%% %% %CopyrightBegin% %% %% Copyright Ericsson AB 1998-2017. All Rights Reserved. %% %% Licensed under the Apache License, Version 2.0 (the "License"); %% you may not use this file except in compliance with the License. %% You may obtain a copy of the License at %% %% http://www.apache.org/licenses/LICENSE-2.0 %% %% Unless required by applicable law or agreed to in writing, software %% distributed under the License is distributed on an "AS IS" BASIS, %% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. %% See the License for the specific language governing permissions and %% limitations under the License. %% %% %CopyrightEnd% %% -module(dbg_iload). -export([load_mod/4]). %%==================================================================== %% External exports %%==================================================================== %%-------------------------------------------------------------------- %% load_mod(Mod, File, Binary, Db) -> {ok, Mod} %% Mod = module() %% File = string() Source file (including path) %% Binary = binary() %% Db = ETS identifier %% Load a new module into the database. %% %% We want the loading of a module to be synchronous so that no other %% process tries to interpret code in a module not being completely %% loaded. This is achieved as this function is called from %% dbg_iserver. We are suspended until the module has been loaded. %%-------------------------------------------------------------------- -spec load_mod(Mod, file:filename(), binary(), ets:tid()) -> {'ok', Mod} when Mod :: atom(). load_mod(Mod, File, Binary, Db) -> Flag = process_flag(trap_exit, true), Pid = spawn_link(load_mod1(Mod, File, Binary, Db)), receive {'EXIT', Pid, What} -> process_flag(trap_exit, Flag), What end. -spec load_mod1(atom(), file:filename(), binary(), ets:tid()) -> fun(() -> no_return()). load_mod1(Mod, File, Binary, Db) -> fun() -> store_module(Mod, File, Binary, Db), exit({ok, Mod}) end. %%==================================================================== %% Internal functions %%==================================================================== store_module(Mod, File, Binary, Db) -> {interpreter_module, Exp, Abst, Src, MD5} = binary_to_term(Binary), Forms = case abstr(Abst) of {abstract_v1,_} -> exit({Mod,too_old_beam_file}); {abstract_v2,_} -> exit({Mod,too_old_beam_file}); {raw_abstract_v1,Code0} -> Code = interpret_file_attribute(Code0), standard_transforms(Code) end, dbg_idb:insert(Db, mod_file, File), dbg_idb:insert(Db, defs, []), put(vcount, 0), put(fun_count, 0), put(funs, []), put(mod_md5, MD5), store_forms(Forms, Mod, Db, Exp), erase(mod_md5), erase(current_function), %% store_funs(Db, Mod), erase(vcount), erase(funs), erase(fun_count), NewBinary = store_mod_line_no(Mod, Db, binary_to_list(Src)), dbg_idb:insert(Db, mod_bin, NewBinary), dbg_idb:insert(Db, mod_raw, <<Src/binary,0:8>>). %% Add eos standard_transforms(Forms0) -> Forms = erl_expand_records:module(Forms0, []), erl_internal:add_predefined_functions(Forms). %% Adjust line numbers using the file/2 attribute. %% Also take the