<?xml version="1.0" encoding="utf-8" ?> <!DOCTYPE cref SYSTEM "cref.dtd"> <cref> <header> <copyright> <year>2001</year><year>2017</year> <holder>Ericsson AB. All Rights Reserved.</holder> </copyright> <legalnotice> Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. </legalnotice> <title>ei</title> <prepared>Jakob Cederlund</prepared> <responsible>Kent Boortz</responsible> <docno>1</docno> <approved>Kenneth Lundin</approved> <checked></checked> <date>2000-11-27</date> <rev>PA1</rev> <file>ei.xml</file> </header> <lib>ei</lib> <libsummary>Routines for handling the Erlang binary term format.</libsummary> <description> <p>The library <c>ei</c> contains macros and functions to encode and decode the Erlang binary term format.</p> <p><c>ei</c> allows you to convert atoms, lists, numbers, and binaries to and from the binary format. This is useful when writing port programs and drivers. <c>ei</c> uses a given buffer, no dynamic memory (except <c>ei_decode_fun()</c>) and is often quite fast.</p> <p><c>ei</c> also handles C-nodes, C-programs that talks Erlang distribution with Erlang nodes (or other C-nodes) using the Erlang distribution format. The difference between <c>ei</c> and <c>erl_interface</c> is that <c>ei</c> uses the binary format directly when sending and receiving terms. It is also thread safe, and using threads, one process can handle multiple C-nodes. The <c>erl_interface</c> library is built on top of <c>ei</c>, but of legacy reasons, it does not allow for multiple C-nodes. In general, <c>ei</c> is the preferred way of doing C-nodes.</p> <p>The decode and encode functions use a buffer and an index into the buffer, which points at the point where to encode and decode. The index is updated to point right after the term encoded/decoded. No checking is done whether the term fits in the buffer or not. If encoding goes outside the buffer, the program can crash.</p> <p>All functions take two parameters:</p> <list type="bulleted"> <item><p><c>buf</c> is a pointer to the buffer where the binary data is or will be.</p> </item> <item><p><c>index</c> is a pointer to an index into the buffer. This parameter is incremented with the size of the term decoded/encoded.</p> </item> </list> <p>The data is thus at <c>buf[*index]</c> when an <c>ei</c> function is called.</p> <p>All encode functions assume that the <c>buf</c> and <c>index</c> parameters point to a buffer large enough for the data. To get the size of an encoded term, without encoding it, pass <c>NULL</c> instead of a buffer pointer. Parameter <c>index</c> is incremented, but nothing will be encoded. This is the way in <c>ei</c> to "preflight" term encoding.</p> <p>There are also encode functions that use a dynamic buffer. It is often more convenient to use these to encode data. All encode functions comes in two versions; those starting with <c>ei_x</c> use a dynamic buffer.</p> <p>All functions return <c>0</c> if successful, otherwise <c>-1</c> (for example, if a term is not of the expected type, or the data to decode is an invalid Erlang term).</p> <p>Some of the decode functions need a pre-allocated buffer. This buffer must be allocated large enough, and for non-compound types the <c>ei_get_type()</c> function returns the size required (notice that for strings an extra byte is needed for the <c>NULL</c>-terminator).</p> </description> <section> <title>Data Types</title> <taglist> <tag><marker id="erlang_char_encoding"/>erlang_char_encoding</tag> <item> <code type="none"> typedef enum { ERLANG_ASCII = 1, ERLANG_LATIN1 = 2, ERLANG_UTF8 = 4 } erlang_char_encoding;</code> <p>The character encodings used for atoms. <c>ERLANG_ASCII</c> represents 7-bit ASCII. Latin-1 and UTF-8 are different extensions of 7-bit ASCII. All 7-bit ASCII characters are valid Latin-1 and UTF-8 characters. ASCII and Latin-1 both represent each character by one byte. An UTF-8 character can consist of 1-4 bytes. Notice that these constants are bit-flags and can be combined with bitwise OR.</p> </item> </taglist> </section> <funcs> <func> <name><ret>int</ret><nametext>ei_decode_atom(const char *buf, int *index, char *p)</nametext></name> <fsummary>Decode an atom.