%% %% %CopyrightBegin% %% %% Copyright Ericsson AB 2004-2014. All Rights Reserved. %% %% The contents of this file are subject to the Erlang Public License, %% Version 1.1, (the "License"); you may not use this file except in %% compliance with the License. You should have received a copy of the %% Erlang Public License along with this software. If not, it can be %% retrieved online at http://www.erlang.org/. %% %% Software distributed under the License is distributed on an "AS IS" %% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See %% the License for the specific language governing rights and limitations %% under the License. %% %% %CopyrightEnd% -module(beam_validator). -compile({no_auto_import,[min/2]}). %% Avoid warning for local function error/1 clashing with autoimported BIF. -compile({no_auto_import,[error/1]}). -export([file/1, files/1]). %% Interface for compiler. -export([module/2, format_error/1]). -include("beam_disasm.hrl"). -import(lists, [reverse/1,foldl/3,foreach/2,member/2,dropwhile/2]). -define(MAXREG, 1024). %%-define(DEBUG, 1). -ifdef(DEBUG). -define(DBG_FORMAT(F, D), (io:format((F), (D)))). -else. -define(DBG_FORMAT(F, D), ok). -endif. %%% %%% API functions. %%% -spec file(file:filename()) -> 'ok' | {'error', term()}. file(Name) when is_list(Name) -> case case filename:extension(Name) of ".S" -> s_file(Name); ".beam" -> beam_file(Name) end of [] -> ok; Es -> {error,Es} end. -spec files([file:filename()]) -> 'ok'. files([F|Fs]) -> ?DBG_FORMAT("# Verifying: ~p~n", [F]), case file(F) of ok -> ok; {error,Es} -> io:format("~tp:~n~ts~n", [F,format_error(Es)]) end, files(Fs); files([]) -> ok. %% To be called by the compiler. module({Mod,Exp,Attr,Fs,Lc}=Code, _Opts) when is_atom(Mod), is_list(Exp), is_list(Attr), is_integer(Lc) -> case validate(Mod, Fs) of [] -> {ok,Code}; Es0 -> Es = [{?MODULE,E} || E <- Es0], {error,[{atom_to_list(Mod),Es}]} end. -spec format_error(term()) -> iolist(). format_error([]) -> []; format_error([{{M,F,A},{I,Off,Desc}}|Es]) -> [io_lib:format(" ~p:~p/~p+~p:~n ~p - ~p~n", [M,F,A,Off,I,Desc])|format_error(Es)]; format_error([Error|Es]) -> [format_error(Error)|format_error(Es)]; format_error({{_M,F,A},{I,Off,limit}}) -> io_lib:format( "function ~p/~p+~p:~n" " An implementation limit was reached.~n" " Try reducing the complexity of this function.~n~n" " Instruction: ~p~n", [F,A,Off,I]); format_error({{_M,F,A},{undef_labels,Lbls}}) -> io_lib:format( "function ~p/~p:~n" " Internal consistency check failed - please report this bug.~n" " The following label(s) were referenced but not defined:~n", [F,A]) ++ " " ++ [[integer_to_list(L)," "] || L <- Lbls] ++ "\n"; format_error({{_M,F,A},{I,Off,Desc}}) -> io_lib:format( "function ~p/~p+~p:~n" " Internal consistency check failed - please report this bug.~n" " Instruction: ~p~n" " Error: ~p:~n", [F,A,Off,I,Desc]); format_error({Module,Error}) -> [Module:format_error(Error)]; format_error(Error) -> io_lib:format("~p~n", [Error]). %%% %%% Local functions follow. %%% s_file(Name) -> {ok,Is} = file:consult(Name), {module,Module} = lists:keyfind(module, 1, Is), Fs = find_functions(Is), validate(Module, Fs). find_functions(Fs) -> find_functions_1(Fs, none, [], []). find_functions_1([{function,Name,Arity,Entry}|Is], Func, FuncAcc, Acc0) -> Acc = add_func(Func, FuncAcc, Acc0), find_functions_1(Is, {Name,Arity,Entry}, [], Acc); find_functions_1([I|Is], Func, FuncAcc, Acc) -> find_functions_1(Is, Func, [I|FuncAcc], Acc); find_functions_1([], Func, FuncAcc, Acc) -> reverse(add_func(Func, FuncAcc, Acc)). add_func(none, _, Acc) -> Acc; add_func({Name,Arity,Entry}, Is, Acc) -> [{function,Name,Arity,Entry,reverse(Is)}|Acc]. beam_file(Name) -> try beam_disasm:file(Name) of {error,beam_lib,Reason} -> [{beam_lib,Reason}]; #beam_file{module=Module, code=Code0} -> Code = normalize_disassembled_code(Code0), validate(Module, Code) catch _:_ -> [disassembly_failed] end. %%% %%% The validator follows. %%% %%% The purpose of the validator is to find errors in the generated %%% code that may cause the emulator to crash or behave strangely. %%% We don't care about type errors in the user's code that will %%% cause a proper exception at run-time. %%% %%% Things currently not checked. XXX %%% %%% - Heap allocation for binaries. %%% - That put_tuple is followed by the correct number of %%% put instructions. %%% %% validate(Module, [Function]) -> [] | [Error] %% A list of functions with their code. The code is in the same %% format as used in the compiler and in .S files. validate(Module, Fs) -> Ft = index_bs_start_match(Fs, []), validate_0(Module, Fs, Ft). index_bs_start_match([{function,_,_,Entry,Code0}|Fs], Acc0) -> Code = dropwhile(fun({label,L}) when L =:= Entry -> false; (_) -> true end, Code0), case Code of [{label,Entry}|Is] -> Acc = index_bs_start_match_1(Is, Entry, Acc0), index_bs_start_match(Fs, Acc); _ -> %% Something serious is wrong. Ignore it for now. %% It will be detected and diagnosed later. index_bs_start_match(Fs, Acc0) end; index_bs_start_match([], Acc) -> gb_trees:from_orddict(lists:sort(Acc)). index_bs_start_match_1([{test,bs_start_match2,_,_,_,_}=I|_], Entry, Acc) -> [{Entry,[I]}|Acc]; index_bs_start_match_1([{test,_,{f,F},_},{bs_context_to_binary,_}|Is0], Entry, Acc) -> [{label,F}|Is] = dropwhile(fun({label,L}) when L =:= F -> false; (_) -> true end, Is0), index_bs_start_match_1(Is, Entry, Acc); index_bs_start_match_1(_, _, Acc) -> Acc. validate_0(_Module, [], _) -> []; validate_0(Module, [{function,Name,Ar,Entry,Code}|Fs], Ft) -> try validate_1(Code, Name, Ar, Entry, Ft) of _ -> validate_0(Module, Fs, Ft) catch Error -> [Error|validate_0(Module, Fs, Ft)]; error:Error -> [validate_error(Error, Module, Name, Ar)|validate_0(Module, Fs, Ft)] end. -ifdef(DEBUG). validate_error(Error, Module, Name, Ar) -> exit(validate_error_1(Error, Module, Name, Ar)). -else. validate_error(Error, Module, Name, Ar) -> validate_error_1(Error, Module, Name, Ar). -endif. validate_error_1(Error, Module, Name, Ar) -> {{Module,Name,Ar}, {internal_error,'_',{Error,erlang:get_stacktrace()}}}. -type index() :: non_neg_integer(). -type reg_tab() :: gb_trees:tree(index(), 'none' | {'value', _}). -record(st, %Emulation state {x=init_regs(0, term) :: reg_tab(),%x register info. y=init_regs(0, initialized) :: reg_tab(),%y register info. f=init_fregs(), % numy=none, %Number of y registers. h=0, %Available heap size. hf=0, %Available heap size for floats. fls=undefined, %Floating point state. ct=[], %List of hot catch/try labels bsm=undefined, %Bit syntax matching state. bits=undefined, %Number of bits in bit syntax binary. setelem=false %Previous instruction was setelement/3. }). -type label() :: integer(). -type label_set() :: gb_sets:set(label()). -type branched_tab() :: gb_trees:tree(label(), #st{}). -type ft_tab() :: gb_trees:tree(). -record(vst, %Validator state {current=none :: #st{} | 'none', %Current state branched=gb_trees:empty() :: branched_tab(), %States at jumps labels=gb_sets:empty() :: label_set(), %All defined labels ft=gb_trees:empty() :: ft_tab() %Some other functions % in the module (those that start with bs_start_match2). }). -ifdef(DEBUG). print_st(#st{x=Xs,y=Ys,numy=NumY,h=H,ct=Ct}) -> io:format(" #st{x=~p~n" " y=~p~n" " numy=~p,h=~p,ct=~w~n", [gb_trees:to_list(Xs),gb_trees:to_list(Ys),NumY,H,Ct]). -endif. validate_1(Is, Name, Arity, Entry, Ft) -> validate_2(labels(Is), Name, Arity, Entry, Ft). validate_2({Ls1,[{func_info,{atom,Mod},{atom,Name},Arity}=_F|Is]}, Name, Arity, Entry, Ft) -> lists:foreach(fun (_L) -> ?DBG_FORMAT(" ~p.