%%% -*- erlang-indent-level: 2 -*- %% %% %CopyrightBegin% %% %% Copyright Ericsson AB 2005-2009. All Rights Reserved. %% %% The contents of this file are subject to the Erlang Public License, %% Version 1.1, (the "License"); you may not use this file except in %% compliance with the License. You should have received a copy of the %% Erlang Public License along with this software. If not, it can be %% retrieved online at http://www.erlang.org/. %% %% Software distributed under the License is distributed on an "AS IS" %% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See %% the License for the specific language governing rights and limitations %% under the License. %% %% %CopyrightEnd% %% -module(hipe_arm). -export([ mk_temp/2, mk_new_temp/1, mk_new_nonallocatable_temp/1, is_temp/1, temp_reg/1, temp_type/1, temp_is_allocatable/1, temp_is_precoloured/1, mk_mfa/3, mk_prim/1, is_prim/1, prim_prim/1, mk_sdesc/4, mk_am2/3, mk_am3/3, mk_alu/5, mk_b_fun/2, mk_b_label/2, mk_b_label/1, mk_bl/3, mk_blx/2, mk_cmp/3, mk_comment/1, mk_label/1, is_label/1, label_label/1, mk_load/3, mk_load/6, mk_ldrsb/2, mk_move/3, mk_move/2, mk_pseudo_bc/4, mk_pseudo_call/4, pseudo_call_contlab/1, pseudo_call_funv/1, pseudo_call_sdesc/1, pseudo_call_linkage/1, mk_pseudo_call_prepare/1, pseudo_call_prepare_nrstkargs/1, mk_pseudo_li/2, mk_pseudo_move/2, is_pseudo_move/1, pseudo_move_dst/1, pseudo_move_src/1, mk_pseudo_switch/3, mk_pseudo_tailcall/4, pseudo_tailcall_funv/1, pseudo_tailcall_stkargs/1, pseudo_tailcall_linkage/1, mk_pseudo_tailcall_prepare/0, mk_smull/4, mk_store/3, mk_store/6, mk_pseudo_blr/0, mk_bx/1, mk_mflr/1, mk_mtlr/1, mk_lr/0, mk_pc/0, mk_li/2, mk_li/3, mk_addi/4, try_aluop_imm/2, mk_defun/8, defun_mfa/1, defun_formals/1, defun_is_closure/1, defun_is_leaf/1, defun_code/1, defun_data/1, defun_var_range/1 ]). -include("hipe_arm.hrl"). mk_temp(Reg, Type, Allocatable) -> #arm_temp{reg=Reg, type=Type, allocatable=Allocatable}. mk_temp(Reg, Type) -> mk_temp(Reg, Type, true). mk_new_temp(Type, Allocatable) -> mk_temp(hipe_gensym:get_next_var(arm), Type, Allocatable). mk_new_temp(Type) -> mk_new_temp(Type, true). mk_new_nonallocatable_temp(Type) -> mk_new_temp(Type, false). is_temp(X) -> case X of #arm_temp{} -> true; _ -> false end. temp_reg(#arm_temp{reg=Reg}) -> Reg. temp_type(#arm_temp{type=Type}) -> Type. temp_is_allocatable(#arm_temp{allocatable=A}) -> A. temp_is_precoloured(#arm_temp{reg=Reg}) -> hipe_arm_registers:is_precoloured_gpr(Reg). mk_mfa(M, F, A) -> #arm_mfa{m=M, f=F, a=A}. mk_prim(Prim) -> #arm_prim{prim=Prim}. is_prim(X) -> case X of #arm_prim{} -> true; _ -> false end. prim_prim(#arm_prim{prim=Prim}) -> Prim. mk_am2(Src, Sign, Offset) -> #am2{src=Src, sign=Sign, offset=Offset}. mk_am3(Src, Sign, Offset) -> #am3{src=Src, sign=Sign, offset=Offset}. mk_alu(AluOp, S, Dst, Src, Am1) -> #alu{aluop=AluOp, s=S, dst=Dst, src=Src, am1=Am1}. mk_alu(AluOp, Dst, Src, Am1) -> mk_alu(AluOp, false, Dst, Src, Am1). mk_b_fun(Fun, Linkage) -> #b_fun{'fun'=Fun, linkage=Linkage}. mk_b_label(Cond, Label) -> #b_label{'cond'=Cond, label=Label}. mk_b_label(Label) -> mk_b_label('al', Label). mk_bl(Fun, SDesc, Linkage) -> #bl{'fun'=Fun, sdesc=SDesc, linkage=Linkage}. mk_blx(Src, SDesc) -> #blx{src=Src, sdesc=SDesc}. mk_cmp(CmpOp, Src, Am1) -> #cmp{cmpop=CmpOp, src=Src, am1=Am1}. mk_sdesc(ExnLab, FSize, Arity, Live) -> #arm_sdesc{exnlab=ExnLab, fsize=FSize, arity=Arity, live=Live}. mk_comment(Term) -> #comment{term=Term}. mk_label(Label) -> #label{label=Label}. is_label(I) -> case