</fsummary> <desc> <p>Decodes an atom from the binary format. The <c>NULL</c>-terminated name of the atom is placed at <c>p</c>. At most <c>MAXATOMLEN</c> bytes can be placed in the buffer.</p> </desc> </func> <func> <name><ret>int</ret><nametext>ei_decode_atom_as(const char *buf, int *index, char *p, int plen, erlang_char_encoding want, erlang_char_encoding* was, erlang_char_encoding* result)</nametext></name> <fsummary>Decode an atom.</fsummary> <desc> <p>Decodes an atom from the binary format. The <c>NULL</c>-terminated name of the atom is placed in buffer at <c>p</c> of length <c>plen</c> bytes.</p> <p>The wanted string encoding is specified by <seealso marker="#erlang_char_encoding"><c>want</c></seealso>. The original encoding used in the binary format (Latin-1 or UTF-8) can be obtained from <c>*was</c>. The encoding of the resulting string (7-bit ASCII, Latin-1, or UTF-8) can be obtained from <c>*result</c>. Both <c>was</c> and <c>result</c> can be <c>NULL</c>. <c>*result</c> can differ from <c>want</c> if <c>want</c> is a bitwise OR'd combination like <c>ERLANG_LATIN1|ERLANG_UTF8</c> or if <c>*result</c> turns out to be pure 7-bit ASCII (compatible with both Latin-1 and UTF-8).</p> <p>This function fails if the atom is too long for the buffer or if it cannot be represented with encoding <c>want</c>.</p> <p>This function was introduced in Erlang/OTP R16 as part of a first step to support UTF-8 atoms.</p> </desc> </func> <func> <name><ret>int</ret><nametext>ei_decode_bignum(const char *buf, int *index, mpz_t obj)</nametext></name> <fsummary>Decode a GMP arbitrary precision integer.</fsummary> <desc> <p>Decodes an integer in the binary format to a GMP <c>mpz_t</c> integer. To use this function, the <c>ei</c> library must be configured and compiled to use the GMP library.</p> </desc> </func> <func> <name><ret>int</ret><nametext>ei_decode_binary(const char *buf, int *index, void *p, long *len)</nametext></name> <fsummary>Decode a binary.</fsummary> <desc> <p>Decodes a binary from the binary format. Parameter <c>len</c> is set to the actual size of the binary. Notice that <c>ei_decode_binary()</c> assumes that there is enough room for the binary. The size required can be fetched by <c>ei_get_type()</c>.</p> </desc> </func> <func> <name><ret>int</ret><nametext>ei_decode_boolean(const char *buf, int *index, int *p)</nametext></name> <fsummary>Decode a boolean.</fsummary> <desc> <p>Decodes a boolean value from the binary format. A boolean is actually an atom, <c>true</c> decodes 1 and <c>false</c> decodes 0.</p> </desc> </func> <func> <name><ret>int</ret><nametext>ei_decode_char(const char *buf, int *index, char *p)</nametext></name> <fsummary>Decode an 8-bit integer between 0-255.</fsummary> <desc> <p>Decodes a char (8-bit) integer between 0-255 from the binary format. For historical reasons the returned integer is of type <c>char</c>. Your C code is to consider the returned value to be of type <c>unsigned char</c> even if the C compilers and system can define <c>char</c> to be signed.</p> </desc> </func> <func> <name><ret>int</ret><nametext>ei_decode_double(const char *buf, int *index, double *p)</nametext></name> <fsummary>Decode a double.</fsummary> <desc> <p>Decodes a double-precision (64-bit) floating point number from the binary format.</p> </desc> </func> <func> <name><ret>int</ret><nametext>ei_decode_ei_term(const char* buf, int* index, ei_term* term)</nametext></name> <fsummary>Decode a term, without previous knowledge of type.</fsummary> <desc> <p>Decodes any term, or at least tries to. If the term pointed at by <c>*index</c> in <c>buf</c> fits in the <c>term</c> union, it is decoded, and the appropriate field in <c>term->value</c> is set, and <c>*index</c> is incremented by the term size.</p> <p>The function returns <c>1</c> on successful decoding, <c>-1</c> on error, and <c>0</c> if the term seems alright, but does not fit in the <c>term</c> structure. If <c>1</c> is returned, the <c>index</c> is incremented, and <c>term</c> contains the decoded term.</p> <p>The <c>term</c> structure contains the arity for a tuple or list, size for a binary, string, or atom. It contains a term if it is any of the following: integer, float, atom, pid, port, or ref.