%% %% %CopyrightBegin% %% %% Copyright Ericsson AB 2004-2018. All Rights Reserved. %% %% Licensed under the Apache License, Version 2.0 (the "License"); %% you may not use this file except in compliance with the License. %% You may obtain a copy of the License at %% %% http://www.apache.org/licenses/LICENSE-2.0 %% %% Unless required by applicable law or agreed to in writing, software %% distributed under the License is distributed on an "AS IS" BASIS, %% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. %% See the License for the specific language governing permissions and %% limitations under the License. %% %% %CopyrightEnd% -module(beam_validator). -include("beam_types.hrl"). -define(UNICODE_MAX, (16#10FFFF)). -compile({no_auto_import,[min/2]}). %% Avoid warning for local function error/1 clashing with autoimported BIF. -compile({no_auto_import,[error/1]}). %% Interface for compiler. -export([module/2, format_error/1]). -import(lists, [dropwhile/2,foldl/3,member/2,reverse/1,sort/1,zip/2]). %% To be called by the compiler. -spec module(beam_utils:module_code(), [compile:option()]) -> {'ok',beam_utils:module_code()}. module({Mod,Exp,Attr,Fs,Lc}=Code, _Opts) when is_atom(Mod), is_list(Exp), is_list(Attr), is_integer(Lc) -> case validate(Mod, Fs) of [] -> {ok,Code}; Es0 -> Es = [{?MODULE,E} || E <- Es0], {error,[{atom_to_list(Mod),Es}]} end. -spec format_error(term()) -> iolist(). format_error({{_M,F,A},{I,Off,limit}}) -> io_lib:format( "function ~p/~p+~p:~n" " An implementation limit was reached.~n" " Try reducing the complexity of this function.~n~n" " Instruction: ~p~n", [F,A,Off,I]); format_error({{_M,F,A},{undef_labels,Lbls}}) -> io_lib:format( "function ~p/~p:~n" " Internal consistency check failed - please report this bug.~n" " The following label(s) were referenced but not defined:~n", [F,A]) ++ " " ++ [[integer_to_list(L)," "] || L <- Lbls] ++ "\n"; format_error({{_M,F,A},{I,Off,Desc}}) -> io_lib:format( "function ~p/~p+~p:~n" " Internal consistency check failed - please report this bug.~n" " Instruction: ~p~n" " Error: ~p:~n", [F,A,Off,I,Desc]); format_error(Error) -> io_lib:format("~p~n", [Error]). %%% %%% Local functions follow. %%% %%% %%% The validator follows. %%% %%% The purpose of the validator is to find errors in the generated %%% code that may cause the emulator to crash or behave strangely. %%% We don't care about type errors in the user's code that will %%% cause a proper exception at run-time. %%% %%% Things currently not checked. XXX %%% %%% - Heap allocation for binaries. %%% %% validate(Module, [Function]) -> [] | [Error] %% A list of functions with their code. The code is in the same %% format as used in the compiler and in .S files. validate(Module, Fs) -> Ft = build_function_table(Fs, []), validate_0(Module, Fs, Ft). validate_0(_Module, [], _) -> []; validate_0(Module, [{function,Name,Ar,Entry,Code}|Fs], Ft) -> try validate_1(Code, Name, Ar, Entry, Ft) of _ -> validate_0(Module, Fs, Ft) catch throw:Error -> %% Controlled error. [Error|validate_0(Module, Fs, Ft)]; Class:Error:Stack -> %% Crash. io:fwrite("Function: ~w/~w\n", [Name,Ar]), erlang:raise(Class, Error, Stack) end. -record(t_abstract, {kind}). %% The types are the same as in 'beam_types.hrl', with the addition of %% #t_abstract{} that describes tuples under construction, match context %% positions, and so on. -type validator_type() :: #t_abstract{} | type(). -record(value_ref, {id :: index()}). -record(value, {op :: term(), args :: [argument()], type :: validator_type()}). -type argument() :: #value_ref{} | literal(). -type index() :: non_neg_integer(). -type literal() :: {atom, [] | atom()} | {float, [] | float()} | {integer, [] | integer()} | {literal, term()} | nil. %% Register tags describe the state of the register rather than the value they %% contain (if any). %% %% initialized The register has been initialized with some valid term %% so that it is safe to pass to the garbage collector. %% NOT safe to use in any other way (will not crash the %% emulator, but clearly points to a bug in the compiler). %% %% uninitialized The register contains any old garbage and can not be %% passed to the garbage collector. %% %% {catchtag,[Lbl]} A special term used within a catch. Must only be used %% by the catch instructions; NOT safe to use in other %% instructions. %% %% {trytag,[Lbl]} A special term used within a try block. Must only be %% used by the catch instructions; NOT safe to use in other %% instructions. -type tag() :: initialized | uninitialized | {catchtag, ordsets:ordset(label())} | {trytag, ordsets:ordset(label())}. -type x_regs() :: #{ {x, index()} => #value_ref{} }. -type y_regs() :: #{ {y, index()} => tag() | #value_ref{} }. %% Emulation state -record(st, {%% All known values. vs=#{} :: #{ #value_ref{} => #value{} }, %% Register states. xs=#{} :: x_regs(), ys=#{} :: y_regs(), f=init_fregs(), %% A set of all registers containing "fragile" terms. That is, terms %% that don't exist on our process heap and would be destroyed by a %% GC. fragile=cerl_sets:new() :: cerl_sets:set(), %% Number of Y registers. %% %% Note that this may be 0 if there's a frame without saved values, %% such as on a body-recursive call. numy=none :: none | undecided | index(), %% Available heap size. h=0, %%Available heap size for floats. hf=0, %% Floating point state. fls=undefined, %% List of hot catch/try tags ct=[], %% Previous instruction was setelement/3. setelem=false, %% put/1 instructions left. puts_left=none }). -type label() :: integer(). -type label_set() :: gb_sets:set(label()). -type branched_tab() :: gb_trees:tree(label(), #st{}). -type ft_tab() :: gb_trees:tree(). %% Validator state -record(vst, {%% Current state current=none :: #st{} | 'none', %% States at labels branched=gb_trees:empty() :: branched_tab(), %% All defined labels labels=gb_sets:empty() :: label_set(), %% Information of other functions in the module ft=gb_trees:empty() :: ft_tab(), %% Counter for #value_ref{} creation ref_ctr=0 :: index() }). build_function_table([{function,_,Arity,Entry,Code0}|Fs], Acc0) -> Code = dropwhile(fun({label,L}) when L =:= Entry -> false; (_) -> true end, Code0), case Code of [{label,Entry}|Is] -> Info = #{ arity => Arity, parameter_types => find_parameter_types(Is, #{}) }, build_function_table(Fs, [{Entry, Info} | Acc0]); _ -> %% Something is seriously wrong. Ignore it for now. %% It will be detected and diagnosed later. build_function_table(Fs, Acc0) end; build_function_table([], Acc) -> gb_trees:from_orddict(sort(Acc)). find_parameter_types([{'%', {type_info, Reg, Type}} | Is], Acc) -> find_parameter_types(Is, Acc#{ Reg => Type }); find_parameter_types(_, Acc) -> Acc. validate_1(Is, Name, Arity, Entry, Ft) -> validate_2(labels(Is), Name, Arity, Entry, Ft). validate_2({Ls1,[{func_info,{atom,Mod},{atom,Name},Arity}=_F|Is]}, Name, Arity, Entry, Ft) -> validate_3(labels(Is), Name, Arity, Entry, Mod, Ls1, Ft); validate_2({Ls1,Is}, Name, Arity, _Entry, _Ft) -> error({{'_',Name,Arity},{first(Is),length(Ls1),illegal_instruction}}). validate_3({Ls2,Is}, Name, Arity, Entry, Mod, Ls1, Ft) -> Offset = 1 + length(Ls1) + 1 + length(Ls2), EntryOK = member(Entry, Ls2), if EntryOK -> Vst0 = init_vst(Arity, Ls1, Ls2, Ft), MFA = {Mod,Name,Arity}, Vst = valfun(Is, MFA, Offset, Vst0), validate_fun_info_branches(Ls1, MFA, Vst); true -> error({{Mod,Name,Arity},{first(Is),Offset,no_entry_label}}) end. validate_fun_info_branches([L|Ls], MFA, #vst{branched=Branches}=Vst0) -> Vst = Vst0#vst{current=gb_trees:get(L, Branches)}, validate_fun_info_branches_1(0, MFA, Vst), validate_fun_info_branches(Ls, MFA, Vst); validate_fun_info_branches([], _, _) -> ok. validate_fun_info_branches_1(Arity, {_,_,Arity}, _) -> ok; validate_fun_info_branches_1(X, {Mod,Name,Arity}=MFA, Vst) -> try case Vst of #vst{current=#st{numy=none}} -> ok; #vst{current=#st{numy=Size}} -> error({unexpected_stack_frame,Size}) end, assert_term({x,X}, Vst) catch Error -> I = {func_info,{atom,Mod},{atom,Name},Arity}, Offset = 2, error({MFA,{I,Offset,Error}}) end, validate_fun_info_branches_1(X+1, MFA, Vst). first([X|_]) -> X; first([]) -> []. labels(Is) -> labels_1(Is, []). labels_1([{label,L}|Is], R) -> labels_1(Is, [L|R]); labels_1([{line,_}|Is], R) -> labels_1(Is, R); labels_1(Is, R) -> {reverse(R),Is}. init_vst(Arity, Ls1, Ls2, Ft) -> Vst0 = init_function_args(Arity - 1, #vst{current=#st{}}), Branches = gb_trees_from_list([{L,Vst0#vst.current} || L <- Ls1]), Labels = gb_sets:from_list(Ls1++Ls2), Vst0#vst{branched=Branches, labels=Labels, ft=Ft}. init_function_args(-1, Vst) -> Vst; init_function_args(X, Vst) -> init_function_args(X - 1, create_term(any, argument, [], {x,X}, Vst)). kill_heap_allocation(St) -> St#st{h=0,hf=0}. valfun([], MFA, _Offset, #vst{branched=Targets0,labels=Labels0}=Vst) -> Targets = gb_trees:keys(Targets0), Labels = gb_sets:to_list(Labels0), case Targets -- Labels of [] -> Vst; Undef -> Error = {undef_labels,Undef}, error({MFA,Error}) end; valfun([I|Is], MFA, Offset, Vst0) -> valfun(Is, MFA, Offset+1, try Vst = val_dsetel(I, Vst0), valfun_1(I, Vst) catch Error -> error({MFA,{I,Offset,Error}}) end). %% Instructions that are allowed in dead code or when failing, %% that is while the state is undecided in some way. valfun_1({label,Lbl}, #vst{current=St0, ref_ctr=Counter0, branched=B, labels=Lbls}=Vst) -> {St, Counter} = merge_states(Lbl, St0, B, Counter0), Vst#vst{current=St, ref_ctr=Counter, branched=gb_trees:enter(Lbl, St, B), labels=gb_sets:add(Lbl, Lbls)}; valfun_1(_I, #vst{current=none}=Vst) -> %% Ignore instructions after erlang:error/1,2, which %% the original R10B compiler thought would return. Vst; valfun_1({badmatch,Src}, Vst) -> assert_durable_term(Src, Vst), verify_y_init(Vst), kill_state(Vst); valfun_1({case_end,Src}, Vst) -> assert_durable_term(Src, Vst), verify_y_init(Vst), kill_state(Vst); valfun_1(if_end, Vst) -> verify_y_init(Vst), kill_state(Vst); valfun_1({try_case_end,Src}, Vst) -> verify_y_init(Vst), assert_durable_term(Src, Vst), kill_state(Vst); %% Instructions