%% %% %CopyrightBegin% %% %% Copyright Ericsson AB 2007-2018. All Rights Reserved. %% %% Licensed under the Apache License, Version 2.0 (the "License"); %% you may not use this file except in compliance with the License. %% You may obtain a copy of the License at %% %% http://www.apache.org/licenses/LICENSE-2.0 %% %% Unless required by applicable law or agreed to in writing, software %% distributed under the License is distributed on an "AS IS" BASIS, %% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. %% See the License for the specific language governing permissions and %% limitations under the License. %% %% %CopyrightEnd% %% %% Purpose : Common utilities used by several optimization passes. %% -module(beam_utils). -export([is_killed_block/2,is_killed/3,is_killed_at/3, is_not_used/3,usage/3, empty_label_index/0,index_label/3,index_labels/1,replace_labels/4, code_at/2,bif_to_test/3,is_pure_test/1, live_opt/1,delete_annos/1,combine_heap_needs/2, anno_defs/1, split_even/1 ]). -export_type([code_index/0,module_code/0,instruction/0]). -import(lists, [flatmap/2,map/2,member/2,sort/1,reverse/1,splitwith/2]). -define(is_const(Val), (Val =:= nil orelse element(1, Val) =:= integer orelse element(1, Val) =:= float orelse element(1, Val) =:= atom orelse element(1, Val) =:= literal)). %% instruction() describes all instructions that are used during optimzation %% (from beam_a to beam_z). -type instruction() :: atom() | tuple(). -type code_index() :: gb_trees:tree(beam_asm:label(), [instruction()]). -type int_function() :: {'function',beam_asm:function_name(),arity(), beam_asm:label(),[instruction()]}. -type module_code() :: {module(),[_],[_],[int_function()],pos_integer()}. %% Internal types. -type fail() :: beam_asm:fail() | 'fail'. -type test() :: {'test',atom(),fail(),[beam_asm:src()]} | {'test',atom(),fail(),integer(),list(),beam_asm:reg()}. -type result_cache() :: gb_trees:tree(beam_asm:label(), 'killed' | 'used'). -record(live, {lbl :: code_index(), %Label to code index. res :: result_cache()}). %Result cache for each label. %% usage(Register, [Instruction], State) -> killed|not_used|used. %% Determine the usage of Register in the instruction sequence. %% The return value is one of: %% %% killed - The register is not used in any way. %% not_used - The register is referenced only by an allocating instruction %% (the actual value does not matter). %% used - The register is used (its value do matter). -spec usage(beam_asm:reg(), [instruction()], code_index()) -> 'killed' | 'not_used' | 'used'. usage(R, Is, D) -> St = #live{lbl=D,res=gb_trees:empty()}, {Usage,_} = check_liveness(R, Is, St), Usage. %% is_killed_block(Register, [Instruction]) -> true|false %% Determine whether a register is killed by the instruction sequence inside %% a block. %% %% If true is returned, it means that the register will not be %% referenced in ANY way (not even indirectly by an allocate instruction); %% i.e. it is OK to enter the instruction sequence with Register %% containing garbage. -spec is_killed_block(beam_asm:reg(), [instruction()]) -> boolean(). is_killed_block({x,X}, [{set,_,_,{alloc,Live,_}}|_]) -> X >= Live; is_killed_block(R, [{set,Ds,Ss,_Op}|Is]) -> not member(R, Ss) andalso (member(R, Ds) orelse is_killed_block(R, Is)); is_killed_block(R, [{'%anno',{used,Regs}}|Is]) -> case R of {x,X} when (Regs bsr X) band 1 =:= 0 -> true; _ -> is_killed_block(R, Is) end; is_killed_block(_, []) -> false. %% is_killed(Register, [Instruction], State) -> true|false %% Determine whether a register is killed by the instruction sequence. %% If true is returned, it means that the register will not be %% referenced in ANY way (not even indirectly by an allocate instruction); %% i.e. it is OK to enter the instruction sequence with Register %% containing garbage. %% %% The state (constructed by index_instructions/1) is used to allow us %% to determine the kill state across branches. -spec is_killed(beam_asm:reg(), [instruction()], code_index()) -> boolean(). is_killed(R, Is, D) -> St = #live{lbl=D,res=gb_trees:empty()}, case check_liveness(R, Is, St) of {killed,_} -> true; {exit_not_used,_} -> false; {_,_} -> false end. %% is_killed_at(Reg, Lbl, State) -> true|false %% Determine whether Reg is killed at label Lbl. -spec is_killed_at(beam_asm:reg(), beam_asm:label(), code_index()) -> boolean(). is_killed_at(R, Lbl, D) when is_integer(Lbl) -> St0 = #live{lbl=D,res=gb_trees:empty()}, case check_liveness_at(R, Lbl, St0) of {killed,_} -> true; {exit_not_used,_} -> false; {_,_} -> false end. %% is_not_used(Register, [Instruction], State) -> true|false %% Determine whether a register is never used in the instruction sequence %% (it could still be referenced by an allocate instruction, meaning that %% it MUST be initialized, but that its value does not matter). %% The state is used to allow us to determine the usage state %% across branches. -spec is_not_used(beam_asm:reg(), [instruction()], code_index()) -> boolean(). is_not_used(R, Is, D) -> St = #live{lbl=D,res=gb_trees:empty()}, case check_liveness(R, Is, St) of {used,_} -> false; {exit_not_used,_} -> true; {_,_} -> true end. %% index_labels(FunctionIs) -> State %% Index the instruction sequence so that we can quickly %% look up the instruction following a specific