</p> </desc> </func> <func> <name><ret>int</ret><nametext>ei_decode_fun(const char *buf, int *index, erlang_fun *p)</nametext></name> <name><ret>void</ret><nametext>free_fun(erlang_fun* f)</nametext></name> <fsummary>Decode a fun.</fsummary> <desc> <p>Decodes a fun from the binary format. Parameter <c>p</c> is to be <c>NULL</c> or point to an <c>erlang_fun</c> structure. This is the only decode function that allocates memory. When the <c>erlang_fun</c> is no longer needed, it is to be freed with <c>free_fun</c>. (This has to do with the arbitrary size of the environment for a fun.)</p> </desc> </func> <func> <name><ret>int</ret><nametext>ei_decode_list_header(const char *buf, int *index, int *arity)</nametext></name> <fsummary>Decode a list.</fsummary> <desc> <p>Decodes a list header from the binary format. The number of elements is returned in <c>arity</c>. The <c>arity+1</c> elements follow (the last one is the tail of the list, normally an empty list). If <c>arity</c> is <c>0</c>, it is an empty list.</p> <p>Notice that lists are encoded as strings if they consist entirely of integers in the range 0..255. This function do not decode such strings, use <c>ei_decode_string()</c> instead.</p> </desc> </func> <func> <name><ret>int</ret><nametext>ei_decode_long(const char *buf, int *index, long *p)</nametext></name> <fsummary>Decode integer.</fsummary> <desc> <p>Decodes a long integer from the binary format. If the code is 64 bits, the function <c>ei_decode_long()</c> is the same as <c>ei_decode_longlong()</c>.</p> </desc> </func> <func> <name><ret>int</ret><nametext>ei_decode_longlong(const char *buf, int *index, long long *p)</nametext></name> <fsummary>Decode integer.</fsummary> <desc> <p>Decodes a GCC <c>long long</c> or Visual C++ <c>__int64</c> (64-bit) integer from the binary format. This function is missing in the VxWorks port.</p> </desc> </func> <func> <name><ret>int</ret><nametext>ei_decode_map_header(const char *buf, int *index, int *arity)</nametext></name> <fsummary>Decode a map.</fsummary> <desc> <p>Decodes a map header from the binary format. The number of key-value pairs is returned in <c>*arity</c>. Keys and values follow in this order: <c>K1, V1, K2, V2, ..., Kn, Vn</c>. This makes a total of <c>arity*2</c> terms. If <c>arity</c> is zero, it is an empty map. A correctly encoded map does not have duplicate keys.</p> </desc> </func> <func> <name><ret>int</ret><nametext>ei_decode_pid(const char *buf, int *index, erlang_pid *p)</nametext></name> <fsummary>Decode a <c>pid</c>.</fsummary> <desc> <p>Decodes a process identifier (pid) from the binary format.</p> </desc> </func> <func> <name><ret>int</ret><nametext>ei_decode_port(const char *buf, int *index, erlang_port *p)</nametext></name> <fsummary>Decode a port.</fsummary> <desc> <p>Decodes a port identifier from the binary format.</p> </desc> </func> <func> <name><ret>int</ret><nametext>ei_decode_ref(const char *buf, int *index, erlang_ref *p)</nametext></name> <fsummary>Decode a reference.</fsummary> <desc> <p>Decodes a reference from the binary format.</p> </desc> </func> <func> <name><ret>int</ret><nametext>ei_decode_string(const char *buf, int *index, char *p)</nametext></name> <fsummary>Decode a string.</fsummary> <desc> <p>Decodes a string from the binary format. A string in Erlang is a list of integers between 0 and 255. Notice that as the string is just a list, sometimes lists are encoded as strings by <c>term_to_binary/1</c>, even if it was not intended.</p> <p>The string is copied to <c>p</c>, and enough space must be allocated. The returned string is <c>NULL</c>-terminated, so you must add an extra byte to the memory requirement.</p> </desc> </func> <func> <name><ret>int</ret><nametext>ei_decode_term(const char *buf, int *index, void *t)</nametext></name> <fsummary>Decode a <c>ETERM</c>.</fsummary> <desc> <p>Decodes a term from the binary format. The term is return in <c>t</c> as a <c>ETERM*</c>, so <c>t</c> is actually an <c>ETERM**</c> (see <seealso marker="erl_eterm"><c>erl_eterm</c></seealso>). The term is later to be deallocated.</p> <p>Notice that this function is located in the <c>Erl_Interface</c> library.