absolute value of line numbers. %% This simple fix will make the marker point at the correct line %% (assuming the file attributes are correct) in the source; it will %% not point at code in included files. interpret_file_attribute(Code) -> epp:interpret_file_attribute(Code). abstr(Bin) when is_binary(Bin) -> binary_to_term(Bin); abstr(Term) -> Term. % store_funs(Db, Mod) -> % store_funs_1(get(funs), Db, Mod). % store_funs_1([{Name,Index,Uniq,_,_,Arity,Cs}|Fs], Db, Mod) -> % dbg_idb:insert(Db, {Mod,Name,Arity,false}, Cs), % dbg_idb:insert(Db, {'fun',Mod,Index,Uniq}, {Name,Arity,Cs}), % store_funs_1(Fs, Db, Mod); % store_funs_1([], _, _) -> ok. store_forms([{function,_,Name,Arity,Cs0}|Fs], Mod, Db, Exp) -> FA = {Name,Arity}, put(current_function, FA), Cs = clauses(Cs0), Exported = lists:member(FA, Exp), dbg_idb:insert(Db, {Mod,Name,Arity,Exported}, Cs), store_forms(Fs, Mod, Db, Exp); store_forms([{attribute,_,_Name,_Val}|Fs], Mod, Db, Exp) -> store_forms(Fs, Mod, Db, Exp); store_forms([_|Fs], Mod, Db, Exp) -> %% Ignore other forms such as {eof,_} or {warning,_}. store_forms(Fs, Mod, Db, Exp); store_forms([], _, _, _) -> ok. store_mod_line_no(Mod, Db, Contents) -> store_mod_line_no(Mod, Db, Contents, 1, 0, []). store_mod_line_no(_, _, [], _, _, NewCont) -> list_to_binary(lists:reverse(NewCont)); store_mod_line_no(Mod, Db, Contents, LineNo, Pos, NewCont) when is_integer(LineNo) -> {ContTail,Pos1,NewCont1} = store_line(Mod, Db, Contents, LineNo, Pos, NewCont), store_mod_line_no(Mod, Db, ContTail, LineNo+1, Pos1, NewCont1). store_line(_, Db, Contents, LineNo, Pos, NewCont) -> {ContHead,ContTail,PosNL} = get_nl(Contents,Pos+8,[]), dbg_idb:insert(Db,LineNo,{Pos+8,PosNL}), {ContTail,PosNL+1,[make_lineno(LineNo, 8, ContHead)|NewCont]}. make_lineno(N, P, Acc) -> S = integer_to_list(N), S ++ [$:|spaces(P-length(S)-1, Acc)]. spaces(P, Acc) when P > 0 -> spaces(P-1, [$\s|Acc]); spaces(_, Acc) -> Acc. get_nl([10|T],Pos,Head) -> {lists:reverse([10|Head]),T,Pos}; get_nl([H|T],Pos,Head) -> get_nl(T,Pos+1,[H|Head]); get_nl([],Pos,Head) -> {lists:reverse(Head),[],Pos}. %%% Rewrite the abstract syntax tree to that it will be easier (== faster) %%% to interpret. clauses([C0|Cs]) -> C1 = clause(C0, true), [C1|clauses(Cs)]; clauses([]) -> []. clause({clause,Anno,H0,G0,B0}, Lc) -> H1 = head(H0), G1 = guard(G0), B1 = exprs(B0, Lc), {clause,ln(Anno),H1,G1,B1}. head(Ps) -> patterns(Ps). %% These patterns are processed "sequentially" for purposes of variable %% definition etc. patterns([P0|Ps]) -> P1 = pattern(P0), [P1|patterns(Ps)]; patterns([]) -> []. %% N.B. Only valid patterns are included here. pattern({var,Anno,V}) -> {var,ln(Anno),V}; pattern({char,Anno,I}) -> {value,ln(Anno),I}; pattern({integer,Anno,I}) -> {value,ln(Anno),I}; pattern({match,Anno,Pat1,Pat2}) -> {match,ln(Anno),pattern(Pat1),pattern(Pat2)}; pattern({float,Anno,F}) -> {value,ln(Anno),F}; pattern({atom,Anno,A}) -> {value,ln(Anno),A}; pattern({string,Anno,S}) -> {value,ln(Anno),S}; pattern({nil,Anno}) -> {value,ln(Anno),[]}; pattern({cons,Anno,H0,T0}) -> H1 = pattern(H0), T1 = pattern(T0), {cons,ln(Anno),H1,T1}; pattern({tuple,Anno,Ps0}) -> Ps1 = pattern_list(Ps0), {tuple,ln(Anno),Ps1}; pattern({map,Anno,Fs0}) -> Fs1 = lists:map(fun ({map_field_exact,L,K,V}) -> {map_field_exact,L,expr(K, false),pattern(V)} end, Fs0), {map,ln(Anno),Fs1}; pattern({op,_,'-',{integer,Anno,I}}) -> {value,ln(Anno),-I}; pattern({op,_,'+',{integer,Anno,I}}) -> {value,ln(Anno),I}; pattern({op,_,'-',{char,Anno,I}}) -> {value,ln(Anno),-I}; pattern({op,_,'+',{char,Anno,I}}) -> {value,ln(Anno),I}; pattern({op,_,'-',{float,Anno,I}}) -> {value,ln(Anno),-I}; pattern({op,_,'+',{float,Anno,I}}) -> {value,ln(Anno),I}; pattern({bin,Anno,Grp}) -> Grp1 = pattern_list(bin_expand_strings(Grp)), {bin,ln(Anno),Grp1}; pattern({bin_element,Anno,Expr0,Size0,Type0}) -> {Size1,Type} = make_bit_type(Anno, Size0, Type0), Expr1 = pattern(Expr0), Expr = coerce_to_float(Expr1, Type0), Size = pattern(Size1), {bin_element,ln(Anno),Expr,Size,Type}; %% Evaluate compile-time expressions. pattern({op,_,'++',{nil,_},R}) -> pattern(R); pattern({op,_,'++',{cons,Li,H,T},R}) -> pattern({cons,Li,H,{op,Li,'++',T,R}}); pattern({op,_,'++',{string,Li,L},R}) -> pattern(string_to_conses(Li, L, R)); pattern({op,_Line,_Op,_A}=Op) -> pattern(erl_eval:partial_eval(Op)); pattern({op,_Line,_Op,_L,_R}=Op) -> pattern(erl_eval:partial_eval(Op)). string_to_conses(Anno, Cs, Tail) -> lists:foldr(fun (C, T) -> {cons,Anno,{char,Anno,C},T} end, Tail, Cs). coerce_to_float({value,Anno,Int}=E, [float|_]) when is_integer(Int) -> try {value,Anno,float(Int)} catch error:badarg -> E end; coerce_to_float(E, _) -> E. %% These patterns are processed "in parallel" for purposes of variable %% definition etc. pattern_list([P0|Ps]) -> P1 = pattern(P0), [P1|pattern_list(Ps)]; pattern_list([]) -> []. guard([G0|Gs]) -> G1 = and_guard(G0), [G1|guard(Gs)]; guard([]) -> []. and_guard([G0|Gs]) -> G1 = guard_test(G0), [G1|and_guard(Gs)]; and_guard([]) -> []. guard_test({call,Anno,{remote,_,{atom,_,erlang},{atom,_,F}},As0}) -> As = gexpr_list(As0), {safe_bif,ln(Anno),erlang,F,As}; guard_test({op,Anno,Op,L0}) -> true = erl_internal:arith_op(Op, 1) orelse %Assertion. erl_internal:bool_op(Op, 1), L1 = gexpr(L0), {safe_bif,ln(Anno),erlang,Op,[L1]}; guard_test({op,Anno,Op,L0,R0}) when Op =:= 'andalso'; Op =:= 'orelse' -> L1 = gexpr(L0), R1 = gexpr(R0), %They see the same variables {Op,ln(Anno),L1,R1}; guard_test({op,Anno,Op,L0,R0}) -> true = erl_internal:comp_op(Op, 2) orelse %Assertion. erl_internal:bool_op(Op, 2) orelse erl_internal:arith_op(Op, 2), L1 = gexpr(L0), R1 = gexpr(R0), %They see the same variables {safe_bif,ln(Anno),erlang,Op,[L1,R1]}; guard_test({var,_,_}=V) ->V; % Boolean var guard_test({atom,Anno,true}) -> {value,ln(Anno),true}; %% All other constants at this level means