label. -spec index_labels([instruction()]) -> code_index(). index_labels(Is) -> index_labels_1(Is, []). %% empty_label_index() -> State %% Create an empty label index. -spec empty_label_index() -> code_index(). empty_label_index() -> gb_trees:empty(). %% index_label(Label, [Instruction], State) -> State %% Add an index for a label. -spec index_label(beam_asm:label(), [instruction()], code_index()) -> code_index(). index_label(Lbl, Is0, Acc) -> Is = drop_labels(Is0), gb_trees:enter(Lbl, Is, Acc). %% code_at(Label, State) -> [I]. %% Retrieve the code at the given label. -spec code_at(beam_asm:label(), code_index()) -> [instruction()]. code_at(L, Ll) -> gb_trees:get(L, Ll). %% replace_labels(FunctionIs, Tail, ReplaceDb, Fallback) -> FunctionIs. %% Replace all labels in instructions according to the ReplaceDb. %% If label is not found the Fallback is called with the label to %% produce a new one. -spec replace_labels([instruction()], [instruction()], #{beam_asm:label() => beam_asm:label()}, fun((beam_asm:label()) -> term())) -> [instruction()]. replace_labels(Is, Acc, D, Fb) -> replace_labels_1(Is, Acc, D, Fb). %% bif_to_test(Bif, [Op], Fail) -> {test,Test,Fail,[Op]} %% Convert a BIF to a test. Fail if not possible. -spec bif_to_test(atom(), list(), fail()) -> test(). bif_to_test(is_atom, [_]=Ops, Fail) -> {test,is_atom,Fail,Ops}; bif_to_test(is_boolean, [_]=Ops, Fail) -> {test,is_boolean,Fail,Ops}; bif_to_test(is_binary, [_]=Ops, Fail) -> {test,is_binary,Fail,Ops}; bif_to_test(is_bitstring,[_]=Ops, Fail) -> {test,is_bitstr,Fail,Ops}; bif_to_test(is_float, [_]=Ops, Fail) -> {test,is_float,Fail,Ops}; bif_to_test(is_function, [_]=Ops, Fail) -> {test,is_function,Fail,Ops}; bif_to_test(is_function, [_,_]=Ops, Fail) -> {test,is_function2,Fail,Ops}; bif_to_test(is_integer, [_]=Ops, Fail) -> {test,is_integer,Fail,Ops}; bif_to_test(is_list, [_]=Ops, Fail) -> {test,is_list,Fail,Ops}; bif_to_test(is_map, [_]=Ops, Fail) -> {test,is_map,Fail,Ops}; bif_to_test(is_number, [_]=Ops, Fail) -> {test,is_number,Fail,Ops}; bif_to_test(is_pid, [_]=Ops, Fail) -> {test,is_pid,Fail,Ops}; bif_to_test(is_port, [_]=Ops, Fail) -> {test,is_port,Fail,Ops}; bif_to_test(is_reference, [_]=Ops, Fail) -> {test,is_reference,Fail,Ops}; bif_to_test(is_tuple, [_]=Ops, Fail) -> {test,is_tuple,Fail,Ops}; bif_to_test('=<', [A,B], Fail) -> {test,is_ge,Fail,[B,A]}; bif_to_test('>', [A,B], Fail) -> {test,is_lt,Fail,[B,A]}; bif_to_test('<', [_,_]=Ops, Fail) -> {test,is_lt,Fail,Ops}; bif_to_test('>=', [_,_]=Ops, Fail) -> {test,is_ge,Fail,Ops}; bif_to_test('==', [A,nil], Fail) -> {test,is_nil,Fail,[A]}; bif_to_test('==', [nil,A], Fail) -> {test,is_nil,Fail,[A]}; bif_to_test('==', [C,A], Fail) when ?is_const(C) -> {test,is_eq,Fail,[A,C]}; bif_to_test('==', [_,_]=Ops, Fail) -> {test,is_eq,Fail,Ops}; bif_to_test('/=', [C,A], Fail) when ?is_const(C) -> {test,is_ne,Fail,[A,C]}; bif_to_test('/=', [_,_]=Ops, Fail) -> {test,is_ne,Fail,Ops}; bif_to_test('=:=', [A,nil], Fail) -> {test,is_nil,Fail,[A]}; bif_to_test('=:=', [nil,A], Fail) -> {test,is_nil,Fail,[A]}; bif_to_test('=:=', [C,A], Fail) when ?is_const(C) -> {test,is_eq_exact,Fail,[A,C]}; bif_to_test('=:=', [_,_]=Ops, Fail) -> {test,is_eq_exact,Fail,Ops}; bif_to_test('=/=', [C,A], Fail) when ?is_const(C) -> {test,is_ne_exact,Fail,[A,C]}; bif_to_test('=/=', [_,_]=Ops, Fail) -> {test,is_ne_exact,Fail,Ops}; bif_to_test(is_record, [_,_,_]=Ops, Fail) -> {test,is_record,Fail,Ops}. %% is_pure_test({test,Op,Fail,Ops}) -> true|false. %% Return 'true' if the test instruction does not modify any %% registers and/or bit syntax matching state. %% -spec is_pure_test(test()) -> boolean(). is_pure_test({test,is_eq,_,[_,_]}) -> true; is_pure_test({test,is_ne,_,[_,_]}) -> true; is_pure_test({test,is_eq_exact,_,[_,_]}) -> true; is_pure_test({test,is_ne_exact,_,[_,_]}) -> true; is_pure_test({test,is_ge,_,[_,_]}) -> true; is_pure_test({test,is_lt,_,[_,_]}) -> true; is_pure_test({test,is_nil,_,[_]}) -> true; is_pure_test({test,is_nonempty_list,_,[_]}) -> true; is_pure_test({test,test_arity,_,[_,_]}) -> true; is_pure_test({test,has_map_fields,_,[_|_]}) -> true; is_pure_test({test,is_bitstr,_,[_]}) -> true; is_pure_test({test,is_function2,_,[_,_]}) -> true; is_pure_test({test,Op,_,Ops}) -> erl_internal:new_type_test(Op, length(Ops)). %% live_opt([Instruction]) -> [Instruction]. %% Go through the instruction sequence in reverse execution %% order, keep track of liveness and remove 'move' instructions %% whose destination is a register that will not be used. %% Also insert {used,Regs} annotations at the beginning %% and end of each block. -spec live_opt([instruction()]) -> [instruction()]. live_opt(Is0) -> {[{label,Fail}|_]=Bef,[Fi|Is]} = splitwith(fun({func_info,_,_,_}) -> false; (_) -> true end, Is0), {func_info,_,_,Live} = Fi, D = gb_trees:insert(Fail, live_call(Live), gb_trees:empty()), Bef ++ [Fi|live_opt(reverse(Is), 0, D, [])]. %% delete_annos([Instruction]) -> [Instruction]. %% Delete all annotations. -spec delete_annos([instruction()]) -> [instruction()]. delete_annos([{block,Bl0}|Is]) -> case delete_annos(Bl0) of [] -> delete_annos(Is); [_|_]=Bl -> [{block,Bl}|delete_annos(Is)] end; delete_annos([{'%anno',_}|Is]) -> delete_annos(Is); delete_annos([I|Is]) -> [I|delete_annos(Is)]; delete_annos([]) -> []. %% combine_heap_needs(HeapNeed1, HeapNeed2) -> HeapNeed %% Combine the heap need for two allocation instructions. -type heap_need_tag() :: 'floats' | 'words'. -type heap_need() :: non_neg_integer() | {'alloc',[{heap_need_tag(),non_neg_integer()}]}. -spec combine_heap_needs(heap_need(), heap_need()) -> heap_need(). combine_heap_needs(H1, H2) when is_integer(H1), is_integer(H2) -> H1 + H2; combine_heap_needs(H1, H2) -> {alloc,combine_alloc_lists([H1,H2])}. %% anno_defs(Instructions) -> Instructions' %% Add {def,RegisterBitmap} annotations to the beginning of %% each block. Iff bit X is set in the the bitmap, it means %% that {x,X} is defined when the block is entered. -spec anno_defs([instruction()]) -> [instruction()]. anno_defs(Is0) -> {Bef,[Fi|Is1]} = splitwith(fun({func_info,_,_,_}) -> false; (_) -> true end, Is0), {func_info,_,_,Arity} = Fi, Regs = init_def_regs(Arity), Is = defs(Is1, Regs, #{}), Bef ++ [Fi|Is]. %% split_even/1 %% [1,2,3,4,5,6] -> {[1,3,5],[2,4,6]} -spec split_even(list()) -> {list(),list()}. split_even(Rs) -> split_even(Rs, [], []). %%% %%% Local functions. %%% %% check_liveness(Reg, [Instruction], #live{}) -> %% {killed | not_used | used, #live{}} %% Find out whether Reg is used or killed in instruction sequence. %% %% killed - Reg is assigned or killed by an allocation instruction. %% not_used - the value of Reg is not used, but Reg must not be garbage %% exit_not_used - the value of Reg is not used, but must not be garbage %% because the stack will be scanned because an %% exit BIF will raise an exception %% used - Reg is used check_liveness(R, [{block,Blk}|Is], St0) -> case check_liveness_block(R, Blk, St0) of {transparent,St1} -> check_liveness(R, Is, St1); {alloc_used,St1} -> %% Used by an allocating instruction, but value not referenced. %% Must check the rest of the instructions. not_used(check_liveness(R, Is, St1)); {Other,_}=Res when is_atom(Other) -> Res end; check_liveness(R, [{label,_}|Is], St) -> check_liveness(R, Is, St); check_liveness(R, [{test,_,{f,Fail},As}|Is], St0) -> case member(R, As) of true -> {used,St0}; false -> case check_liveness_at(R, Fail, St0) of {killed,St1} -> check_liveness(R, Is, St1); {exit_not_used,St1} -> not_used(check_liveness(R, Is, St1)); {not_used,St1} -> not_used(check_liveness(R, Is, St1)); {used,_}=Used -> Used end end; check_liveness(R, [{test,Op,Fail,Live,Ss,Dst}|Is], St) -> %% Check this instruction as a block to get a less conservative %% result if the caller is is_not_used/3. Block = [{set,[Dst],Ss,{alloc,Live,{bif,Op,Fail}}}], check_liveness(R, [{block,Block}|Is], St); check_liveness(R, [{select,_,R,_,_}|_], St) -> {used,St}; check_liveness(R, [{select,_,_,Fail,Branches}|_], St) -> check_liveness_everywhere(R, [Fail|Branches], St); check_liveness(R, [{jump,{f,F}}|_], St) -> check_liveness_at(R, F, St); check_liveness(R, [{case_end,Used}|_], St) -> check_liveness_exit(R, Used, St); check_liveness(R, [{try_case_end,Used}|_], St) -> check_liveness_exit(R, Used, St); check_liveness(R, [{badmatch,Used}|_], St) -> check_liveness_exit(R, Used, St); check_liveness(R, [if_end|_], St) -> check_liveness_exit(R, ignore, St); check_liveness(R, [{func_info,_,_,Ar}|_], St) -> case R of {x,X} when X < Ar -> {used,St}; _ -> {killed,St} end; check_liveness(R, [{kill,R}|_], St) -> {killed,St}; check_liveness(R, [{kill,_}|Is], St) -> check_liveness(R, Is, St); check_liveness(R, [{bs_init,_,_,none,Ss,Dst}|Is], St) -> case member(R, Ss) of true -> {used,St}; false -> if R =:= Dst -> {killed,St}; true -> check_liveness(R, Is, St) end end; check_liveness(R, [{bs_init,_,_,Live,Ss,Dst}|Is], St) -> case R of {x,X} -> case member(R, Ss) of true -> {used,St}; false -> if X < Live -> not_used(check_liveness(R, Is, St)); true -> {killed,St} end end; {y,_} -> case member(R, Ss) of true -> {used,St}; false -> %% If the exception is taken, the stack may %% be scanned. Therefore the register is not %% guaranteed to be killed. if R =:= Dst -> {not_used,St}; true -> not_used(check_liveness(R, Is, St)) end end end; check_liveness(R, [{deallocate,_}|Is], St) -> case R of {y,_} -> {killed,St}; _ -> check_liveness(R, Is, St) end; check_liveness({x,_}=R, [return|_], St) -> case R of {x,0} -> {used,St}; {x,_} -> {killed,St} end; check_liveness(R, [{call,Live,_}|Is], St) -> case R of {x,X} when X < Live -> {used,St}; {x,_} -> {killed,St}; {y,_} -> not_used(check_liveness(R, Is, St)) end; check_liveness(R, [{call_ext,Live,_}=I|Is], St) -> case R of {x,X} when X < Live -> {used,St}; {x,_} -> {killed,St}; {y,_} -> case beam_jump:is_exit_instruction(I) of false -> not_used(check_liveness(R, Is, St)); true -> %% We must make sure we don't check beyond this %% instruction or we will fall through into random %% unrelated code and get stuck in a loop. {exit_not_used,St} end end; check_liveness(R, [{call_fun,Live}|Is], St) -> case R of {x,X} when X =< Live -> {used,St}; {x,_} -> {killed,St}; {y,_} -> not_used(check_liveness(R, Is, St)) end; check_liveness(R, [{apply,Args}|Is], St) -> case R of {x,X} when X < Args+2 -> {used,St}; {x,_} -> {killed,St}; {y,_} -> not_used(check_liveness(R, Is, St)) end; check_liveness(R, [{bif,Op,Fail,Ss,D}|Is], St) -> Set = {set,[D],Ss,{bif,Op,Fail}}, check_liveness(R, [{block,[Set]}|Is], St); check_liveness(R, [{gc_bif,Op,{f,Fail},Live,Ss,D}|Is], St) -> Set = {set,[D],Ss,{alloc,Live,{gc_bif,Op,Fail}}}, check_liveness(R, [{block,[Set]}|Is], St); check_liveness(R, [{bs_put,{f,0},_,Ss}|Is], St) -> case member(R, Ss) of true -> {used,St}; false -> check_liveness(R, Is, St) end; check_liveness(R, [{bs_restore2,S,_}|Is], St) -> case R of S -> {used,St}; _ -> check_liveness(R, Is, St) end; check_liveness(R, [{bs_save2,S,_}|Is], St) -> case R of S -> {used,St}; _ -> check_liveness(R, Is, St) end; check_liveness(R, [{move,S,D}|Is], St) -> case R of S -> {used,St}; D -> {killed,St}; _ -> check_liveness(R, Is, St) end; check_liveness(R, [{make_fun2,_,_,_,NumFree}|Is], St) -> case R of {x,X} when X < NumFree -> {used,St}; {x,_} -> {killed,St}; {y,_} -> not_used(check_liveness(R, Is, St)) end; check_liveness(R, [{'catch'=Op,Y,Fail}|Is], St) -> Set = {set,[Y],[],{try_catch,Op,Fail}}, check_liveness(R, [{block,[Set]}|Is], St); check_liveness(R, [{'try'=Op,Y,Fail}|Is], St) -> Set = {set,[Y],[],{try_catch,Op,Fail}}, check_liveness(R, [{block,[Set]}|Is], St); check_liveness(R, [{try_end,Y}|Is], St) -> case R of Y -> {killed,St}; {y,_} -> %% y registers will be used if an exception occurs and %% control transfers to the label given in the previous %% try/2 instruction. {used,St}; _ -> check_liveness(R, Is, St) end; check_liveness(R, [{catch_end,Y}|Is], St) -> case R of Y -> {killed,St}; _ -> check_liveness(R, Is, St) end; check_liveness(R, [{get_tuple_element,S,_,D}|Is], St) -> case R of S -> {used,St}; D -> {killed,St}; _ -> check_liveness(R, Is, St) end; check_liveness(R, [{bs_context_to_binary,S}|Is], St) -> case R of S -> {used,St}; _ -> check_liveness(R, Is, St) end; check_liveness(R, [{loop_rec,{f,_},{x,0}}|_], St) -> case R of {x,_} -> {killed,St}; _ -> %% y register. Rarely happens. Be very conversative and %% assume it's used. {used,St} end; check_liveness(R, [{loop_rec_end,{f,Fail}}|_], St) -> check_liveness_at(R, Fail, St); check_liveness(R, [{line,_}|Is], St) -> check_liveness(R, Is, St); check_liveness(R, [{get_map_elements,{f,Fail},S,{list,L}}|Is], St0) -> {Ss,Ds} = split_even(L), case member(R, [S|Ss]) of true -> {used,St0}; false -> case check_liveness_at(R, Fail, St0) of {killed,St}=Killed -> case member(R, Ds) of true -> Killed; false -> check_liveness(R, Is, St) end; Other -> Other end end; check_liveness(R, [{put_map,F,Op,S,D,Live,{list,Puts}}|Is], St) -> Set = {set,[D],[S|Puts],{alloc,Live,{put_map,Op,F}}}, check_liveness(R, [{block,[Set]}||Is], St); check_liveness(R, [{put_tuple,Ar,D}|Is], St) -> Set = {set,[D],[],{put_tuple,Ar}}, check_liveness(R, [{block,[Set]}||Is], St); check_liveness(R, [{put_list,S1,S2,D}|Is], St) -> Set = {set,[D],[S1,S2],put_list}, check_liveness(R, [{block,[Set]}||Is], St); check_liveness(R, [{test_heap,N,Live}|Is], St) -> I = {block,[{set,[],[],{alloc,Live,{nozero,nostack,N,[]}}}]}, check_liveness(R, [I|Is], St); check_liveness(R, [{allocate_zero,N,Live}|Is], St) -> I = {block,[{set,[],[],{alloc,Live,{zero,N,0,[]}}}]}, check_liveness(R, [I|Is], St); check_liveness(R, [{get_hd,S,D}|Is], St) -> I = {block,[{set,[D],[S],get_hd}]}, check_liveness(R, [I|Is], St); check_liveness(R, [{get_tl,S,D}|Is], St) -> I = {block,[{set,[D],[S],get_tl}]}, check_liveness(R, [I|Is], St); check_liveness(R, [remove_message|Is], St) -> check_liveness(R, Is, St); check_liveness({x,X}, [build_stacktrace|_], St) when X > 0 -> {killed,St}; check_liveness(R, [{recv_mark,_}|Is], St) -> check_liveness(R, Is, St); check_liveness(R, [{recv_set,_}|Is], St) -> check_liveness(R, Is, St); check_liveness(R, [{'%',_}|Is], St) -> check_liveness(R, Is, St); check_liveness(_R, Is, St) when is_list(Is) -> %% Not implemented. Conservatively assume that the register is used. {used,St}. check_liveness_everywhere(R, Lbls, St0) -> check_liveness_everywhere_1(R, Lbls, killed, St0). check_liveness_everywhere_1(R, [{f,Lbl}|T], Res0, St0) -> {Res1,St} = check_liveness_at(R, Lbl, St0), Res = case Res1 of killed -> Res0; _ -> Res1 end, case Res of used -> {used,St}; _ -> check_liveness_everywhere_1(R, T, Res, St) end; check_liveness_everywhere_1(R, [_|T], Res, St) -> check_liveness_everywhere_1(R, T, Res, St); check_liveness_everywhere_1(_, [], Res, St) -> {Res,St}. check_liveness_at(R, Lbl, #live{lbl=Ll,res=ResMemorized}=St0) -> case gb_trees:lookup(Lbl, ResMemorized) of {value,Res} -> {Res,St0}; none -> {Res,St} = case gb_trees:lookup(Lbl, Ll) of {value,Is} -> check_liveness(R, Is, St0); none -> {used,St0} end, {Res,St#live{res=gb_trees:insert(Lbl, Res, St#live.res)}} end. not_used({used,_}=Res) -> Res; not_used({_,St}) -> {not_used,St}. check_liveness_exit(R, R, St) -> {used,St}; check_liveness_exit({x,_}, _, St) -> {killed,St}; check_liveness_exit({y,_}, _, St) -> {exit_not_used,St}. %% check_liveness_block(Reg, [Instruction], State) -> %% {killed | not_used | used | alloc_used | transparent,State'} %% Finds out how Reg is used in the instruction sequence inside a block. %% Returns one of: %% killed - Reg is assigned a new value or killed by an %% allocation instruction %% not_used - The value is not used, but the register is referenced %% e.g. by an allocation instruction %% transparent - Reg is neither used nor killed %% alloc_used - Used only in an allocate instruction %% used - Reg is explicitly used by an