</p> </desc> </func> <func> <name><ret>int</ret><nametext>ei_decode_trace(const char *buf, int *index, erlang_trace *p)</nametext></name> <fsummary>Decode a trace token.</fsummary> <desc> <p>Decodes an Erlang trace token from the binary format.</p> </desc> </func> <func> <name><ret>int</ret><nametext>ei_decode_tuple_header(const char *buf, int *index, int *arity)</nametext></name> <fsummary>Decode a tuple.</fsummary> <desc> <p>Decodes a tuple header, the number of elements is returned in <c>arity</c>. The tuple elements follow in order in the buffer.</p> </desc> </func> <func> <name><ret>int</ret><nametext>ei_decode_ulong(const char *buf, int *index, unsigned long *p)</nametext></name> <fsummary>Decode unsigned integer.</fsummary> <desc> <p>Decodes an unsigned long integer from the binary format. If the code is 64 bits, the function <c>ei_decode_ulong()</c> is the same as <c>ei_decode_ulonglong()</c>.</p> </desc> </func> <func> <name><ret>int</ret><nametext>ei_decode_ulonglong(const char *buf, int *index, unsigned long long *p)</nametext></name> <fsummary>Decode unsigned integer.</fsummary> <desc> <p>Decodes a GCC <c>unsigned long long</c> or Visual C++ <c>unsigned __int64</c> (64-bit) integer from the binary format. This function is missing in the VxWorks port.</p> </desc> </func> <func> <name><ret>int</ret><nametext>ei_decode_version(const char *buf, int *index, int *version)</nametext></name> <fsummary>Decode an empty list (<c>nil</c>).</fsummary> <desc> <p>Decodes the version magic number for the Erlang binary term format. It must be the first token in a binary term.</p> </desc> </func> <func> <name><ret>int</ret><nametext>ei_encode_atom(char *buf, int *index, const char *p)</nametext></name> <name><ret>int</ret><nametext>ei_encode_atom_len(char *buf, int *index, const char *p, int len)</nametext></name> <name><ret>int</ret><nametext>ei_x_encode_atom(ei_x_buff* x, const char *p)</nametext></name> <name><ret>int</ret><nametext>ei_x_encode_atom_len(ei_x_buff* x, const char *p, int len)</nametext></name> <fsummary>Encode an atom.</fsummary> <desc> <p>Encodes an atom in the binary format. Parameter <c>p</c> is the name of the atom in Latin-1 encoding. Only up to <c>MAXATOMLEN-1</c> bytes are encoded. The name is to be <c>NULL</c>-terminated, except for the <c>ei_x_encode_atom_len()</c> function.</p> </desc> </func> <func> <name><ret>int</ret><nametext>ei_encode_atom_as(char *buf, int *index, const char *p, erlang_char_encoding from_enc, erlang_char_encoding to_enc)</nametext></name> <name><ret>int</ret><nametext>ei_encode_atom_len_as(char *buf, int *index, const char *p, int len, erlang_char_encoding from_enc, erlang_char_encoding to_enc)</nametext></name> <name><ret>int</ret><nametext>ei_x_encode_atom_as(ei_x_buff* x, const char *p, erlang_char_encoding from_enc, erlang_char_encoding to_enc)</nametext></name> <name><ret>int</ret><nametext>ei_x_encode_atom_len_as(ei_x_buff* x, const char *p, int len, erlang_char_encoding from_enc, erlang_char_encoding to_enc)</nametext></name> <fsummary>Encode an atom.</fsummary> <desc> <p>Encodes an atom in the binary format. Parameter <c>p</c> is the name of the atom with character encoding <seealso marker="#erlang_char_encoding"><c>from_enc</c></seealso> (ASCII, Latin-1, or UTF-8). The name must either be <c>NULL</c>-terminated or a function variant with a <c>len</c> parameter must be used.</p> <p>The encoding fails if <c>p</c> is not a valid string in encoding <c>from_enc</c>.</p> <p>Argument <c>to_enc</c> is ignored. As from Erlang/OTP 20 the encoding is always done in UTF-8 which is readable by nodes as old as Erlang/OTP R16.</p> </desc> </func> <func> <name><ret>int</ret><nametext>ei_encode_bignum(char *buf, int *index, mpz_t obj)</nametext></name> <name><ret>int</ret><nametext>ei_x_encode_bignum(ei_x_buff *x, mpz_t obj)</nametext></name> <fsummary>Encode an arbitrary precision integer.</fsummary> <desc> <p>Encodes a GMP <c>mpz_t</c> integer to binary format. To use this function, the <c>ei</c> library must be configured and compiled to use the GMP library.