that cannot cause exceptions valfun_1({bs_get_tail,Ctx,Dst,Live}, Vst0) -> assert_type(#t_bs_context{}, Ctx, Vst0), verify_live(Live, Vst0), verify_y_init(Vst0), Vst = prune_x_regs(Live, Vst0), extract_term(#t_bitstring{}, bs_get_tail, [Ctx], Dst, Vst, Vst0); valfun_1(bs_init_writable=I, Vst) -> call(I, 1, Vst); valfun_1(build_stacktrace=I, Vst) -> call(I, 1, Vst); valfun_1({move,Src,Dst}, Vst) -> assign(Src, Dst, Vst); valfun_1({swap,RegA,RegB}, Vst0) -> assert_movable(RegA, Vst0), assert_movable(RegB, Vst0), %% We don't expect fragile registers to be swapped. %% Therefore, we can conservatively make both registers %% fragile if one of the register is fragile instead of %% swapping the fragility of the registers. Sources = [RegA,RegB], Vst1 = propagate_fragility(RegA, Sources, Vst0), Vst2 = propagate_fragility(RegB, Sources, Vst1), %% Swap the value references. VrefA = get_reg_vref(RegA, Vst2), VrefB = get_reg_vref(RegB, Vst2), Vst = set_reg_vref(VrefB, RegA, Vst2), set_reg_vref(VrefA, RegB, Vst); valfun_1({fmove,Src,{fr,_}=Dst}, Vst) -> assert_type(float, Src, Vst), set_freg(Dst, Vst); valfun_1({fmove,{fr,_}=Src,Dst}, Vst0) -> assert_freg_set(Src, Vst0), assert_fls(checked, Vst0), Vst = eat_heap_float(Vst0), create_term(float, fmove, [], Dst, Vst); valfun_1({kill,Reg}, Vst) -> create_tag(initialized, kill, [], Reg, Vst); valfun_1({init,Reg}, Vst) -> create_tag(initialized, init, [], Reg, Vst); valfun_1({test_heap,Heap,Live}, Vst) -> test_heap(Heap, Live, Vst); valfun_1({bif,Op,{f,0},Ss,Dst}=I, Vst) -> case will_bif_succeed(Op, Ss, Vst) of yes -> %% This BIF cannot fail, handle it here without updating catch %% state. validate_bif(Op, cannot_fail, Ss, Dst, Vst); no -> %% The stack will be scanned, so Y registers must be initialized. verify_y_init(Vst), kill_state(Vst); maybe -> %% The BIF can fail, make sure that any catch state is updated. valfun_2(I, Vst) end; valfun_1({gc_bif,Op,{f,0},Live,Ss,Dst}=I, Vst) -> case will_bif_succeed(Op, Ss, Vst) of yes -> validate_gc_bif(Op, cannot_fail, Ss, Dst, Live, Vst); no -> verify_y_init(Vst), kill_state(Vst); maybe -> valfun_2(I, Vst) end; %% Put instructions. valfun_1({put_list,A,B,Dst}, Vst0) -> assert_term(A, Vst0), assert_term(B, Vst0), Vst = eat_heap(2, Vst0), create_term(cons, put_list, [A, B], Dst, Vst); valfun_1({put_tuple2,Dst,{list,Elements}}, Vst0) -> _ = [assert_term(El, Vst0) || El <- Elements], Size = length(Elements), Vst = eat_heap(Size+1, Vst0), {Es,_} = foldl(fun(Val, {Es0, Index}) -> Type = get_term_type(Val, Vst0), Es = beam_types:set_element_type(Index, Type, Es0), {Es, Index + 1} end, {#{}, 1}, Elements), Type = #t_tuple{exact=true,size=Size,elements=Es}, create_term(Type, put_tuple2, [], Dst, Vst); valfun_1({put_tuple,Sz,Dst}, Vst0) when is_integer(Sz) -> Vst1 = eat_heap(1, Vst0), Vst = create_term(#t_abstract{kind=unfinished_tuple}, put_tuple, [], Dst, Vst1), #vst{current=St0} = Vst, St = St0#st{puts_left={Sz,{Dst,Sz,#{}}}}, Vst#vst{current=St}; valfun_1({put,Src}, Vst0) -> assert_term(Src, Vst0), Vst = eat_heap(1, Vst0), #vst{current=St0} = Vst, case St0 of #st{puts_left=none} -> error(not_building_a_tuple); #st{puts_left={1,{Dst,Sz,Es0}}} -> ElementType = get_term_type(Src, Vst0), Es = beam_types:set_element_type(Sz, ElementType, Es0), St = St0#st{puts_left=none}, Type = #t_tuple{exact=true,size=Sz,elements=Es}, create_term(Type, put_tuple, [], Dst, Vst#vst{current=St}); #st{puts_left={PutsLeft,{Dst,Sz,Es0}}} when is_integer(PutsLeft) -> Index = Sz - PutsLeft + 1, ElementType = get_term_type(Src, Vst0), Es = beam_types:set_element_type(Index, ElementType, Es0), St = St0#st{puts_left={PutsLeft-1,{Dst,Sz,Es}}}, Vst#vst{current=St} end; %% This instruction never fails, though it may be invalid in some contexts; see %% val_dsetel/2 valfun_1({set_tuple_element,Src,Tuple,N}, Vst) -> I = N + 1, assert_term(Src, Vst), assert_type(#t_tuple{size=I}, Tuple, Vst), %% Manually update the tuple type; we can't rely on the ordinary update %% helpers as we must support overwriting (rather than just widening or %% narrowing) known elements, and we can't use extract_term either since %% the source tuple may be aliased. #t_tuple{elements=Es0}=Type = normalize(get_term_type(Tuple, Vst)), Es = beam_types:set_element_type(I, get_term_type(Src, Vst), Es0), override_type(Type#t_tuple{elements=Es}, Tuple, Vst); %% Instructions for optimization of selective receives. valfun_1({recv_mark,{f,Fail}}, Vst) when is_integer(Fail) -> Vst; valfun_1({recv_set,{f,Fail}}, Vst) when is_integer(Fail) -> Vst; %% Misc. valfun_1(remove_message, Vst) -> %% The message term is no longer fragile. It can be used %% without restrictions. remove_fragility(Vst); valfun_1({'%', {type_info, _Reg, none}}, Vst) -> %% Unreachable code, typically after a call that never returns. kill_state(Vst); valfun_1({'%', {type_info, Reg, #t_bs_context{}=Type}}, Vst) -> %% This is a gross hack, but we'll be rid of it once we have proper union %% types. override_type(Type, Reg, Vst); valfun_1({'%', {type_info, Reg, Type}}, Vst) -> %% Explicit type information inserted by optimization passes to indicate %% that Reg has a certain type, so that we can accept cross-function type %% optimizations. update_type(fun meet/2, Type, Reg, Vst); valfun_1({'%', {remove_fragility, Reg}}, Vst) -> %% This is a hack to make prim_eval:'receive'/2 work. %% %% Normally it's illegal to pass fragile terms as a function argument as we %% have no way of knowing what the callee will do with it, but we know that %% prim_eval:'receive'/2 won't leak the term, nor cause a GC since it's %% disabled while matching messages. remove_fragility(Reg, Vst); valfun_1({'%',_}, Vst) -> Vst; valfun_1({line,_}, Vst) -> Vst; %% Exception generating calls valfun_1({call_ext,Live,Func}=I, Vst) -> case will_call_succeed(Func, Vst) of yes -> %% This call cannot fail, handle it here without updating catch %% state. call(Func, Live, Vst); no -> %% The stack will be scanned, so Y registers must be initialized. verify_live(Live, Vst), verify_y_init(Vst), kill_state(Vst); maybe -> %% The call can fail, make sure that any catch state is updated. valfun_2(I, Vst) end; valfun_1(_I, #vst{current=#st{ct=undecided}}) -> error(unknown_catch_try_state); %% %% Allocate and deallocate, et.al valfun_1({allocate,Stk,Live}, Vst) -> allocate(uninitialized, Stk, 0, Live, Vst); valfun_1({allocate_heap,Stk,Heap,Live}, Vst) -> allocate(uninitialized, Stk, Heap, Live, Vst); valfun_1({allocate_zero,Stk,Live}, Vst) -> allocate(initialized, Stk, 0, Live, Vst); valfun_1({allocate_heap_zero,Stk,Heap,Live}, Vst) -> allocate(initialized, Stk, Heap, Live, Vst); valfun_1({deallocate,StkSize}, #vst{current=#st{numy=StkSize}}=Vst) -> verify_no_ct(Vst), deallocate(Vst); valfun_1({deallocate,_}, #vst{current=#st{numy=NumY}}) -> error({allocated,NumY}); valfun_1({trim,N,Remaining}, #vst{current=St0}=Vst) -> #st{numy=NumY} = St0, if N =< NumY, N+Remaining =:= NumY -> Vst#vst{current=trim_stack(N, 0, NumY, St0)}; N > NumY; N+Remaining =/= NumY -> error({trim,N,Remaining,allocated,NumY}) end; %% Catch & try. valfun_1({'catch',Dst,{f,Fail}}, Vst) when Fail =/= none -> init_try_catch_branch(catchtag, Dst, Fail, Vst); valfun_1({'try',Dst,{f,Fail}}, Vst) when Fail =/= none -> init_try_catch_branch(trytag, Dst, Fail, Vst); valfun_1({catch_end,Reg}, #vst{current=#st{ct=[Tag|_]}}=Vst0) -> case get_tag_type(Reg, Vst0) of {catchtag,_Fail}=Tag -> %% {x,0} contains the caught term, if any. create_term(any, catch_end, [], {x,0}, kill_catch_tag(Reg, Vst0)); Type -> error({wrong_tag_type,Type}) end; valfun_1({try_end,Reg}, #vst{current=#st{ct=[Tag|_]}}=Vst) -> case get_tag_type(Reg, Vst) of {trytag,_Fail}=Tag -> %% Kill the catch tag, note that x registers are unaffected. kill_catch_tag(Reg, Vst); Type -> error({wrong_tag_type,Type}) end; valfun_1({try_case,Reg}, #vst{current=#st{ct=[Tag|_]}}=Vst0) -> case get_tag_type(Reg, Vst0) of {trytag,_Fail}=Tag -> %% Kill the catch tag and all x registers. Vst1 = prune_x_regs(0, kill_catch_tag(Reg, Vst0)), %% Class:Error:Stacktrace Vst2 = create_term(#t_atom{}, try_case, [], {x,0}, Vst1), Vst = create_term(any, try_case, [], {x,1}, Vst2), create_term(any, try_case, [], {x,2}, Vst); Type -> error({wrong_tag_type,Type}) end; %% Simple getters that can't fail. valfun_1({get_list,Src,D1,D2}, Vst0) -> assert_not_literal(Src), assert_type(cons, Src, Vst0), Vst = extract_term(any, get_hd, [Src], D1, Vst0), extract_term(any, get_tl, [Src], D2, Vst); valfun_1({get_hd,Src,Dst}, Vst) -> assert_not_literal(Src), assert_type(cons, Src, Vst), extract_term(any, get_hd, [Src], Dst, Vst); valfun_1({get_tl,Src,Dst}, Vst) -> assert_not_literal(Src), assert_type(cons, Src, Vst), extract_term(any, get_tl, [Src], Dst, Vst); valfun_1({get_tuple_element,Src,N,Dst}, Vst) -> Index = N+1, assert_not_literal(Src), assert_type(#t_tuple{size=Index}, Src, Vst), #t_tuple{elements=Es} = normalize(get_term_type(Src, Vst)), Type = beam_types:get_element_type(Index, Es), extract_term(Type, {bif,element}, [{integer,Index}, Src], Dst, Vst); valfun_1({jump,{f,Lbl}}, Vst) -> branch(Lbl, Vst, fun(SuccVst) -> %% The next instruction is never executed. kill_state(SuccVst) end); valfun_1(I, Vst) -> valfun_2(I, Vst). init_try_catch_branch(Kind, Dst, Fail, Vst0) -> Tag = {Kind, [Fail]}, Vst = create_tag(Tag, 'try_catch', [], Dst, Vst0), branch(Fail, Vst, fun(CatchVst0) -> %% We add the tag here because branch/4 rejects jumps to %% labels referenced by try tags. #vst{current=#st{ct=Tags,ys=Ys}=St0} = CatchVst0, St = St0#st{ct=[Tag|Tags]}, CatchVst = CatchVst0#vst{current=St}, maps:fold(fun init_catch_handler_1/3, CatchVst, Ys) end, fun(SuccVst0) -> #vst{current=#st{ct=Tags}=St0} = SuccVst0, St = St0#st{ct=[Tag|Tags]}, SuccVst = SuccVst0#vst{current=St}, %% All potentially-throwing instructions after this one will %% implicitly branch to the current try/catch handler; see %% valfun_2/2 SuccVst end). %% Set the initial state at the try/catch label. Assume that Y registers %% contain terms or try/catch tags. init_catch_handler_1(Reg, initialized, Vst) -> create_term(any, 'catch_handler', [], Reg, Vst); init_catch_handler_1(Reg, uninitialized, Vst) -> create_term(any, 'catch_handler', [], Reg, Vst); init_catch_handler_1(_, _, Vst) -> Vst. valfun_2(I, #vst{current=#st{ct=[{_,[Fail]}|_]}}=Vst) when is_integer(Fail) -> %% We have an active try/catch tag and we can jump there from this %% instruction, so we need to update the branched state of the try/catch %% handler. valfun_3(I, fork_state(Fail, Vst)); valfun_2(I, #vst{current=#st{ct=[]}}=Vst) -> valfun_3(I, Vst); valfun_2(_, _) -> error(ambiguous_catch_try_state). %% Handle the remaining floating point instructions here. %% Floating point. valfun_3({fconv,Src,{fr,_}=Dst}, Vst) -> assert_term(Src, Vst), %% An exception is raised on error, hence branching to 0. branch(0, Vst, fun(SuccVst0) -> SuccVst = update_type(fun meet/2, number, Src, SuccVst0), set_freg(Dst, SuccVst) end); valfun_3({bif,fadd,_,[_,_]=Ss,Dst}, Vst) -> float_op(Ss, Dst, Vst); valfun_3({bif,fdiv,_,[_,_]=Ss,Dst}, Vst) -> float_op(Ss, Dst, Vst); valfun_3({bif,fmul,_,[_,_]=Ss,Dst}, Vst) -> float_op(Ss, Dst, Vst); valfun_3({bif,fnegate,_,[_]=Ss,Dst}, Vst) -> float_op(Ss, Dst, Vst); valfun_3({bif,fsub,_,[_,_]=Ss,Dst}, Vst) -> float_op(Ss, Dst, Vst); valfun_3(fclearerror, Vst) -> case get_fls(Vst) of undefined -> ok; checked -> ok; Fls -> error({bad_floating_point_state,Fls}) end, set_fls(cleared, Vst); valfun_3({fcheckerror,_}, Vst) -> assert_fls(cleared, Vst), set_fls(checked, Vst); valfun_3(I, Vst) -> %% The instruction is not a float instruction. case get_fls(Vst) of undefined -> valfun_4(I, Vst); checked -> valfun_4(I, Vst); Fls -> error({unsafe_instruction,{float_error_state,Fls}}) end. %% Instructions that can cause exceptions. valfun_4({apply,Live}, Vst) -> call(apply, Live+2, Vst); valfun_4({apply_last,Live,_}, Vst) -> tail_call(apply, Live+2, Vst); valfun_4({call_fun,Live}, Vst) -> Fun = {x,Live}, assert_term(Fun, Vst), %% An exception is raised on error, hence branching to 0. branch(0, Vst, fun(SuccVst0) -> SuccVst = update_type(fun meet/2, #t_fun{arity=Live}, Fun, SuccVst0), call('fun', Live+1, SuccVst) end); valfun_4({call,Live,Func}, Vst) -> call(Func, Live, Vst); valfun_4({call_ext,Live,Func}, Vst) -> %% Exception BIFs has already been taken care of above. call(Func, Live, Vst); valfun_4({call_only,Live,Func}, Vst) -> tail_call(Func, Live, Vst); valfun_4({call_ext_only,Live,Func}, Vst) -> tail_call(Func, Live, Vst); valfun_4({call_last,Live,Func,StkSize}, #vst{current=#st{numy=StkSize}}=Vst) -> tail_call(Func, Live, Vst); valfun_4({call_last,_,_,_}, #vst{current=#st{numy=NumY}}) -> error({allocated,NumY}); valfun_4({call_ext_last,Live,Func,StkSize}, #vst{current=#st{numy=StkSize}}=Vst) -> tail_call(Func, Live, Vst); valfun_4({call_ext_last,_,_,_}, #vst{current=#st{numy=NumY}}) -> error({allocated,NumY}); valfun_4({make_fun2,{f,Lbl},_,_,NumFree}, #vst{ft=Ft}=Vst0) -> #{ arity := Arity0 } = gb_trees:get(Lbl, Ft), Arity = Arity0 - NumFree, true = Arity >= 0, %Assertion. Vst = prune_x_regs(NumFree, Vst0), verify_call_args(make_fun, NumFree, Vst), verify_y_init(Vst), create_term(#t_fun{arity=Arity}, make_fun, [], {x,0}, Vst); %% Other BIFs valfun_4({bif,raise,{f,0},Src,_Dst}, Vst) -> validate_src(Src, Vst), kill_state(Vst); valfun_4(raw_raise=I, Vst) -> call(I, 3, Vst); valfun_4({bif,Op,{f,Fail},Ss,Dst}, Vst) -> validate_src(Ss, Vst), validate_bif(Op, Fail, Ss, Dst, Vst); valfun_4({gc_bif,Op,{f,Fail},Live,Ss,Dst}, Vst) -> validate_gc_bif(Op, Fail, Ss, Dst, Live, Vst); valfun_4(return, #vst{current=#st{numy=none}}=Vst) -> assert_durable_term({x,0}, Vst), kill_state(Vst); valfun_4(return, #vst{current=#st{numy=NumY}}) -> error({stack_frame,NumY}); valfun_4({loop_rec,{f,Fail},Dst}, Vst) -> %% This term may not be part of the root set until remove_message/0 is %% executed. If control transfers to the loop_rec_end/1 instruction, no %% part of this term must be stored in a Y register. branch(Fail, Vst, fun(SuccVst0) -> {Ref, SuccVst} = new_value(any, loop_rec, [], SuccVst0), mark_fragile(Dst, set_reg_vref(Ref, Dst, SuccVst)) end); valfun_4({wait,_}, Vst) -> verify_y_init(Vst), kill_state(Vst); valfun_4({wait_timeout,_,Src}, Vst) -> assert_term(Src, Vst), verify_y_init(Vst), prune_x_regs(0, Vst); valfun_4({loop_rec_end,_}, Vst) -> verify_y_init(Vst), kill_state(Vst); valfun_4(timeout, Vst) -> prune_x_regs(0, Vst); valfun_4(send, Vst) -> call(send, 2, Vst); %% Match instructions. valfun_4({select_val,Src,{f,Fail},{list,Choices}}, Vst) -> assert_term(Src, Vst), assert_choices(Choices), validate_select_val(Fail, Choices, Src, Vst); valfun_4({select_tuple_arity,Tuple,{f,Fail},{list,Choices}}, Vst) -> assert_type(#t_tuple{}, Tuple, Vst), assert_arities(Choices), validate_select_tuple_arity(Fail, Choices, Tuple, Vst); %% New bit syntax matching instructions. valfun_4({test,bs_start_match3,{f,Fail},Live,[Src],Dst}, Vst) -> validate_bs_start_match(Fail, Live, bsm_match_state(), Src, Dst, Vst); valfun_4({test,bs_start_match2,{f,Fail},Live,[Src,Slots],Dst}, Vst) -> validate_bs_start_match(Fail, Live, bsm_match_state(Slots), Src, Dst, Vst); valfun_4({test,bs_match_string,{f,Fail},[Ctx,_,_]}, Vst) -> assert_type(#t_bs_context{}, Ctx, Vst), branch(Fail, Vst, fun(V) -> V end); valfun_4({test,bs_skip_bits2,{f,Fail},[Ctx,Src,_,_]}, Vst) -> assert_type(#t_bs_context{}, Ctx, Vst), assert_term(Src, Vst), branch(Fail, Vst, fun(V) -> V end); valfun_4({test,bs_test_tail2,{f,Fail},[Ctx,_]}, Vst) -> assert_type(#t_bs_context{}, Ctx, Vst), branch(Fail, Vst, fun(V) -> V end); valfun_4({test,bs_test_unit,{f,Fail},[Ctx,_]}, Vst) -> assert_type(#t_bs_context{}, Ctx, Vst), branch(Fail, Vst, fun(V) -> V end); valfun_4({test,bs_skip_utf8,{f,Fail},[Ctx,Live,_]}, Vst) -> validate_bs_skip_utf(Fail, Ctx, Live, Vst); valfun_4({test,bs_skip_utf16,{f,Fail},[Ctx,Live,_]}, Vst) -> validate_bs_skip_utf(Fail, Ctx, Live, Vst); valfun_4({test,bs_skip_utf32,{f,Fail},[Ctx,Live,_]}, Vst) -> validate_bs_skip_utf(Fail, Ctx, Live, Vst); valfun_4({test,bs_get_integer2=Op,{f,Fail},Live, [Ctx,{integer,Size},Unit,{field_flags,Flags}],Dst},Vst) when Size * Unit =< 64 -> Type = case member(unsigned, Flags) of true -> NumBits = Size * Unit, beam_types:make_integer(0, (1 bsl NumBits)-1); false -> %% Signed integer or way too large, don't bother. #t_integer{} end, validate_bs_get(Op, Fail, Ctx, Live, Type, Dst, Vst); valfun_4({test,bs_get_integer2=Op,{f,Fail},Live, [Ctx,_Size,_Unit,_Flags],Dst},Vst) -> validate_bs_get(Op, Fail, Ctx, Live, #t_integer{}, Dst, Vst); valfun_4({test,bs_get_float2=Op,{f,Fail},Live,[Ctx,_,_,_],Dst}, Vst) -> validate_bs_get(Op, Fail, Ctx, Live, float, Dst, Vst); valfun_4({test,bs_get_binary2=Op,{f,Fail},Live,[Ctx,_,Unit,_],Dst}, Vst) -> validate_bs_get(Op, Fail, Ctx, Live, #t_bitstring{unit=Unit}, Dst, Vst); valfun_4({test,bs_get_utf8=Op,{f,Fail},Live,[Ctx,_],Dst}, Vst) -> Type = beam_types:make_integer(0, ?UNICODE_MAX), validate_bs_get(Op, Fail, Ctx, Live, Type, Dst, Vst); valfun_4({test,bs_get_utf16=Op,{f,Fail},Live,[Ctx,_],Dst}, Vst) -> Type = beam_types:make_integer(0, ?UNICODE_MAX), validate_bs_get(Op, Fail, Ctx, Live, Type, Dst, Vst); valfun_4({test,bs_get_utf32=Op,{f,Fail},Live,[Ctx,_],Dst}, Vst) -> Type = beam_types:make_integer(0, ?UNICODE_MAX), validate_bs_get(Op, Fail, Ctx, Live, Type, Dst, Vst); valfun_4({bs_save2,Ctx,SavePoint}, Vst) -> bsm_save(Ctx, SavePoint, Vst); valfun_4({bs_restore2,Ctx,SavePoint}, Vst) -> bsm_restore(Ctx, SavePoint, Vst); valfun_4({bs_get_position, Ctx, Dst, Live}, Vst0) -> assert_type(#t_bs_context{}, Ctx, Vst0), verify_live(Live, Vst0), verify_y_init(Vst0), Vst = prune_x_regs(Live, Vst0), create_term(#t_abstract{kind=ms_position}, bs_get_position, [Ctx], Dst, Vst, Vst0); valfun_4({bs_set_position, Ctx, Pos}, Vst) -> assert_type(#t_bs_context{}, Ctx, Vst), assert_type(#t_abstract{kind=ms_position}, Pos, Vst), Vst; %% Other test instructions. valfun_4({test,has_map_fields,{f,Lbl},Src,{list,List}}, Vst) -> assert_type(#t_map{}, Src, Vst), assert_unique_map_keys(List), branch(Lbl, Vst, fun(V) -> V end); valfun_4({test,is_atom,{f,Lbl},[Src]}, Vst) -> type_test(Lbl, #t_atom{}, Src, Vst); valfun_4({test,is_binary,{f,Lbl},[Src]}, Vst) -> type_test(Lbl, #t_bitstring{unit=8}, Src, Vst); valfun_4({test,is_bitstr,{f,Lbl},[Src]}, Vst) -> type_test(Lbl, #t_bitstring{}, Src, Vst); valfun_4({test,is_boolean,{f,Lbl},[Src]}, Vst) -> type_test(Lbl, beam_types:make_boolean(), Src, Vst); valfun_4({test,is_float,{f,Lbl},[Src]}, Vst) -> type_test(Lbl, float, Src, Vst); valfun_4({test,is_tuple,{f,Lbl},[Src]}, Vst) -> type_test(Lbl, #t_tuple{}, Src, Vst); valfun_4({test,is_integer,{f,Lbl},[Src]}, Vst) -> type_test(Lbl, #t_integer{}, Src, Vst); valfun_4({test,is_nonempty_list,{f,Lbl},[Src]}, Vst) -> type_test(Lbl, cons, Src, Vst); valfun_4({test,is_number,{f,Lbl},[Src]}, Vst) -> type_test(Lbl, number, Src, Vst); valfun_4({test,is_list,{f,Lbl},[Src]}, Vst) -> type_test(Lbl, list, Src, Vst); valfun_4({test,is_map,{f,Lbl},[Src]}, Vst) -> type_test(Lbl, #t_map{}, Src, Vst); valfun_4({test,is_nil,{f,Lbl},[Src]}, Vst) -> %% is_nil is an exact check against the 'nil' value, and should not be %% treated as a simple type test. assert_term(Src, Vst), branch(Lbl, Vst, fun(FailVst) -> update_ne_types(Src, nil, FailVst) end, fun(SuccVst) -> update_eq_types(Src, nil, SuccVst) end); valfun_4({test,test_arity,{f,Lbl},[Tuple,Sz]}, Vst) when is_integer(Sz) -> assert_type(#t_tuple{}, Tuple, Vst), Type = #t_tuple{exact=true,size=Sz}, type_test(Lbl, Type, Tuple, Vst); valfun_4({test,is_tagged_tuple,{f,Lbl},[Src,Sz,Atom]}, Vst) -> assert_term(Src, Vst), Es = #{ 1 => get_literal_type(Atom) }, Type = #t_tuple{exact=true,size=Sz,elements=Es}, type_test(Lbl, Type, Src, Vst); valfun_4({test,is_eq_exact,{f,Lbl},[Src,Val]=Ss}, Vst) -> validate_src(Ss, Vst), branch(Lbl, Vst, fun(FailVst) -> update_ne_types(Src, Val, FailVst) end, fun(SuccVst) -> update_eq_types(Src, Val, SuccVst) end); valfun_4({test,is_ne_exact,{f,Lbl},[Src,Val]=Ss}, Vst) -> validate_src(Ss, Vst), branch(Lbl, Vst, fun(FailVst) -> update_eq_types(Src, Val, FailVst) end, fun(SuccVst) -> update_ne_types(Src, Val, SuccVst) end); valfun_4({test,_Op,{f,Lbl},Src}, Vst) -> %% is_pid, is_reference, et cetera. validate_src(Src, Vst), branch(Lbl, Vst, fun(V) -> V end); valfun_4({bs_add,{f,Fail},[A,B,_],Dst}, Vst) -> assert_term(A, Vst), assert_term(B, Vst), branch(Fail, Vst, fun(SuccVst) -> create_term(#t_integer{}, bs_add, [A, B], Dst, SuccVst) end); valfun_4({bs_utf8_size,{f,Fail},A,Dst}, Vst) -> assert_term(A, Vst), branch(Fail, Vst, fun(SuccVst) -> create_term(#t_integer{}, bs_utf8_size, [A], Dst, SuccVst) end); valfun_4({bs_utf16_size,{f,Fail},A,Dst}, Vst) -> assert_term(A, Vst), branch(Fail, Vst, fun(SuccVst) -> create_term(#t_integer{}, bs_utf16_size, [A], Dst, SuccVst) end); valfun_4({bs_init2,{f,Fail},Sz,Heap,Live,_,Dst}, Vst0) -> verify_live(Live, Vst0), verify_y_init(Vst0), if is_integer(Sz) -> ok; true -> assert_term(Sz, Vst0) end, Vst = heap_alloc(Heap, Vst0), branch(Fail, Vst, fun(SuccVst0) -> SuccVst = prune_x_regs(Live, SuccVst0), create_term(#t_bitstring{unit=8}, bs_init2, [], Dst, SuccVst, SuccVst0) end); valfun_4({bs_init_bits,{f,Fail},Sz,Heap,Live,_,Dst}, Vst0) -> verify_live(Live, Vst0), verify_y_init(Vst0), if is_integer(Sz) -> ok; true -> assert_term(Sz, Vst0) end, Vst = heap_alloc(Heap, Vst0), branch(Fail, Vst, fun(SuccVst0) -> SuccVst = prune_x_regs(Live, SuccVst0), create_term(#t_bitstring{}, bs_init_bits, [], Dst, SuccVst) end); valfun_4({bs_append,{f,Fail},Bits,Heap,Live,Unit,Bin,_Flags,Dst}, Vst0) -> verify_live(Live, Vst0), verify_y_init(Vst0), assert_term(Bits, Vst0), assert_term(Bin, Vst0), Vst = heap_alloc(Heap, Vst0), branch(Fail, Vst, fun(SuccVst0) -> SuccVst = prune_x_regs(Live, SuccVst0), create_term(#t_bitstring{unit=Unit}, bs_append, [Bin], Dst, SuccVst, SuccVst0) end); valfun_4({bs_private_append,{f,Fail},Bits,Unit,Bin,_Flags,Dst}, Vst) -> assert_term(Bits, Vst), assert_term(Bin, Vst), branch(Fail, Vst, fun(SuccVst) -> create_term(#t_bitstring{unit=Unit}, bs_private_append, [Bin], Dst, SuccVst) end); valfun_4({bs_put_string,Sz,_}, Vst) when is_integer(Sz) -> Vst; valfun_4({bs_put_binary,{f,Fail},Sz,_,_,Src}, Vst) -> assert_term(Sz, Vst), assert_term(Src, Vst), branch(Fail, Vst, fun(SuccVst) -> update_type(fun meet/2, #t_bitstring{}, Src, SuccVst) end); valfun_4({bs_put_float,{f,Fail},Sz,_,_,Src}, Vst) -> assert_term(Sz, Vst), assert_term(Src, Vst), branch(Fail, Vst, fun(SuccVst) -> update_type(fun meet/2, float, Src, SuccVst) end); valfun_4({bs_put_integer,{f,Fail},Sz,_,_,Src}, Vst) -> assert_term(Sz, Vst), assert_term(Src, Vst), branch(Fail, Vst, fun(SuccVst) -> update_type(fun meet/2, #t_integer{}, Src, SuccVst) end); valfun_4({bs_put_utf8,{f,Fail},_,Src}, Vst) -> assert_term(Src, Vst), branch(Fail, Vst, fun(SuccVst) -> update_type(fun meet/2, #t_integer{}, Src, SuccVst) end); valfun_4({bs_put_utf16,{f,Fail},_,Src}, Vst) -> assert_term(Src, Vst), branch(Fail, Vst, fun(SuccVst) -> update_type(fun meet/2, #t_integer{}, Src, SuccVst) end); valfun_4({bs_put_utf32,{f,Fail},_,Src}, Vst) -> assert_term(Src, Vst), branch(Fail, Vst, fun(SuccVst) -> update_type(fun meet/2, #t_integer{}, Src, SuccVst) end); %% Map instructions. valfun_4({put_map_assoc=Op,{f,Fail},Src,Dst,Live,{list,List}}, Vst) -> verify_put_map(Op, Fail, Src, Dst, Live, List, Vst); valfun_4({put_map_exact=Op,{f,Fail},Src,Dst,Live,{list,List}}, Vst) -> verify_put_map(Op, Fail, Src, Dst, Live, List, Vst); valfun_4({get_map_elements,{f,Fail},Src,{list,List}}, Vst) -> verify_get_map(Fail, Src, List, Vst); valfun_4(_, _) -> error(unknown_instruction). verify_get_map(Fail, Src, List, Vst0) -> assert_not_literal(Src), %OTP 22. assert_type(#t_map{}, Src, Vst0), branch(Fail, Vst0, fun(FailVst) -> clobber_map_vals(List, Src, FailVst) end, fun(SuccVst) -> Keys = extract_map_keys(List), assert_unique_map_keys(Keys), extract_map_vals(List, Src, SuccVst, SuccVst) end). %% get_map_elements may leave its destinations in an inconsistent state when %% the fail label is taken. Consider the following: %% %% {get_map_elements,{f,7},{x,1},{list,[{atom,a},{x,1},{atom,b},{x,2}]}}. %% %% If 'a' exists but not 'b', {x,1} is overwritten when we jump to {f,7}. %% %% We must be careful to preserve the uninitialized status for Y registers %% that have been allocated but not yet defined. clobber_map_vals([Key,Dst|T], Map, Vst0) -> case is_reg_initialized(Dst, Vst0) of true -> Vst = extract_term(any, {bif,map_get}, [Key, Map], Dst, Vst0), clobber_map_vals(T, Map, Vst); false -> clobber_map_vals(T, Map, Vst0) end; clobber_map_vals([], _Map, Vst) -> Vst. is_reg_initialized({x,_}=Reg, #vst{current=#st{xs=Xs}}) -> is_map_key(Reg, Xs); is_reg_initialized({y,_}=Reg, #vst{current=#st{ys=Ys}}) -> case Ys of #{Reg:=Val} -> Val =/= uninitialized; #{} -> false end; is_reg_initialized(V, #vst{}) -> error({not_a_register, V}). extract_map_keys([Key,_Val|T]) -> [Key|extract_map_keys(T)]; extract_map_keys([]) -> []. extract_map_vals([Key,Dst|Vs], Map, Vst0, Vsti0) -> assert_term(Key, Vst0), Vsti = extract_term(any, {bif,map_get}, [Key, Map], Dst, Vsti0), extract_map_vals(Vs, Map, Vst0, Vsti); extract_map_vals([], _Map, _Vst0, Vst) -> Vst. verify_put_map(Op, Fail, Src, Dst, Live, List, Vst0) -> assert_type(#t_map{}, Src, Vst0), verify_live(Live, Vst0), verify_y_init(Vst0), _ = [assert_term(Term, Vst0) || Term <- List], Vst = heap_alloc(0, Vst0), branch(Fail, Vst, fun(SuccVst0) -> SuccVst = prune_x_regs(Live, SuccVst0), Keys = extract_map_keys(List), assert_unique_map_keys(Keys), create_term(#t_map{}, Op, [Src], Dst, SuccVst, SuccVst0) end). %% %% Common code for validating BIFs. %% %% OrigVst is the state we entered the instruction with, which is needed for %% gc_bifs as X registers are pruned prior to calling this function, which may %% have clobbered the sources. %% validate_bif(Op, Fail, Ss, Dst, Vst) -> validate_src(Ss, Vst), validate_bif_1(bif, Op, Fail, Ss, Dst, Vst, Vst). validate_gc_bif(Op, Fail, Ss, Dst, Live, #vst{current=St0}=Vst0) -> validate_src(Ss, Vst0), verify_live(Live, Vst0), verify_y_init(Vst0), %% Heap allocations and X registers are killed regardless of whether we %% fail or not, as we may fail after GC. St = kill_heap_allocation(St0), Vst = prune_x_regs(Live, Vst0#vst{current=St}), validate_src(Ss, Vst), validate_bif_1(gc_bif, Op, Fail, Ss, Dst, Vst, Vst). validate_bif_1(Kind, Op, cannot_fail, Ss, Dst, OrigVst, Vst0) -> %% This BIF explicitly cannot fail; it will not jump to a guard nor throw %% an exception. Validation will fail if it returns 'none' or has a type %% conflict on one of its arguments. {Type, ArgTypes, _CanSubtract} = bif_types(Op, Ss, Vst0), ZippedArgs = zip(Ss, ArgTypes), Vst = foldl(fun({A, T}, V) -> update_type(fun meet/2, T, A, V) end, Vst0, ZippedArgs), true = Type =/= none, %Assertion. extract_term(Type, {Kind, Op}, Ss, Dst, Vst, OrigVst); validate_bif_1(Kind, Op, Fail, Ss, Dst, OrigVst, Vst) -> {Type, ArgTypes, CanSubtract} = bif_types(Op, Ss, Vst), ZippedArgs = zip(Ss, ArgTypes), FailFun = case CanSubtract of true -> fun(FailVst0) -> foldl(fun({A, T}, V) -> update_type(fun subtract/2, T, A, V) end, FailVst0, ZippedArgs) end; false -> fun(S) -> S end end, SuccFun = fun(SuccVst0) -> SuccVst = foldl(fun({A, T}, V) -> update_type(fun meet/2, T, A, V) end, SuccVst0, ZippedArgs), extract_term(Type, {Kind, Op}, Ss, Dst, SuccVst, OrigVst) end, branch(Fail, Vst, FailFun, SuccFun). %% %% Common code for validating bs_start_match* instructions. %% validate_bs_start_match(Fail, Live, Type, Src, Dst, Vst) -> verify_live(Live, Vst), verify_y_init(Vst), %% #t_bs_context{} can represent either a match context or a term, so we %% have to mark the source as a term if it fails with a match context as an %% input. This hack is only needed until we get proper union types. branch(Fail, Vst, fun(FailVst) -> case get_movable_term_type(Src, FailVst) of #t_bs_context{} -> override_type(any, Src, FailVst); _ -> FailVst end end, fun(SuccVst0) -> SuccVst1 = update_type(fun meet/2, #t_bitstring{}, Src, SuccVst0), SuccVst = prune_x_regs(Live, SuccVst1), extract_term(Type, bs_start_match, [Src], Dst, SuccVst, SuccVst0) end). %% %% Common code for validating bs_get* instructions. %% validate_bs_get(Op, Fail, Ctx, Live, Type, Dst, Vst) -> assert_type(#t_bs_context{}, Ctx, Vst), verify_live(Live, Vst), verify_y_init(Vst), branch(Fail, Vst, fun(SuccVst0) -> SuccVst = prune_x_regs(Live, SuccVst0), extract_term(Type, Op, [Ctx], Dst, SuccVst, SuccVst0) end). %% %% Common code for validating bs_skip_utf* instructions. %% validate_bs_skip_utf(Fail, Ctx, Live, Vst) -> assert_type(#t_bs_context{}, Ctx, Vst), verify_y_init(Vst), verify_live(Live, Vst), branch(Fail, Vst, fun(SuccVst) -> prune_x_regs(Live, SuccVst) end). %% %% Common code for is_$type instructions. %% type_test(Fail, Type, Reg, Vst) -> assert_term(Reg, Vst), branch(Fail, Vst, fun(FailVst) -> update_type(fun subtract/2, Type, Reg, FailVst) end, fun(SuccVst) -> update_type(fun meet/2, Type, Reg, SuccVst) end). %% %% Special state handling for setelement/3 and set_tuple_element/3 instructions. %% A possibility for garbage collection must not occur between setelement/3 and %% set_tuple_element/3. %% %% Note that #vst.current will be 'none' if the instruction is