%% ``The contents of this file are subject to the Erlang Public License, %% Version 1.1, (the "License"); you may not use this file except in %% compliance with the License. You should have received a copy of the %% Erlang Public License along with this software. If not, it can be %% retrieved via the world wide web at http://www.erlang.org/. %% %% Software distributed under the License is distributed on an "AS IS" %% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See %% the License for the specific language governing rights and limitations %% under the License. %% %% The Initial Developer of the Original Code is Ericsson Utvecklings AB. %% Portions created by Ericsson are Copyright 1999, Ericsson Utvecklings %% AB. All Rights Reserved.'' %% %% $Id: beam_flatten.erl,v 1.1 2008/12/17 09:53:41 mikpe Exp $ %% %% Purpose : Converts intermediate assembly code to final format. -module(beam_flatten). -export([module/2]). -import(lists, [reverse/1,reverse/2,map/2]). module({Mod,Exp,Attr,Fs,Lc}, _Opt) -> {ok,{Mod,Exp,Attr,map(fun function/1, Fs),Lc}}. function({function,Name,Arity,CLabel,Is0}) -> Is1 = block(Is0), Is = opt(Is1), {function,Name,Arity,CLabel,Is}. block(Is) -> block(Is, []). block([{block,Is0}|Is1], Acc) -> block(Is1, norm_block(Is0, Acc)); block([I|Is], Acc) -> block(Is, [I|Acc]); block([], Acc) -> reverse(Acc). norm_block([{allocate,R,Alloc}|Is], Acc0) -> case insert_alloc_in_bs_init(Acc0, Alloc) of not_possible -> norm_block(Is, reverse(norm_allocate(Alloc, R), Acc0)); Acc -> norm_block(Is, Acc) end; norm_block([I|Is], Acc) -> norm_block(Is, [norm(I)|Acc]); norm_block([], Acc) -> Acc. norm({set,[D],As,{bif,N}}) -> {bif,N,nofail,As,D}; norm({set,[D],As,{bif,N,F}}) -> {bif,N,F,As,D}; norm({set,[D],[S],move}) -> {move,S,D}; norm({set,[D],[S],fmove}) -> {fmove,S,D}; norm({set,[D],[S],fconv}) -> {fconv,S,D}; norm({set,[D],[S1,S2],put_list}) -> {put_list,S1,S2,D}; norm({set,[D],[],{put_tuple,A}}) -> {put_tuple,A,D}; norm({set,[],[S],put}) -> {put,S}; norm({set,[D],[],{put_string,L,S}}) -> {put_string,L,S,D}; norm({set,[D],[S],{get_tuple_element,I}}) -> {get_tuple_element,S,I,D}; norm({set,[],[S,D],{set_tuple_element,I}}) -> {set_tuple_element,S,D,I}; norm({set,[D1,D2],[S],get_list}) -> {get_list,S,D1,D2}; norm({set,[],[],remove_message}) -> remove_message; norm({set,[],[],fclearerror}) -> fclearerror; norm({set,[],[],fcheckerror}) -> {fcheckerror,{f,0}}; norm({'%',_}=Comment) -> Comment; norm({'%live',R}) -> {'%live',R}. norm_allocate({_Zero,nostack,Nh,[]}, Regs) -> [{test_heap,Nh,Regs}]; norm_allocate({_Zero,nostack,Nh,Nf,[]}, Regs) -> [{test_heap,alloc_list(Nh, Nf),Regs}]; norm_allocate({zero,0,Nh,[]}, Regs) -> norm_allocate({nozero,0,Nh,[]}, Regs); norm_allocate({zero,0,Nh,Nf,[]}, Regs) -> norm_allocate({nozero,0,Nh,Nf,[]}, Regs); norm_allocate({zero,Ns,0,[]}, Regs) -> [{allocate_zero,Ns,Regs}]; norm_allocate({zero,Ns,Nh,[]}, Regs) -> [{allocate_heap_zero,Ns,Nh,Regs}]; norm_allocate({nozero,Ns,0,Inits}, Regs) -> [{allocate,Ns,Regs}|Inits]; norm_allocate({nozero,Ns,Nh,Inits}, Regs) -> [{allocate_heap,Ns,Nh,Regs}|Inits]; norm_allocate({nozero,Ns,Nh,Floats,Inits}, Regs) -> [{allocate_heap,Ns,alloc_list(Nh, Floats),Regs}|Inits]; norm_allocate({zero,Ns,Nh,Floats,Inits}, Regs) -> [{allocate_heap_zero,Ns,alloc_list(Nh, Floats),Regs}|Inits]. insert_alloc_in_bs_init([I|_]=Is, Alloc) -> case is_bs_put(I) of false -> not_possible; true -> insert_alloc_1(Is, Alloc, []) end. insert_alloc_1([{bs_init2,Fail,Bs,Ws,Regs,F,Dst}|Is], {_,nostack,Nh,Nf,[]}, Acc) -> Al = alloc_list(Ws+Nh, Nf), I = {bs_init2,Fail,Bs,Al,Regs,F,Dst}, reverse(Acc, [I|Is]); insert_alloc_1([I|Is], Alloc, Acc) -> insert_alloc_1(Is, Alloc, [I|Acc]). is_bs_put({bs_put_integer,_,_,_,_,_}) -> true; is_bs_put({bs_put_float,_,_,_,_,_}) -> true; is_bs_put({bs_put_binary,_,_,_,_,_}) -> true; is_bs_put({bs_put_string,_,_}) -> true; is_bs_put(_) -> false. alloc_list(Words, Floats) -> {alloc,[{words,Words},{floats,Floats}]}. %% opt(Is0) -> Is %% Simple peep-hole optimization to move a {move,Any,{x,0}} past %% any kill up to the next call instruction. opt(Is) -> opt_1(Is, []). opt_1([{move,_,{x,0}}=I|Is0], Acc0) -> case move_past_kill(Is0, I, Acc0) of impossible -> opt_1(Is0, [I|Acc0]); {Is,Acc} -> opt_1(Is, Acc) end; opt_1([I|Is], Acc) -> opt_1(Is, [I|Acc]); opt_1([], Acc) -> reverse(Acc). move_past_kill([{'%live',_}|Is], Move, Acc) -> move_past_kill(Is, Move, Acc); move_past_kill([{kill,Src}|_], {move,Src,_}, _) -> impossible; move_past_kill([{kill,_}=I|Is], Move, Acc) -> move_past_kill(Is, Move, [I|Acc]); move_past_kill(Is, Move, Acc) -> {Is,[Move|Acc]}.