</p> </desc> </func> <func> <name><ret>int</ret><nametext>ei_encode_binary(char *buf, int *index, const void *p, long len)</nametext></name> <name><ret>int</ret><nametext>ei_x_encode_binary(ei_x_buff* x, const void *p, long len)</nametext></name> <fsummary>Encode a binary.</fsummary> <desc> <p>Encodes a binary in the binary format. The data is at <c>p</c>, of <c>len</c> bytes length.</p> </desc> </func> <func> <name><ret>int</ret><nametext>ei_encode_boolean(char *buf, int *index, int p)</nametext></name> <name><ret>int</ret><nametext>ei_x_encode_boolean(ei_x_buff* x, int p)</nametext></name> <fsummary>Encode a boolean.</fsummary> <desc> <p>Encodes a boolean value as the atom <c>true</c> if <c>p</c> is not zero, or <c>false</c> if <c>p</c> is zero.</p> </desc> </func> <func> <name><ret>int</ret><nametext>ei_encode_char(char *buf, int *index, char p)</nametext></name> <name><ret>int</ret><nametext>ei_x_encode_char(ei_x_buff* x, char p)</nametext></name> <fsummary>Encode an 8-bit integer between 0-255.</fsummary> <desc> <p>Encodes a char (8-bit) as an integer between 0-255 in the binary format. For historical reasons the integer argument is of type <c>char</c>. Your C code is to consider the specified argument to be of type <c>unsigned char</c> even if the C compilers and system may define <c>char</c> to be signed.</p> </desc> </func> <func> <name><ret>int</ret><nametext>ei_encode_double(char *buf, int *index, double p)</nametext></name> <name><ret>int</ret><nametext>ei_x_encode_double(ei_x_buff* x, double p)</nametext></name> <fsummary>Encode a double float.</fsummary> <desc> <p>Encodes a double-precision (64-bit) floating point number in the binary format.</p> <p>Returns <c>-1</c> if the floating point number is not finite.</p> </desc> </func> <func> <name><ret>int</ret><nametext>ei_encode_empty_list(char* buf, int* index)</nametext></name> <name><ret>int</ret><nametext>ei_x_encode_empty_list(ei_x_buff* x)</nametext></name> <fsummary>Encode an empty list (<c>nil</c>).</fsummary> <desc> <p>Encodes an empty list. It is often used at the tail of a list.</p> </desc> </func> <func> <name><ret>int</ret><nametext>ei_encode_fun(char *buf, int *index, const erlang_fun *p)</nametext></name> <name><ret>int</ret><nametext>ei_x_encode_fun(ei_x_buff* x, const erlang_fun* fun)</nametext></name> <fsummary>Encode a fun.</fsummary> <desc> <p>Encodes a fun in the binary format. Parameter <c>p</c> points to an <c>erlang_fun</c> structure. The <c>erlang_fun</c> is not freed automatically, the <c>free_fun</c> is to be called if the fun is not needed after encoding.</p> </desc> </func> <func> <name><ret>int</ret><nametext>ei_encode_list_header(char *buf, int *index, int arity)</nametext></name> <name><ret>int</ret><nametext>ei_x_encode_list_header(ei_x_buff* x, int arity)</nametext></name> <fsummary>Encode a list.</fsummary> <desc> <p>Encodes a list header, with a specified arity. The next <c>arity+1</c> terms are the elements (actually its <c>arity</c> cons cells) and the tail of the list. Lists and tuples are encoded recursively, so that a list can contain another list or tuple.</p> <p>For example, to encode the list <c>[c, d, [e | f]]</c>:</p> <pre> ei_encode_list_header(buf, &i, 3); ei_encode_atom(buf, &i, "c"); ei_encode_atom(buf, &i, "d"); ei_encode_list_header(buf, &i, 1); ei_encode_atom(buf, &i, "e"); ei_encode_atom(buf, &i, "f"); ei_encode_empty_list(buf, &i);</pre> <note> <p>It may seem that there is no way to create a list without knowing the number of elements in advance. But indeed there is a way. Notice that the list <c>[a, b, c]</c> can be written as <c>[a | [b | [c]]]</c>. Using this, a list can be written as conses.</p> </note> <p>To encode a list, without knowing the arity in advance:</p> <pre> while (something()) { ei_x_encode_list_header(&x, 1); ei_x_encode_ulong(&x, i); /* just an example */ } ei_x_encode_empty_list(&x);</pre> </desc> </func> <func> <name><ret>int</ret><nametext>ei_encode_long(char *buf, int *index, long p)</nametext></name> <name><ret>int</ret><nametext>ei_x_encode_long(ei_x_buff* x, long p)</nametext></name> <fsummary>Encode integer.</fsummary> <desc> <p>Encodes a long integer in the binary format. If the code is 64 bits, the function <c>ei_encode_long()</c> is the same as <c>ei_encode_longlong()</c>.