~n", [{label,_L}]) end, Ls1), ?DBG_FORMAT(" ~p.~n", [_F]), validate_3(labels(Is), Name, Arity, Entry, Mod, Ls1, Ft); validate_2({Ls1,Is}, Name, Arity, _Entry, _Ft) -> error({{'_',Name,Arity},{first(Is),length(Ls1),illegal_instruction}}). validate_3({Ls2,Is}, Name, Arity, Entry, Mod, Ls1, Ft) -> lists:foreach(fun (_L) -> ?DBG_FORMAT(" ~p.~n", [{label,_L}]) end, Ls2), Offset = 1 + length(Ls1) + 1 + length(Ls2), EntryOK = (Entry =:= undefined) orelse lists:member(Entry, Ls2), if EntryOK -> St = init_state(Arity), Vst0 = #vst{current=St, branched=gb_trees_from_list([{L,St} || L <- Ls1]), labels=gb_sets:from_list(Ls1++Ls2), ft=Ft}, MFA = {Mod,Name,Arity}, Vst = valfun(Is, MFA, Offset, Vst0), validate_fun_info_branches(Ls1, MFA, Vst); true -> error({{Mod,Name,Arity},{first(Is),Offset,no_entry_label}}) end. validate_fun_info_branches([L|Ls], MFA, #vst{branched=Branches}=Vst0) -> Vst = Vst0#vst{current=gb_trees:get(L, Branches)}, validate_fun_info_branches_1(0, MFA, Vst), validate_fun_info_branches(Ls, MFA, Vst); validate_fun_info_branches([], _, _) -> ok. validate_fun_info_branches_1(Arity, {_,_,Arity}, _) -> ok; validate_fun_info_branches_1(X, {Mod,Name,Arity}=MFA, Vst) -> try get_term_type({x,X}, Vst) catch Error -> I = {func_info,{atom,Mod},{atom,Name},Arity}, Offset = 2, error({MFA,{I,Offset,Error}}) end, validate_fun_info_branches_1(X+1, MFA, Vst). first([X|_]) -> X; first([]) -> []. labels(Is) -> labels_1(Is, []). labels_1([{label,L}|Is], R) -> labels_1(Is, [L|R]); labels_1([{line,_}|Is], R) -> labels_1(Is, R); labels_1(Is, R) -> {lists:reverse(R),Is}. init_state(Arity) -> Xs = init_regs(Arity, term), Ys = init_regs(0, initialized), kill_heap_allocation(#st{x=Xs,y=Ys,numy=none,ct=[]}). kill_heap_allocation(St) -> St#st{h=0,hf=0}. init_regs(0, _) -> gb_trees:empty(); init_regs(N, Type) -> gb_trees_from_list([{R,Type} || R <- lists:seq(0, N-1)]). valfun([], MFA, _Offset, #vst{branched=Targets0,labels=Labels0}=Vst) -> Targets = gb_trees:keys(Targets0), Labels = gb_sets:to_list(Labels0), case Targets -- Labels of [] -> Vst; Undef -> Error = {undef_labels,Undef}, error({MFA,Error}) end; valfun([I|Is], MFA, Offset, Vst0) -> ?DBG_FORMAT(" ~p.\n", [I]), valfun(Is, MFA, Offset+1, try Vst = val_dsetel(I, Vst0), valfun_1(I, Vst) catch Error -> error({MFA,{I,Offset,Error}}) end). %% Instructions that are allowed in dead code or when failing, %% that is while the state is undecided in some way. valfun_1({label,Lbl}, #vst{current=St0,branched=B,labels=Lbls}=Vst) -> St = merge_states(Lbl, St0, B), Vst#vst{current=St,branched=gb_trees:enter(Lbl, St, B), labels=gb_sets:add(Lbl, Lbls)}; valfun_1(_I, #vst{current=none}=Vst) -> %% Ignore instructions after erlang:error/1,2, which %% the original R10B compiler thought would return. ?DBG_FORMAT("Ignoring ~p\n", [_I]), Vst; valfun_1({badmatch,Src}, Vst) -> assert_term(Src, Vst), kill_state(Vst); valfun_1({case_end,Src}, Vst) -> assert_term(Src, Vst), kill_state(Vst); valfun_1(if_end, Vst) -> kill_state(Vst); valfun_1({try_case_end,Src}, Vst) -> assert_term(Src, Vst), kill_state(Vst); %% Instructions that can not cause exceptions valfun_1({bs_context_to_binary,Ctx}, #vst{current=#st{x=Xs}}=Vst) -> case Ctx of {Tag,X} when Tag =:= x; Tag =:= y -> Type = case gb_trees:lookup(X, Xs) of {value,{match_context,_,_}} -> term; _ -> get_term_type(Ctx, Vst) end, set_type_reg(Type, Ctx, Vst); _ -> error({bad_source,Ctx}) end; valfun_1(bs_init_writable=I, Vst) -> call(I, 1, Vst); valfun_1({move,{y,_}=Src,{y,_}=Dst}, Vst) -> %% The stack trimming optimization may generate a move from an initialized %% but unassigned Y register to another Y register. case get_term_type_1(Src, Vst) of {catchtag,_} -> error({catchtag,Src}); {trytag,_} -> error({trytag,Src}); Type -> set_type_reg(Type, Dst, Vst) end; valfun_1({move,Src,Dst}, Vst) -> Type = get_move_term_type(Src, Vst), set_type_reg(Type, Dst, Vst); valfun_1({fmove,Src,{fr,_}=Dst}, Vst) -> assert_type(float, Src, Vst), set_freg(Dst, Vst); valfun_1({fmove,{fr,_}=Src,Dst}, Vst0) -> assert_freg_set(Src, Vst0), assert_fls(checked, Vst0), Vst = eat_heap_float(Vst0), set_type_reg({float,[]}, Dst, Vst); valfun_1({kill,{y,_}=Reg}, Vst) -> set_type_y(initialized, Reg, Vst); valfun_1({init,{y,_}=Reg}, Vst) -> set_type_y(initialized, Reg, Vst); valfun_1({test_heap,Heap,Live}, Vst) -> test_heap(Heap, Live, Vst); valfun_1({bif,_Op,nofail,Src,Dst}, Vst) -> %% The 'nofail' atom only occurs in disassembled code. validate_src(Src, Vst), set_type_reg(term, Dst, Vst); valfun_1({bif,Op,{f,_},Src,Dst}=I, Vst) -> case is_bif_safe(Op, length(Src)) of false -> %% Since the BIF can fail, make sure that any catch state %% is updated. valfun_2(I, Vst); true -> %% It can't fail, so we finish handling it here (not updating %% catch state). validate_src(Src, Vst), Type = bif_type(Op, Src, Vst), set_type_reg(Type, Dst, Vst) end; %% Put instructions. valfun_1({put_list,A,B,Dst}, Vst0) -> assert_term(A, Vst0), assert_term(B, Vst0), Vst = eat_heap(2, Vst0), set_type_reg(cons, Dst, Vst); valfun_1({put_tuple,Sz,Dst}, Vst0) when is_integer(Sz) -> Vst = eat_heap(1, Vst0), set_type_reg({tuple,Sz}, Dst, Vst); valfun_1({put,Src}, Vst) -> assert_term(Src, Vst), eat_heap(1, Vst); valfun_1({put_string,Sz,_,Dst}, Vst0) when is_integer(Sz) -> Vst = eat_heap(2*Sz, Vst0), set_type_reg(cons, Dst, Vst); %% Instructions for optimization of selective receives. valfun_1({recv_mark,{f,Fail}}, Vst) when is_integer(Fail) -> Vst; valfun_1({recv_set,{f,Fail}}, Vst) when is_integer(Fail) -> Vst; %% Misc. valfun_1({'%live',Live}, Vst) -> verify_live(Live, Vst), Vst; valfun_1(remove_message, Vst) -> Vst; valfun_1({'%',_}, Vst) -> Vst; valfun_1({line,_}, Vst) -> Vst; %% Exception generating calls valfun_1({call_ext,Live,Func}=I, Vst) -> case return_type(Func, Vst) of exception -> verify_live(Live, Vst), kill_state(Vst); _ -> valfun_2(I, Vst) end; valfun_1(_I, #vst{current=#st{ct=undecided}}) -> error(unknown_catch_try_state); %% %% Allocate and deallocate, et.al valfun_1({allocate,Stk,Live}, Vst) -> allocate(false, Stk, 0, Live, Vst); valfun_1({allocate_heap,Stk,Heap,Live}, Vst) -> allocate(false, Stk, Heap, Live, Vst); valfun_1({allocate_zero,Stk,Live}, Vst) -> allocate(true, Stk, 0, Live, Vst); valfun_1({allocate_heap_zero,Stk,Heap,Live}, Vst) -> allocate(true, Stk, Heap, Live, Vst); valfun_1({deallocate,StkSize}, #vst{current=#st{numy=StkSize}}=Vst) -> verify_no_ct(Vst), deallocate(Vst); valfun_1({deallocate,_}, #vst{current=#st{numy=NumY}}) -> error({allocated,NumY}); valfun_1({trim,N,Remaining}, #vst{current=#st{y=Yregs0,numy=NumY}=St}=Vst) -> if N =< NumY, N+Remaining =:= NumY -> Yregs1 = [{Y-N,Type} || {Y,Type} <- gb_trees:to_list(Yregs0), Y >= N], Yregs = gb_trees_from_list(Yregs1), Vst#vst{current=St#st{y=Yregs,numy=NumY-N}}; true -> error({trim,N,Remaining,allocated,NumY}) end; %% Catch & try. valfun_1({'catch',Dst,{f,Fail}}, Vst0) when Fail /= none -> Vst = #vst{current=#st{ct=Fails}=St} = set_type_y({catchtag,[Fail]}, Dst, Vst0), Vst#vst{current=St#st{ct=[[Fail]|Fails]}}; valfun_1({'try',Dst,{f,Fail}}, Vst0) -> Vst = #vst{current=#st{ct=Fails}=St} = set_type_y({trytag,[Fail]}, Dst, Vst0), Vst#vst{current=St#st{ct=[[Fail]|Fails]}}; valfun_1({catch_end,Reg}, #vst{current=#st{ct=[Fail|Fails]}=St0}=Vst0) -> case