false. guard_test({atom,Anno,_}) -> {value,ln(Anno),false}; guard_test({integer,Anno,_}) -> {value,ln(Anno),false}; guard_test({char,Anno,_}) -> {value,ln(Anno),false}; guard_test({float,Anno,_}) -> {value,ln(Anno),false}; guard_test({string,Anno,_}) -> {value,ln(Anno),false}; guard_test({nil,Anno}) -> {value,ln(Anno),false}; guard_test({cons,Anno,_,_}) -> {value,ln(Anno),false}; guard_test({tuple,Anno,_}) -> {value,ln(Anno),false}; guard_test({map,Anno,_}) -> {value,ln(Anno),false}; guard_test({map,Anno,_,_}) -> {value,ln(Anno),false}; guard_test({bin,Anno,_}) -> {value,ln(Anno),false}. gexpr({var,Anno,V}) -> {var,ln(Anno),V}; gexpr({integer,Anno,I}) -> {value,ln(Anno),I}; gexpr({char,Anno,I}) -> {value,ln(Anno),I}; gexpr({float,Anno,F}) -> {value,ln(Anno),F}; gexpr({atom,Anno,A}) -> {value,ln(Anno),A}; gexpr({string,Anno,S}) -> {value,ln(Anno),S}; gexpr({nil,Anno}) -> {value,ln(Anno),[]}; gexpr({cons,Anno,H0,T0}) -> case {gexpr(H0),gexpr(T0)} of {{value,Line,H1},{value,Line,T1}} -> {value,Line,[H1|T1]}; {H1,T1} -> {cons,ln(Anno),H1,T1} end; gexpr({tuple,Anno,Es0}) -> Es1 = gexpr_list(Es0), {tuple,ln(Anno),Es1}; gexpr({map,Anno,Fs0}) -> new_map(Fs0, Anno, fun gexpr/1); gexpr({map,Anno,E0,Fs0}) -> E1 = gexpr(E0), Fs1 = map_fields(Fs0, fun gexpr/1), {map,ln(Anno),E1,Fs1}; gexpr({bin,Anno,Flds0}) -> Flds = gexpr_list(bin_expand_strings(Flds0)), {bin,ln(Anno),Flds}; gexpr({bin_element,Anno,Expr0,Size0,Type0}) -> {Size1,Type} = make_bit_type(Anno, Size0, Type0), Expr = gexpr(Expr0), Size = gexpr(Size1), {bin_element,ln(Anno),Expr,Size,Type}; %%% The erl_expand_records pass has added the module name 'erlang' to %%% all BIF calls, even in guards. gexpr({call,Anno,{remote,_,{atom,_,erlang},{atom,_,self}},[]}) -> {dbg,ln(Anno),self,[]}; gexpr({call,Anno,{remote,_,{atom,_,erlang},{atom,_,F}},As0}) -> As = gexpr_list(As0), {safe_bif,ln(Anno),erlang,F,As}; gexpr({op,Anno,Op,A0}) -> erl_internal:arith_op(Op, 1), A1 = gexpr(A0), {safe_bif,ln(Anno),erlang,Op,[A1]}; gexpr({op,Anno,Op,L0,R0}) when Op =:= 'andalso'; Op =:= 'orelse' -> L1 = gexpr(L0), R1 = gexpr(R0), %They see the same variables {Op,ln(Anno),L1,R1}; gexpr({op,Anno,Op,L0,R0}) -> true = erl_internal:arith_op(Op, 2) orelse erl_internal:comp_op(Op, 2) orelse erl_internal:bool_op(Op, 2), L1 = gexpr(L0), R1 = gexpr(R0), %They see the same variables {safe_bif,ln(Anno),erlang,Op,[L1,R1]}. %% These expressions are processed "in parallel" for purposes of variable %% definition etc. gexpr_list([E0|Es]) -> E1 = gexpr(E0), [E1|gexpr_list(Es)]; gexpr_list([]) -> []. %% These expressions are processed "sequentially" for purposes of variable %% definition etc. exprs([E], Lc) -> [expr(E, Lc)]; exprs([E0|Es], Lc) -> E1 = expr(E0, false), [E1|exprs(Es, Lc)]; exprs([], _Lc) -> []. expr({var,Anno,V}, _Lc) -> {var,ln(Anno),V}; expr({integer,Anno,I}, _Lc) -> {value,ln(Anno),I}; expr({char,Anno,I}, _Lc) -> {value,ln(Anno),I}; expr({float,Anno,F}, _Lc) -> {value,ln(Anno),F}; expr({atom,Anno,A}, _Lc) -> {value,ln(Anno),A}; expr({string,Anno,S}, _Lc) -> {value,ln(Anno),S}; expr({nil,Anno}, _Lc) -> {value,ln(Anno),[]}; expr({cons,Anno,H0,T0}, _Lc) -> case {expr(H0, false),expr(T0, false)} of {{value,Line,H1},{value,Line,T1}} -> {value,Line,[H1|T1]}; {H1,T1} -> {cons,ln(Anno),H1,T1} end; expr({tuple,Anno,Es0}, _Lc) -> Es1 = expr_list(Es0), {tuple,ln(Anno),Es1}; expr({map,Anno,Fs}, _Lc) -> new_map(Fs, Anno, fun (E) -> expr(E, false) end); expr({map,Anno,E0,Fs0}, _Lc) -> E1 = expr(E0, false), Fs1 = map_fields(Fs0), {map,ln(Anno),E1,Fs1}; expr({block,Anno,Es0}, Lc) -> %% Unfold block into a sequence. Es1 = exprs(Es0, Lc), {block,ln(Anno),Es1}; expr({'if',Anno,Cs0}, Lc) -> Cs1 = icr_clauses(Cs0, Lc), {'if',ln(Anno),Cs1}; expr({'case',Anno,E0,Cs0}, Lc) -> E1 = expr(E0, false), Cs1 = icr_clauses(Cs0, Lc), {'case',ln(Anno),E1,Cs1}; expr({'receive',Anno,Cs0}, Lc) -> Cs1 = icr_clauses(Cs0, Lc), {'receive',ln(Anno),Cs1}; expr({'receive',Anno,Cs0,To0,ToEs0}, Lc) -> To1 = expr(To0, false), ToEs1 = exprs(ToEs0, Lc), Cs1 = icr_clauses(Cs0, Lc), {'receive',ln(Anno),Cs1,To1,ToEs1}; expr({'fun',Anno,{clauses,Cs0}}, _Lc) -> %% New R10B-2 format (abstract_v2). Cs = fun_clauses(Cs0), Name = new_fun_name(), {make_fun,ln(Anno),Name,Cs}; expr({'fun',Anno,{function,F,A}}, _Lc) -> %% New R8 format (abstract_v2). Line = ln(Anno), As = new_vars(A, Line), Name = new_fun_name(), Cs = [{clause,Line,As,[],[{local_call,Line,F,As,true}]}], {make_fun,Line,Name,Cs}; expr({named_fun,Anno,FName,Cs0}, _Lc) -> Cs = fun_clauses(Cs0), Name = new_fun_name(), {make_named_fun,ln(Anno),Name,FName,Cs}; expr({'fun',Anno,{function,{atom,_,M},{atom,_,F},{integer,_,A}}}, _Lc) when 0 =< A, A =< 255 -> %% New format in R15 for fun M:F/A (literal values). {value,ln(Anno),erlang:make_fun(M, F, A)}; expr({'fun',Anno,{function,M,F,A}}, _Lc) -> %% New format in R15 for fun M:F/A (one or more variables). MFA = expr_list([M,F,A]), {make_ext_fun,ln(Anno),MFA}; expr({call,Anno,{remote,_,{atom,_,erlang},{atom,_,self}},[]}, _Lc) -> {dbg,ln(Anno),self,[]}; expr({call,Anno,{remote,_,{atom,_,erlang},{atom,_,get_stacktrace}},[]}, _Lc) -> {dbg,ln(Anno),get_stacktrace,[]}; expr({call,Anno,{remote,_,{atom,_,erlang},{atom,_,throw}},[_]=As}, _Lc) -> {dbg,ln(Anno),throw,expr_list(As)}; expr({call,Anno,{remote,_,{atom,_,erlang},{atom,_,error}},[_]=As}, _Lc) -> {dbg,ln(Anno),error,expr_list(As)}; expr({call,Anno,{remote,_,{atom,_,erlang},{atom,_,exit}},[_]=As}, _Lc) -> {dbg,ln(Anno),exit,expr_list(As)}; expr({call,Anno,{remote,_,{atom,_,erlang},{atom,_,raise}},[_,_,_]=As}, _Lc) -> {dbg,ln(Anno),raise,expr_list(As)}; expr({call,Anno,{remote,_,{atom,_,erlang},{atom,_,apply}},[_,_,_]=As0}, Lc) -> As = expr_list(As0), {apply,ln(Anno),As,Lc}; expr({call,Anno,{remote,_,{atom,_,Mod},{atom,_,Func}},As0}, Lc) -> As = expr_list(As0), case erlang:is_builtin(Mod, Func, length(As)) of false -> {call_remote,ln(Anno),Mod,Func,As,Lc}; true -> case bif_type(Mod, Func, length(As0)) of safe -> {safe_bif,ln(Anno),Mod,Func,As}; unsafe ->{bif,ln(Anno),Mod,Func,As} end end; expr({call,Anno,{remote,_,Mod0,Func0},As0}, Lc) -> %% New R8 format (abstract_v2). Mod = expr(Mod0, false), Func = expr(Func0, false), As = consify(expr_list(As0)), {apply,ln(Anno),[Mod,Func,As],Lc}; expr({call,Anno,{atom,_,Func},As0}, Lc) -> As = expr_list(As0), {local_call,ln(Anno),Func,As,Lc}; expr({call,Anno,Fun0,As0}, Lc) -> Fun = expr(Fun0, false), As = expr_list(As0), {apply_fun,ln(Anno),Fun,As,Lc}; expr({'catch',Anno,E0}, _Lc) -> %% No