%% %% %CopyrightBegin% %% %% Copyright Ericsson AB 1999-2010. All Rights Reserved. %% %% The contents of this file are subject to the Erlang Public License, %% Version 1.1, (the "License"); you may not use this file except in %% compliance with the License. You should have received a copy of the %% Erlang Public License along with this software. If not, it can be %% retrieved online at http://www.erlang.org/. %% %% Software distributed under the License is distributed on an "AS IS" %% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See %% the License for the specific language governing rights and limitations %% under the License. %% %% %CopyrightEnd% %% %% Purpose : Converts intermediate assembly code to final format. -module(beam_flatten). -export([module/2]). -import(lists, [reverse/1,reverse/2]). module({Mod,Exp,Attr,Fs,Lc}, _Opt) -> {ok,{Mod,Exp,Attr,[function(F) || F <- Fs],Lc}}. function({function,Name,Arity,CLabel,Is0}) -> Is1 = block(Is0), Is = opt(Is1), {function,Name,Arity,CLabel,Is}. block(Is) -> block(Is, []). block([{block,Is0}|Is1], Acc) -> block(Is1, norm_block(Is0, Acc)); block([I|Is], Acc) -> block(Is, [I|Acc]); block([], Acc) -> reverse(Acc). norm_block([{set,[],[],{alloc,R,Alloc}}|Is], Acc0) -> case insert_alloc_in_bs_init(Acc0, Alloc) of impossible -> norm_block(Is, reverse(norm_allocate(Alloc, R), Acc0)); Acc -> norm_block(Is, Acc) end; norm_block([I|Is], Acc) -> norm_block(Is, [norm(I)|Acc]); norm_block([], Acc) -> Acc. norm({set,[D],As,{bif,N,F}}) -> {bif,N,F,As,D}; norm({set,[D],As,{alloc,R,{gc_bif,N,F}}}) -> {gc_bif,N,F,R,As,D}; norm({set,[D],[S],move}) -> {move,S,D}; norm({set,[D],[S],fmove}) -> {fmove,S,D}; norm({set,[D],[S],fconv}) -> {fconv,S,D}; norm({set,[D],[S1,S2],put_list}) -> {put_list,S1,S2,D}; norm({set,[D],[],{put_tuple,A}}) -> {put_tuple,A,D}; norm({set,[],[S],put}) -> {put,S}; norm({set,[D],[S],{get_tuple_element,I}}) -> {get_tuple_element,S,I,D}; norm({set,[],[S,D],{set_tuple_element,I}}) -> {set_tuple_element,S,D,I}; norm({set,[D1,D2],[S],get_list}) -> {get_list,S,D1,D2}; norm({set,[],[],remove_message}) -> remove_message; norm({set,[],[],fclearerror}) -> fclearerror; norm({set,[],[],fcheckerror}) -> {fcheckerror,{f,0}}. norm_allocate({_Zero,nostack,Nh,[]}, Regs) -> [{test_heap,Nh,Regs}]; norm_allocate({zero,0,Nh,[]}, Regs) -> norm_allocate({nozero,0,Nh,[]}, Regs); norm_allocate({zero,Ns,0,[]}, Regs) -> [{allocate_zero,Ns,Regs}]; norm_allocate({zero,Ns,Nh,[]}, Regs) -> [{allocate_heap_zero,Ns,Nh,Regs}]; norm_allocate({nozero,Ns,0,Inits}, Regs) -> [{allocate,Ns,Regs}|Inits]; norm_allocate({nozero,Ns,Nh,Inits}, Regs) -> [{allocate_heap,Ns,Nh,Regs}|Inits]. %% insert_alloc_in_bs_init(ReverseInstructionStream, AllocationInfo) -> %% impossible | ReverseInstructionStream' %% A bs_init2/6 instruction should not be followed by a test heap instruction. %% Given the AllocationInfo from a test heap instruction, merge the %% allocation amounts into the previous bs_init2/6 instruction (if any). %% insert_alloc_in_bs_init([I|_]=Is, Alloc) -> case is_bs_constructor(I) of false -> impossible; true -> insert_alloc_1(Is, Alloc, []) end. insert_alloc_1([{bs_init2=Op,Fail,Bs,Ws1,Regs,F,Dst}|Is], {_,nostack,Ws2,[]}, Acc) -> Al = beam_utils:combine_heap_needs(Ws1, Ws2), I = {Op,Fail,Bs,Al,Regs,F,Dst}, reverse(Acc, [I|Is]); insert_alloc_1([{bs_init_bits=Op,Fail,Bs,Ws1,Regs,F,Dst}|Is], {_,nostack,Ws2,[]}, Acc) -> Al = beam_utils:combine_heap_needs(Ws1, Ws2), I = {Op,Fail,Bs,Al,Regs,F,Dst}, reverse(Acc, [I|Is]); insert_alloc_1([{bs_append,Fail,Sz,Ws1,Regs,U,Bin,Fl,Dst}|Is], {_,nostack,Ws2,[]}, Acc) -> Al = beam_utils:combine_heap_needs(Ws1, Ws2), I = {bs_append,Fail,Sz,Al,Regs,U,Bin,Fl,Dst}, reverse(Acc, [I|Is]); insert_alloc_1([I|Is], Alloc, Acc) -> insert_alloc_1(Is, Alloc, [I|Acc]). %% is_bs_constructor(Instruction) -> true|false. %% Test whether the instruction is a bit syntax construction %% instruction that can occur at the end of a bit syntax %% construction. (Since an empty binary would be expressed %% as a literal, the bs_init2/6 instruction will not occur %% at the end and therefore it is no need to test for it here.) %% is_bs_constructor({bs_put_integer,_,_,_,_,_}) -> true; is_bs_constructor({bs_put_utf8,_,_,_}) -> true; is_bs_constructor({bs_put_utf16,_,_,_}) -> true; is_bs_constructor({bs_put_utf32,_,_,_}) -> true; is_bs_constructor({bs_put_float,_,_,_,_,_}) -> true; is_bs_constructor({bs_put_binary,_,_,_,_,_}) -> true; is_bs_constructor({bs_put_string,_,_}) -> true; is_bs_constructor(_) -> false. %% opt(Is0) -> Is %% Simple peep-hole optimization to move a {move,Any,{x,0}} past %% any kill up to the next call instruction. (To give the loader %% an opportunity to combine the 'move' and the 'call' instructions.) %% opt(Is) -> opt_1(Is, []). opt_1([{move,_,{x,0}}=I|Is0], Acc0) -> case move_past_kill(Is0, I, Acc0) of impossible -> opt_1(Is0, [I|Acc0]); {Is,Acc} -> opt_1(Is, Acc) end; opt_1([I|Is], Acc) -> opt_1(Is, [I|Acc]); opt_1([], Acc) -> reverse(Acc). move_past_kill([{kill,Src}|_], {move,Src,_}, _) -> impossible; move_past_kill([{kill,_}=I|Is], Move, Acc) -> move_past_kill(Is, Move, [I|Acc]); move_past_kill([{trim,N,_}=I|Is], {move,Src,Dst}=Move, Acc) -> case Src of {y,Y} when Y < N-> impossible; {y,Y} -> {Is,[{move,{y,Y-N},Dst},I|Acc]}; _ -> {Is,[Move,I|Acc]} end; move_past_kill(Is, Move, Acc) -> {Is,[Move|Acc]}.