get_special_y_type(Reg, Vst0) of {catchtag,Fail} -> Vst = #vst{current=St} = set_type_y(initialized_ct, Reg, Vst0#vst{current=St0#st{ct=Fails}}), Xs = gb_trees_from_list([{0,term}]), Vst#vst{current=St#st{x=Xs,fls=undefined}}; Type -> error({bad_type,Type}) end; valfun_1({try_end,Reg}, #vst{current=#st{ct=[Fail|Fails]}=St}=Vst0) -> case get_special_y_type(Reg, Vst0) of {trytag,Fail} -> Vst = case Fail of [FailLabel] -> branch_state(FailLabel, Vst0); _ -> Vst0 end, set_type_reg(initialized_ct, Reg, Vst#vst{current=St#st{ct=Fails,fls=undefined}}); Type -> error({bad_type,Type}) end; valfun_1({try_case,Reg}, #vst{current=#st{ct=[Fail|Fails]}=St0}=Vst0) -> case get_special_y_type(Reg, Vst0) of {trytag,Fail} -> Vst = #vst{current=St} = set_type_y(initialized_ct, Reg, Vst0#vst{current=St0#st{ct=Fails}}), Xs = gb_trees_from_list([{0,{atom,[]}},{1,term},{2,term}]), %XXX Vst#vst{current=St#st{x=Xs,fls=undefined}}; Type -> error({bad_type,Type}) end; valfun_1(I, Vst) -> valfun_2(I, Vst). %% Update branched state if necessary and try next set of instructions. valfun_2(I, #vst{current=#st{ct=[]}}=Vst) -> valfun_3(I, Vst); valfun_2(I, #vst{current=#st{ct=[[Fail]|_]}}=Vst) when is_integer(Fail) -> %% Update branched state valfun_3(I, branch_state(Fail, Vst)); valfun_2(_, _) -> error(ambiguous_catch_try_state). %% Handle the remaining floating point instructions here. %% Floating point. valfun_3({fconv,Src,{fr,_}=Dst}, Vst) -> assert_term(Src, Vst), set_freg(Dst, Vst); valfun_3({bif,fadd,_,[_,_]=Src,Dst}, Vst) -> float_op(Src, Dst, Vst); valfun_3({bif,fdiv,_,[_,_]=Src,Dst}, Vst) -> float_op(Src, Dst, Vst); valfun_3({bif,fmul,_,[_,_]=Src,Dst}, Vst) -> float_op(Src, Dst, Vst); valfun_3({bif,fnegate,_,[_]=Src,Dst}, Vst) -> float_op(Src, Dst, Vst); valfun_3({bif,fsub,_,[_,_]=Src,Dst}, Vst) -> float_op(Src, Dst, Vst); valfun_3(fclearerror, Vst) -> case get_fls(Vst) of undefined -> ok; checked -> ok; Fls -> error({bad_floating_point_state,Fls}) end, set_fls(cleared, Vst); valfun_3({fcheckerror,_}, Vst) -> assert_fls(cleared, Vst), set_fls(checked, Vst); valfun_3(I, Vst) -> %% The instruction is not a float instruction. case get_fls(Vst) of undefined -> valfun_4(I, Vst); checked -> valfun_4(I, Vst); Fls -> error({unsafe_instruction,{float_error_state,Fls}}) end. %% Instructions that can cause exceptions. valfun_4({apply,Live}, Vst) -> call(apply, Live+2, Vst); valfun_4({apply_last,Live,_}, Vst) -> tail_call(apply, Live+2, Vst); valfun_4({call_fun,Live}, Vst) -> validate_src([{x,Live}], Vst), call('fun', Live+1, Vst); valfun_4({call,Live,Func}, Vst) -> call(Func, Live, Vst); valfun_4({call_ext,Live,Func}, Vst) -> %% Exception BIFs has already been taken care of above. call(Func, Live, Vst); valfun_4({call_only,Live,Func}, Vst) -> tail_call(Func, Live, Vst); valfun_4({call_ext_only,Live,Func}, Vst) -> tail_call(Func, Live, Vst); valfun_4({call_last,Live,Func,StkSize}, #vst{current=#st{numy=StkSize}}=Vst) -> tail_call(Func, Live, Vst); valfun_4({call_last,_,_,_}, #vst{current=#st{numy=NumY}}) -> error({allocated,NumY}); valfun_4({call_ext_last,Live,Func,StkSize}, #vst{current=#st{numy=StkSize}}=Vst) -> tail_call(Func, Live, Vst); valfun_4({call_ext_last,_,_,_}, #vst{current=#st{numy=NumY}}) -> error({allocated,NumY}); valfun_4({make_fun,_,_,Live}, Vst) -> call('fun', Live, Vst); valfun_4({make_fun2,_,_,_,Live}, Vst) -> call(make_fun, Live, Vst); %% Other BIFs valfun_4({bif,tuple_size,{f,Fail},[Tuple],Dst}, Vst0) -> TupleType0 = get_term_type(Tuple, Vst0), Vst1 = branch_state(Fail, Vst0), TupleType = upgrade_tuple_type({tuple,[0]}, TupleType0), Vst = set_type(TupleType, Tuple, Vst1), set_type_reg({integer,[]}, Dst, Vst); valfun_4({bif,element,{f,Fail},[Pos,Tuple],Dst}, Vst0) -> TupleType0 = get_term_type(Tuple, Vst0), PosType = get_term_type(Pos, Vst0), Vst1 = branch_state(Fail, Vst0), TupleType = upgrade_tuple_type({tuple,[get_tuple_size(PosType)]}, TupleType0), Vst = set_type(TupleType, Tuple, Vst1), set_type_reg(term, Dst, Vst); valfun_4({raise,{f,_}=Fail,Src,Dst}, Vst) -> valfun_4({bif,raise,Fail,Src,Dst}, Vst); valfun_4({bif,Op,{f,Fail},Src,Dst}, Vst0) -> validate_src(Src, Vst0), Vst = branch_state(Fail, Vst0), Type = bif_type(Op, Src, Vst), set_type_reg(Type, Dst, Vst); valfun_4({gc_bif,Op,{f,Fail},Live,Src,Dst}, #vst{current=St0}=Vst0) -> St = kill_heap_allocation(St0), Vst1 = Vst0#vst{current=St}, verify_live(Live, Vst1), Vst2 = branch_state(Fail, Vst1), Vst = prune_x_regs(Live, Vst2), validate_src(Src, Vst), Type = bif_type(Op, Src, Vst), set_type_reg(Type, Dst, Vst); valfun_4(return, #vst{current=#st{numy=none}}=Vst) -> assert_term({x,0}, Vst), kill_state(Vst); valfun_4(return, #vst{current=#st{numy=NumY}}) -> error({stack_frame,NumY}); valfun_4({jump,{f,Lbl}}, Vst) -> kill_state(branch_state(Lbl, Vst)); valfun_4({loop_rec,{f,Fail},Dst}, Vst0) -> Vst = branch_state(Fail, Vst0), set_type_reg(term, Dst, Vst); valfun_4({wait,_}, Vst) -> kill_state(Vst); valfun_4({wait_timeout,_,Src}, Vst) -> assert_term(Src, Vst), Vst; valfun_4({loop_rec_end,_}, Vst) -> kill_state(Vst); valfun_4(timeout, #vst{current=St}=Vst) -> Vst#vst{current=St#st{x=init_regs(0, term)}}; valfun_4(send, Vst) -> call(send, 2, Vst); valfun_4({set_tuple_element,Src,Tuple,I}, Vst) -> assert_term(Src, Vst), assert_type({tuple_element,I+1}, Tuple, Vst), Vst; %% Match instructions. valfun_4({select_val,Src,{f,Fail},{list,Choices}}, Vst) -> assert_term(Src, Vst), Lbls = [L || {f,L} <- Choices]++[Fail], kill_state(foldl(fun(L, S) -> branch_state(L, S) end, Vst, Lbls)); valfun_4({select_tuple_arity,Tuple,{f,Fail},{list,Choices}}, Vst) -> assert_type(tuple, Tuple, Vst), kill_state(branch_arities(Choices, Tuple, branch_state(Fail, Vst))); valfun_4({get_list,Src,D1,D2}, Vst0) -> assert_type(cons, Src, Vst0), Vst = set_type_reg(term, D1, Vst0), set_type_reg(term, D2, Vst); valfun_4({get_tuple_element,Src,I,Dst}, Vst) -> assert_type({tuple_element,I+1}, Src, Vst), set_type_reg(term, Dst, Vst); %% New bit syntax matching instructions. valfun_4({test,bs_start_match2,{f,Fail},Live,[Ctx,NeedSlots],Ctx}, Vst0) -> %% If source and destination registers are the same, match state %% is OK as input. CtxType = get_move_term_type(Ctx, Vst0), verify_live(Live, Vst0), Vst1 = prune_x_regs(Live, Vst0), BranchVst = case CtxType of {match_context,_,_} -> %% The failure branch will never be taken when Ctx %% is a match context. Therefore, the type for Ctx %% at the failure label must not be match_context %% (or we could reject legal code). set_type_reg(term, Ctx, Vst1); _ -> Vst1 end, Vst = branch_state(Fail, BranchVst), set_type_reg(bsm_match_state(NeedSlots), Ctx, Vst); valfun_4({test,bs_start_match2,{f,Fail},Live,[Src,Slots],Dst}, Vst0) -> assert_term(Src, Vst0), verify_live(Live, Vst0), Vst1 = prune_x_regs(Live, Vst0), Vst = branch_state(Fail, Vst1), set_type_reg(bsm_match_state(Slots), Dst, Vst); valfun_4({test,bs_match_string,{f,Fail},[Ctx,_,_]}, Vst) -> bsm_validate_context(Ctx, Vst), branch_state(Fail, Vst); valfun_4({test,bs_skip_bits2,{f,Fail},[Ctx,Src,_,_]}, Vst) -> bsm_validate_context(Ctx, Vst), assert_term(Src, Vst), branch_state(Fail, Vst); valfun_4({test,bs_test_tail2,{f,Fail},[Ctx,_]}, Vst) -> bsm_validate_context(Ctx, Vst), branch_state(Fail, Vst); valfun_4({test,bs_test_unit,{f,Fail},[Ctx,_]}, Vst) -> bsm_validate_context(Ctx, Vst), branch_state(Fail, Vst); valfun_4({test,bs_skip_utf8,{f,Fail},[Ctx,Live,_]}, Vst) -> validate_bs_skip_utf(Fail, Ctx, Live, Vst); valfun_4({test,bs_skip_utf16,{f,Fail},[Ctx,Live,_]}, Vst) -> validate_bs_skip_utf(Fail, Ctx, Live, Vst); valfun_4({test,bs_skip_utf32,{f,Fail},[Ctx,Live,_]}, Vst) -> validate_bs_skip_utf(Fail, Ctx, Live, Vst); valfun_4({test,bs_get_integer2,{f,Fail},Live,[Ctx,_,_,_],Dst}, Vst) -> validate_bs_get(Fail, Ctx, Live, Dst, Vst); valfun_4({test,bs_get_float2,{f,Fail},Live,[Ctx,_,_,_],Dst}, Vst) -> validate_bs_get(Fail, Ctx, Live, Dst, Vst); valfun_4({test,bs_get_binary2,{f,Fail},Live,[Ctx,_,_,_],Dst}, Vst) -> validate_bs_get(Fail, Ctx, Live, Dst, Vst); valfun_4({test,bs_get_utf8,{f,Fail},Live,[Ctx,_],Dst}, Vst) -> validate_bs_get(Fail, Ctx, Live, Dst, Vst); valfun_4({test,bs_get_utf16,{f,Fail},Live,[Ctx,_],Dst}, Vst) -> validate_bs_get(Fail, Ctx, Live, Dst, Vst); valfun_4({test,bs_get_utf32,{f,Fail},Live,[Ctx,_],Dst}, Vst) -> validate_bs_get(Fail, Ctx, Live, Dst, Vst); valfun_4({bs_save2,Ctx,SavePoint}, Vst) -> bsm_save(Ctx, SavePoint, Vst); valfun_4({bs_restore2,Ctx,SavePoint}, Vst) -> bsm_restore(Ctx, SavePoint, Vst); %% Bit syntax instructions. valfun_4({bs_start_match,{f,_Fail}=F,Src}, Vst) -> valfun_4({test,bs_start_match,F,[Src]}, Vst); valfun_4({test,bs_start_match,{f,Fail},[Src]}, Vst) -> assert_term(Src, Vst), bs_start_match(branch_state(Fail, Vst)); valfun_4({bs_save,SavePoint}, Vst) -> bs_assert_state(Vst), bs_save(SavePoint, Vst); valfun_4({bs_restore,SavePoint}, Vst) -> bs_assert_state(Vst), bs_assert_savepoint(SavePoint, Vst), Vst; valfun_4({test,bs_skip_bits,{f,Fail},[Src,_,_]}, Vst) -> bs_assert_state(Vst), assert_term(Src, Vst), branch_state(Fail, Vst); valfun_4({test,bs_test_tail,{f,Fail},_}, Vst) -> bs_assert_state(Vst), branch_state(Fail, Vst); valfun_4({test,_,{f,Fail},[_,_,_,Dst]}, Vst0) -> bs_assert_state(Vst0), Vst = branch_state(Fail, Vst0), set_type_reg({integer,[]}, Dst, Vst); %% Other test instructions. valfun_4({test,is_float,{f,Lbl},[Float]}, Vst) -> assert_term(Float, Vst), set_type({float,[]}, Float, branch_state(Lbl, Vst)); valfun_4({test,is_tuple,{f,Lbl},[Tuple]}, Vst) -> Type0 = get_term_type(Tuple, Vst), Type = upgrade_tuple_type({tuple,[0]}, Type0), set_type(Type, Tuple, branch_state(Lbl, Vst)); valfun_4({test,is_nonempty_list,{f,Lbl},[Cons]}, Vst) -> assert_term(Cons, Vst), set_type(cons, Cons, branch_state(Lbl, Vst)); valfun_4({test,test_arity,{f,Lbl},[Tuple,Sz]}, Vst) when is_integer(Sz) -> assert_type(tuple, Tuple, Vst), set_type_reg({tuple,Sz}, Tuple, branch_state(Lbl, Vst)); valfun_4({test,has_map_fields,{f,Lbl},Src,{list,List}}, Vst) -> validate_src([Src], Vst), assert_strict_literal_termorder(List), branch_state(Lbl, Vst); valfun_4({test,_Op,{f,Lbl},Src}, Vst) -> validate_src(Src, Vst), branch_state(Lbl, Vst); valfun_4({bs_add,{f,Fail},[A,B,_],Dst}, Vst) -> assert_term(A, Vst), assert_term(B, Vst), set_type_reg({integer,[]}, Dst, branch_state(Fail, Vst)); valfun_4({bs_utf8_size,{f,Fail},A,Dst}, Vst) -> assert_term(A, Vst), set_type_reg({integer,[]}, Dst, branch_state(Fail, Vst)); valfun_4({bs_utf16_size,{f,Fail},A,Dst}, Vst) -> assert_term(A, Vst), set_type_reg({integer,[]}, Dst, branch_state(Fail, Vst)); valfun_4({bs_bits_to_bytes,{f,Fail},Src,Dst}, Vst) -> assert_term(Src, Vst), set_type_reg({integer,[]}, Dst, branch_state(Fail, Vst)); valfun_4({bs_init2,{f,Fail},Sz,Heap,Live,_,Dst}, Vst0) -> verify_live(Live, Vst0), if is_integer(Sz) -> ok; true -> assert_term(Sz, Vst0) end, Vst1 = heap_alloc(Heap, Vst0), Vst2 = branch_state(Fail, Vst1), Vst3 = prune_x_regs(Live, Vst2), Vst = bs_zero_bits(Vst3), set_type_reg(binary, Dst, Vst); valfun_4({bs_init_bits,{f,Fail},Sz,Heap,Live,_,Dst}, Vst0) -> verify_live(Live, Vst0), if is_integer(Sz) -> ok; true -> assert_term(Sz, Vst0) end, Vst1 = heap_alloc(Heap, Vst0), Vst2 = branch_state(Fail, Vst1), Vst3 = prune_x_regs(Live, Vst2), Vst = bs_zero_bits(Vst3), set_type_reg(binary, Dst, Vst); valfun_4({bs_append,{f,Fail},Bits,Heap,Live,_Unit,Bin,_Flags,Dst}, Vst0) -> verify_live(Live, Vst0), assert_term(Bits, Vst0), assert_term(Bin, Vst0), Vst1 = heap_alloc(Heap, Vst0), Vst2 = branch_state(Fail, Vst1), Vst3 = prune_x_regs(Live, Vst2), Vst = bs_zero_bits(Vst3), set_type_reg(binary, Dst, Vst); valfun_4({bs_private_append,{f,Fail},Bits,_Unit,Bin,_Flags,Dst}, Vst0) -> assert_term(Bits, Vst0), assert_term(Bin, Vst0), Vst1 = branch_state(Fail, Vst0), Vst = bs_zero_bits(Vst1), set_type_reg(binary, Dst, Vst); valfun_4({bs_put_string,Sz,_}, Vst) when is_integer(Sz) -> Vst; valfun_4({bs_put_binary,{f,Fail},Sz,_,_,Src}=I, Vst0) -> assert_term(Sz, Vst0), assert_term(Src, Vst0), Vst = bs_align_check(I, Vst0), branch_state(Fail, Vst); valfun_4({bs_put_float,{f,Fail},Sz,_,_,Src}=I, Vst0) -> assert_term(Sz, Vst0), assert_term(Src, Vst0), Vst = bs_align_check(I, Vst0), branch_state(Fail, Vst); valfun_4({bs_put_integer,{f,Fail},Sz,_,_,Src}=I, Vst0) -> assert_term(Sz, Vst0), assert_term(Src, Vst0), Vst = bs_align_check(I, Vst0), branch_state(Fail, Vst); valfun_4({bs_put_utf8,{f,Fail},_,Src}=I, Vst0) -> assert_term(Src, Vst0), Vst = bs_align_check(I, Vst0), branch_state(Fail, Vst); valfun_4({bs_put_utf16,{f,Fail},_,Src}=I, Vst0) -> assert_term(Src, Vst0), Vst = bs_align_check(I, Vst0), branch_state(Fail, Vst); valfun_4({bs_put_utf32,{f,Fail},_,Src}=I, Vst0) -> assert_term(Src, Vst0), Vst = bs_align_check(I, Vst0), branch_state(Fail, Vst); %% Old bit syntax construction (before R10B). valfun_4({bs_init,_,_}, Vst) -> bs_zero_bits(Vst); valfun_4({bs_need_buf,_}, Vst) -> Vst; valfun_4({bs_final,{f,Fail},Dst}, Vst0) -> Vst = branch_state(Fail, Vst0), set_type_reg(binary, Dst, Vst); valfun_4({bs_final2,Src,Dst}, Vst0) -> assert_term(Src, Vst0), set_type_reg(binary, Dst, Vst0); %% Map instructions. valfun_4({put_map_assoc,{f,Fail},Src,Dst,Live,{list,List}}, Vst) -> verify_put_map(Fail, Src, Dst, Live, List, Vst); valfun_4({put_map_exact,{f,Fail},Src,Dst,Live,{list,List}}, Vst) -> verify_put_map(Fail, Src, Dst, Live, List, Vst); valfun_4({get_map_elements,{f,Fail},Src,{list,List}}, Vst) -> verify_get_map(Fail, Src, List, Vst); valfun_4(_, _) -> error(unknown_instruction). verify_get_map(Fail, Src, List, Vst0) -> assert_term(Src, Vst0), Vst1 = branch_state(Fail, Vst0), Keys = extract_map_keys(List), assert_strict_literal_termorder(Keys), verify_get_map_pair(List,Vst0,Vst1). extract_map_keys([Key,_Val|T]) -> [Key|extract_map_keys(T)]; extract_map_keys([]) -> []. verify_get_map_pair([],_,Vst) -> Vst; verify_get_map_pair([Src,Dst|Vs],Vst0,Vsti) -> assert_term(Src, Vst0), verify_get_map_pair(Vs,Vst0,set_type_reg(term,Dst,Vsti)). verify_put_map(Fail, Src, Dst, Live, List, Vst0) -> verify_live(Live, Vst0), verify_y_init(Vst0), foreach(fun (Term) -> assert_term(Term, Vst0) end, List), assert_term(Src, Vst0), Vst1 = heap_alloc(0, Vst0), Vst2 = branch_state(Fail, Vst1), Vst = prune_x_regs(Live, Vst2), set_type_reg(term, Dst, Vst). %% %% Common code for validating bs_get* instructions. %% validate_bs_get(Fail, Ctx, Live, Dst, Vst0) -> bsm_validate_context(Ctx, Vst0), verify_live(Live, Vst0), Vst1 = prune_x_regs(Live, Vst0), Vst = branch_state(Fail, Vst1), set_type_reg(term, Dst, Vst). %% %% Common code for validating bs_skip_utf* instructions. %% validate_bs_skip_utf(Fail, Ctx, Live, Vst0) -> bsm_validate_context(Ctx, Vst0), verify_live(Live, Vst0), Vst = prune_x_regs(Live, Vst0), branch_state(Fail, Vst). %% %% Special state handling for setelement/3 and set_tuple_element/3 instructions. %% A possibility for garbage collection must not occur between setelement/3 and %% set_tuple_element/3. %% val_dsetel({move,_,_}, Vst) -> Vst; val_dsetel({put_string,0,{string,""},_}, Vst) -> %% An empty string is OK since it doesn't build anything. Vst; val_dsetel({call_ext,3,{extfunc,erlang,setelement,3}}, #vst{current=St}=Vst) -> Vst#vst{current=St#st{setelem=true}}; val_dsetel({set_tuple_element,_,_,_}, #vst{current=#st{setelem=false}}) -> error(illegal_context_for_set_tuple_element); val_dsetel({set_tuple_element,_,_,_}, #vst{current=#st{setelem=true}}=Vst) -> Vst; val_dsetel({line,_}, Vst) -> Vst; val_dsetel(_, #vst{current=#st{setelem=true}=St}=Vst) -> Vst#vst{current=St#st{setelem=false}}; val_dsetel(_, Vst) -> Vst. kill_state(#vst{current=#st{ct=[[Fail]|_]}}=Vst) when is_integer(Fail) -> %% There is an active catch. Make sure that we merge the state into %% the catch label before clearing it, so that that we can be sure %% that the label gets a state. kill_state_1(branch_state(Fail, Vst)); kill_state(Vst) -> kill_state_1(Vst). kill_state_1(Vst) -> Vst#vst{current=none}. %% A "plain" call. %% The stackframe must be initialized. %% The instruction will return to the instruction following the call. call(Name, Live, #vst{current=St}=Vst) -> verify_live(Live, Vst), verify_y_init(Vst), case return_type(Name, Vst) of Type when Type =/= exception -> %% Type is never 'exception' because it has been handled earlier. Xs = gb_trees_from_list([{0,Type}]), Vst#vst{current=St#st{x=Xs,f=init_fregs(),bsm=undefined}} end. %% Tail call. %% The stackframe must have a known size and be initialized. %% Does not return to the instruction following the call. tail_call(Name, Live, Vst) -> verify_call_args(Name, Live, Vst), verify_y_init(Vst), verify_no_ct(Vst), kill_state(Vst). verify_call_args(_, 0, #vst{}) -> ok; verify_call_args({f,Lbl}, Live, Vst) when is_integer(Live)-> Verify = fun(R) -> case get_move_term_type(R, Vst) of {match_context,_,_} -> verify_call_match_context(Lbl, Vst); _ -> ok end end, verify_call_args_1(Live, Verify, Vst); verify_call_args(_, Live, Vst) when is_integer(Live)-> Verify = fun(R) -> get_term_type(R, Vst) end, verify_call_args_1(Live, Verify, Vst); verify_call_args(_, Live, _) -> error({bad_number_of_live_regs,Live}). verify_call_args_1(0, _, _) -> ok; verify_call_args_1(N, Verify, Vst) -> X = N - 1, Verify({x,X}), verify_call_args_1(X, Verify, Vst). verify_call_match_context(Lbl, #vst{ft=Ft}) -> case gb_trees:lookup(Lbl, Ft) of none -> error(no_bs_start_match2); {value,[{test,bs_start_match2,_,_,[Ctx,_],Ctx}|_]} -> ok; {value,[{test,bs_start_match2,_,_,[Bin,_,_],Ctx}|_]} -> error({binary_and_context_regs_different,Bin,Ctx}) end. allocate(Zero, Stk, Heap, Live, #vst{current=#st{numy=none}=St}=Vst0) -> verify_live(Live, Vst0), Vst = prune_x_regs(Live, Vst0), Ys = init_regs(Stk, case Zero of true -> initialized; false -> uninitialized end), heap_alloc(Heap, Vst#vst{current=St#st{y=Ys,numy=Stk}}); allocate(_, _, _, _, #vst{current=#st{numy=Numy}}) -> error({existing_stack_frame,{size,Numy}}). deallocate(#vst{current=St}=Vst) -> Vst#vst{current=St#st{y=init_regs(0, initialized),numy=none,bsm=undefined}}. test_heap(Heap, Live, Vst0) -> verify_live(Live, Vst0), Vst = prune_x_regs(Live, Vst0), heap_alloc(Heap, Vst). heap_alloc(Heap, #vst{current=St0}=Vst) -> St1 = kill_heap_allocation(St0#st{bsm=undefined}), St = heap_alloc_1(Heap, St1), Vst#vst{current=St}. heap_alloc_1({alloc,Alloc}, St) -> heap_alloc_2(Alloc, St); heap_alloc_1(HeapWords, St) when is_integer(HeapWords) -> St#st{h=HeapWords}. heap_alloc_2([{words,HeapWords}|T], St0) -> St = St0#st{h=HeapWords}, heap_alloc_2(T, St); heap_alloc_2([{floats,Floats}|T], St0) -> St = St0#st{hf=Floats}, heap_alloc_2(T, St); heap_alloc_2([], St) -> St. prune_x_regs(Live, #vst{current=#st{x=Xs0}=St0}=Vst) when is_integer(Live) -> Xs1 = gb_trees:to_list(Xs0), Xs = [P || {R,_}=P <- Xs1, R < Live], St = St0#st{x=gb_trees:from_orddict(Xs)}, Vst#vst{current=St}. %%% %%% Floating point checking. %%% %%% Possible values for the fls field (=floating point error state). %%% %%% undefined - Undefined (initial state). No float operations allowed. %%% %%% cleared - fclearerror/0 has been executed. Float operations %%% are allowed (such as fadd). %%% %%% checked - fcheckerror/1 has been executed. It is allowed to %%% move values out of floating point registers. %%% %%% The following instructions may be executed in any state: %%% %%% fconv Src {fr,_} %%% fmove Src {fr,_} %% Move INTO floating point register. %%% float_op(Src, Dst, Vst0) -> foreach (fun(S) -> assert_freg_set(S, Vst0) end, Src), assert_fls(cleared, Vst0), Vst = set_fls(cleared, Vst0), set_freg(Dst, Vst). assert_fls(Fls, Vst) -> case get_fls(Vst) of Fls -> ok; OtherFls -> error({bad_floating_point_state,OtherFls}) end. set_fls(Fls, #vst{current=#st{}=St}=Vst) when is_atom(Fls) -> Vst#vst{current=St#st{fls=Fls}}. get_fls(#vst{current=#st{fls=Fls}}) when is_atom(Fls) -> Fls. init_fregs() -> 0. set_freg({fr,Fr}, #vst{current=#st{f=Fregs0}=St}=Vst) when is_integer(Fr), 0 =< Fr -> limit_check(Fr), Bit = 1 bsl Fr, if Fregs0 band Bit =:= 0 -> Fregs = Fregs0 bor Bit, Vst#vst{current=St#st{f=Fregs}}; true -> Vst end; set_freg(Fr, _) -> error({bad_target,Fr}). assert_freg_set({fr,Fr}=Freg, #vst{current=#st{f=Fregs}}) when is_integer(Fr), 0 =< Fr -> if Fregs band (1 bsl Fr) =/= 0 -> limit_check(Fr); true -> error({uninitialized_reg,Freg}) end; assert_freg_set(Fr, _) -> error({bad_source,Fr}). %%% Maps %% A single item list may be either a list or a register. %% %% A list with more than item must contain literals in %% ascending term order. %% %% An empty list is not allowed. assert_strict_literal_termorder([]) -> %% There is no reason to use the get_map_elements and %% has_map_fields instructions with empty lists. error(empty_field_list); assert_strict_literal_termorder([_]) -> ok; assert_strict_literal_termorder([_,_|_]=Ls) -> Vs = [get_literal(L) || L <- Ls], case check_strict_value_termorder(Vs) of true -> ok; false -> error(not_strict_order) end. check_strict_value_termorder([V1|[V2|_]=Vs]) -> erts_internal:cmp_term(V1, V2) < 0 andalso check_strict_value_termorder(Vs); check_strict_value_termorder([_]) -> true. %%% %%% Binary matching. %%% %%% Possible values for the bsm field (=bit syntax matching state). %%% %%% undefined - Undefined (initial state). No matching instructions allowed. %%% %%% (gb set) - The gb set contains the defined save points. %%% %%% The bsm field is reset to 'undefined' by instructions that may cause a %%% a garbage collection (might move the binary) and/or context switch %%% (may invalidate the save points). bs_start_match(#vst{current=#st{bsm=undefined}=St}=Vst) -> Vst#vst{current=St#st{bsm=gb_sets:empty()}}; bs_start_match(Vst) -> %% Must retain save points here - it is possible to restore back %% to a previous binary. Vst. bs_save(Reg, #vst{current=#st{bsm=Saved}=St}=Vst) when is_integer(Reg), Reg < ?MAXREG -> Vst#vst{current=St#st{bsm=gb_sets:add(Reg, Saved)}}; bs_save(_, _) -> error(limit). bs_assert_savepoint(Reg, #vst{current=#st{bsm=Saved}}) -> case gb_sets:is_member(Reg, Saved) of false -> error({no_save_point,Reg}); true -> ok