unreachable. %% val_dsetel({move,_,_}, Vst) -> Vst; val_dsetel({call_ext,3,{extfunc,erlang,setelement,3}}, #vst{current=#st{}=St}=Vst) -> Vst#vst{current=St#st{setelem=true}}; val_dsetel({set_tuple_element,_,_,_}, #vst{current=#st{setelem=false}}) -> error(illegal_context_for_set_tuple_element); val_dsetel({set_tuple_element,_,_,_}, #vst{current=#st{setelem=true}}=Vst) -> Vst; val_dsetel({get_tuple_element,_,_,_}, Vst) -> Vst; val_dsetel({line,_}, Vst) -> Vst; val_dsetel(_, #vst{current=#st{setelem=true}=St}=Vst) -> Vst#vst{current=St#st{setelem=false}}; val_dsetel(_, Vst) -> Vst. kill_state(Vst) -> Vst#vst{current=none}. %% A "plain" call. %% The stackframe must be initialized. %% The instruction will return to the instruction following the call. call(Name, Live, #vst{current=St0}=Vst0) -> verify_call_args(Name, Live, Vst0), verify_y_init(Vst0), case call_types(Name, Live, Vst0) of {none, _, _} -> kill_state(Vst0); {RetType, _, _} -> St = St0#st{f=init_fregs()}, Vst = prune_x_regs(0, Vst0#vst{current=St}), create_term(RetType, call, [], {x,0}, Vst) end. %% Tail call. %% The stackframe must have a known size and be initialized. %% Does not return to the instruction following the call. tail_call(Name, Live, Vst0) -> verify_y_init(Vst0), Vst = deallocate(Vst0), verify_call_args(Name, Live, Vst), verify_no_ct(Vst), kill_state(Vst). verify_call_args(_, 0, #vst{}) -> ok; verify_call_args({f,Lbl}, Live, #vst{ft=Ft}=Vst) when is_integer(Live) -> case gb_trees:lookup(Lbl, Ft) of {value, FuncInfo} -> #{ arity := Live, parameter_types := ParamTypes } = FuncInfo, verify_local_args(Live - 1, ParamTypes, #{}, Vst); none -> error(local_call_to_unknown_function) end; verify_call_args(_, Live, Vst) when is_integer(Live)-> verify_remote_args_1(Live - 1, Vst); verify_call_args(_, Live, _) -> error({bad_number_of_live_regs,Live}). verify_remote_args_1(-1, _) -> ok; verify_remote_args_1(X, Vst) -> assert_durable_term({x, X}, Vst), verify_remote_args_1(X - 1, Vst). verify_local_args(-1, _ParamTypes, _CtxIds, _Vst) -> ok; verify_local_args(X, ParamTypes, CtxRefs, Vst) -> Reg = {x, X}, assert_not_fragile(Reg, Vst), case get_movable_term_type(Reg, Vst) of #t_bs_context{}=Type -> VRef = get_reg_vref(Reg, Vst), case CtxRefs of #{ VRef := Other } -> error({multiple_match_contexts, [Reg, Other]}); #{} -> verify_arg_type(Reg, Type, ParamTypes), verify_local_args(X - 1, ParamTypes, CtxRefs#{ VRef => Reg }, Vst) end; Type -> verify_arg_type(Reg, Type, ParamTypes), verify_local_args(X - 1, ParamTypes, CtxRefs, Vst) end. %% Verifies that the given argument narrows to what the function expects. verify_arg_type(Reg, #t_bs_context{}, ParamTypes) -> %% Match contexts require explicit support, and may not be passed to a %% function that accepts arbitrary terms. case ParamTypes of #{ Reg := #t_bs_context{}} -> ok; #{} -> error(no_bs_start_match2) end; verify_arg_type(Reg, GivenType, ParamTypes) -> case ParamTypes of #{ Reg := #t_bs_context{}} -> %% Functions that accept match contexts also accept all other %% terms. This will change once we support union types. ok; #{ Reg := RequiredType } -> case meet(GivenType, RequiredType) of GivenType -> ok; _ -> error({bad_arg_type, Reg, GivenType, RequiredType}) end; #{} -> ok end. allocate(Tag, Stk, Heap, Live, #vst{current=#st{numy=none}=St}=Vst0) -> verify_live(Live, Vst0), Vst1 = Vst0#vst{current=St#st{numy=Stk}}, Vst2 = prune_x_regs(Live, Vst1), Vst = init_stack(Tag, Stk - 1, Vst2), heap_alloc(Heap, Vst); allocate(_, _, _, _, #vst{current=#st{numy=Numy}}) -> error({existing_stack_frame,{size,Numy}}). deallocate(#vst{current=St}=Vst) -> Vst#vst{current=St#st{ys=#{},numy=none}}. init_stack(_Tag, -1, Vst) -> Vst; init_stack(Tag, Y, Vst) -> init_stack(Tag, Y - 1, create_tag(Tag, allocate, [], {y,Y}, Vst)). trim_stack(From, To, Top, #st{ys=Ys0}=St) when From =:= Top -> Ys = maps:filter(fun({y,Y}, _) -> Y < To end, Ys0), St#st{numy=To,ys=Ys}; trim_stack(From, To, Top, St0) -> Src = {y, From}, Dst = {y, To}, #st{ys=Ys0} = St0, Ys = case Ys0 of #{ Src := Ref } -> Ys0#{ Dst => Ref }; #{} -> error({invalid_shift,Src,Dst}) end, St = St0#st{ys=Ys}, trim_stack(From + 1, To + 1, Top, St). test_heap(Heap, Live, Vst0) -> verify_live(Live, Vst0), verify_y_init(Vst0), Vst = prune_x_regs(Live, Vst0), heap_alloc(Heap, Vst). heap_alloc(Heap, #vst{current=St0}=Vst) -> St1 = kill_heap_allocation(St0), St = heap_alloc_1(Heap, St1), Vst#vst{current=St}. heap_alloc_1({alloc,Alloc}, St) -> heap_alloc_2(Alloc, St); heap_alloc_1(HeapWords, St) when is_integer(HeapWords) -> St#st{h=HeapWords}. heap_alloc_2([{words,HeapWords}|T], St0) -> St = St0#st{h=HeapWords}, heap_alloc_2(T, St); heap_alloc_2([{floats,Floats}|T], St0) -> St = St0#st{hf=Floats}, heap_alloc_2(T, St); heap_alloc_2([], St) -> St. prune_x_regs(Live, #vst{current=St0}=Vst) when is_integer(Live) -> #st{fragile=Fragile0,xs=Xs0} = St0, Fragile = cerl_sets:filter(fun({x,X}) -> X < Live; ({y,_}) -> true end, Fragile0), Xs = maps:filter(fun({x,X}, _) -> X < Live end, Xs0), St = St0#st{fragile=Fragile,xs=Xs}, Vst#vst{current=St}. %% All choices in a select_val list must be integers, floats, or atoms. %% All must be of the same type. assert_choices([{Tag,_},{f,_}|T]) -> if Tag =:= atom; Tag =:= float; Tag =:= integer -> assert_choices_1(T, Tag); true -> error(bad_select_list) end; assert_choices([]) -> ok. assert_choices_1([{Tag,_},{f,_}|T], Tag) -> assert_choices_1(T, Tag); assert_choices_1([_,{f,_}|_], _Tag) -> error(bad_select_list); assert_choices_1([], _Tag) -> ok. assert_arities([Arity,{f,_}|T]) when is_integer(Arity) -> assert_arities(T); assert_arities([]) -> ok; assert_arities(_) -> error(bad_tuple_arity_list). %%% %%% Floating point checking. %%% %%% Possible values for the fls field (=floating point error state). %%% %%% undefined - Undefined (initial state). No float operations allowed. %%% %%% cleared - fclearerror/0 has been executed. Float operations %%% are allowed (such as fadd). %%% %%% checked - fcheckerror/1 has been executed. It is allowed to %%% move values out of floating point registers. %%% %%% The following instructions may be executed in any state: %%% %%% fconv Src {fr,_} %%% fmove Src {fr,_} %% Move INTO floating point register. %%% float_op(Ss, Dst, Vst0) -> _ = [assert_freg_set(S, Vst0) || S <- Ss], assert_fls(cleared, Vst0), Vst = set_fls(cleared, Vst0), set_freg(Dst, Vst). assert_fls(Fls, Vst) -> case get_fls(Vst) of Fls -> ok; OtherFls -> error({bad_floating_point_state,OtherFls}) end. set_fls(Fls, #vst{current=#st{}=St}=Vst) when is_atom(Fls) -> Vst#vst{current=St#st{fls=Fls}}. get_fls(#vst{current=#st{fls=Fls}}) when is_atom(Fls) -> Fls. init_fregs() -> 0. set_freg({fr,Fr}=Freg, #vst{current=#st{f=Fregs0}=St}=Vst) -> check_limit(Freg), Bit = 1 bsl Fr, if Fregs0 band Bit =:= 0 -> Fregs = Fregs0 bor Bit, Vst#vst{current=St#st{f=Fregs}}; true -> Vst end; set_freg(Fr, _) -> error({bad_target,Fr}). assert_freg_set({fr,Fr}=Freg, #vst{current=#st{f=Fregs}}) when is_integer(Fr), 0 =< Fr -> if (Fregs bsr Fr) band 1 =:= 0 -> error({uninitialized_reg,Freg}); true -> ok end; assert_freg_set(Fr, _) -> error({bad_source,Fr}). %%% Maps %% A single item list may be either a list or a register. %% %% A list with more than item must contain unique literals. %% %% An empty list is not allowed. assert_unique_map_keys([]) -> %% There is no reason to use the get_map_elements and %% has_map_fields instructions with empty lists. error(empty_field_list); assert_unique_map_keys([_]) -> ok; assert_unique_map_keys([_,_|_]=Ls) -> Vs = [begin assert_literal(L), L end || L <- Ls], case length(Vs) =:= sets:size(sets:from_list(Vs)) of true -> ok; false -> error(keys_not_unique) end. %%% %%% New binary matching instructions. %%% bsm_match_state() -> #t_bs_context{}. bsm_match_state(Slots) -> #t_bs_context{slots=Slots}. bsm_save(Reg, {atom,start}, Vst) -> %% Save point refering to where the match started. %% It is always valid. But don't forget to validate the context register. assert_type(#t_bs_context{}, Reg, Vst), Vst; bsm_save(Reg, SavePoint, Vst) -> case get_movable_term_type(Reg, Vst) of #t_bs_context{valid=Bits,slots=Slots}=Ctxt0 when SavePoint < Slots -> Ctx = Ctxt0#t_bs_context{valid=Bits bor (1 bsl SavePoint), slots=Slots}, override_type(Ctx, Reg, Vst); _ -> error({illegal_save, SavePoint}) end. bsm_restore(Reg, {atom,start}, Vst) -> %% (Mostly) automatic save point refering to where the match started. %% It is always valid. But don't forget to validate the context register. assert_type(#t_bs_context{}, Reg, Vst), Vst; bsm_restore(Reg, SavePoint, Vst) -> case get_movable_term_type(Reg, Vst) of #t_bs_context{valid=Bits,slots=Slots} when SavePoint < Slots -> case Bits band (1 bsl SavePoint) of 0 -> error({illegal_restore, SavePoint, not_set}); _ -> Vst end; _ -> error({illegal_restore, SavePoint, range}) end. validate_select_val(_Fail, _Choices, _Src, #vst{current=none}=Vst) -> %% We've already branched on all of Src's possible values, so we know we %% can't reach the fail label or any of the remaining choices. Vst; validate_select_val(Fail, [Val,{f,L}|T], Src, Vst0) -> Vst = branch(L, Vst0, fun(BranchVst) -> update_eq_types(Src, Val, BranchVst) end, fun(FailVst) -> update_ne_types(Src, Val, FailVst) end), validate_select_val(Fail, T, Src, Vst); validate_select_val(Fail, [], _Src, Vst) -> branch(Fail, Vst, fun(SuccVst) -> %% The next instruction is never executed. kill_state(SuccVst) end). validate_select_tuple_arity(_Fail, _Choices, _Src, #vst{current=none}=Vst) -> %% We've already branched on all of Src's possible values, so we know we %% can't reach the fail label or any of the remaining choices. Vst; validate_select_tuple_arity(Fail, [Arity,{f,L}|T], Tuple, Vst0) -> Type = #t_tuple{exact=true,size=Arity}, Vst = branch(L, Vst0, fun(BranchVst) -> update_type(fun meet/2, Type, Tuple, BranchVst) end, fun(FailVst) -> update_type(fun subtract/2, Type, Tuple, FailVst) end), validate_select_tuple_arity(Fail, T, Tuple, Vst); validate_select_tuple_arity(Fail, [], _, #vst{}=Vst) -> branch(Fail, Vst, fun(SuccVst) -> %% The