new variables added. E1 = expr(E0, false), {'catch',ln(Anno),E1}; expr({'try',Anno,Es0,CaseCs0,CatchCs0,As0}, Lc) -> %% No new variables added. Es = expr_list(Es0), CaseCs = icr_clauses(CaseCs0, Lc), CatchCs = icr_clauses(CatchCs0, Lc), As = expr_list(As0), {'try',ln(Anno),Es,CaseCs,CatchCs,As}; expr({lc,_,_,_}=Compr, _Lc) -> expr_lc_bc(Compr); expr({bc,_,_,_}=Compr, _Lc) -> expr_lc_bc(Compr); expr({match,Anno,P0,E0}, _Lc) -> E1 = expr(E0, false), P1 = pattern(P0), {match,ln(Anno),P1,E1}; expr({op,Anno,Op,A0}, _Lc) -> A1 = expr(A0, false), {op,ln(Anno),Op,[A1]}; expr({op,Anno,'++',L0,R0}, _Lc) -> L1 = expr(L0, false), R1 = expr(R0, false), %They see the same variables {op,ln(Anno),append,[L1,R1]}; expr({op,Anno,'--',L0,R0}, _Lc) -> L1 = expr(L0, false), R1 = expr(R0, false), %They see the same variables {op,ln(Anno),subtract,[L1,R1]}; expr({op,Anno,'!',L0,R0}, _Lc) -> L1 = expr(L0, false), R1 = expr(R0, false), %They see the same variables {send,ln(Anno),L1,R1}; expr({op,Anno,Op,L0,R0}, _Lc) when Op =:= 'andalso'; Op =:= 'orelse' -> L1 = expr(L0, false), R1 = expr(R0, false), %They see the same variables {Op,ln(Anno),L1,R1}; expr({op,Anno,Op,L0,R0}, _Lc) -> L1 = expr(L0, false), R1 = expr(R0, false), %They see the same variables {op,ln(Anno),Op,[L1,R1]}; expr({bin,Anno,Grp}, _Lc) -> Grp1 = expr_list(bin_expand_strings(Grp)), {bin,ln(Anno),Grp1}; expr({bin_element,Anno,Expr0,Size0,Type0}, _Lc) -> {Size1,Type} = make_bit_type(Anno, Size0, Type0), Expr = expr(Expr0, false), Size = expr(Size1, false), {bin_element,ln(Anno),Expr,Size,Type}. consify([A|As]) -> {cons,0,A,consify(As)}; consify([]) -> {value,0,[]}. make_bit_type(Line, default, Type0) -> case erl_bits:set_bit_type(default, Type0) of {ok,all,Bt} -> {{atom,Line,all},erl_bits:as_list(Bt)}; {ok,undefined,Bt} -> {{atom,Line,undefined},erl_bits:as_list(Bt)}; {ok,Size,Bt} -> {{integer,Line,Size},erl_bits:as_list(Bt)} end; make_bit_type(_Line, Size, Type0) -> %Integer or 'all' {ok,Size,Bt} = erl_bits:set_bit_type(Size, Type0), {Size,erl_bits:as_list(Bt)}. expr_lc_bc({Tag,Anno,E0,Gs0}) -> Gs = lists:map(fun ({generate,L,P0,Qs}) -> {generate,L,pattern(P0),expr(Qs, false)}; ({b_generate,L,P0,Qs}) -> %R12. {b_generate,L,pattern(P0),expr(Qs, false)}; (Expr) -> case is_guard_test(Expr) of true -> {guard,guard([[Expr]])}; false -> expr(Expr, false) end end, Gs0), {Tag,ln(Anno),expr(E0, false),Gs}. is_guard_test(Expr) -> IsOverridden = fun({_,_}) -> true end, erl_lint:is_guard_test(Expr, [], IsOverridden). %% The debugger converts both strings "abc" and lists [67, 68, 69] %% into {value, Line, [67, 68, 69]}, making it impossible to later %% distingish one or the other inside binaries when evaluating. To %% avoid <<[67, 68, 69]>> from evaluating, we convert strings into %% chars to avoid the ambiguity. bin_expand_strings(Es) -> lists:foldr(fun ({bin_element,Line,{string,_,S},Sz,Ts}, Es1) -> lists:foldr(fun (C, Es2) -> [{bin_element,Line,{char,Line,C},Sz,Ts}|Es2] end, Es1, S); (E, Es1) -> [E|Es1] end, [], Es). %% -type expr_list([Expression]) -> [Expression]. %% These