_sets:insert(Key, Br),must_not_save=MustNotSave, must_save=MustSave} end. btb_reaches_match_block([{set,Ds,Ss,{alloc,Live,_}}=I|Is], Regs0) -> %% An allocation instruction or a GC bif. We'll kill all registers %% if any copy of the context is used as the source to the BIF. btb_ensure_not_used(Ss, I, Regs0), Regs1 = btb_kill_not_live(Live, Regs0), Regs = btb_kill(Ds, Regs1), btb_reaches_match_block(Is, Regs); btb_reaches_match_block([{set,[Dst]=Ds,[Src],move}|Is], Regs0) -> Regs1 = btb_kill(Ds, Regs0), Regs = case btb_contains_context(Src, Regs1) of false -> Regs1; true -> btb_set_context(Dst, Regs1) end, btb_reaches_match_block(Is, Regs); btb_reaches_match_block([{set,Ds,Ss,_}=I|Is], Regs0) -> btb_ensure_not_used(Ss, I, Regs0), Regs = btb_kill(Ds, Regs0), btb_reaches_match_block(Is, Regs); btb_reaches_match_block([], Regs) -> Regs. %% btb_are_all_killed([Register], [Instruction], D) -> true|false %% Test whether all of the register are unused in the instruction stream. btb_are_all_unused(RegList, Is, #btb{index=Li}) -> all(fun(R) -> beam_utils:is_not_used(R, Is, Li) end, RegList). %% btp_regs_from_list([Register]) -> RegisterSet. %% Create a register set from a list of registers. btb_regs_from_list(L) -> foldl(fun(R, Regs) -> btb_set_context(R, Regs) end, {0,0}, L). %% btb_set_context(Register, RegisterSet) -> RegisterSet' %% Update RegisterSet to indicate that Register contains the matching context. btb_set_context({x,N}, {Xregs,Yregs}) -> {Xregs bor (1 bsl N),Yregs}; btb_set_context({y,N}, {Xregs,Yregs}) -> {Xregs,Yregs bor (1 bsl N)}. %% btb_ensure_not_used([Register], Instruction, RegisterSet) -> ok %% If any register in RegisterSet (the register(s) known to contain %% the match context) is used in the list of registers, generate an error. btb_ensure_not_used(Rs, I, Regs) -> case lists:any(fun(R) -> btb_contains_context(R, Regs) end, Rs) of true -> btb_error({binary_used_in,I}); false -> ok end. %% btb_kill([Register], RegisterSet) -> RegisterSet' %% Kill all registers mentioned in the list of registers. btb_kill([{x,N}|Rs], {Xregs,Yregs}) -> btb_kill(Rs, {Xregs band (bnot (1 bsl N)),Yregs}); btb_kill([{y,N}|Rs], {Xregs,Yregs}) -> btb_kill(Rs, {Xregs,Yregs band (bnot (1 bsl N))}); btb_kill([{fr,_}|Rs], Regs) -> btb_kill(Rs, Regs); btb_kill([], Regs) -> Regs. %% btb_kill_not_live(Live, RegisterSet) -> RegisterSet' %% Kill all registers indicated not live by Live. btb_kill_not_live(Live, {Xregs,Yregs}) -> {Xregs band ((1 bsl Live)-1),Yregs}. %% btb_kill(Regs0) -> Regs %% Kill all y registers. btb_kill_yregs({Xregs,_}) -> {Xregs,0}. %% btb_are_registers_empty(RegisterSet) -> true|false %% Test whether the register set is empty. btb_are_registers_empty({0,0}) -> true; btb_are_registers_empty({_,_}) -> false. %% btb_are_x_registers_empty(Regs) -> true|false %% Test whether the x registers are empty. btb_are_x_registers_empty({0,_}) -> true; btb_are_x_registers_empty({_,_}) -> false. %% btb_contains_context(Register, RegisterSet) -> true|false %% Test whether Register contains the context. btb_contains_context({x,N}, {Regs,_}) -> Regs band (1 bsl N) =/= 0; btb_contains_context({y,N}, {_,Regs}) -> Regs band (1 bsl N) =/= 0; btb_contains_context(_, _) -> false. %% btb_context_regs(RegisterSet) -> [Register] %% Convert the register set to an explicit list of registers. btb_context_regs({Xregs,Yregs}) -> btb_context_regs_1(Xregs, 0, x, btb_context_regs_1(Yregs, 0, y, [])). btb_context_regs_1(0, _, _, Acc) -> Acc; btb_context_regs_1(Regs, N, Tag, Acc) when (Regs band 1) =:= 1 -> btb_context_regs_1(Regs bsr 1, N+1, Tag, [{Tag,N}|Acc]); btb_context_regs_1(Regs, N, Tag, Acc) -> btb_context_regs_1(Regs bsr 1, N+1, Tag, Acc). %% btb_index([Function]) -> GbTree({EntryLabel,{Register,MustSave}}) %% Build an index of functions that accept a match context instead of %% a binary. MustSave is true if the function may pass the match %% context to the bs_context_to_binary instruction (in which case %% the current position in the binary must have saved