end. bs_assert_state(#vst{current=#st{bsm=undefined}}) -> error(no_bs_match_state); bs_assert_state(_) -> ok. %%% %%% New binary matching instructions. %%% bsm_match_state(Slots) -> {match_context,0,Slots}. bsm_validate_context(Reg, Vst) -> _ = bsm_get_context(Reg, Vst), ok. bsm_get_context({x,X}=Reg, #vst{current=#st{x=Xs}}=_Vst) when is_integer(X) -> case gb_trees:lookup(X, Xs) of {value,{match_context,_,_}=Ctx} -> Ctx; _ -> error({no_bsm_context,Reg}) end; bsm_get_context(Reg, _) -> error({bad_source,Reg}). bsm_save(Reg, {atom,start}, Vst) -> %% Save point refering to where the match started. %% It is always valid. But don't forget to validate the context register. bsm_validate_context(Reg, Vst), Vst; bsm_save(Reg, SavePoint, Vst) -> case bsm_get_context(Reg, Vst) of {match_context,Bits,Slots} when SavePoint < Slots -> Ctx = {match_context,Bits bor (1 bsl SavePoint),Slots}, set_type_reg(Ctx, Reg, Vst); _ -> error({illegal_save,SavePoint}) end. bsm_restore(Reg, {atom,start}, Vst) -> %% (Mostly) automatic save point refering to where the match started. %% It is always valid. But don't forget to validate the context register. bsm_validate_context(Reg, Vst), Vst; bsm_restore(Reg, SavePoint, Vst) -> case bsm_get_context(Reg, Vst) of {match_context,Bits,Slots} when SavePoint < Slots -> case Bits band (1 bsl SavePoint) of 0 -> error({illegal_restore,SavePoint,not_set}); _ -> Vst end; _ -> error({illegal_restore,SavePoint,range}) end. %%% %%% Validation of alignment in the bit syntax. (Currently, construction only.) %%% %%% We make sure that the aligned flag is only set when we can be sure of the %%% aligment. %%% bs_zero_bits(#vst{current=St}=Vst) -> Vst#vst{current=St#st{bits=0}}. bs_align_check({bs_put_utf8,_,Flags,_}, #vst{current=#st{}=St}=Vst) -> bs_verify_flags(Flags, St), Vst; bs_align_check({bs_put_utf16,_,Flags,_}, #vst{current=#st{}=St}=Vst) -> bs_verify_flags(Flags, St), Vst; bs_align_check({bs_put_utf32,_,Flags,_}, #vst{current=#st{}=St}=Vst) -> bs_verify_flags(Flags, St), Vst; bs_align_check({_,_,Sz,U,Flags,_}, #vst{current=#st{bits=Bits}=St}=Vst) -> bs_verify_flags(Flags, St), bs_update_bits(Bits, Sz, U, St, Vst). bs_update_bits(undefined, _, _, _, Vst) -> Vst; bs_update_bits(Bits0, {integer,Sz}, U, St, Vst) -> Bits = Bits0 + U*Sz, Vst#vst{current=St#st{bits=Bits}}; bs_update_bits(_, {atom,all}, _, _, Vst) -> %% A binary will not change the alignment. Vst; bs_update_bits(_, _, U, _, Vst) when U rem 8 =:= 0 -> %% Units of 8, 16, and so on will not change the aligment. Vst; bs_update_bits(_, _, _, St, Vst) -> %% We can no longer be sure about aligment. Vst#vst{current=St#st{bits=undefined}}. bs_verify_flags({field_flags,Fl}, #st{bits=Bits}) -> case bs_is_aligned(Fl) of false -> ok; true when is_integer(Bits), Bits rem 8 =:= 0 -> ok; true -> error({aligned_flag_set,{bits,Bits}}) end. bs_is_aligned(Fl) when is_integer(Fl) -> Fl band 1 =:= 1; bs_is_aligned(Fl) when is_list(Fl) -> member(aligned, Fl). %%% %%% Keeping track of types. %%% set_type(Type, {x,_}=Reg, Vst) -> set_type_reg(Type, Reg, Vst); set_type(Type, {y,_}=Reg, Vst) -> set_type_y(Type, Reg, Vst); set_type(_, _, #vst{}=Vst) -> Vst. set_type_reg(Type, {x,X}, #vst{current=#st{x=Xs}=St}=Vst) when is_integer(X), 0 =< X -> limit_check(X), Vst#vst{current=St#st{x=gb_trees:enter(X, Type, Xs)}}; set_type_reg(Type, Reg, Vst) -> set_type_y(Type, Reg, Vst). set_type_y(Type, {y,Y}=Reg, #vst{current=#st{y=Ys0,numy=NumY}=St}=Vst) when is_integer(Y), 0 =< Y -> limit_check(Y), case {Y,NumY} of {_,none} -> error({no_stack_frame,Reg}); {_,_} when Y > NumY -> error({y_reg_out_of_range,Reg,NumY}); {_,_} -> Ys = if Type =:= initialized_ct -> gb_trees:enter(Y, initialized, Ys0); true -> case gb_trees:lookup(Y, Ys0) of none -> gb_trees:insert(Y, Type, Ys0); {value,uinitialized} -> gb_trees:insert(Y, Type, Ys0); {value,{catchtag,_}=Tag} -> error(Tag); {value,{trytag,_}=Tag} -> error(Tag); {value,_} -> gb_trees:update(Y, Type, Ys0) end end, Vst#vst{current=St#st{y=Ys}} end; set_type_y(Type, Reg, #vst{}) -> error({invalid_store,Reg,Type}). assert_term(Src, Vst) -> get_term_type(Src, Vst), ok. %% The possible types. %% %% First non-term types: %% %% initialized Only for Y registers. Means that the Y register %% has been initialized with some valid term so that %% it is safe to pass to the garbage collector. %% NOT safe to use in any other way (will not crash the %% emulator, but clearly points to a bug in the compiler). %% %% {catchtag,[Lbl]} A special term used within a catch. Must only be used %% by the catch instructions; NOT safe to use in other %% instructions. %% %% {trytag,[Lbl]} A special term used within a try block. Must only be %% used by the catch instructions; NOT safe to use in other %% instructions. %% %% exception Can only be used as a type returned by return_type/2 %% (which gives the type of the value returned by a BIF). %% Thus 'exception' is never stored as type descriptor %% for a register. %% %% {match_context,_,_} A matching context for bit syntax matching. We do allow %% it to moved/to from stack, but otherwise it must only %% be accessed by bit syntax matching instructions. %% %% %% Normal terms: %% %% term Any valid Erlang (but not of the special types above). %% %% bool The atom 'true' or the atom 'false'. %% %% cons Cons cell: [_|_] %% %% nil Empty list: [] %% %% {tuple,[Sz]} Tuple. An element has been accessed using %% element/2 or setelement/3 so that it is known that %% the type is a tuple of size at least Sz. %% %% {tuple,Sz} Tuple. A test_arity instruction has been seen %% so that it is known that the size is exactly Sz. %% %% {atom,[]} Atom. %% {atom,Atom} %% %% {integer,[]} Integer. %% {integer,Integer} %% %% {float,[]} Float. %% {float,Float} %% %% number Integer or Float of unknown value %% assert_type(WantedType, Term, Vst) -> assert_type(WantedType, get_term_type(Term, Vst)). assert_type(Correct, Correct) -> ok; assert_type(float, {float,_}) -> ok; assert_type(tuple, {tuple,_}) -> ok; assert_type({tuple_element,I}, {tuple,[Sz]}) when 1 =< I, I =< Sz -> ok; assert_type({tuple_element,I}, {tuple,Sz}) when is_integer(Sz), 1 =< I, I =< Sz -> ok; assert_type(Needed, Actual) -> error({bad_type,{needed,Needed},{actual,Actual}}). %% upgrade_tuple_type(NewTupleType, OldType) -> TupleType. %% upgrade_tuple_type/2 is used when linear code finds out more and %% more information about a tuple type, so that the type gets more %% specialized. If OldType is not a tuple type, the type information %% is inconsistent, and we know that some instructions will never %% be executed at run-time. upgrade_tuple_type({tuple,[Sz]}, {tuple,[OldSz]}=T) when Sz < OldSz -> %% The old type has a higher value for the least tuple size. T; upgrade_tuple_type({tuple,[Sz]}, {tuple,OldSz}=T) when is_integer(Sz), is_integer(OldSz), Sz =< OldSz -> %% The old size is exact, and the new size is smaller than the old size. T; upgrade_tuple_type({tuple,_}=T, _) -> %% The new type information is exact or has a higher value for %% the least tuple size. %% Note that inconsistencies are also handled in this %% clause, e.g. if the old type was an integer or a tuple accessed %% outside its size; inconsistences will generally cause an exception %% at run-time but are safe from our point of view. T. get_tuple_size({integer,[]}) -> 0; get_tuple_size({integer,Sz}) -> Sz; get_tuple_size(_) -> 0. validate_src(Ss, Vst) when