instruction %% %% Annotations are not allowed. %% %% (Unknown instructions will cause an exception.) check_liveness_block({x,X}=R, [{set,Ds,Ss,{alloc,Live,Op}}|Is], St0) -> if X >= Live -> {killed,St0}; true -> case check_liveness_block_1(R, Ss, Ds, Op, Is, St0) of {transparent,St} -> {alloc_used,St}; {_,_}=Res -> not_used(Res) end end; check_liveness_block({y,_}=R, [{set,Ds,Ss,{alloc,_Live,Op}}|Is], St0) -> case check_liveness_block_1(R, Ss, Ds, Op, Is, St0) of {transparent,St} -> {alloc_used,St}; {_,_}=Res -> not_used(Res) end; check_liveness_block({y,_}=R, [{set,Ds,Ss,{try_catch,_,Op}}|Is], St0) -> case Ds of [R] -> {killed,St0}; _ -> case check_liveness_block_1(R, Ss, Ds, Op, Is, St0) of {exit_not_used,St} -> {used,St}; {transparent,St} -> %% Conservatively assumed that it is used. {used,St}; {_,_}=Res -> Res end end; check_liveness_block(R, [{set,Ds,Ss,Op}|Is], St) -> check_liveness_block_1(R, Ss, Ds, Op, Is, St); check_liveness_block(_, [], St) -> {transparent,St}. check_liveness_block_1(R, Ss, Ds, Op, Is, St0) -> case member(R, Ss) of true -> {used,St0}; false -> case check_liveness_block_2(R, Op, Ss, St0) of {killed,St} -> case member(R, Ds) of true -> {killed,St}; false -> check_liveness_block(R, Is, St) end; {exit_not_used,St} -> case member(R, Ds) of true -> {exit_not_used,St}; false -> check_liveness_block(R, Is, St) end; {not_used,St} -> not_used(case member(R, Ds) of true -> {killed,St}; false -> check_liveness_block(R, Is, St) end); {used,St} -> {used,St} end end. check_liveness_block_2(R, {gc_bif,Op,{f,Lbl}}, Ss, St) -> check_liveness_block_3(R, Lbl, {Op,length(Ss)}, St); check_liveness_block_2(R, {bif,Op,{f,Lbl}}, Ss, St) -> Arity = length(Ss), case erl_internal:comp_op(Op, Arity) orelse erl_internal:new_type_test(Op, Arity) of true -> {killed,St}; false -> check_liveness_block_3(R, Lbl, {Op,length(Ss)}, St) end; check_liveness_block_2(R, {put_map,_Op,{f,Lbl}}, _Ss, St) -> check_liveness_block_3(R, Lbl, {unsafe,0}, St); check_liveness_block_2(_, _, _, St) -> {killed,St}. check_liveness_block_3({x,_}, 0, _FA, St) -> {killed,St}; check_liveness_block_3({y,_}, 0, {F,A}, St) -> %% If the exception is thrown, the stack may be scanned, %% thus implicitly using the y register. case erl_bifs:is_safe(erlang, F, A) of true -> {killed,St}; false -> {used,St} end; check_liveness_block_3(R, Lbl, _FA, St0) -> check_liveness_at(R, Lbl, St0). index_labels_1([{label,Lbl}|Is0], Acc) -> Is = drop_labels(Is0), index_labels_1(Is0, [{Lbl,Is}|Acc]); index_labels_1([_|Is], Acc) -> index_labels_1(Is, Acc); index_labels_1([], Acc) -> gb_trees:from_orddict(sort(Acc)). drop_labels([{label,_}|Is]) -> drop_labels(Is); drop_labels(Is) -> Is. replace_labels_1([{test,Test,{f,Lbl},Ops}|Is], Acc, D, Fb) -> replace_labels_1(Is, [{test,Test,{f,label(Lbl, D, Fb)},Ops}|Acc], D, Fb); replace_labels_1([{test,Test,{f,Lbl},Live,Ops,Dst}|Is], Acc, D, Fb) -> replace_labels_1(Is, [{test,Test,{f,label(Lbl, D, Fb)},Live,Ops,Dst}|Acc], D, Fb); replace_labels_1([{select,I,R,{f,Fail0},Vls0}|Is], Acc, D, Fb) -> Vls = map(fun ({f,L}) -> {f,label(L, D, Fb)}; (Other) -> Other end, Vls0), Fail = label(Fail0, D, Fb), replace_labels_1(Is, [{select,I,R,{f,Fail},Vls}|Acc], D, Fb); replace_labels_1([{'try',R,{f,Lbl}}|Is], Acc, D, Fb) -> replace_labels_1(Is, [{'try',R,{f,label(Lbl, D, Fb)}}|Acc], D, Fb); replace_labels_1([{'catch',R,{f,Lbl}}|Is], Acc, D, Fb) -> replace_labels_1(Is, [{'catch',R,{f,label(Lbl, D, Fb)}}|Acc], D, Fb); replace_labels_1([{jump,{f,Lbl}}|Is], Acc, D, Fb) -> replace_labels_1(Is, [{jump,{f,label(Lbl, D, Fb)}}|Acc], D, Fb); replace_labels_1([{loop_rec,{f,Lbl},R}|Is], Acc, D, Fb) -> replace_labels_1(Is, [{loop_rec,{f,label(Lbl, D, Fb)},R}|Acc], D, Fb); replace_labels_1([{loop_rec_end,{f,Lbl}}|Is], Acc, D, Fb) -> replace_labels_1(Is, [{loop_rec_end,{f,label(Lbl, D, Fb)}}|Acc], D, Fb); replace_labels_1([{wait,{f,Lbl}}|Is], Acc, D, Fb) -> replace_labels_1(Is, [{wait,{f,label(Lbl, D, Fb)}}|Acc], D, Fb); replace_labels_1([{wait_timeout,{f,Lbl},To}|Is], Acc, D, Fb) -> replace_labels_1(Is, [{wait_timeout,{f,label(Lbl, D, Fb)},To}|Acc], D, Fb); replace_labels_1([{recv_mark=Op,{f,Lbl}}|Is], Acc, D, Fb) -> replace_labels_1(Is, [{Op,{f,label(Lbl, D, Fb)}}|Acc], D, Fb); replace_labels_1([{recv_set=Op,{f,Lbl}}|Is], Acc, D, Fb) -> replace_labels_1(Is, [{Op,{f,label(Lbl, D, Fb)}}|Acc], D, Fb); replace_labels_1([{bif,Name,{f,Lbl},As,R}|Is], Acc, D, Fb) when Lbl =/= 0 -> replace_labels_1(Is, [{bif,Name,{f,label(Lbl, D, Fb)},As,R}|Acc], D, Fb); replace_labels_1([{gc_bif,Name,{f,Lbl},Live,As,R}|Is], Acc, D, Fb) when Lbl =/= 0 -> replace_labels_1(Is, [{gc_bif,Name,{f,label(Lbl, D, Fb)},Live,As,R}|Acc], D, Fb); replace_labels_1([{call,Ar,{f,Lbl}}|Is], Acc, D, Fb) -> replace_labels_1(Is, [{call,Ar,{f,label(Lbl, D, Fb)}}|Acc], D, Fb); replace_labels_1([{make_fun2,{f,Lbl},U1,U2,U3}|Is], Acc, D, Fb) -> replace_labels_1(Is, [{make_fun2,{f,label(Lbl, D, Fb)},U1,U2,U3}|Acc], D, Fb); replace_labels_1([{bs_init,{f,Lbl},Info,Live,Ss,Dst}|Is], Acc, D, Fb) when Lbl =/= 0 -> replace_labels_1(Is, [{bs_init,{f,label(Lbl, D, Fb)},Info,Live,Ss,Dst}|Acc], D, Fb); replace_labels_1([{bs_put,{f,Lbl},Info,Ss}|Is], Acc, D, Fb) when Lbl =/= 0 -> replace_labels_1(Is, [{bs_put,{f,label(Lbl, D, Fb)},Info,Ss}|Acc], D, Fb); replace_labels_1([{put_map=I,{f,Lbl},Op,Src,Dst,Live,List}|Is], Acc, D, Fb) when