</p> </desc> </func> <func> <name><ret>int</ret><nametext>ei_encode_longlong(char *buf, int *index, long long p)</nametext></name> <name><ret>int</ret><nametext>ei_x_encode_longlong(ei_x_buff* x, long long p)</nametext></name> <fsummary>Encode integer.</fsummary> <desc> <p>Encodes a GCC <c>long long</c> or Visual C++ <c>__int64</c> (64-bit) integer in the binary format. This function is missing in the VxWorks port.</p> </desc> </func> <func> <name><ret>int</ret><nametext>ei_encode_map_header(char *buf, int *index, int arity)</nametext></name> <name><ret>int</ret><nametext>ei_x_encode_map_header(ei_x_buff* x, int arity)</nametext></name> <fsummary>Encode a map.</fsummary> <desc> <p>Encodes a map header, with a specified arity. The next <c>arity*2</c> terms encoded will be the keys and values of the map encoded in the following order: <c>K1, V1, K2, V2, ..., Kn, Vn</c>. </p> <p>For example, to encode the map <c>#{a => "Apple", b => "Banana"}</c>:</p> <pre> ei_x_encode_map_header(&x, 2); ei_x_encode_atom(&x, "a"); ei_x_encode_string(&x, "Apple"); ei_x_encode_atom(&x, "b"); ei_x_encode_string(&x, "Banana");</pre> <p>A correctly encoded map cannot have duplicate keys.</p> </desc> </func> <func> <name><ret>int</ret><nametext>ei_encode_pid(char *buf, int *index, const erlang_pid *p)</nametext></name> <name><ret>int</ret><nametext>ei_x_encode_pid(ei_x_buff* x, const erlang_pid *p)</nametext></name> <fsummary>Encode a pid.</fsummary> <desc> <p>Encodes an Erlang process identifier (pid) in the binary format. Parameter <c>p</c> points to an <c>erlang_pid</c> structure (which should have been obtained earlier with <c>ei_decode_pid()</c>).</p> </desc> </func> <func> <name><ret>int</ret><nametext>ei_encode_port(char *buf, int *index, const erlang_port *p)</nametext></name> <name><ret>int</ret><nametext>ei_x_encode_port(ei_x_buff* x, const erlang_port *p)</nametext></name> <fsummary>Encode a port.</fsummary> <desc> <p>Encodes an Erlang port in the binary format. Parameter <c>p</c> points to a <c>erlang_port</c> structure (which should have been obtained earlier with <c>ei_decode_port()</c>).</p> </desc> </func> <func> <name><ret>int</ret><nametext>ei_encode_ref(char *buf, int *index, const erlang_ref *p)</nametext></name> <name><ret>int</ret><nametext>ei_x_encode_ref(ei_x_buff* x, const erlang_ref *p)</nametext></name> <fsummary>Encode a ref.</fsummary> <desc> <p>Encodes an Erlang reference in the binary format. Parameter <c>p</c> points to a <c>erlang_ref</c> structure (which should have been obtained earlier with <c>ei_decode_ref()</c>).</p> </desc> </func> <func> <name><ret>int</ret><nametext>ei_encode_string(char *buf, int *index, const char *p)</nametext></name> <name><ret>int</ret><nametext>ei_encode_string_len(char *buf, int *index, const char *p, int len)</nametext></name> <name><ret>int</ret><nametext>ei_x_encode_string(ei_x_buff* x, const char *p)</nametext></name> <name><ret>int</ret><nametext>ei_x_encode_string_len(ei_x_buff* x, const char* s, int len)</nametext></name> <fsummary>Encode a string.</fsummary> <desc> <p>Encodes a string in the binary format. (A string in Erlang is a list, but is encoded as a character array in the binary format.) The string is to be <c>NULL</c>-terminated, except for the <c>ei_x_encode_string_len()</c> function.</p> </desc> </func> <func> <name><ret>int</ret><nametext>ei_encode_term(char *buf, int *index, void *t)</nametext></name> <name><ret>int</ret><nametext>ei_x_encode_term(ei_x_buff* x, void *t)</nametext></name> <fsummary>Encode an <c>erl_interface</c> term.</fsummary> <desc> <p>Encodes an <c>ETERM</c>, as obtained from <c>erl_interface</c>. Parameter <c>t</c> is actually an <c>ETERM</c> pointer. This function does not free the <c>ETERM</c>.</p> </desc> </func> <func> <name><ret>int</ret><nametext>ei_encode_trace(char *buf, int *index, const erlang_trace *p)</nametext></name> <name><ret>int</ret><nametext>ei_x_encode_trace(ei_x_buff* x, const erlang_trace *p)</nametext></name> <fsummary>Encode a trace token.</fsummary> <desc> <p>Encodes an Erlang trace token in the binary format. Parameter <c>p</c> points to a <c>erlang_trace</c> structure (which should have been obtained earlier with <c>ei_decode_trace()</c>).