is_list(Ss) -> foreach(fun(S) -> get_term_type(S, Vst) end, Ss). %% get_move_term_type(Src, ValidatorState) -> Type %% Get the type of the source Src. The returned type Type will be %% a standard Erlang type (no catch/try tags). Match contexts are OK. get_move_term_type(Src, Vst) -> case get_term_type_1(Src, Vst) of initialized -> error({unassigned,Src}); {catchtag,_} -> error({catchtag,Src}); {trytag,_} -> error({trytag,Src}); Type -> Type end. %% get_term_type(Src, ValidatorState) -> Type %% Get the type of the source Src. The returned type Type will be %% a standard Erlang type (no catch/try tags or match contexts). get_term_type(Src, Vst) -> case get_term_type_1(Src, Vst) of initialized -> error({unassigned,Src}); {catchtag,_} -> error({catchtag,Src}); {trytag,_} -> error({trytag,Src}); {match_context,_,_} -> error({match_context,Src}); Type -> Type end. %% get_special_y_type(Src, ValidatorState) -> Type %% Return the type for the Y register without doing any validity checks. get_special_y_type({y,_}=Reg, Vst) -> get_term_type_1(Reg, Vst); get_special_y_type(Src, _) -> error({source_not_y_reg,Src}). get_term_type_1(nil=T, _) -> T; get_term_type_1({atom,A}=T, _) when is_atom(A) -> T; get_term_type_1({float,F}=T, _) when is_float(F) -> T; get_term_type_1({integer,I}=T, _) when is_integer(I) -> T; get_term_type_1({literal,_}=T, _) -> T; get_term_type_1({x,X}=Reg, #vst{current=#st{x=Xs}}) when is_integer(X) -> case gb_trees:lookup(X, Xs) of {value,Type} -> Type; none -> error({uninitialized_reg,Reg}) end; get_term_type_1({y,Y}=Reg, #vst{current=#st{y=Ys}}) when is_integer(Y) -> case gb_trees:lookup(Y, Ys) of none -> error({uninitialized_reg,Reg}); {value,uninitialized} -> error({uninitialized_reg,Reg}); {value,Type} -> Type end; get_term_type_1(Src, _) -> error({bad_source,Src}). %% get_literal(Src) -> literal_value(). get_literal(nil) -> []; get_literal({atom,A}) when is_atom(A) -> A; get_literal({float,F}) when is_float(F) -> F; get_literal({integer,I}) when is_integer(I) -> I; get_literal({literal,L}) -> L; get_literal(T) -> error({not_literal,T}). branch_arities([], _, #vst{}=Vst) -> Vst; branch_arities([Sz,{f,L}|T], Tuple, #vst{current=St}=Vst0) when is_integer(Sz) -> Vst1 = set_type_reg({tuple,Sz}, Tuple, Vst0), Vst = branch_state(L, Vst1), branch_arities(T, Tuple, Vst#vst{current=St}). branch_state(0, #vst{}=Vst) -> Vst; branch_state(L, #vst{current=St,branched=B}=Vst) -> Vst#vst{ branched=case gb_trees:is_defined(L, B) of false -> gb_trees:insert(L, St, B); true -> MergedSt = merge_states(L, St, B), gb_trees:update(L, MergedSt, B) end}. %% merge_states/3 is used when there are more than one way to arrive %% at this point, and the type states for the different paths has %% to be merged. The type states are downgraded to the least common %% subset for the subsequent code. merge_states(L, St, Branched) when L =/= 0 -> case gb_trees:lookup(L, Branched) of none -> St; {value,OtherSt} when St =:= none -> OtherSt; {value,OtherSt} -> merge_states_1(St, OtherSt) end. merge_states_1(#st{x=Xs0,y=Ys0,numy=NumY0,h=H0,ct=Ct0,bsm=Bsm0}=St, #st{x=Xs1,y=Ys1,numy=NumY1,h=H1,ct=Ct1,bsm=Bsm1}) -> NumY = merge_stk(NumY0, NumY1), Xs = merge_regs(Xs0, Xs1), Ys = merge_y_regs(Ys0, Ys1), Ct = merge_ct(Ct0, Ct1), Bsm = merge_bsm(Bsm0, Bsm1), St#st{x=Xs,y=Ys,numy=NumY,h=min(H0, H1),ct=Ct,bsm=Bsm}. merge_stk(S, S) -> S; merge_stk(_, _) -> undecided. merge_ct(S, S) -> S; merge_ct(Ct0, Ct1) -> merge_ct_1(Ct0, Ct1). merge_ct_1([C0|Ct0], [C1|Ct1]) -> [ordsets:from_list(C0++C1)|merge_ct_1(Ct0, Ct1)]; merge_ct_1([], []) -> []; merge_ct_1(_, _) -> undecided. merge_regs(Rs0, Rs1) -> Rs = merge_regs_1(gb_trees:to_list(Rs0), gb_trees:to_list(Rs1)), gb_trees_from_list(Rs). merge_regs_1([Same|Rs1], [Same|Rs2]) -> [Same|merge_regs_1(Rs1, Rs2)]; merge_regs_1([{R1,_}|Rs1], [{R2,_}|_]=Rs2) when R1 < R2 -> merge_regs_1(Rs1, Rs2); merge_regs_1([{R1,_}|_]=Rs1, [{R2,_}|Rs2]) when R1 > R2 -> merge_regs_1(Rs1, Rs2); merge_regs_1([{R,Type1}|Rs1], [{R,Type2}|Rs2]) -> [{R,merge_types(Type1, Type2)}|merge_regs_1(Rs1, Rs2)]; merge_regs_1([], []) -> []; merge_regs_1([], [_|_]) -> []; merge_regs_1([_|_], []) -> []. merge_y_regs(Rs0, Rs1) -> Rs = merge_y_regs_1(gb_trees:to_list(Rs0), gb_trees:to_list(Rs1)), gb_trees_from_list(Rs). merge_y_regs_1([Same|Rs1], [Same|Rs2]) -> [Same|merge_y_regs_1(Rs1, Rs2)]; merge_y_regs_1([{R1,_}|Rs1], [{R2,_}|_]=Rs2) when R1 < R2 -> [{R1,uninitialized}|merge_y_regs_1(Rs1, Rs2)]; merge_y_regs_1([{R1,_}|_]=Rs1, [{R2,_}|Rs2]) when R1 > R2 -> [{R2,uninitialized}|merge_y_regs_1(Rs1, Rs2)]; merge_y_regs_1([{R,Type1}|Rs1], [{R,Type2}|Rs2]) -> [{R,merge_types(Type1, Type2)}|merge_y_regs_1(Rs1, Rs2)]; merge_y_regs_1([], []) -> []; merge_y_regs_1([], [_|_]=Rs) -> Rs; merge_y_regs_1([_|_]=Rs, []) -> Rs. %% merge_types(Type1, Type2) -> Type %% Return the most specific type possible. %% Note: Type1 must NOT be the same as Type2. merge_types(uninitialized=I, _) -> I; merge_types(_, uninitialized=I) -> I; merge_types(initialized=I, _) -> I; merge_types(_, initialized=I) -> I; merge_types({catchtag,T0},{catchtag,T1}) -> {catchtag,ordsets:from_list(T0++T1)}; merge_types({trytag,T0},{trytag,T1}) -> {trytag,ordsets:from_list(T0++T1)}; merge_types({tuple,A}, {tuple,B}) -> {tuple,[min(tuple_sz(A), tuple_sz(B))]}; merge_types({Type,A}, {Type,B}) when Type =:= atom; Type =:= integer; Type =:= float -> if A =:= B -> {Type,A}; true -> {Type,[]} end; merge_types({Type,_}, number) when Type =:= integer; Type =:= float -> number; merge_types(number, {Type,_}) when Type =:= integer; Type =:= float -> number; merge_types(bool, {atom,A}) -> merge_bool(A); merge_types({atom,A}, bool) -> merge_bool(A); merge_types({match_context,B0,Slots},{match_context,B1,Slots}) -> {match_context,B0 bor B1,Slots}; merge_types({match_context,_,_}=M, _) -> M; merge_types(_, {match_context,_,_}=M) -> M; merge_types(T1, T2) when T1 =/= T2 -> %% Too different. All we know is that the type is a 'term'. term. merge_bsm(undefined, _) -> undefined; merge_bsm(_, undefined) -> undefined; merge_bsm(Bsm0, Bsm1) -> gb_sets:intersection(Bsm0, Bsm1). tuple_sz([Sz]) -> Sz; tuple_sz(Sz) -> Sz. merge_bool([]) -> {atom,[]}; merge_bool(true) -> bool; merge_bool(false) -> bool; merge_bool(_) -> {atom,[]}. verify_y_init(#vst{current=#st{y=Ys}}) -> verify_y_init_1(gb_trees:to_list(Ys)). verify_y_init_1([]) -> ok; verify_y_init_1([{Y,uninitialized}|_]) -> error({uninitialized_reg,{y,Y}}); verify_y_init_1([{_,_}|Ys]) -> verify_y_init_1(Ys). verify_live(0, #vst{}) -> ok; verify_live(N, #vst{current=#st{x=Xs}}) -> verify_live_1(N, Xs). verify_live_1(0, _) -> ok; verify_live_1(N, Xs) when is_integer(N) -> X = N-1, case gb_trees:is_defined(X, Xs) of false -> error({{x,X},not_live}); true -> verify_live_1(X, Xs) end; verify_live_1(N, _) -> error({bad_number_of_live_regs,N}). verify_no_ct(#vst{current=#st{numy=none}}) -> ok; verify_no_ct(#vst{current=#st{numy=undecided}}) -> error(unknown_size_of_stackframe); verify_no_ct(#vst{current=#st{y=Ys}}) -> case [Y || Y <- gb_trees:to_list(Ys), verify_no_ct_1(Y)] of [] -> ok; CT -> error({unfinished_catch_try,CT}) end. verify_no_ct_1({_, {catchtag, _}}) -> true; verify_no_ct_1({_, {trytag, _}}) -> true; verify_no_ct_1({_, _}) -> false. eat_heap(N, #vst{current=#st{h=Heap0}=St}=Vst) -> case Heap0-N of Neg when Neg < 0 -> error({heap_overflow,{left,Heap0},{wanted,N}}); Heap -> Vst#vst{current=St#st{h=Heap}} end. eat_heap_float(#vst{current=#st{hf=HeapFloats0}=St}=Vst) -> case HeapFloats0-1 of Neg when Neg < 0 -> error({heap_overflow,{left,{HeapFloats0,floats}},{wanted,{1,floats}}}); HeapFloats -> Vst#vst{current=St#st{hf=HeapFloats}} end. bif_type('-', Src, Vst) -> arith_type(Src, Vst); bif_type('+', Src, Vst) -> arith_type(Src, Vst); bif_type('*', Src, Vst) -> arith_type(Src, Vst); bif_type(abs, [Num], Vst) -> case get_term_type(Num, Vst) of {float,_}=T -> T; {integer,_}=T -> T; _ -> number end; bif_type(float, _, _) -> {float,[]}; bif_type('/', _, _) -> {float,[]}; %% Integer operations. bif_type('div', [_,_], _) -> {integer,[]}; bif_type('rem', [_,_], _) -> {integer,[]}; bif_type(length, [_], _) -> {integer,[]}; bif_type(size, [_], _) -> {integer,[]}; bif_type(trunc, [_], _) -> {integer,[]}; bif_type(round, [_], _) -> {integer,[]}; bif_type('band', [_,_], _) -> {integer,[]}; bif_type('bor', [_,_], _) -> {integer,[]}; bif_type('bxor', [_,_], _) -> {integer,[]}; bif_type('bnot', [_], _) -> {integer,[]}; bif_type('bsl', [_,_], _) -> {integer,[]}; bif_type('bsr', [_,_], _) -> {integer,[]}; %% Booleans. bif_type('==', [_,_], _) -> bool; bif_type('/=', [_,_], _) -> bool; bif_type('=<', [_,_], _) -> bool; bif_type('<', [_,_], _) -> bool; bif_type('>=', [_,_], _) -> bool; bif_type('>', [_,_], _) -> bool; bif_type('=:=', [_,_], _) -> bool; bif_type('=/=', [_,_], _) -> bool; bif_type('not', [_], _) -> bool; bif_type('and', [_,_], _) -> bool; bif_type('or', [_,_], _) -> bool; bif_type('xor', [_,_], _) -> bool; bif_type(is_atom, [_], _) -> bool; bif_type(is_boolean, [_], _) -> bool; bif_type(is_binary, [_], _) -> bool; bif_type(is_float, [_], _) -> bool; bif_type(is_function, [_], _) -> bool; bif_type(is_integer, [_], _) -> bool; bif_type(is_list, [_], _) -> bool; bif_type(is_number, [_], _) -> bool; bif_type(is_pid, [_], _) -> bool; bif_type(is_port, [_], _) -> bool; bif_type(is_reference, [_], _) -> bool; bif_type(is_tuple, [_], _) -> bool; %% Misc. bif_type(node, [], _) -> {atom,[]}; bif_type(node, [_], _) -> {atom,[]}; bif_type(hd, [_], _) -> term; bif_type(tl, [_], _) -> term; bif_type(get, [_], _) -> term; bif_type(raise, [_,_], _) -> exception; bif_type(Bif, _, _) when is_atom(Bif) -> term. is_bif_safe('/=', 2) -> true; is_bif_safe('<', 2) -> true; is_bif_safe('=/=', 2) -> true; is_bif_safe('=:=', 2) -> true; is_bif_safe('=<', 2) -> true; is_bif_safe('==', 2) -> true; is_bif_safe('>', 2) -> true; is_bif_safe('>=', 2) -> true; is_bif_safe(is_atom, 1) -> true; is_bif_safe(is_boolean, 1) -> true; is_bif_safe(is_binary, 1) -> true; is_bif_safe(is_float, 1) -> true; is_bif_safe(is_function, 1) -> true; is_bif_safe(is_integer, 1) -> true; is_bif_safe(is_list, 1) -> true; is_bif_safe(is_number, 1) -> true; is_bif_safe(is_pid, 1) -> true; is_bif_safe(is_port, 1) -> true; is_bif_safe(is_reference, 1) -> true; is_bif_safe(is_tuple, 1) -> true; is_bif_safe(get, 1) -> true; is_bif_safe(self, 0) -> true; is_bif_safe(node, 0) -> true; is_bif_safe(_, _) -> false. arith_type([A,B], Vst) -> case {get_term_type(A, Vst),get_term_type(B, Vst)} of {{float,_},_} -> {float,[]}; {_,{float,_}} -> {float,[]}; {_,_} -> number end; arith_type(_, _) -> number. return_type({extfunc,M,F,A}, Vst) -> return_type_1(M, F, A, Vst); return_type(_, _) -> term. return_type_1(erlang, setelement, 3, Vst) -> Tuple = {x,1}, TupleType = case get_term_type(Tuple, Vst) of {tuple,_}=TT -> TT; _ -> {tuple,[0]} end, case get_term_type({x,0}, Vst) of {integer,[]} -> TupleType; {integer,I} -> upgrade_tuple_type({tuple,[I]}, TupleType); _ -> TupleType end; return_type_1(erlang, F, A, _) -> return_type_erl(F, A); return_type_1(math, F, A, _) -> return_type_math(F, A); return_type_1(M, F, A, _) when is_atom(M), is_atom(F), is_integer(A), A >= 0 -> term. return_type_erl(exit, 1) -> exception; return_type_erl(throw, 1) -> exception; return_type_erl(fault, 1) -> exception; return_type_erl(fault, 2) -> exception; return_type_erl(error, 1) -> exception; return_type_erl(error, 2) -> exception; return_type_erl(F, A) when is_atom(F), is_integer(A), A >= 0 -> term. return_type_math(cos, 1) -> {float,[]}; return_type_math(cosh, 1) -> {float,[]}; return_type_math(sin, 1) -> {float,[]}; return_type_math(sinh, 1) -> {float,[]}; return_type_math(tan, 1) -> {float,[]}; return_type_math(tanh, 1) -> {float,[]}; return_type_math(acos, 1) -> {float,[]}; return_type_math(acosh, 1) -> {float,[]}; return_type_math(asin, 1) -> {float,[]}; return_type_math(asinh, 1) -> {float,[]}; return_type_math(atan, 1) -> {float,[]}; return_type_math(atanh, 1) -> {float,[]}; return_type_math(erf, 1) -> {float,[]}; return_type_math(erfc, 1) -> {float,[]}; return_type_math(exp, 1) -> {float,[]}; return_type_math(log, 1) -> {float,[]}; return_type_math(log2, 1) -> {float,[]}; return_type_math(log10, 1) -> {float,[]}; return_type_math(sqrt, 1) -> {float,[]}; return_type_math(atan2, 2) -> {float,[]}; return_type_math(pow, 2) -> {float,[]}; return_type_math(pi, 0) -> {float,[]}; return_type_math(F, A) when is_atom(F), is_integer(A), A >= 0 -> term. limit_check(Num) when is_integer(Num), Num >= ?MAXREG -> error(limit); limit_check(_) -> ok. min(A, B) when is_integer(A), is_integer(B), A < B -> A; min(A, B) when is_integer(A), is_integer(B) -> B. gb_trees_from_list(L) -> gb_trees:from_orddict(lists:sort(L)). -ifdef(DEBUG). error(Error) -> exit(Error). -else. error(Error) -> throw(Error). -endif. %%% %%% Rewrite disassembled code to the same format as we used internally %%% to not have to worry later. %%% normalize_disassembled_code(Fs) -> Index = ndc_index(Fs, []), ndc(Fs, Index, []). ndc_index([{function,Name,Arity,Entry,_Code}|Fs], Acc) -> ndc_index(Fs, [{{Name,Arity},Entry}|Acc]); ndc_index([], Acc) -> gb_trees:from_orddict(lists:sort(Acc)). ndc([{function,Name,Arity,Entry,Code0}|Fs], D, Acc) -> Code = ndc_1(Code0, D, []), ndc(Fs, D, [{function,Name,Arity,Entry,Code}|Acc]); ndc([], _, Acc) -> reverse(Acc). ndc_1([{call=Op,A,{_,F,A}}|Is], D, Acc) -> ndc_1(Is, D, [{Op,A,{f,gb_trees:get({F,A}, D)}}|Acc]); ndc_1([{call_only=Op,A,{_,F,A}}|Is], D, Acc) -> ndc_1(Is, D, [{Op,A,{f,gb_trees:get({F,A}, D)}}|Acc]); ndc_1([{call_last=Op,A,{_,F,A},Sz}|Is], D, Acc) -> ndc_1(Is, D, [{Op,A,{f,gb_trees:get({F,A}, D)},Sz}|Acc]); ndc_1([{arithbif,Op,F,Src,Dst}|Is], D, Acc) -> ndc_1(Is, D, [{bif,Op,F,Src,Dst}|Acc]); ndc_1([{arithfbif,Op,F,Src,Dst}|Is], D, Acc) -> ndc_1(Is, D, [{bif,Op,F,Src,Dst}|Acc]); ndc_1([{test,bs_start_match2=Op,F,[A1,Live,A3,Dst]}|Is], D, Acc) -> ndc_1(Is, D, [{test,Op,F,Live,[A1,A3],Dst}|Acc]); ndc_1([{test,bs_get_binary2=Op,F,[A1,Live,A3,A4,A5,Dst]}|Is], D, Acc) -> ndc_1(Is, D, [{test,Op,F,Live,[A1,A3,A4,A5],Dst}|Acc]); ndc_1([{test,bs_get_float2=Op,F,[A1,Live,A3,A4,A5,Dst]}|Is], D, Acc) -> ndc_1(Is, D, [{test,Op,F,Live,[A1,A3,A4,A5],Dst}|Acc]); ndc_1([{test,bs_get_integer2=Op,F,[A1,Live,A3,A4,A5,Dst]}|Is], D, Acc) -> ndc_1(Is, D, [{test,Op,F,Live,[A1,A3,A4,A5],Dst}|Acc]); ndc_1([{test,bs_get_utf8=Op,F,[A1,Live,A3,Dst]}|Is], D, Acc) -> ndc_1(Is, D, [{test,Op,F,Live,[A1,A3],Dst}|Acc]); ndc_1([{test,bs_get_utf16=Op,F,[A1,Live,A3,Dst]}|Is], D, Acc) -> ndc_1(Is, D, [{test,Op,F,Live,[A1,A3],Dst}|Acc]); ndc_1([{test,bs_get_utf32=Op,F,[A1,Live,A3,Dst]}|Is], D, Acc) -> ndc_1(Is, D, [{test,Op,F,Live,[A1,A3],Dst}|Acc]); ndc_1([I|Is], D, Acc) -> ndc_1(Is, D, [I|Acc]); ndc_1([], _, Acc) -> reverse(Acc).