expressions are processed "in parallel" for purposes of variable %% definition etc. expr_list([E0|Es]) -> E1 = expr(E0, false), [E1|expr_list(Es)]; expr_list([]) -> []. icr_clauses([C0|Cs], Lc) -> C1 = clause(C0, Lc), [C1|icr_clauses(Cs, Lc)]; icr_clauses([], _) -> []. fun_clauses([{clause,A,H,G,B}|Cs]) -> [{clause,ln(A),head(H),guard(G),exprs(B, true)}|fun_clauses(Cs)]; fun_clauses([]) -> []. new_map(Fs0, Anno, F) -> Line = ln(Anno), Fs1 = map_fields(Fs0, F), Fs2 = [{L,K,V} || {map_field_assoc,L,K,V} <- Fs1], try {value,Line,map_literal(Fs2, #{})} catch throw:not_literal -> {map,Line,Fs2} end. map_literal([{_,{value,_,K},{value,_,V}}|T], M) -> map_literal(T, maps:put(K, V, M)); map_literal([_|_], _) -> throw(not_literal); map_literal([], M) -> M. map_fields(Fs) -> map_fields(Fs, fun (E) -> expr(E, false) end). map_fields([{map_field_assoc,A,N,V}|Fs], F) -> [{map_field_assoc,ln(A),F(N),F(V)}|map_fields(Fs)]; map_fields([{map_field_exact,A,N,V}|Fs], F) -> [{map_field_exact,ln(A),F(N),F(V)}|map_fields(Fs)]; map_fields([], _) -> []. %% new_var_name() -> VarName. new_var_name() -> C = get(vcount), put(vcount, C+1), list_to_atom("%" ++ integer_to_list(C)). %% new_vars(Count, Line) -> [Var]. %% Make Count new variables. new_vars(N, L) -> new_vars(N, L, []). new_vars(N, L, Vs) when N > 0 -> V = {var,L,new_var_name()}, new_vars(N-1, L, [V|Vs]); new_vars(0, _, Vs) -> Vs. new_fun_name() -> {F,A} = get(current_function), I = get(fun_count), put(fun_count, I+1), Name = "-" ++ atom_to_list(F) ++ "/" ++ integer_to_list(A) ++ "-fun-" ++ integer_to_list(I) ++ "-", list_to_atom(Name). ln(Anno) -> erl_anno:line(Anno). bif_type(erlang, Name, Arity) -> case erl_internal:guard_bif(Name, Arity) of true -> %% Guard BIFs are safe (except for self/0, but it is %% handled with a special instruction anyway). safe; false -> bif_type(Name) end; bif_type(_, _, _) -> unsafe. bif_type(register) -> safe; bif_type(unregister) -> safe; bif_type(whereis) -> safe; bif_type(registered) -> safe; bif_type(setelement) -> safe; bif_type(atom_to_list) -> safe; bif_type(list_to_atom) -> safe; bif_type(integer_to_list) -> safe; bif_type(list_to_integer) -> safe; bif_type(float_to_list) -> safe; bif_type(list_to_float) -> safe; bif_type(tuple_to_list) -> safe; bif_type(list_to_tuple) -> safe; bif_type(make_ref) -> safe; bif_type(time) -> safe; bif_type(date) -> safe; bif_type(processes) -> safe; bif_type(process_info) -> safe; bif_type(load_module) -> safe; bif_type(delete_module) -> safe; bif_type(halt) -> safe; bif_type(check_process_code) -> safe; bif_type(purge_module) -> safe; bif_type(pid_to_list) -> safe; bif_type(list_to_pid) -> safe; bif_type(module_loaded) -> safe; bif_type(binary_to_term) -> safe; bif_type(term_to_binary) -> safe; bif_type(nodes) -> safe; bif_type(is_alive) -> safe; bif_type(disconnect_node) -> safe; bif_type(binary_to_list) -> safe; bif_type(list_to_binary) -> safe; bif_type(split_binary) -> safe; bif_type(hash) -> safe; bif_type(pre_loaded) -> safe; bif_type(set_cookie) -> safe; bif_type(get_cookie) -> safe; bif_type(_) -> unsafe.