%% %% %CopyrightBegin% %% %% Copyright Ericsson AB 1999-2011. All Rights Reserved. %% %% The contents of this file are subject to the Erlang Public License, %% Version 1.1, (the "License"); you may not use this file except in %% compliance with the License. You should have received a copy of the %% Erlang Public License along with this software. If not, it can be %% retrieved online at http://www.erlang.org/. %% %% Software distributed under the License is distributed on an "AS IS" %% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See %% the License for the specific language governing rights and limitations %% under the License. %% %% %CopyrightEnd% %% %% Purpose : Main Crypto API module. -module(crypto). -export([start/0, stop/0, info/0, info_lib/0, version/0]). -export([md4/1, md4_init/0, md4_update/2, md4_final/1]). -export([md5/1, md5_init/0, md5_update/2, md5_final/1]). -export([sha/1, sha_init/0, sha_update/2, sha_final/1]). %-export([sha256/1, sha256_init/0, sha256_update/2, sha256_final/1]). %-export([sha512/1, sha512_init/0, sha512_update/2, sha512_final/1]). -export([md5_mac/2, md5_mac_96/2, sha_mac/2, sha_mac_96/2]). -export([hmac_init/2, hmac_update/2, hmac_final/1, hmac_final_n/2]). -export([des_cbc_encrypt/3, des_cbc_decrypt/3, des_cbc_ivec/1]). -export([des_ecb_encrypt/2, des_ecb_decrypt/2]). -export([des3_cbc_encrypt/5, des3_cbc_decrypt/5]). -export([blowfish_ecb_encrypt/2, blowfish_ecb_decrypt/2]). -export([blowfish_cbc_encrypt/3, blowfish_cbc_decrypt/3]). -export([blowfish_cfb64_encrypt/3, blowfish_cfb64_decrypt/3]). -export([blowfish_ofb64_encrypt/3]). -export([des_ede3_cbc_encrypt/5, des_ede3_cbc_decrypt/5]). -export([aes_cfb_128_encrypt/3, aes_cfb_128_decrypt/3]). -export([exor/2]). -export([rc4_encrypt/2, rc4_set_key/1, rc4_encrypt_with_state/2]). -export([rc2_40_cbc_encrypt/3, rc2_40_cbc_decrypt/3]). -export([dss_verify/3, dss_verify/4, rsa_verify/3, rsa_verify/4]). -export([dss_sign/2, dss_sign/3, rsa_sign/2, rsa_sign/3]). -export([rsa_public_encrypt/3, rsa_private_decrypt/3]). -export([rsa_private_encrypt/3, rsa_public_decrypt/3]). -export([dh_generate_key/1, dh_generate_key/2, dh_compute_key/3]). -export([rand_bytes/1, rand_bytes/3, rand_uniform/2]). -export([strong_rand_bytes/1, strong_rand_mpint/3]). -export([mod_exp/3, mpint/1, erlint/1]). %% -export([idea_cbc_encrypt/3, idea_cbc_decrypt/3]). -export([aes_cbc_128_encrypt/3, aes_cbc_128_decrypt/3]). -export([aes_cbc_256_encrypt/3, aes_cbc_256_decrypt/3]). -export([aes_cbc_ivec/1]). -export([aes_ctr_encrypt/3, aes_ctr_decrypt/3]). -export([aes_ctr_stream_init/2, aes_ctr_stream_encrypt/2, aes_ctr_stream_decrypt/2]). -export([dh_generate_parameters/2, dh_check/1]). %% Testing see below -define(FUNC_LIST, [md4, md4_init, md4_update, md4_final, md5, md5_init, md5_update, md5_final, sha, sha_init, sha_update, sha_final, %% sha256, sha256_init, sha256_update, sha256_final, %% sha512, sha512_init, sha512_update, sha512_final, md5_mac, md5_mac_96, sha_mac, sha_mac_96, sha_mac_init, sha_mac_update, sha_mac_final, des_cbc_encrypt, des_cbc_decrypt, des_ecb_encrypt, des_ecb_decrypt, des_ede3_cbc_encrypt, des_ede3_cbc_decrypt, aes_cfb_128_encrypt, aes_cfb_128_decrypt, rand_bytes, strong_rand_bytes, strong_rand_mpint, rand_uniform, mod_exp, dss_verify,dss_sign, rsa_verify,rsa_sign, rsa_public_encrypt,rsa_private_decrypt, rsa_private_encrypt,rsa_public_decrypt, dh_generate_key, dh_compute_key, aes_cbc_128_encrypt, aes_cbc_128_decrypt, exor, rc4_encrypt, rc4_set_key, rc4_encrypt_with_state, rc2_40_cbc_encrypt, rc2_40_cbc_decrypt, %% idea_cbc_encrypt, idea_cbc_decrypt, aes_cbc_256_encrypt, aes_cbc_256_decrypt, aes_ctr_encrypt, aes_ctr_decrypt, aes_ctr_stream_init, aes_ctr_stream_encrypt, aes_ctr_stream_decrypt, info_lib]). -type rsa_digest_type() :: 'md5' | 'sha'. -type dss_digest_type() :: 'none' | 'sha'. -type crypto_integer() :: binary() | integer(). -define(nif_stub,nif_stub_error(?LINE)). -on_load(on_load/0). -define(CRYPTO_NIF_VSN,101). on_load() -> LibBaseName = "crypto", PrivDir = code:priv_dir(crypto), LibName = case erlang:system_info(build_type) of opt -> LibBaseName; Type -> LibTypeName = LibBaseName ++ "." ++ atom_to_list(Type), case (filelib:wildcard( filename:join( [PrivDir, "lib", LibTypeName ++ "*"])) /= []) orelse (filelib:wildcard( filename:join( [PrivDir, "lib", erlang:system_info(system_architecture), LibTypeName ++ "*"])) /= []) of true -> LibTypeName; false -> LibBaseName end end, Lib = filename:join([PrivDir, "lib", LibName]), Status = case erlang:load_nif(Lib, ?CRYPTO_NIF_VSN) of ok -> ok; {error, {load_failed, _}}=Error1 -> ArchLibDir = filename:join([PrivDir, "lib", erlang:system_info(system_architecture)]), Candidate = filelib:wildcard(filename:join([ArchLibDir,LibName ++ "*" ])), case Candidate of [] -> Error1; _ -> ArchLib = filename:join([ArchLibDir, LibName]), erlang:load_nif(ArchLib, ?CRYPTO_NIF_VSN) end; Error1 -> Error1 end, case Status of ok -> ok; {error, {E, Str}} -> error_logger:error_msg("Unable to load crypto library. Failed with error:~n\"~p, ~s\"~n" "OpenSSL might not be installed on this system.~n",[E,Str]), Status end. nif_stub_error(Line) -> erlang:nif_error({nif_not_loaded,module,?MODULE,line,Line}). start() -> application:start(crypto). stop() -> application:stop(crypto). info() -> ?FUNC_LIST. info_lib() -> ?nif_stub. %% Crypto app version history: %% (no version): Driver implementation %% 2.0 : NIF implementation, requires OTP R14 version() -> ?CRYPTO_VSN. %% Below Key and Data are binaries or IO-lists. IVec is a binary. %% Output is always a binary. Context is a binary. %% %% MESSAGE DIGESTS %% %% %% MD5 %% -spec md5(iodata()) -> binary(). -spec md5_init() -> binary(). -spec md5_update(binary(), iodata()) -> binary(). -spec md5_final(binary()) -> binary(). md5(_Data) -> ?nif_stub. md5_init() -> ?nif_stub. md5_update(_Context, _Data) -> ?nif_stub. md5_final(_Context) -> ?nif_stub. %% %% MD4 %% -spec md4(iodata()) -> binary(). -spec