next instruction is never executed. kill_state(SuccVst) end). %% %% Infers types from comparisons, looking at the expressions that produced the %% compared values and updates their types if we've learned something new from %% the comparison. %% infer_types(CompareOp, {Kind,_}=LHS, RHS, Vst) when Kind =:= x; Kind =:= y -> infer_types(CompareOp, get_reg_vref(LHS, Vst), RHS, Vst); infer_types(CompareOp, LHS, {Kind,_}=RHS, Vst) when Kind =:= x; Kind =:= y -> infer_types(CompareOp, LHS, get_reg_vref(RHS, Vst), Vst); infer_types(CompareOp, LHS, RHS, #vst{current=#st{vs=Vs}}=Vst0) -> case Vs of #{ LHS := LEntry, RHS := REntry } -> Vst = infer_types_1(LEntry, RHS, CompareOp, Vst0), infer_types_1(REntry, LHS, CompareOp, Vst); #{ LHS := LEntry } -> infer_types_1(LEntry, RHS, CompareOp, Vst0); #{ RHS := REntry } -> infer_types_1(REntry, LHS, CompareOp, Vst0); #{} -> Vst0 end. infer_types_1(#value{op={bif,'=:='},args=[LHS,RHS]}, Val, Op, Vst) -> case Val of {atom, Bool} when Op =:= eq_exact, Bool; Op =:= ne_exact, not Bool -> update_eq_types(LHS, RHS, Vst); {atom, Bool} when Op =:= ne_exact, Bool; Op =:= eq_exact, not Bool -> update_ne_types(LHS, RHS, Vst); _ -> Vst end; infer_types_1(#value{op={bif,'=/='},args=[LHS,RHS]}, Val, Op, Vst) -> case Val of {atom, Bool} when Op =:= ne_exact, Bool; Op =:= eq_exact, not Bool -> update_ne_types(LHS, RHS, Vst); {atom, Bool} when Op =:= eq_exact, Bool; Op =:= ne_exact, not Bool -> update_eq_types(LHS, RHS, Vst); _ -> Vst end; infer_types_1(#value{op={bif,element},args=[{integer,Index},Tuple]}, Val, Op, Vst) when Index >= 1 -> ElementType = get_term_type(Val, Vst), Es = beam_types:set_element_type(Index, ElementType, #{}), Type = #t_tuple{size=Index,elements=Es}, case Op of eq_exact -> update_type(fun meet/2, Type, Tuple, Vst); ne_exact -> update_type(fun subtract/2, Type, Tuple, Vst) end; infer_types_1(#value{op={bif,is_atom},args=[Src]}, Val, Op, Vst) -> infer_type_test_bif(#t_atom{}, Src, Val, Op, Vst); infer_types_1(#value{op={bif,is_boolean},args=[Src]}, Val, Op, Vst) -> infer_type_test_bif(beam_types:make_boolean(), Src, Val, Op, Vst); infer_types_1(#value{op={bif,is_binary},args=[Src]}, Val, Op, Vst) -> infer_type_test_bif(#t_bitstring{unit=8}, Src, Val, Op, Vst); infer_types_1(#value{op={bif,is_bitstring},args=[Src]}, Val, Op, Vst) -> infer_type_test_bif(#t_bitstring{}, Src, Val, Op, Vst); infer_types_1(#value{op={bif,is_float},args=[Src]}, Val, Op, Vst) -> infer_type_test_bif(float, Src, Val, Op, Vst); infer_types_1(#value{op={bif,is_integer},args=[Src]}, Val, Op, Vst) -> infer_type_test_bif(#t_integer{}, Src, Val, Op, Vst); infer_types_1(#value{op={bif,is_list},args=[Src]}, Val, Op, Vst) -> infer_type_test_bif(list, Src, Val, Op, Vst); infer_types_1(#value{op={bif,is_map},args=[Src]}, Val, Op, Vst) -> infer_type_test_bif(#t_map{}, Src, Val, Op, Vst); infer_types_1(#value{op={bif,is_number},args=[Src]}, Val, Op, Vst) -> infer_type_test_bif(number, Src, Val, Op, Vst); infer_types_1(#value{op={bif,is_tuple},args=[Src]}, Val, Op, Vst) -> infer_type_test_bif(#t_tuple{}, Src, Val, Op, Vst); infer_types_1(#value{op={bif,tuple_size}, args=[Tuple]}, {integer,Arity}, Op, Vst) -> Type = #t_tuple{exact=true,size=Arity}, case Op of eq_exact -> update_type(fun meet/2, Type, Tuple, Vst); ne_exact -> update_type(fun subtract/2, Type, Tuple, Vst) end; infer_types_1(_, _, _, Vst) -> Vst. infer_type_test_bif(Type, Src, Val, Op, Vst) -> case Val of {atom, Bool} when Op =:= eq_exact, Bool; Op =:= ne_exact, not Bool -> update_type(fun meet/2, Type, Src, Vst); {atom, Bool} when Op =:= ne_exact, Bool; Op =:= eq_exact, not Bool -> update_type(fun subtract/2, Type, Src, Vst); _ -> Vst end. %%% %%% Keeping track of types. %%% %% Assigns Src to Dst and marks them as aliasing each other. assign({y,_}=Src, {y,_}=Dst, Vst) -> %% The stack trimming optimization may generate a move from an initialized %% but unassigned Y register to another Y register. case get_raw_type(Src, Vst) of initialized -> create_tag(initialized, init, [], Dst, Vst); _ -> assign_1(Src, Dst, Vst) end; assign({Kind,_}=Src, Dst, Vst) when Kind =:= x; Kind =:= y -> assign_1(Src, Dst, Vst); assign(Literal, Dst, Vst) -> Type = get_literal_type(Literal), create_term(Type, move, [Literal], Dst, Vst). %% Creates a special tag value that isn't a regular term, such as 'initialized' %% or 'catchtag' create_tag(Tag, _Op, _Ss, {y,_}=Dst, #vst{current=#st{ys=Ys0}=St0}=Vst) -> case maps:get(Dst, Ys0, uninitialized) of {catchtag,_}=Prev -> error(Prev); {trytag,_}=Prev -> error(Prev); _ -> check_try_catch_tags(Tag, Dst, Vst), Ys = Ys0#{ Dst => Tag }, St = St0#st{ys=Ys}, remove_fragility(Dst, Vst#vst{current=St}) end; create_tag(_Tag, _Op, _Ss, Dst, _Vst) -> error({invalid_tag_register, Dst}). %% Wipes a special tag, leaving the register initialized but empty. kill_tag({y,_}=Reg, #vst{current=#st{ys=Ys0}=St0}=Vst) -> _ = get_tag_type(Reg, Vst), %Assertion. Ys = Ys0#{ Reg => initialized }, Vst#vst{current=St0#st{ys=Ys}}. %% Creates a completely new term with the given type. create_term(Type, Op, Ss0, Dst, Vst0) -> create_term(Type, Op, Ss0, Dst, Vst0, Vst0). %% As create_term/4, but uses the incoming Vst for argument resolution in %% case x-regs have been pruned and the sources can no longer be found. create_term(Type, Op, Ss0, Dst, Vst0, OrigVst) -> {Ref, Vst1} = new_value(Type, Op, resolve_args(Ss0, OrigVst), Vst0), Vst = remove_fragility(Dst, Vst1), set_reg_vref(Ref, Dst, Vst). %% Extracts a term from Ss, propagating fragility. extract_term(Type, Op, Ss0, Dst, Vst0) -> extract_term(Type, Op, Ss0, Dst, Vst0, Vst0). %% As extract_term/4, but uses the incoming Vst for argument resolution in %% case x-regs have been pruned and the sources can no longer be found. extract_term(Type, Op, Ss0, Dst, Vst0, OrigVst) -> {Ref, Vst1} = new_value(Type, Op, resolve_args(Ss0, OrigVst), Vst0), Vst = propagate_fragility(Dst, Ss0, Vst1), set_reg_vref(Ref, Dst, Vst). %% Translates instruction arguments into the argument() type, decoupling them %% from their registers, allowing us to infer their types after they've been %% clobbered or moved. resolve_args([{Kind,_}=Src | Args], Vst) when Kind =:= x; Kind =:= y -> [get_reg_vref(Src, Vst) | resolve_args(Args, Vst)]; resolve_args([Lit | Args], Vst) -> assert_literal(Lit), [Lit | resolve_args(Args, Vst)]; resolve_args([], _Vst) -> []. %% Overrides the type of Reg. This is ugly but a necessity for certain %% destructive operations. override_type(Type, Reg, Vst) -> update_type(fun(_, T) -> T end, Type, Reg, Vst). %% This is used when linear code finds out more and more information about a %% type, so that the type gets more specialized. update_type(Merge, With, #value_ref{}=Ref, Vst) -> %% If the old type can't be merged with the new one, the type information %% is inconsistent and we know that some instructions will never be %% executed at run-time. For example: %% %% {test,is_list,Fail,[Reg]}. %% {test,is_tuple,Fail,[Reg]}. %% {test,test_arity,Fail,[Reg,5]}. %% %% Note that the test_arity instruction can never be reached, so we need to %% kill the state to avoid raising an error when we encounter it. %% %% Simply returning `kill_state(Vst)` is unsafe however as we might be in %% the middle of an instruction, and altering the rest of the validator %% (eg. prune_x_regs/2) to no-op on dead states is prone to error. %% %% We therefore throw a 'type_conflict' error instead, which causes %% validation to fail unless we're in a context where such errors can be %% handled, such as in a branch handler. Current = get_raw_type(Ref, Vst), case Merge(Current, With) of none -> throw({type_conflict, Current, With}); Type -> set_type(Type, Ref, Vst) end; update_type(Merge, With, {Kind,_}=Reg, Vst) when Kind =:= x; Kind =:= y -> update_type(Merge, With, get_reg_vref(Reg, Vst), Vst); update_type(Merge, With, Literal, Vst) -> %% Literals always retain their type, but we still need to bail on type %% conflicts. Type = get_literal_type(Literal), case Merge(Type, With) of none -> throw({type_conflict, Type, With}); _Type -> Vst end. update_eq_types(LHS, RHS, Vst0) -> LType = get_term_type(LHS, Vst0), RType = get_term_type(RHS, Vst0), Vst1 = update_type(fun meet/2, RType, LHS, Vst0), Vst = update_type(fun meet/2, LType, RHS, Vst1), infer_types(eq_exact, LHS, RHS, Vst). update_ne_types(LHS, RHS, Vst0) -> Vst1 = update_ne_types_1(LHS, RHS, Vst0), Vst = update_ne_types_1(RHS, LHS, Vst1), infer_types(ne_exact, LHS, RHS, Vst). update_ne_types_1(LHS, RHS, Vst0) -> %% While updating types on equality is fairly straightforward, inequality %% is a bit trickier since all we know is that the *value* of LHS differs %% from RHS, so we can't blindly subtract their types. %% %% Consider `number =/= #t_integer{}`; all we know is that LHS isn't equal %% to some *specific integer* of unknown value, and if we were to subtract %% #t_integer{} we would erroneously infer that the new type is float. %% %% Therefore, we only subtract when we know that RHS has a specific value. RType = get_term_type(RHS, Vst0), case beam_types:is_singleton_type(RType) of true -> Vst = update_type(fun subtract/2, RType, LHS, Vst0), %% If LHS has a specific value after subtraction we can infer types %% as if we've made an exact match, which is much stronger than %% ne_exact. LType = get_term_type(LHS, Vst), case beam_types:get_singleton_value(LType) of {ok, Value} -> infer_types(eq_exact, LHS, value_to_literal(Value), Vst); error -> Vst end; false -> Vst0 end. %% Helper functions for the above. assign_1(Src, Dst, Vst0) -> assert_movable(Src, Vst0), Vst = propagate_fragility(Dst, [Src], Vst0), set_reg_vref(get_reg_vref(Src, Vst), Dst, Vst). set_reg_vref(Ref, {x,_}=Dst, Vst) -> check_limit(Dst), #vst{current=#st{xs=Xs0}=St0} = Vst, St = St0#st{xs=Xs0#{ Dst => Ref }}, Vst#vst{current=St}; set_reg_vref(Ref, {y,_}=Dst, #vst{current=#st{ys=Ys0}=St0} = Vst) -> check_limit(Dst), case Ys0 of #{ Dst := {catchtag,_}=Tag } -> error(Tag); #{ Dst := {trytag,_}=Tag } -> error(Tag); #{ Dst := _ } -> St = St0#st{ys=Ys0#{ Dst => Ref }}, Vst#vst{current=St}; #{} -> %% Storing into a non-existent Y register means that we haven't set %% up a (sufficiently large) stack. error({invalid_store, Dst}) end. get_reg_vref({x,_}=Src, #vst{current=#st{xs=Xs}}) -> check_limit(Src), case Xs of #{ Src := #value_ref{}=Ref } -> Ref; #{} -> error({uninitialized_reg, Src}) end; get_reg_vref({y,_}=Src, #vst{current=#st{ys=Ys}}) -> check_limit(Src), case Ys of #{ Src := #value_ref{}=Ref } -> Ref; #{ Src := initialized } -> error({unassigned, Src}); #{ Src := Tag } when Tag =/= uninitialized -> error(Tag); #{} -> error({uninitialized_reg, Src}) end. set_type(Type, #value_ref{}=Ref, #vst{current=#st{vs=Vs0}=St}=Vst) -> #{ Ref := #value{}=Entry } = Vs0, Vs = Vs0#{ Ref => Entry#value{type=Type} }, Vst#vst{current=St#st{vs=Vs}}. new_value(Type, Op, Ss, #vst{current=#st{vs=Vs0}=St,ref_ctr=Counter}=Vst) -> Ref = #value_ref{id=Counter}, Vs = Vs0#{ Ref => #value{op=Op,args=Ss,type=Type} }, {Ref, Vst#vst{current=St#st{vs=Vs},ref_ctr=Counter+1}}. kill_catch_tag(Reg, #vst{current=#st{ct=[Tag|Tags]}=St}=Vst0) -> Vst = Vst0#vst{current=St#st{ct=Tags,fls=undefined}}, Tag = get_tag_type(Reg, Vst), %Assertion. kill_tag(Reg, Vst). check_try_catch_tags(Type, {y,N}=Reg, Vst) -> %% Every catch or try/catch must use a lower Y register number than any %% enclosing catch or try/catch. That will ensure that when the stack is %% scanned when an exception occurs, the innermost try/catch tag is found %% first. case is_try_catch_tag(Type) of true -> case collect_try_catch_tags(N - 1, Vst, []) of [_|_]=Bad -> error({bad_try_catch_nesting, Reg, Bad}); [] -> ok end; false -> ok end. assert_term(Src, Vst) -> _ = get_term_type(Src, Vst), ok. assert_movable(Src, Vst) -> _ = get_movable_term_type(Src, Vst), ok. assert_literal(Src) -> case is_literal(Src) of true -> ok; false -> error({literal_required,Src}) end. assert_not_literal(Src) -> case is_literal(Src) of true -> error({literal_not_allowed,Src}); false -> ok end. is_literal(nil) -> true; is_literal({atom,A}) when is_atom(A) -> true; is_literal({float,F}) when is_float(F) -> true; is_literal({integer,I}) when is_integer(I) -> true; is_literal({literal,_L}) -> true; is_literal(_) -> false. %% `dialyzer` complains about the float and general literal cases never being %% matched and I don't like suppressing warnings. Should they become possible %% I'm sure `dialyzer` will warn about it. value_to_literal([]) -> nil; value_to_literal(A) when is_atom(A) -> {atom,A}; value_to_literal(I) when is_integer(I) -> {integer,I}. %% These are just wrappers around their equivalents in beam_types, which %% handle the validator-specific #t_abstract{} type. %% %% The funny-looking abstract types produced here are intended to provoke %% errors on actual use; they do no harm just lying around. normalize(#t_abstract{}=A) -> error({abstract_type, A}); normalize(T) -> beam_types:normalize(T). join(Same, Same) -> Same; join(#t_abstract{}=A, B) -> #t_abstract{kind={join, A, B}}; join(A, #t_abstract{}=B) -> #t_abstract{kind={join, A, B}}; join(A, B) -> beam_types:join(A, B). meet(Same, Same) -> Same; meet(#t_abstract{}=A, B) -> #t_abstract{kind={meet, A, B}}; meet(A, #t_abstract{}=B) -> #t_abstract{kind={meet, A, B}}; meet(A, B) -> beam_types:meet(A, B). subtract(#t_abstract{}=A, B) -> #t_abstract{kind={subtract, A, B}}; subtract(A, #t_abstract{}=B) -> #t_abstract{kind={subtract, A, B}}; subtract(A, B) -> beam_types:subtract(A, B). assert_type(RequiredType, Term, Vst) -> GivenType = get_movable_term_type(Term, Vst), case meet(RequiredType, GivenType) of GivenType -> ok; _RequiredType -> error({bad_type,{needed,RequiredType},{actual,GivenType}}) end. validate_src(Ss, Vst) when is_list(Ss) -> _ = [assert_term(S, Vst) || S <- Ss], ok. %% get_term_type(Src, ValidatorState) -> Type %% Get the type of the source Src. The returned type Type will be %% a standard Erlang type (no catch/try tags or match contexts). get_term_type(Src, Vst) -> case get_movable_term_type(Src, Vst) of #t_bs_context{} -> error({match_context,Src}); #t_abstract{} -> error({abstract_term,Src}); Type -> Type end. %% get_movable_term_type(Src, ValidatorState) -> Type %% Get the type of the source Src. The returned type Type will be %% a standard Erlang type (no catch/try tags). Match contexts are OK. get_movable_term_type(Src, Vst) -> case get_raw_type(Src, Vst) of #t_abstract{kind=unfinished_tuple=Kind} -> error({Kind,Src}); initialized -> error({unassigned,Src}); uninitialized -> error({uninitialized_reg,Src}); {catchtag,_} -> error({catchtag,Src}); {trytag,_} -> error({trytag,Src}); Type -> Type end. %% get_tag_type(Src, ValidatorState) -> Type %% Return the tag type of a Y register, erroring out if it contains a term. get_tag_type({y,_}=Src, Vst) -> case get_raw_type(Src, Vst) of {catchtag, _}=Tag -> Tag; {trytag, _}=Tag -> Tag; uninitialized=Tag -> Tag; initialized=Tag -> Tag; Other -> error({invalid_tag,Src,Other}) end; get_tag_type(Src, _) -> error({invalid_tag_register,Src}). %% get_raw_type(Src, ValidatorState) -> Type %% Return the type of a register without doing any validity checks or %% conversions. get_raw_type({x,X}=Src, #vst{current=#st{xs=Xs}}=Vst) when is_integer(X) -> check_limit(Src), case Xs of #{ Src := #value_ref{}=Ref } -> get_raw_type(Ref, Vst); #{} -> uninitialized end; get_raw_type({y,Y}=Src, #vst{current=#st{ys=Ys}}=Vst) when is_integer(Y) -> check_limit(Src), case Ys of #{ Src := #value_ref{}=Ref } -> get_raw_type(Ref, Vst); #{ Src := Tag } -> Tag; #{} -> uninitialized end; get_raw_type(#value_ref{}=Ref, #vst{current=#st{vs=Vs}}) -> case Vs of #{ Ref := #value{type=Type} } -> Type; #{} -> none end; get_raw_type(Src, #vst{}) -> get_literal_type(Src). get_literal_type(nil) -> beam_types:make_type_from_value([]); get_literal_type({atom,A}) when is_atom(A) -> beam_types:make_type_from_value(A); get_literal_type({float,F}) when is_float(F) -> beam_types:make_type_from_value(F); get_literal_type({integer,I}) when is_integer(I) -> beam_types:make_type_from_value(I); get_literal_type({literal,L}) -> beam_types:make_type_from_value(L); get_literal_type(T) -> error({not_literal,T}). %%% %%% Branch tracking %%% %% Forks the execution flow, with the provided funs returning the new state of %% their respective branch; the "fail" fun returns the state where the branch %% is taken, and the "success" fun returns the state where it's not. %% %% If either path is known not to be taken at runtime (eg. due to a type %% conflict), it will simply be discarded. -spec branch(Lbl :: label(), Original :: #vst{}, FailFun :: BranchFun, SuccFun :: BranchFun) -> #vst{} when BranchFun :: fun((#vst{}) -> #vst{}). branch(Lbl, Vst0, FailFun, SuccFun) -> validate_branch(Lbl, Vst0), #vst{current=St0} = Vst0, try FailFun(Vst0) of Vst1 -> Vst2 = fork_state(Lbl, Vst1), Vst = Vst2#vst{current=St0}, try SuccFun(Vst) of V -> V catch {type_conflict, _, _} -> %% The instruction is guaranteed to fail; kill the state. kill_state(Vst) end catch {type_conflict, _, _} -> %% This instruction is guaranteed not to fail, so we run the %% success branch *without* catching type conflicts to avoid hiding %% errors in the validator itself; one of the branches must %% succeed. SuccFun(Vst0) end. validate_branch(Lbl, #vst{current=#st{ct=Tags}}) -> validate_branch_1(Lbl, Tags). validate_branch_1(Lbl, [{trytag, FailLbls} | Tags]) -> %% 'try_case' assumes that an exception has been thrown, so a direct branch %% will crash the emulator. %% %% (Jumping to a 'catch_end' is fine however as it will simply nop in the %% absence of an exception.) case ordsets:is_element(Lbl, FailLbls) of true -> error({illegal_branch, try_handler, Lbl}); false -> validate_branch_1(Lbl, Tags) end; validate_branch_1(Lbl, [_ | Tags]) -> validate_branch_1(Lbl, Tags); validate_branch_1(_Lbl, []) -> ok. %% A shorthand version of branch/4 for when the state is only altered on %% success. branch(Fail, Vst, SuccFun) -> branch(Fail, Vst, fun(V) -> V end, SuccFun). %% Directly branches off the state. This is an "internal" operation that should %% be used sparingly. fork_state(0, #vst{}=Vst) -> %% If the instruction fails, the stack may be scanned looking for a catch %% tag. Therefore the Y registers must be initialized at this point. verify_y_init(Vst), Vst; fork_state(L, #vst{current=St,branched=B,ref_ctr=Counter0}=Vst) -> case gb_trees:is_defined(L, B) of true -> {MergedSt, Counter} = merge_states(L, St, B, Counter0), Branched = gb_trees:update(L, MergedSt, B), Vst#vst{branched=Branched,ref_ctr=Counter}; false -> Vst#vst{branched=gb_trees:insert(L, St, B)} end. %% merge_states/3 is used when there's more than one way to arrive at a %% certain point, requiring the states to be merged down to the least %% common subset for the subsequent code. merge_states(L, St, Branched, Counter) when L =/= 0 -> case gb_trees:lookup(L, Branched) of none -> {St, Counter}; {value,OtherSt} when St =:= none -> {OtherSt, Counter}; {value,OtherSt} -> merge_states_1(St, OtherSt, Counter) end. merge_states_1(#st{xs=XsA,ys=YsA,vs=VsA,fragile=FragA,numy=NumYA,h=HA,ct=CtA}, #st{xs=XsB,ys=YsB,vs=VsB,fragile=FragB,numy=NumYB,h=HB,ct=CtB}, Counter0) -> %% When merging registers we drop all registers that aren't defined in both %% states, and resolve conflicts by creating new values (similar to phi %% nodes in SSA). %% %% While doing this we build a "merge map" detailing which values need to %% be kept and which new values need to be created to resolve conflicts. %% This map is then used to create a new value database where the types of %% all values have been