Lbl =/= 0 -> replace_labels_1(Is, [{I,{f,label(Lbl, D, Fb)},Op,Src,Dst,Live,List}|Acc], D, Fb); replace_labels_1([{get_map_elements=I,{f,Lbl},Src,List}|Is], Acc, D, Fb) when Lbl =/= 0 -> replace_labels_1(Is, [{I,{f,label(Lbl, D, Fb)},Src,List}|Acc], D, Fb); replace_labels_1([I|Is], Acc, D, Fb) -> replace_labels_1(Is, [I|Acc], D, Fb); replace_labels_1([], Acc, _, _) -> Acc. label(Old, D, Fb) -> case D of #{Old := New} -> New; _ -> Fb(Old) end. %% Help function for combine_heap_needs. combine_alloc_lists(Al0) -> Al1 = flatmap(fun(Words) when is_integer(Words) -> [{words,Words}]; ({alloc,List}) -> List end, Al0), Al2 = sofs:relation(Al1), Al3 = sofs:relation_to_family(Al2), Al4 = sofs:to_external(Al3), [{Tag,lists:sum(L)} || {Tag,L} <- Al4]. %% live_opt/4. %% Bit syntax instructions. live_opt([{bs_context_to_binary,Src}=I|Is], Regs0, D, Acc) -> Regs = x_live([Src], Regs0), live_opt(Is, Regs, D, [I|Acc]); live_opt([{bs_init,Fail,_,none,Ss,Dst}=I|Is], Regs0, D, Acc) -> Regs1 = x_live(Ss, x_dead([Dst], Regs0)), Regs = live_join_label(Fail, D, Regs1), live_opt(Is, Regs, D, [I|Acc]); live_opt([{bs_init,Fail,Info,Live0,Ss,Dst}|Is], Regs0, D, Acc) -> Regs1 = x_dead([Dst], Regs0), Live = live_regs(Regs1), true = Live =< Live0, %Assertion. Regs2 = live_call(Live), Regs3 = x_live(Ss, Regs2), Regs = live_join_label(Fail, D, Regs3), I = {bs_init,Fail,Info,Live,Ss,Dst}, live_opt(Is, Regs, D, [I|Acc]); live_opt([{bs_put,Fail,_,Ss}=I|Is], Regs0, D, Acc) -> Regs1 = x_live(Ss, Regs0), Regs = live_join_label(Fail, D, Regs1), live_opt(Is, Regs, D, [I|Acc]); live_opt([{bs_restore2,Src,_}=I|Is], Regs0, D, Acc) -> Regs = x_live([Src], Regs0), live_opt(Is, Regs, D, [I|Acc]); live_opt([{bs_save2,Src,_}=I|Is], Regs0, D, Acc) -> Regs = x_live([Src], Regs0), live_opt(Is, Regs, D, [I|Acc]); live_opt([{test,bs_start_match2,Fail,Live,[Src,_],_}=I|Is], _, D, Acc) -> Regs0 = live_call(Live), Regs1 = x_live([Src], Regs0), Regs = live_join_label(Fail, D, Regs1), live_opt(Is, Regs, D, [I|Acc]); %% Other instructions. live_opt([{block,Bl0}|Is], Regs0, D, Acc) -> Live0 = make_anno({used,Regs0}), {Bl,Regs} = live_opt_block(reverse(Bl0), Regs0, D, [Live0]), Live = make_anno({used,Regs}), live_opt(Is, Regs, D, [{block,[Live|Bl]}|Acc]); live_opt([build_stacktrace=I|Is], _, D, Acc) -> live_opt(Is, live_call(1), D, [I|Acc]); live_opt([raw_raise=I|Is], _, D, Acc) -> live_opt(Is, live_call(3), D, [I|Acc]); live_opt([{label,L}=I|Is], Regs, D0, Acc) -> D = gb_trees:insert(L, Regs, D0), live_opt(Is, Regs, D, [I|Acc]); live_opt([{jump,{f,L}}=I|Is], _, D, Acc) -> Regs = gb_trees:get(L, D), live_opt(Is, Regs, D, [I|Acc]); live_opt([return=I|Is], _, D, Acc) -> live_opt(Is, 1, D, [I|Acc]); live_opt([{catch_end,_}=I|Is], _, D, Acc) -> live_opt(Is, live_call(1), D, [I|Acc]); live_opt([{badmatch,Src}=I|Is], _, D, Acc) -> Regs = x_live([Src], 0), live_opt(Is, Regs, D, [I|Acc]); live_opt([{case_end,Src}=I|Is], _, D, Acc) -> Regs = x_live([Src], 0), live_opt(Is, Regs, D, [I|Acc]); live_opt([{try_case_end,Src}=I|Is], _, D, Acc) -> Regs = x_live([Src], 0), live_opt(Is, Regs, D, [I|Acc]); live_opt([if_end=I|Is], _, D, Acc) -> Regs = 0, live_opt(Is, Regs, D, [I|Acc]); live_opt([{call,Arity,_}=I|Is], _, D, Acc) -> live_opt(Is, live_call(Arity), D, [I|Acc]); live_opt([{call_ext,Arity,_}=I|Is], _, D, Acc) -> live_opt(Is, live_call(Arity), D, [I|Acc]); live_opt([{call_fun,Arity}=I|Is], _, D, Acc) -> live_opt(Is, live_call(Arity+1), D, [I|Acc]); live_opt([{apply,Arity}=I|Is], _, D, Acc) -> live_opt(Is, live_call(Arity+2), D, [I|Acc]); live_opt([{make_fun2,_,_,_,Arity}=I|Is], _, D, Acc) -> live_opt(Is, live_call(Arity), D, [I|Acc]); live_opt([{test,_,Fail,Ss}=I|Is], Regs0, D, Acc) -> Regs1 = x_live(Ss, Regs0), Regs = live_join_label(Fail, D, Regs1), live_opt(Is, Regs, D, [I|Acc]); live_opt([{test,_,Fail,Live,Ss,_}=I|Is], _, D, Acc) -> Regs0 = live_call(Live), Regs1 = x_live(Ss, Regs0), Regs = live_join_label(Fail, D, Regs1), live_opt(Is, Regs, D, [I|Acc]); live_opt([{select,_,Src,Fail,List}=I|Is], _, D, Acc) -> Regs0 = 0, Regs1 = x_live([Src], Regs0), Regs = live_join_labels([Fail|List], D, Regs1), live_opt(Is, Regs, D, [I|Acc]); live_opt([{try_case,Y}=I|Is], Regs0, D, Acc) -> Regs = live_call(1), case Regs0 of 0 -> live_opt(Is, Regs, D, [{try_end,Y}|Acc]); _ -> live_opt(Is, live_call(1), D, [I|Acc]) end; live_opt([{loop_rec,_Fail,_Dst}=I|Is], _, D, Acc) -> live_opt(Is, 0, D, [I|Acc]); live_opt([timeout=I|Is], _, D, Acc) -> live_opt(Is, 0, D, [I|Acc]); live_opt([{wait,_}=I|Is], _, D, Acc) -> live_opt(Is, 0, D, [I|Acc]); live_opt([{get_map_elements,Fail,Src,{list,List}}=I|Is], Regs0, D, Acc) -> {Ss,Ds} = split_even(List), Regs1 = x_live([Src|Ss], x_dead(Ds, Regs0)), Regs = live_join_label(Fail, D, Regs1), live_opt(Is, Regs, D, [I|Acc]); live_opt([{gc_bif,N,F,R,As,Dst}=I|Is], Regs0, D, Acc) -> Bl = [{set,[Dst],As,{alloc,R,{gc_bif,N,F}}}], {_,Regs} = live_opt_block(Bl, Regs0, D, []), live_opt(Is, Regs, D, [I|Acc]); live_opt([{bif,N,F,As,Dst}=I|Is], Regs0, D, Acc) -> Bl = [{set,[Dst],As,{bif,N,F}}], {_,Regs} = live_opt_block(Bl, Regs0, D, []), live_opt(Is, Regs, D, [I|Acc]); live_opt([{get_tuple_element,Src,Idx,Dst}=I|Is], Regs0, D, Acc) -> Bl = [{set,[Dst],[Src],{get_tuple_element,Idx}}], {_,Regs} = live_opt_block(Bl, Regs0, D, []), live_opt(Is, Regs, D, [I|Acc]); live_opt([{move,Src,Dst}=I|Is], Regs0, D, Acc) -> Regs = x_live([Src], x_dead([Dst], Regs0)), live_opt(Is, Regs, D, [I|Acc]); live_opt([{put_map,F,Op,S,Dst,R,{list,Puts}}=I|Is], Regs0, D, Acc) -> Bl = [{set,[Dst],[S|Puts],{alloc,R,{put_map,Op,F}}}], {_,Regs} = live_opt_block(Bl, Regs0, D, []), live_opt(Is, Regs, D, [I|Acc]); %% Transparent instructions - they neither use nor modify x registers. live_opt([{deallocate,_}=I|Is], Regs, D, Acc) -> live_opt(Is, Regs, D, [I|Acc]); live_opt([{kill,_}=I|Is], Regs, D, Acc) -> live_opt(Is, Regs, D, [I|Acc]); live_opt([{try_end,_}=I|Is], Regs, D, Acc) -> live_opt(Is, Regs, D, [I|Acc]); live_opt([{loop_rec_end,_}=I|Is], Regs, D, Acc) -> live_opt(Is, Regs, D, [I|Acc]); live_opt([{wait_timeout,_,nil}=I|Is], Regs, D, Acc) -> live_opt(Is, Regs, D, [I|Acc]); live_opt([{wait_timeout,_,{Tag,_}}=I|Is], Regs, D, Acc) when Tag =/= x -> live_opt(Is, Regs, D, [I|Acc]); live_opt([{line,_}=I|Is], Regs, D, Acc) -> live_opt(Is, Regs, D, [I|Acc]); live_opt([{'catch',_,_}=I|Is], Regs, D, Acc) -> live_opt(Is, Regs, D, [I|Acc]); live_opt([{'try',_,_}=I|Is], Regs, D, Acc) -> live_opt(Is, Regs, D, [I|Acc]); %% The following instructions can occur if the "compilation" has been %% started from a .S file using the 'from_asm' option. live_opt([{trim,_,_}=I|Is], Regs, D, Acc) -> live_opt(Is, Regs, D, [I|Acc]); live_opt([{'%',_}=I|Is], Regs, D, Acc) -> live_opt(Is, Regs, D, [I|Acc]); live_opt([{recv_set,_}=I|Is], Regs, D, Acc) -> live_opt(Is, Regs, D, [I|Acc]); live_opt([{recv_mark,_}=I|Is], Regs, D, Acc) -> live_opt(Is, Regs, D, [I|Acc]); live_opt([], _, _, Acc) -> Acc. live_opt_block([{set,[{x,X}]=Ds,Ss,move}=I|Is], Regs0, D, Acc) -> Regs = x_live(Ss, x_dead(Ds, Regs0)), case is_live(X, Regs0) of true -> live_opt_block(Is, Regs, D, [I|Acc]); false -> %% Useless move, will never be used. live_opt_block(Is, Regs, D, Acc) end; live_opt_block([{set,Ds,Ss,{alloc,Live0,AllocOp}}|Is], Regs0, D, Acc) -> %% Calculate liveness from the point of view of the GC. %% There will never be a GC if the instruction fails, so we should %% ignore the failure branch. GcRegs1 = x_dead(Ds, Regs0), GcRegs = x_live(Ss, GcRegs1), Live = live_regs(GcRegs), %% The life-time analysis used by the code generator is sometimes too %% conservative, so it may be possible to lower the number of live %% registers based on the exact liveness information. The main benefit is %% that more optimizations that depend on liveness information (such as the %% beam_dead pass) may be applied. true = Live =< Live0, %Assertion. I = {set,Ds,Ss,{alloc,Live,AllocOp}}, %% Calculate liveness from the point of view of the preceding instruction. %% The liveness is the union of live registers in the GC and the live %% registers at the failure label. Regs1 = live_call(Live), Regs = live_join_alloc(AllocOp, D, Regs1), live_opt_block(Is, Regs, D, [I|Acc]); live_opt_block([{set,Ds,Ss,{bif,_,Fail}}=I|Is], Regs0, D, Acc) -> Regs1 = x_dead(Ds, Regs0), Regs2 = x_live(Ss, Regs1), Regs = live_join_label(Fail, D, Regs2), live_opt_block(Is, Regs, D, [I|Acc]); live_opt_block([{set,Ds,Ss,_}=I|Is], Regs0, D, Acc) -> Regs = x_live(Ss, x_dead(Ds, Regs0)), live_opt_block(Is, Regs, D, [I|Acc]); live_opt_block([{'%anno',_}|Is], Regs, D, Acc) -> live_opt_block(Is, Regs, D, Acc); live_opt_block([], Regs, _, Acc) -> {Acc,Regs}. live_join_alloc({Kind,_Name,Fail}, D, Regs) when Kind =:= gc_bif; Kind =:= put_map -> live_join_label(Fail, D, Regs); live_join_alloc(_, _, Regs) -> Regs. live_join_labels([{f,L}|T], D, Regs0) when L =/= 0 -> Regs = gb_trees:get(L, D) bor Regs0, live_join_labels(T, D, Regs); live_join_labels([_|T], D, Regs) -> live_join_labels(T, D, Regs); live_join_labels([], _, Regs) -> Regs. live_join_label({f,0}, _, Regs) -> Regs; live_join_label({f,L}, D, Regs) -> gb_trees:get(L, D) bor Regs. live_call(Live) -> (1 bsl Live) - 1. live_regs(Regs) -> live_regs_1(0, Regs). live_regs_1(N, 0) -> N; live_regs_1(N, Regs) -> live_regs_1(N+1, Regs bsr 1). x_dead([{x,N}|Rs], Regs) -> x_dead(Rs, Regs band (bnot (1 bsl N))); x_dead([_|Rs], Regs) -> x_dead(Rs, Regs); x_dead([], Regs) -> Regs. x_live([{x,N}|Rs], Regs) -> x_live(Rs, Regs bor (1 bsl N)); x_live([_|Rs], Regs) -> x_live(Rs, Regs); x_live([], Regs) -> Regs. is_live(X, Regs) -> ((Regs bsr X) band 1) =:= 1. split_even([], Ss, Ds) -> {reverse(Ss),reverse(Ds)}; split_even([S,D|Rs], Ss, Ds) -> split_even(Rs, [S|Ss], [D|Ds]). %%% %%% Add annotations for defined registers. %%% %%% This analysis is done by scanning the instructions in %%% execution order. %%% defs([{apply,_}=I|Is], _Regs, D) -> [I|defs(Is, 1, D)]; defs([{bif,_,{f,Fail},_Src,Dst}=I|Is], Regs0, D) -> Regs = def_regs([Dst], Regs0), [I|defs(Is, Regs, update_regs(Fail, Regs0, D))]; defs([{block,Block0}|Is], Regs0, D0) -> {Block,Regs,D} = defs_list(Block0, Regs0, D0), [{block,[make_anno({def,Regs0})|Block]}|defs(Is, Regs, D)]; defs([{bs_init,{f,L},_,_,_,Dst}=I|Is], Regs0, D) -> Regs = def_regs([Dst], Regs0), [I|defs(Is, Regs, update_regs(L, Regs, D))]; defs([{bs_put,{f,L},_,_}=I|Is], Regs, D) -> [I|defs(Is, Regs, update_regs(L, Regs, D))]; defs([build_stacktrace=I|Is], _Regs, D) -> [I|defs(Is, 1, D)]; defs([{call,_,_}=I|Is], _Regs, D) -> [I|defs(Is, 