</p> </desc> </func> <func> <name><ret>int</ret><nametext>ei_encode_tuple_header(char *buf, int *index, int arity)</nametext></name> <name><ret>int</ret><nametext>ei_x_encode_tuple_header(ei_x_buff* x, int arity)</nametext></name> <fsummary>Encode a tuple.</fsummary> <desc> <p>Encodes a tuple header, with a specified arity. The next <c>arity</c> terms encoded will be the elements of the tuple. Tuples and lists are encoded recursively, so that a tuple can contain another tuple or list.</p> <p>For example, to encode the tuple <c>{a, {b, {}}}</c>:</p> <pre> ei_encode_tuple_header(buf, &i, 2); ei_encode_atom(buf, &i, "a"); ei_encode_tuple_header(buf, &i, 2); ei_encode_atom(buf, &i, "b"); ei_encode_tuple_header(buf, &i, 0);</pre> </desc> </func> <func> <name><ret>int</ret><nametext>ei_encode_ulong(char *buf, int *index, unsigned long p)</nametext></name> <name><ret>int</ret><nametext>ei_x_encode_ulong(ei_x_buff* x, unsigned long p)</nametext></name> <fsummary>Encode unsigned integer.</fsummary> <desc> <p>Encodes an unsigned long integer in the binary format. If the code is 64 bits, the function <c>ei_encode_ulong()</c> is the same as <c>ei_encode_ulonglong()</c>.</p> </desc> </func> <func> <name><ret>int</ret><nametext>ei_encode_ulonglong(char *buf, int *index, unsigned long long p)</nametext></name> <name><ret>int</ret><nametext>ei_x_encode_ulonglong(ei_x_buff* x, unsigned long long p)</nametext></name> <fsummary>Encode unsigned integer.</fsummary> <desc> <p>Encodes a GCC <c>unsigned long long</c> or Visual C++ <c>unsigned __int64</c> (64-bit) integer in the binary format. This function is missing in the VxWorks port.</p> </desc> </func> <func> <name><ret>int</ret><nametext>ei_encode_version(char *buf, int *index)</nametext></name> <name><ret>int</ret><nametext>ei_x_encode_version(ei_x_buff* x)</nametext></name> <fsummary>Encode version.</fsummary> <desc> <p>Encodes a version magic number for the binary format. Must be the first token in a binary term.</p> </desc> </func> <func> <name><ret>int</ret><nametext>ei_get_type(const char *buf, const int *index, int *type, int *size)</nametext></name> <fsummary>Fetch the type and size of an encoded term.</fsummary> <desc> <p>Returns the type in <c>type</c> and size in <c>size</c> of the encoded term. For strings and atoms, size is the number of characters <em>not</em> including the terminating <c>NULL</c>. For binaries, <c>size</c> is the number of bytes. For lists and tuples, <c>size</c> is the arity of the object. For other types, <c>size</c> is 0. In all cases, <c>index</c> is left unchanged.</p> </desc> </func> <func> <name><ret>int</ret><nametext>ei_print_term(FILE* fp, const char* buf, int* index)</nametext></name> <name><ret>int</ret><nametext>ei_s_print_term(char** s, const char* buf, int* index)</nametext></name> <fsummary>Print a term in clear text.</fsummary> <desc> <p>Prints a term, in clear text, to the file specified by <c>fp</c>, or the buffer pointed to by <c>s</c>. It tries to resemble the term printing in the Erlang shell.</p> <p>In <c>ei_s_print_term()</c>, parameter <c>s</c> is to point to a dynamically (malloc) allocated string of <c>BUFSIZ</c> bytes or a <c>NULL</c> pointer. The string can be reallocated (and <c>*s</c> can be updated) by this function if the result is more than <c>BUFSIZ</c> characters. The string returned is <c>NULL</c>-terminated.</p> <p>The return value is the number of characters written to the file or string, or <c>-1</c> if <c>buf[index]</c> does not contain a valid term. Unfortunately, I/O errors on <c>fp</c> is not checked.</p> <p>Argument <c>index</c> is updated, that is, this function can be viewed as a decode function that decodes a term into a human-readable format.</p> </desc> </func> <func> <name><ret>void</ret><nametext>ei_set_compat_rel(release_number)</nametext></name> <fsummary>Set the ei library in compatibility mode.</fsummary> <type> <v>unsigned release_number;</v> </type> <desc> <marker id="ei_set_compat_rel"></marker> <p>By default, the <c>ei</c> library is only guaranteed to be compatible with other Erlang/OTP components from the same release as the <c>ei</c> library itself. For example, <c>ei</c> from Erlang/OTP R10 is not compatible with an Erlang emulator from Erlang/OTP R9 by default.