md4_init() -> binary(). -spec md4_update(binary(), iodata()) -> binary(). -spec md4_final(binary()) -> binary(). md4(_Data) -> ?nif_stub. md4_init() -> ?nif_stub. md4_update(_Context, _Data) -> ?nif_stub. md4_final(_Context) -> ?nif_stub. %% %% SHA %% -spec sha(iodata()) -> binary(). -spec sha_init() -> binary(). -spec sha_update(binary(), iodata()) -> binary(). -spec sha_final(binary()) -> binary(). sha(_Data) -> ?nif_stub. sha_init() -> ?nif_stub. sha_update(_Context, _Data) -> ?nif_stub. sha_final(_Context) -> ?nif_stub. %% %% MESSAGE AUTHENTICATION CODES %% %% %% HMAC (multiple hash options) %% -spec hmac_init(atom(), iodata()) -> binary(). -spec hmac_update(binary(), iodata()) -> binary(). -spec hmac_final(binary()) -> binary(). -spec hmac_final_n(binary(), integer()) -> binary(). hmac_init(_Type, _Key) -> ?nif_stub. hmac_update(_Context, _Data) -> ? nif_stub. hmac_final(_Context) -> ? nif_stub. hmac_final_n(_Context, _HashLen) -> ? nif_stub. %% %% MD5_MAC %% -spec md5_mac(iodata(), iodata()) -> binary(). -spec md5_mac_96(iodata(), iodata()) -> binary(). md5_mac(Key, Data) -> md5_mac_n(Key,Data,16). md5_mac_96(Key, Data) -> md5_mac_n(Key,Data,12). md5_mac_n(_Key,_Data,_MacSz) -> ?nif_stub. %% %% SHA_MAC %% -spec sha_mac(iodata(), iodata()) -> binary(). -spec sha_mac_96(iodata(), iodata()) -> binary(). sha_mac(Key, Data) -> sha_mac_n(Key,Data,20). sha_mac_96(Key, Data) -> sha_mac_n(Key,Data,12). sha_mac_n(_Key,_Data,_MacSz) -> ?nif_stub. %% %% CRYPTO FUNCTIONS %% %% %% DES - in cipher block chaining mode (CBC) %% -spec des_cbc_encrypt(iodata(), binary(), iodata()) -> binary(). -spec des_cbc_decrypt(iodata(), binary(), iodata()) -> binary(). des_cbc_encrypt(Key, IVec, Data) -> des_cbc_crypt(Key, IVec, Data, true). des_cbc_decrypt(Key, IVec, Data) -> des_cbc_crypt(Key, IVec, Data, false). des_cbc_crypt(_Key, _IVec, _Data, _IsEncrypt) -> ?nif_stub. %% %% dec_cbc_ivec(Data) -> binary() %% %% Returns the IVec to be used in the next iteration of %% des_cbc_[encrypt|decrypt]. %% -spec des_cbc_ivec(iodata()) -> binary(). des_cbc_ivec(Data) when is_binary(Data) -> {_, IVec} = split_binary(Data, size(Data) - 8), IVec; des_cbc_ivec(Data) when is_list(Data) -> des_cbc_ivec(list_to_binary(Data)). %% %% DES - in electronic codebook mode (ECB) %% -spec des_ecb_encrypt(iodata(), iodata()) -> binary(). -spec des_ecb_decrypt(iodata(), iodata()) -> binary(). des_ecb_encrypt(Key, Data) -> des_ecb_crypt(Key, Data, true). des_ecb_decrypt(Key, Data) -> des_ecb_crypt(Key, Data, false). des_ecb_crypt(_Key, _Data, _IsEncrypt) -> ?nif_stub. %% %% DES3 - in cipher block chaining mode (CBC) %% -spec des3_cbc_encrypt(iodata(), iodata(), iodata(), binary(), iodata()) -> binary(). -spec