into the %% start position using "bs_save_2 Ctx start"). btb_index(Fs) -> btb_index_1(Fs, []). btb_index_1([{function,_,_,Entry,Is0}|Fs], Acc0) -> Is = drop_to_label(Is0, Entry), Acc = btb_index_2(Is, Entry, false, Acc0), btb_index_1(Fs, Acc); btb_index_1([], Acc) -> gb_trees:from_orddict(sort(Acc)). btb_index_2([{test,bs_start_match2,{f,_},_,[Reg,_],Reg}|_], Entry, MustSave, Acc) -> [{Entry,{Reg,MustSave}}|Acc]; btb_index_2(Is0, Entry, _, Acc) -> try btb_index_find_start_match(Is0) of Is -> btb_index_2(Is, Entry, true, Acc) catch throw:none -> Acc end. drop_to_label([{label,L}|Is], L) -> Is; drop_to_label([_|Is], L) -> drop_to_label(Is, L). btb_index_find_start_match([{test,_,{f,F},_},{bs_context_to_binary,_}|Is]) -> btb_index_find_label(Is, F); btb_index_find_start_match(_) -> throw(none). btb_index_find_label([{label,L}|Is], L) -> Is; btb_index_find_label([_|Is], L) -> btb_index_find_label(Is, L). btb_error(Error) -> throw({error,Error}). fetch_code_at(Lbl, Li) -> case beam_utils:code_at(Lbl, Li) of Is when is_list(Is) -> Is end. %%% %%% Compilation information warnings. %%% btb_comment_opt({field_flags,[{anno,A}|_]}) -> {'%',{bin_opt,A}}; btb_comment_opt(_) -> {'%',{bin_opt,[]}}. btb_comment_no_opt(Reason, {field_flags,[{anno,A}|_]}) -> {'%',{no_bin_opt,Reason,A}}; btb_comment_no_opt(Reason, _) -> {'%',{no_bin_opt,Reason,[]}}. collect_warnings(Fs) -> D = warning_index_functions(Fs), foldl(fun(F, A) -> collect_warnings_fun(F, D, A) end, [], Fs). collect_warnings_fun({function,_,_,_,Is}, D, A) -> collect_warnings_instr(Is, D, A). collect_warnings_instr([{'%',{bin_opt,Where}}|Is], D, Acc0) -> Acc = add_warning(bin_opt, Where, Acc0), collect_warnings_instr(Is, D, Acc); collect_warnings_instr([{'%',{no_bin_opt,Reason0,Where}}|Is], D, Acc0) -> Reason = warning_translate_label(Reason0, D), Acc = add_warning({no_bin_opt,Reason}, Where, Acc0), collect_warnings_instr(Is, D, Acc); collect_warnings_instr([_|Is], D, Acc) -> collect_warnings_instr(Is, D, Acc); collect_warnings_instr([], _, Acc) -> Acc. add_warning(Term, Anno, Ws) -> Line = get_line(Anno), File = get_file(Anno), [{File,[{Line,?MODULE,Term}]}|Ws]. warning_translate_label(Term, D) when is_tuple(Term) -> case element(1, Term) of {label,F} -> FA = gb_trees:get(F, D), setelement(1, Term, FA); _ -> Term end; warning_translate_label(Term, _) -> Term. get_line([Line|_]) when is_integer(Line) -> Line; get_line([_|T]) -> get_line(T); get_line([]) -> none. get_file([{file,File}|_]) -> File; get_file([_|T]) -> get_file(T); get_file([]) -> "no_file". % should not happen warning_index_functions(Fs) -> D = [{Entry,{F,A}} || {function,F,A,Entry,_} <- Fs], gb_trees:from_orddict(sort(D)). format_error_1({binary_used_in,{extfunc,M,F,A}}) -> [io_lib:format("sub binary used by ~p:~p/~p", [M,F,A])| case {M,F,A} of {erlang,split_binary,2} -> "; SUGGEST using binary matching instead of split_binary/2"; _ -> "" end]; format_error_1({binary_used_in,_}) -> "sub binary is used or returned"; format_error_1({multiple_uses,_}) -> "sub binary is matched or used in more than one place"; format_error_1(unsuitable_bs_start_match) -> "the binary matching instruction that follows in the same function " "have problems that prevent delayed sub binary optimization " "(probably indicated by INFO warnings)"; format_error_1({{F,A},no_suitable_bs_start_match}) -> io_lib:format("called function ~p/~p does not begin with a suitable " "binary matching instruction", [F,A]); format_error_1(must_and_must_not_save) -> "different control paths use different positions in the binary"; format_error_1({_,I,not_handled}) -> case I of {'catch',_,_} -> "the compiler currently does not attempt the delayed sub binary " "optimization when catch is used"; {'try',_,_} -> "the compiler currently does not attempt the delayed sub binary " "optimization when try/catch is used"; _ -> io_lib:format("compiler limitation: instruction ~p prevents " "delayed sub binary optimization", [I]) end; format_error_1(Term) -> io_lib:format("~w", [Term]).