</p> <p>A call to <c>ei_set_compat_rel(release_number)</c> sets the <c>ei</c> library in compatibility mode of release <c>release_number</c>. Valid range of <c>release_number</c> is <c>[7, current release]</c>. This makes it possible to communicate with Erlang/OTP components from earlier releases.</p> <note> <p>If this function is called, it can only be called once and must be called before any other functions in the <c>ei</c> library are called.</p> </note> <warning> <p>You can run into trouble if this feature is used carelessly. Always ensure that all communicating components are either from the same Erlang/OTP release, or from release X and release Y where all components from release Y are in compatibility mode of release X.</p> </warning> </desc> </func> <func> <name><ret>int</ret><nametext>ei_skip_term(const char* buf, int* index)</nametext></name> <fsummary>Skip a term.</fsummary> <desc> <p>Skips a term in the specified buffer; recursively skips elements of lists and tuples, so that a full term is skipped. This is a way to get the size of an Erlang term.</p> <p><c>buf</c> is the buffer.</p> <p><c>index</c> is updated to point right after the term in the buffer.</p> <note> <p>This can be useful when you want to hold arbitrary terms: skip them and copy the binary term data to some buffer.</p> </note> <p>Returns <c>0</c> on success, otherwise <c>-1</c>.</p> </desc> </func> <func> <name><ret>int</ret><nametext>ei_x_append(ei_x_buff* x, const ei_x_buff* x2)</nametext></name> <name><ret>int</ret><nametext>ei_x_append_buf(ei_x_buff* x, const char* buf, int len)</nametext></name> <fsummary>Append a buffer at the end.</fsummary> <desc> <p>Appends data at the end of buffer <c>x</c>.</p> </desc> </func> <func> <name><ret>int</ret><nametext>ei_x_format(ei_x_buff* x, const char* fmt, ...)</nametext></name> <name><ret>int</ret><nametext>ei_x_format_wo_ver(ei_x_buff* x, const char *fmt, ... )</nametext></name> <fsummary>Format a term from a format string and parameters.</fsummary> <desc> <p>Formats a term, given as a string, to a buffer. Works like a sprintf for Erlang terms. <c>fmt</c> contains a format string, with arguments like <c>~d</c>, to insert terms from variables. The following formats are supported (with the C types given):</p> <pre> ~a An atom, char* ~c A character, char ~s A string, char* ~i An integer, int ~l A long integer, long int ~u A unsigned long integer, unsigned long int ~f A float, float ~d A double float, double float ~p An Erlang pid, erlang_pid*</pre> <p>For example, to encode a tuple with some stuff:</p> <pre> ei_x_format("{~a,~i,~d}", "numbers", 12, 3.14159) encodes the tuple {numbers,12,3.14159}</pre> <p><c>ei_x_format_wo_ver()</c> formats into a buffer, without the initial version byte.</p> </desc> </func> <func> <name><ret>int</ret><nametext>ei_x_free(ei_x_buff* x)</nametext></name> <fsummary>Free a buffer.</fsummary> <desc> <p>Frees an <c>ei_x_buff</c> buffer. The memory used by the buffer is returned to the OS.</p> </desc> </func> <func> <name><ret>int</ret><nametext>ei_x_new(ei_x_buff* x)</nametext></name> <name><ret>int</ret><nametext>ei_x_new_with_version(ei_x_buff* x)</nametext></name> <fsummary>Allocate a new buffer.</fsummary> <desc> <p>Allocates a new <c>ei_x_buff</c> buffer. The fields of the structure pointed to by parameter <c>x</c> is filled in, and a default buffer is allocated. <c>ei_x_new_with_version()</c> also puts an initial version byte, which is used in the binary format (so that <c>ei_x_encode_version()</c> will not be needed.)</p> </desc> </func> </funcs> <section> <title>Debug Information</title> <p>Some tips on what to check when the emulator does not seem to receive the terms that you send:</p> <list type="bulleted"> <item>Be careful with the version header, use <c>ei_x_new_with_version()</c> when appropriate.</item> <item>Turn on distribution tracing on the Erlang node.</item> <item>Check the result codes from <c>ei_decode_-calls</c>.</item> </list> </section> <section> <title>See Also</title> <p><seealso marker="erl_eterm"><c>erl_eterm</c></seealso></p> </section> </cref>