des3_cbc_decrypt(iodata(), iodata(), iodata(), binary(), iodata()) -> binary(). des3_cbc_encrypt(Key1, Key2, Key3, IVec, Data) -> des_ede3_cbc_encrypt(Key1, Key2, Key3, IVec, Data). des_ede3_cbc_encrypt(Key1, Key2, Key3, IVec, Data) -> des_ede3_cbc_crypt(Key1, Key2, Key3, IVec, Data, true). des3_cbc_decrypt(Key1, Key2, Key3, IVec, Data) -> des_ede3_cbc_decrypt(Key1, Key2, Key3, IVec, Data). des_ede3_cbc_decrypt(Key1, Key2, Key3, IVec, Data) -> des_ede3_cbc_crypt(Key1, Key2, Key3, IVec, Data, false). des_ede3_cbc_crypt(_Key1, _Key2, _Key3, _IVec, _Data, _IsEncrypt) -> ?nif_stub. %% %% Blowfish %% -spec blowfish_ecb_encrypt(iodata(), iodata()) -> binary(). -spec blowfish_ecb_decrypt(iodata(), iodata()) -> binary(). -spec blowfish_cbc_encrypt(iodata(), binary(), iodata()) -> binary(). -spec blowfish_cbc_decrypt(iodata(), binary(), iodata()) -> binary(). -spec blowfish_cfb64_encrypt(iodata(), binary(), iodata()) -> binary(). -spec blowfish_cfb64_decrypt(iodata(), binary(), iodata()) -> binary(). -spec blowfish_ofb64_encrypt(iodata(), binary(), iodata()) -> binary(). blowfish_ecb_encrypt(Key, Data) -> bf_ecb_crypt(Key,Data, true). blowfish_ecb_decrypt(Key, Data) -> bf_ecb_crypt(Key,Data, false). bf_ecb_crypt(_Key,_Data,_IsEncrypt) -> ?nif_stub. blowfish_cbc_encrypt(Key, IVec, Data) -> bf_cbc_crypt(Key,IVec,Data,true). blowfish_cbc_decrypt(Key, IVec, Data) -> bf_cbc_crypt(Key,IVec,Data,false). bf_cbc_crypt(_Key,_IVec,_Data,_IsEncrypt) -> ?nif_stub. blowfish_cfb64_encrypt(Key, IVec, Data) -> bf_cfb64_crypt(Key, IVec, Data, true). blowfish_cfb64_decrypt(Key, IVec, Data) -> bf_cfb64_crypt(Key, IVec, Data, false). bf_cfb64_crypt(_Key, _IVec, _Data, _IsEncrypt) -> ?nif_stub. blowfish_ofb64_encrypt(_Key, _IVec, _Data) -> ?nif_stub. %% %% AES in cipher feedback mode (CFB) %% -spec aes_cfb_128_encrypt(iodata(), binary(), iodata()) -> binary(). -spec aes_cfb_128_decrypt(iodata(), binary(), iodata()) -> binary(). aes_cfb_128_encrypt(Key, IVec, Data) -> aes_cfb_128_crypt(Key, IVec, Data, true). aes_cfb_128_decrypt(Key, IVec, Data) -> aes_cfb_128_crypt(Key, IVec, Data, false). aes_cfb_128_crypt(_Key, _IVec, _Data, _IsEncrypt) -> ?nif_stub. %% %% RAND - pseudo random numbers using RN_ functions in crypto lib %% -spec rand_bytes(non_neg_integer()) -> binary(). -spec strong_rand_bytes(non_neg_integer()) -> binary(). -spec rand_uniform(crypto_integer(), crypto_integer()) -> crypto_integer(). -spec strong_rand_mpint(Bits::non_neg_integer(), Top::-1..1, Bottom::0..1) -> binary(). rand_bytes(_Bytes) -> ?nif_stub. strong_rand_bytes(Bytes) -> case strong_rand_bytes_nif(Bytes) of false -> erlang:error(low_entropy); Bin -> Bin end. strong_rand_bytes_nif(_Bytes) -> ?nif_stub. rand_bytes(_Bytes, _Topmask, _Bottommask) -> ?nif_stub. strong_rand_mpint(Bits, Top, Bottom) -> case strong_rand_mpint_nif(Bits,Top,Bottom) of false -> erlang:error(low_entropy); Bin -> Bin end. strong_rand_mpint_nif(_Bits, _Top, _Bottom) -> ?nif_stub. rand_uniform(From,To) when is_binary(From), is_binary(To) -> case rand_uniform_nif(From,To) of <<Len:32/integer, MSB, Rest/binary>> when MSB > 127 -> <<(Len + 1):32/integer, 0, MSB, Rest/binary>>; Whatever -> Whatever end; rand_uniform(From,To) when is_integer(From),is_integer(To) -> BinFrom = mpint(From), BinTo = mpint(To), case rand_uniform(BinFrom, BinTo) of Result when is_binary(Result) -> erlint(Result); Other -> Other end. rand_uniform_nif(_From,_To) -> ?nif_stub. %% %% mod_exp - utility for rsa generation %% mod_exp(Base, Exponent, Modulo) when is_integer(Base), is_integer(Exponent), is_integer(Modulo) -> erlint(mod_exp(mpint(Base), mpint(Exponent), mpint(Modulo))); mod_exp(Base, Exponent, Modulo) -> case mod_exp_nif(Base,Exponent,Modulo) of <<Len:32/integer, MSB, Rest/binary>> when MSB > 127 -> <<(Len + 1):32/integer, 0, MSB, Rest/binary>>; Whatever -> Whatever end. mod_exp_nif(_Base,_Exp,_Mod) -> ?nif_stub. %% %% DSS, RSA - verify %% -spec dss_verify(binary(), binary(), [binary()]) -> boolean(). -spec dss_verify(dss_digest_type(), binary(), binary(), [binary()]) -> boolean(). -spec rsa_verify(binary(), binary(), [binary()]) -> boolean(). -spec rsa_verify(rsa_digest_type(), binary(), binary(), [binary()]) -> boolean(). %% Key = [P,Q,G,Y] P,Q,G=DSSParams Y=PublicKey dss_verify(Data,Signature,Key) -> dss_verify(sha, Data, Signature, Key). dss_verify(_Type,_Data,_Signature,_Key) -> ?nif_stub. % Key = [E,N] E=PublicExponent N=PublicModulus rsa_verify(Data,Signature,Key) -> rsa_verify(sha, Data,Signature,Key). rsa_verify(_Type,_Data,_Signature,_Key) -> ?nif_stub. %% %% DSS, RSA - sign %% %% Key = [P,Q,G,X] P,Q,G=DSSParams X=PrivateKey -spec dss_sign(binary(), [binary()]) -> binary(). -spec dss_sign(dss_digest_type(), binary(), [binary()]) -> binary(). -spec rsa_sign(binary(), [binary()]) -> binary(). -spec rsa_sign(rsa_digest_type(), binary(), [binary()]) -> binary(). dss_sign(Data,Key) -> dss_sign(sha,Data,Key). dss_sign(Type, Data, Key) -> case dss_sign_nif(Type,Data,Key) of error -> erlang:error(badkey, [Data, Key]); Sign -> Sign end. dss_sign_nif(_Type,_Data,_Key) -> ?nif_stub. %% Key = [E,N,D] E=PublicExponent N=PublicModulus D=PrivateExponent rsa_sign(Data,Key) -> rsa_sign(sha, Data, Key). rsa_sign(Type, Data, Key) -> case rsa_sign_nif(Type,Data,Key) of error -> erlang:error(badkey, [Type,Data,Key]); Sign -> Sign end. rsa_sign_nif(_Type,_Data,_Key) -> ?nif_stub. %% %% rsa_public_encrypt %% rsa_private_decrypt -type rsa_padding() :: 'rsa_pkcs1_padding' | 'rsa_pkcs1_oaep_padding' | 'rsa_no_padding'. -spec rsa_public_encrypt(binary(), [binary()], rsa_padding()) -> binary(). -spec rsa_public_decrypt(binary(), [binary()], rsa_padding()) -> binary(). -spec rsa_private_encrypt(binary(), [binary()], rsa_padding()) -> binary(). -spec rsa_private_decrypt(binary(), [binary()], rsa_padding()) -> binary(). %% Binary, Key = [E,N] rsa_public_encrypt(BinMesg, Key, Padding) -> case rsa_public_crypt(BinMesg, Key, Padding, true) of error -> erlang:error(encrypt_failed, [BinMesg,Key, Padding]); Sign -> Sign end. rsa_public_crypt(_BinMsg, _Key, _Padding, _IsEncrypt) -> ?nif_stub. %% Binary, Key = [E,N,D] rsa_private_decrypt(BinMesg, Key, Padding) -> case rsa_private_crypt(BinMesg, Key, Padding, false) of error -> erlang:error(decrypt_failed, [BinMesg,Key, Padding]); Sign -> Sign end. rsa_private_crypt(_BinMsg, _Key, _Padding, _IsEncrypt) -> ?nif_stub. %% Binary, Key = [E,N,D] rsa_private_encrypt(BinMesg, Key, Padding) -> case rsa_private_crypt(BinMesg, Key, Padding, true) of error -> erlang:error(encrypt_failed, [BinMesg,Key, Padding]); Sign -> Sign end. %% Binary, Key = [E,N] rsa_public_decrypt(BinMesg, Key, Padding) -> case rsa_public_crypt(BinMesg, Key, Padding, false) of error -> erlang:error(decrypt_failed, [BinMesg,Key, Padding]); Sign -> Sign end. %% %% AES - with 128 or 256 bit key in cipher block chaining mode (CBC) %% -spec aes_cbc_128_encrypt(iodata(), binary(), iodata()) -> binary(). -spec aes_cbc_128_decrypt(iodata(), binary(), iodata()) -> binary(). -spec aes_cbc_256_encrypt(iodata(), binary(), iodata()) -> binary(). -spec aes_cbc_256_decrypt(iodata(), binary(), iodata()) -> binary(). aes_cbc_128_encrypt(Key, IVec, Data) -> aes_cbc_crypt(Key, IVec, Data, true). aes_cbc_128_decrypt(Key, IVec, Data) -> aes_cbc_crypt(Key, IVec, Data, false). aes_cbc_256_encrypt(Key, IVec, Data) -> aes_cbc_crypt(Key, IVec, Data, true). aes_cbc_256_decrypt(Key, IVec, Data) -> aes_cbc_crypt(Key, IVec, Data, false). aes_cbc_crypt(_Key, _IVec, _Data, _IsEncrypt) -> ?nif_stub. %% %% aes_cbc_ivec(Data) -> binary() %% %% Returns the IVec to be used in the next iteration of %% aes_cbc_*_[encrypt|decrypt]. %% IVec size: 16 bytes %% aes_cbc_ivec(Data) when is_binary(Data) -> {_, IVec} = split_binary(Data, size(Data) - 16), IVec; aes_cbc_ivec(Data) when is_list(Data) -> aes_cbc_ivec(list_to_binary(Data)). %% %% AES - in counter mode (CTR) %% -spec aes_ctr_encrypt(iodata(), binary(), iodata()) -> binary(). -spec aes_ctr_decrypt(iodata(), binary(), iodata()) -> binary(). aes_ctr_encrypt(_Key, _IVec, _Data) -> ?nif_stub. aes_ctr_decrypt(_Key, _IVec, _Cipher) -> ?nif_stub. %% %% AES - in counter mode (CTR) with state maintained for multi-call streaming %% -type ctr_state() :: { iodata(), binary(), binary(), integer() }. -spec aes_ctr_stream_init(iodata(), binary()) -> ctr_state(). -spec aes_ctr_stream_encrypt(ctr_state(), binary()) -> { ctr_state(), binary() }. -spec aes_ctr_stream_decrypt(ctr_state(), binary()) -> { ctr_state(), binary() }. aes_ctr_stream_init(Key, IVec) -> {Key, IVec, << 0:128 >>, 0}. aes_ctr_stream_encrypt({_Key, _IVec, _ECount, _Num}=_State, _Data) -> ?nif_stub. aes_ctr_stream_decrypt({_Key, _IVec, _ECount, _Num}=_State, _Cipher) -> ?nif_stub. %% %% XOR - xor to iolists and return a binary %% NB doesn't check that they are the same size, just concatenates %% them and sends them to the driver %% -spec exor(iodata(), iodata()) -> binary(). exor(_A, _B) -> ?nif_stub. %% %% RC4 - symmetric stream cipher %% -spec rc4_encrypt(iodata(), iodata()) -> binary(). rc4_encrypt(_Key, _Data) -> ?nif_stub. rc4_set_key(_Key) -> ?nif_stub. rc4_encrypt_with_state(_State, _Data) -> ?nif_stub. %% %% RC2 - 40 bits block cipher %% rc2_40_cbc_encrypt(Key, IVec, Data) -> rc2_40_cbc_crypt(Key,IVec,Data,true). rc2_40_cbc_decrypt(Key, IVec, Data) -> rc2_40_cbc_crypt(Key,IVec,Data,false). rc2_40_cbc_crypt(_Key, _IVec, _Data, _IsEncrypt) -> ?nif_stub. %% %% DH Diffie-Hellman functions %% %% Generate (and check) Parameters is not documented because they are implemented %% for testing (and offline parameter generation) only. %% From the openssl doc: %% DH_generate_parameters() may run for several hours before finding a suitable prime. %% Thus dh_generate_parameters may in this implementation block %% the emulator for several hours. %% %% usage: dh_generate_parameters(1024, 2 or 5) -> %% [Prime=mpint(), SharedGenerator=mpint()] dh_generate_parameters(PrimeLen, Generator) -> case dh_generate_parameters_nif(PrimeLen, Generator) of error -> erlang:error(generation_failed, [PrimeLen,Generator]); Ret -> Ret end. dh_generate_parameters_nif(_PrimeLen, _Generator) -> ?nif_stub. %% Checks that the DHParameters are ok. %% DHParameters = [P (Prime)= mpint(), G(Generator) = mpint()] dh_check([_Prime,_Gen]) -> ?nif_stub. %% DHParameters = [P (Prime)= mpint(), G(Generator) = mpint()] %% PrivKey = mpint() -spec dh_generate_key([binary()]) -> {binary(),binary()}. -spec dh_generate_key(binary()|undefined, [binary()]) -> {binary(),binary()}. dh_generate_key(DHParameters) -> dh_generate_key(undefined, DHParameters). dh_generate_key(PrivateKey, DHParameters) -> case dh_generate_key_nif(PrivateKey, DHParameters) of error -> erlang:error(generation_failed, [PrivateKey,DHParameters]); Res -> Res end. dh_generate_key_nif(_PrivateKey, _DHParameters) -> ?nif_stub. %% DHParameters = [P (Prime)= mpint(), G(Generator) = mpint()] %% MyPrivKey, OthersPublicKey = mpint() -spec dh_compute_key(binary(), binary(), [binary()]) -> binary(). dh_compute_key(OthersPublicKey, MyPrivateKey, DHParameters) -> case dh_compute_key_nif(OthersPublicKey,MyPrivateKey,DHParameters) of error -> erlang:error(computation_failed, [OthersPublicKey,MyPrivateKey,DHParameters]); Ret -> Ret end. dh_compute_key_nif(_OthersPublicKey, _MyPrivateKey, _DHParameters) -> ?nif_stub. %% %% LOCAL FUNCTIONS %% %% large integer in a binary with 32bit length %% MP representaion (SSH2) mpint(X) when X < 0 -> case X of -1 -> <<0,0,0,1,16#ff>>; _ -> mpint_neg(X,0,[]) end; mpint(X) -> case X of 0 -> <<0,0,0,0>>; _ -> mpint_pos(X,0,[]) end. -define(UINT32(X), X:32/unsigned-big-integer). mpint_neg(-1,I,Ds=[MSB|_]) -> if MSB band 16#80 =/= 16#80 -> <<?UINT32((I+1)), (list_to_binary([255|Ds]))/binary>>; true -> (<<?UINT32(I), (list_to_binary(Ds))/binary>>) end; mpint_neg(X,I,Ds) -> mpint_neg(X bsr 8,I+1,[(X band 255)|Ds]). mpint_pos(0,I,Ds=[MSB|_]) -> if MSB band 16#80 == 16#80 -> <<?UINT32((I+1)), (list_to_binary([0|Ds]))/binary>>; true -> (<<?UINT32(I), (list_to_binary(Ds))/binary>>) end; mpint_pos(X,I,Ds) -> mpint_pos(X bsr 8,I+1,[(X band 255)|Ds]). %% int from integer in a binary with 32bit length erlint(<<MPIntSize:32/integer,MPIntValue/binary>>) -> Bits= MPIntSize * 8, <<Integer:Bits/integer>> = MPIntValue, Integer.