1, D)]; defs([{call_ext,_,{extfunc,M,F,A}}=I|Is], _Regs, D) -> case erl_bifs:is_exit_bif(M, F, A) of false -> [I|defs(Is, 1, D)]; true -> [I|defs_unreachable(Is, D)] end; defs([{call_ext,_,_}=I|Is], _Regs, D) -> [I|defs(Is, 1, D)]; defs([{call_fun,_}=I|Is], _Regs, D) -> [I|defs(Is, 1, D)]; defs([{'catch',_,{f,L}}=I|Is], Regs, D) -> RegsAtLabel = init_def_regs(1), [I|defs(Is, Regs, update_regs(L, RegsAtLabel, D))]; defs([{catch_end,_}=I|Is], _Regs, D) -> Regs = init_def_regs(1), [I|defs(Is, Regs, D)]; defs([{gc_bif,_,{f,Fail},Live,_Src,Dst}=I|Is], Regs0, D) -> true = all_defined(Live, Regs0), %Assertion. Regs = def_regs([Dst], init_def_regs(Live)), [I|defs(Is, Regs, update_regs(Fail, Regs0, D))]; defs([{get_map_elements,{f,L},_Src,{list,DstList}}=I|Is], Regs0, D) -> {_,Ds} = beam_utils:split_even(DstList), Regs = def_regs(Ds, Regs0), [I|defs(Is, Regs, update_regs(L, Regs0, D))]; defs([{get_tuple_element,_,_,Dst}=I|Is], Regs0, D) -> Regs = def_regs([Dst], Regs0), [I|defs(Is, Regs, D)]; defs([{jump,{f,L}}=I|Is], Regs, D) -> [I|defs_unreachable(Is, update_regs(L, Regs, D))]; defs([{label,L}=I|Is], Regs0, D) -> case D of #{L:=Regs1} -> Regs = Regs0 band Regs1, [I|defs(Is, Regs, D)]; #{} -> [I|defs(Is, Regs0, D)] end; defs([{loop_rec,{f,L},{x,0}}=I|Is], _Regs, D0) -> RegsAtLabel = init_def_regs(0), D = update_regs(L, RegsAtLabel, D0), [I|defs(Is, init_def_regs(1), D)]; defs([{loop_rec_end,_}=I|Is], _Regs, D) -> [I|defs(Is, 0, D)]; defs([{make_fun2,_,_,_,_}=I|Is], _Regs, D) -> [I|defs(Is, 1, D)]; defs([{move,_,Dst}=I|Is], Regs0, D) -> Regs = def_regs([Dst], Regs0), [I|defs(Is, Regs, D)]; defs([{put_map,{f,Fail},_,_,Dst,_,_}=I|Is], Regs0, D) -> Regs = def_regs([Dst], Regs0), [I|defs(Is, Regs, update_regs(Fail, Regs0, D))]; defs([raw_raise=I|Is], _Regs, D) -> [I|defs(Is, 1, D)]; defs([return=I|Is], _Regs, D) -> [I|defs_unreachable(Is, D)]; defs([{select,_,_Src,Fail,List}=I|Is], Regs, D0) -> D = update_list([Fail|List], Regs, D0), [I|defs_unreachable(Is, D)]; defs([{test,_,{f,L},_}=I|Is], Regs, D) -> [I|defs(Is, Regs, update_regs(L, Regs, D))]; defs([{test,_,{f,L},Live,_,Dst}=I|Is], Regs0, D) -> true = all_defined(Live, Regs0), %Assertion. Regs = def_regs([Dst], init_def_regs(Live)), [I|defs(Is, Regs, update_regs(L, Regs0, D))]; defs([{'try',_,{f,L}}=I|Is], Regs, D) -> RegsAtLabel = init_def_regs(3), [I|defs(Is, Regs, update_regs(L, RegsAtLabel, D))]; defs([{try_case,_}=I|Is], _Regs, D) -> [I|defs(Is, init_def_regs(3), D)]; defs([{wait,_}=I|Is], _Regs, D) -> [I|defs_unreachable(Is, D)]; defs([{wait_timeout,_,_}=I|Is], _Regs, D) -> [I|defs(Is, 0, D)]; %% Exceptions. defs([{badmatch,_}=I|Is], _Regs, D) -> [I|defs_unreachable(Is, D)]; defs([{case_end,_}=I|Is], _Regs, D) -> [I|defs_unreachable(Is, D)]; defs([if_end=I|Is], _Regs, D) -> [I|defs_unreachable(Is, D)]; defs([{try_case_end,_}=I|Is], _Regs, D) -> [I|defs_unreachable(Is, D)]; %% Neutral instructions defs([{bs_context_to_binary,_}=I|Is], Regs, D) -> [I|defs(Is, Regs, D)]; defs([{bs_restore2,_,_}=I|Is], Regs, D) -> [I|defs(Is, Regs, D)]; defs([{bs_save2,_,_}=I|Is], Regs, D) -> [I|defs(Is, Regs, D)]; defs([{deallocate,_}=I|Is], Regs, D) -> [I|defs(Is, Regs, D)]; defs([{kill,_}=I|Is], Regs, D) -> [I|defs(Is, Regs, D)]; defs([{line,_}=I|Is], Regs, D) -> [I|defs(Is, Regs, D)]; defs([{recv_mark,_}=I|Is], Regs, D) -> [I|defs(Is, Regs, D)]; defs([{recv_set,_}=I|Is], Regs, D) -> [I|defs(Is, Regs, D)]; defs([timeout=I|Is], Regs, D) -> [I|defs(Is, Regs, D)]; defs([{trim,_,_}=I|Is], Regs, D) -> [I|defs(Is, Regs, D)]; defs([{try_end,_}=I|Is], Regs, D) -> [I|defs(Is, Regs, D)]; defs([{'%',_}=I|Is], Regs, D) -> [I|defs(Is, Regs, D)]; defs([], _, _) -> []. defs_unreachable([{label,L}=I|Is], D) -> case D of #{L:=Regs} -> [I|defs(Is, Regs, D)]; #{} -> defs_unreachable(Is, D) end; defs_unreachable([_|Is], D) -> defs_unreachable(Is, D); defs_unreachable([], _D) -> []. defs_list(Is, Regs, D) -> defs_list(Is, Regs, D, []). defs_list([{set,Ds,_,{alloc,Live,Info}}=I|Is], Regs0, D0, Acc) -> true = all_defined(Live, Regs0), %Assertion. D = case Info of {gc_bif,_,{f,Fail}} -> update_regs(Fail, Regs0, D0); {put_map,_,{f,Fail}} -> update_regs(Fail, Regs0, D0); _ -> D0 end, Regs = def_regs(Ds, init_def_regs(Live)), defs_list(Is, Regs, D, [I|Acc]); defs_list([{set,Ds,_,Info}=I|Is], Regs0, D0, Acc) -> D = case Info of {bif,_,{f,Fail}} -> update_regs(Fail, Regs0, D0); {try_catch,'catch',{f,Fail}} -> update_regs(Fail, init_def_regs(1), D0); {try_catch,'try',{f,Fail}} -> update_regs(Fail, init_def_regs(3), D0); _ -> D0 end, Regs = def_regs(Ds, Regs0), defs_list(Is, Regs, D, [I|Acc]); defs_list([], Regs, D, Acc) -> {reverse(Acc),Regs,D}. init_def_regs(Arity) -> (1 bsl Arity) - 1. def_regs([{x,X}|T], Regs) -> def_regs(T, Regs bor (1 bsl X)); def_regs([_|T], Regs) -> def_regs(T, Regs); def_regs([], Regs) -> Regs. update_list([{f,L}|T], Regs, D0) -> D = update_regs(L, Regs, D0), update_list(T, Regs, D); update_list([_|T], Regs, D) -> update_list(T, Regs, D); update_list([], _Regs, D) -> D. update_regs(L, Regs0, D) -> case D of #{L:=Regs1} -> Regs = Regs0 band Regs1, D#{L:=Regs}; #{} -> D#{L=>Regs0} end. all_defined(Live, Regs) -> All = (1 bsl Live) - 1, Regs band All =:= All. %%% %%% Utilities. %%% %% make_anno(Anno) -> WrappedAnno. %% Wrap an annotation term. make_anno(Anno) -> {'%anno',Anno}.