joined. {Xs, Merge0, Counter1} = merge_regs(XsA, XsB, #{}, Counter0), {Ys, Merge, Counter} = merge_regs(YsA, YsB, Merge0, Counter1), Vs = merge_values(Merge, VsA, VsB), Fragile = merge_fragility(FragA, FragB), NumY = merge_stk(NumYA, NumYB), Ct = merge_ct(CtA, CtB), St = #st{xs=Xs,ys=Ys,vs=Vs,fragile=Fragile,numy=NumY,h=min(HA, HB),ct=Ct}, {St, Counter}. %% Merges the contents of two register maps, returning the updated "merge map" %% and the new registers. merge_regs(RsA, RsB, Merge, Counter) -> Keys = if map_size(RsA) =< map_size(RsB) -> maps:keys(RsA); map_size(RsA) > map_size(RsB) -> maps:keys(RsB) end, merge_regs_1(Keys, RsA, RsB, #{}, Merge, Counter). merge_regs_1([Reg | Keys], RsA, RsB, Regs, Merge0, Counter0) -> case {RsA, RsB} of {#{ Reg := #value_ref{}=RefA }, #{ Reg := #value_ref{}=RefB }} -> {Ref, Merge, Counter} = merge_vrefs(RefA, RefB, Merge0, Counter0), merge_regs_1(Keys, RsA, RsB, Regs#{ Reg => Ref }, Merge, Counter); {#{ Reg := TagA }, #{ Reg := TagB }} -> %% Tags describe the state of the register rather than the value it %% contains, so if a register contains a tag in one state we have %% to merge it as a tag regardless of whether the other state says %% it's a value. {y, _} = Reg, %Assertion. merge_regs_1(Keys, RsA, RsB, Regs#{ Reg => merge_tags(TagA,TagB) }, Merge0, Counter0); {#{}, #{}} -> merge_regs_1(Keys, RsA, RsB, Regs, Merge0, Counter0) end; merge_regs_1([], _, _, Regs, Merge, Counter) -> {Regs, Merge, Counter}. merge_tags(Same, Same) -> Same; merge_tags(uninitialized, _) -> uninitialized; merge_tags(_, uninitialized) -> uninitialized; merge_tags({trytag, LblsA}, {trytag, LblsB}) -> {trytag, ordsets:union(LblsA, LblsB)}; merge_tags({catchtag, LblsA}, {catchtag, LblsB}) -> {catchtag, ordsets:union(LblsA, LblsB)}; merge_tags(_A, _B) -> %% All other combinations leave the register initialized. Errors arising %% from this will be caught later on. initialized. merge_vrefs(Ref, Ref, Merge, Counter) -> %% We have two (potentially) different versions of the same value, so we %% should join their types into the same value. {Ref, Merge#{ Ref => Ref }, Counter}; merge_vrefs(RefA, RefB, Merge, Counter) -> %% We have two different values, so we need to create a new value from %% their joined type if we haven't already done so. Key = {RefA, RefB}, case Merge of #{ Key := Ref } -> {Ref, Merge, Counter}; #{} -> Ref = #value_ref{id=Counter}, {Ref, Merge#{ Key => Ref }, Counter + 1} end. merge_values(Merge, VsA, VsB) -> maps:fold(fun(Spec, New, Acc) -> mv_1(Spec, New, VsA, VsB, Acc) end, #{}, Merge). mv_1(Same, Same, VsA, VsB, Acc0) -> %% We're merging different versions of the same value, so it's safe to %% reuse old entries if the type's unchanged. #value{type=TypeA,args=Args}=EntryA = map_get(Same, VsA), #value{type=TypeB,args=Args}=EntryB = map_get(Same, VsB), Entry = case join(TypeA, TypeB) of TypeA -> EntryA; TypeB -> EntryB; JoinedType -> EntryA#value{type=JoinedType} end, Acc = Acc0#{ Same => Entry }, %% Type inference may depend on values that are no longer reachable from a %% register, so all arguments must be merged into the new state. mv_args(Args, VsA, VsB, Acc); mv_1({RefA, RefB}, New, VsA, VsB, Acc) -> #value{type=TypeA} = map_get(RefA, VsA), #value{type=TypeB} = map_get(RefB, VsB), Acc#{ New => #value{op=join,args=[],type=join(TypeA, TypeB)} }. mv_args([#value_ref{}=Arg | Args], VsA, VsB, Acc0) -> case Acc0 of #{ Arg := _ } -> mv_args(Args, VsA, VsB, Acc0); #{} -> Acc = mv_1(Arg, Arg, VsA, VsB, Acc0), mv_args(Args, VsA, VsB, Acc) end; mv_args([_ | Args], VsA, VsB, Acc) -> mv_args(Args, VsA, VsB, Acc); mv_args([], _VsA, _VsB, Acc) -> Acc. merge_fragility(FragileA, FragileB) -> cerl_sets:union(FragileA, FragileB). merge_stk(S, S) -> S; merge_stk(_, _) -> undecided. merge_ct(S, S) -> S; merge_ct(Ct0, Ct1) -> merge_ct_1(Ct0, Ct1). merge_ct_1([], []) -> []; merge_ct_1([{trytag, LblsA} | CtA], [{trytag, LblsB} | CtB]) -> [{trytag, ordsets:union(LblsA, LblsB)} | merge_ct_1(CtA, CtB)]; merge_ct_1([{catchtag, LblsA} | CtA], [{catchtag, LblsB} | CtB]) -> [{catchtag, ordsets:union(LblsA, LblsB)} | merge_ct_1(CtA, CtB)]; merge_ct_1(_, _) -> undecided. verify_y_init(#vst{current=#st{numy=NumY,ys=Ys}}=Vst) when is_integer(NumY) -> HighestY = maps:fold(fun({y,Y}, _, Acc) -> max(Y, Acc) end, -1, Ys), true = NumY > HighestY, %Assertion. verify_y_init_1(NumY - 1, Vst), ok; verify_y_init(#vst{current=#st{numy=undecided,ys=Ys}}=Vst) -> HighestY = maps:fold(fun({y,Y}, _, Acc) -> max(Y, Acc) end, -1, Ys), verify_y_init_1(HighestY, Vst); verify_y_init(#vst{}) -> ok. verify_y_init_1(-1, _Vst) -> ok; verify_y_init_1(Y, Vst) -> Reg = {y, Y}, assert_not_fragile(Reg, Vst), case get_raw_type(Reg, Vst) of uninitialized -> error({uninitialized_reg,Reg}); _ -> verify_y_init_1(Y - 1, Vst) end. verify_live(0, _Vst) -> ok; verify_live(Live, Vst) when is_integer(Live), 0 < Live, Live =< 1023 -> verify_live_1(Live - 1, Vst); verify_live(Live, _Vst) -> error({bad_number_of_live_regs,Live}). verify_live_1(-1, _) -> ok; verify_live_1(X, Vst) when is_integer(X) -> Reg = {x, X}, case get_raw_type(Reg, Vst) of uninitialized -> error({Reg, not_live}); _ -> verify_live_1(X - 1, Vst) end. verify_no_ct(#vst{current=#st{numy=none}}) -> ok; verify_no_ct(#vst{current=#st{numy=undecided}}) -> error(unknown_size_of_stackframe); verify_no_ct(#vst{current=St}=Vst) -> case collect_try_catch_tags(St#st.numy - 1, Vst, []) of [_|_]=Bad -> error({unfinished_catch_try,Bad}); [] -> ok end. %% Collects all try/catch tags, walking down from the Nth stack position. collect_try_catch_tags(-1, _Vst, Acc) -> Acc; collect_try_catch_tags(Y, Vst, Acc0) -> Tag = get_raw_type({y, Y}, Vst), Acc = case is_try_catch_tag(Tag) of true -> [{{y, Y}, Tag} | Acc0]; false -> Acc0 end, collect_try_catch_tags(Y - 1, Vst, Acc). is_try_catch_tag({catchtag,_}) -> true; is_try_catch_tag({trytag,_}) -> true; is_try_catch_tag(_) -> false. eat_heap(N, #vst{current=#st{h=Heap0}=St}=Vst) -> case Heap0-N of Neg when Neg < 0 -> error({heap_overflow,{left,Heap0},{wanted,N}}); Heap -> Vst#vst{current=St#st{h=Heap}} end. eat_heap_float(#vst{current=#st{hf=HeapFloats0}=St}=Vst) -> case HeapFloats0-1 of Neg when Neg < 0 -> error({heap_overflow,{left,{HeapFloats0,floats}},{wanted,{1,floats}}}); HeapFloats -> Vst#vst{current=St#st{hf=HeapFloats}} end. %%% FRAGILITY %%% %%% The loop_rec/2 instruction may return a reference to a term that is not %%% part of the root set. That term or any part of it must not be included in a %%% garbage collection. Therefore, the term (or any part of it) must not be %%% passed to another function, placed in another term, or live in a Y register %%% over an instruction that may GC. %%% %%% Fragility is marked on a per-register (rather than per-value) basis. %% Marks Reg as fragile. mark_fragile(Reg, Vst) -> #vst{current=#st{fragile=Fragile0}=St0} = Vst, Fragile = cerl_sets:add_element(Reg, Fragile0), St = St0#st{fragile=Fragile}, Vst#vst{current=St}. propagate_fragility(Reg, Args, #vst{current=St0}=Vst) -> #st{fragile=Fragile0} = St0, Sources = cerl_sets:from_list(Args), Fragile = case cerl_sets:is_disjoint(Sources, Fragile0) of true -> cerl_sets:del_element(Reg, Fragile0); false -> cerl_sets:add_element(Reg, Fragile0) end, St = St0#st{fragile=Fragile}, Vst#vst{current=St}. %% Marks Reg as durable, must be used when assigning a newly created value to %% a register. remove_fragility(Reg, Vst) -> #vst{current=#st{fragile=Fragile0}=St0} = Vst, case cerl_sets:is_element(Reg, Fragile0) of true -> Fragile = cerl_sets:del_element(Reg, Fragile0), St = St0#st{fragile=Fragile}, Vst#vst{current=St}; false -> Vst end. %% Marks all registers as durable. remove_fragility(#vst{current=St0}=Vst) -> St = St0#st{fragile=cerl_sets:new()}, Vst#vst{current=St}. assert_durable_term(Src, Vst) -> assert_term(Src, Vst), assert_not_fragile(Src, Vst). assert_not_fragile({Kind,_}=Src, Vst) when Kind =:= x; Kind =:= y -> check_limit(Src), #vst{current=#st{fragile=Fragile}} = Vst, case cerl_sets:is_element(Src, Fragile) of true -> error({fragile_message_reference, Src}); false -> ok end; assert_not_fragile(Lit, #vst{}) -> assert_literal(Lit), ok. %%% %%% Return/argument types of calls and BIFs %%% bif_types(Op, Ss, Vst) -> Args = [normalize(get_term_type(Arg, Vst)) || Arg <- Ss], beam_call_types:types(erlang, Op, Args). call_types({extfunc,M,F,A}, A, Vst) -> Args = get_call_args(A, Vst), beam_call_types:types(M, F, Args); call_types(_, A, Vst) -> {any, get_call_args(A, Vst), false}. will_bif_succeed(fadd, [_,_], _Vst) -> maybe; will_bif_succeed(fdiv, [_,_], _Vst) -> maybe; will_bif_succeed(fmul, [_,_], _Vst) -> maybe; will_bif_succeed(fnegate, [_], _Vst) -> maybe; will_bif_succeed(fsub, [_,_], _Vst) -> maybe; will_bif_succeed(Op, Ss, Vst) -> Args = [normalize(get_term_type(Arg, Vst)) || Arg <- Ss], beam_call_types:will_succeed(erlang, Op, Args). will_call_succeed({extfunc,M,F,A}, Vst) -> beam_call_types:will_succeed(M, F, get_call_args(A, Vst)); will_call_succeed(_Call, _Vst) -> maybe. get_call_args(Arity, Vst) -> get_call_args_1(0, Arity, Vst). get_call_args_1(Arity, Arity, _) -> []; get_call_args_1(N, Arity, Vst) when N < Arity -> ArgType = normalize(get_movable_term_type({x,N}, Vst)), [ArgType | get_call_args_1(N + 1, Arity, Vst)]. check_limit({x,X}=Src) when is_integer(X) -> if %% Note: x(1023) is reserved for use by the BEAM loader. 0 =< X, X < 1023 -> ok; 1023 =< X -> error(limit); X < 0 -> error({bad_register, Src}) end; check_limit({y,Y}=Src) when is_integer(Y) -> if 0 =< Y, Y < 1024 -> ok; 1024 =< Y -> error(limit); Y < 0 -> error({bad_register, Src}) end; check_limit({fr,Fr}=Src) when is_integer(Fr) -> if 0 =< Fr, Fr < 1023 -> ok; 1023 =< Fr -> error(limit); Fr < 0 -> error({bad_register, Src}) end. min(A, B) when is_integer(A), is_integer(B), A < B -> A; min(A, B) when is_integer(A), is_integer(B) -> B. gb_trees_from_list(L) -> gb_trees:from_orddict(sort(L)). error(Error) -> throw(Error).