I of #label{} -> true; _ -> false end. label_label(#label{label=Label}) -> Label. mk_load(LdOp, Dst, Am2) -> #load{ldop=LdOp, dst=Dst, am2=Am2}. mk_load(LdOp, Dst, Base, Offset, Scratch, Rest) when is_integer(Offset) -> {Sign,AbsOffset} = if Offset < 0 -> {'-', -Offset}; true -> {'+', Offset} end, if AbsOffset =< 4095 -> Am2 = #am2{src=Base,sign=Sign,offset=AbsOffset}, [mk_load(LdOp, Dst, Am2) | Rest]; true -> Index = begin DstReg = temp_reg(Dst), BaseReg = temp_reg(Base), if DstReg =/= BaseReg -> Dst; true -> mk_scratch(Scratch) end end, Am2 = #am2{src=Base,sign=Sign,offset=Index}, mk_li(Index, AbsOffset, [mk_load(LdOp, Dst, Am2) | Rest]) end. mk_scratch(Scratch) -> case Scratch of 'temp2' -> mk_temp(hipe_arm_registers:temp2(), 'untagged'); 'new' -> mk_new_temp('untagged') end. mk_ldrsb(Dst, Am3) -> #ldrsb{dst=Dst, am3=Am3}. mk_move(MovOp, S, Dst, Am1) -> #move{movop=MovOp, s=S, dst=Dst, am1=Am1}. mk_move(S, Dst, Am1) -> mk_move('mov', S, Dst, Am1). mk_move(Dst, Am1) -> mk_move('mov', false, Dst, Am1). mk_pseudo_bc(Cond, TrueLab, FalseLab, Pred) -> if Pred >= 0.5 -> mk_pseudo_bc_simple(negate_cond(Cond), FalseLab, TrueLab, 1.0-Pred); true -> mk_pseudo_bc_simple(Cond, TrueLab, FalseLab, Pred) end. mk_pseudo_bc_simple(Cond, TrueLab, FalseLab, Pred) when Pred =< 0.5 -> #pseudo_bc{'cond'=Cond, true_label=TrueLab, false_label=FalseLab, pred=Pred}. negate_cond(Cond) -> case Cond of 'lt' -> 'ge'; % <, >= 'ge' -> 'lt'; % >=, < 'gt' -> 'le'; % >, <= 'le' -> 'gt'; % <=, > 'eq' -> 'ne'; % ==, != 'ne' -> 'eq'; % !=, == 'hi' -> 'ls'; % >u, <=u 'ls' -> 'hi'; % <=u, >u 'hs' -> 'lo'; % >=u, <u 'lo' -> 'hs'; % <u, >=u 'vs' -> 'vc'; % overflow, not_overflow 'vc' -> 'vs' % not_overflow, overflow end. mk_pseudo_call(FunV, SDesc, ContLab, Linkage) -> #pseudo_call{funv=FunV, sdesc=SDesc, contlab=ContLab, linkage=Linkage}. pseudo_call_funv(#pseudo_call{funv=FunV}) -> FunV. pseudo_call_sdesc(#pseudo_call{sdesc=SDesc}) -> SDesc. pseudo_call_contlab(#pseudo_call{contlab=ContLab}) -> ContLab. pseudo_call_linkage(#pseudo_call{linkage=Linkage}) -> Linkage. mk_pseudo_call_prepare(NrStkArgs) -> #pseudo_call_prepare{nrstkargs=NrStkArgs}. pseudo_call_prepare_nrstkargs(#pseudo_call_prepare{nrstkargs=NrStkArgs}) -> NrStkArgs. mk_pseudo_li(Dst, Imm) -> #pseudo_li{dst=Dst, imm=Imm, label=hipe_gensym:get_next_label(arm)}. mk_pseudo_move(Dst, Src) -> #pseudo_move{dst=Dst, src=Src}. is_pseudo_move(I) -> case I of #pseudo_move{} -> true; _ -> false end. pseudo_move_dst(#pseudo_move{dst=Dst}) -> Dst. pseudo_move_src(#pseudo_move{src=Src}) -> Src. mk_pseudo_switch(JTab, Index, Labels) -> #pseudo_switch{jtab=JTab, index=Index, labels=Labels}. mk_pseudo_tailcall(FunV, Arity, StkArgs, Linkage) -> #pseudo_tailcall{funv=FunV, arity=Arity, stkargs=StkArgs, linkage=Linkage}. pseudo_tailcall_funv(#pseudo_tailcall{funv=FunV}) -> FunV. pseudo_tailcall_stkargs(#pseudo_tailcall{stkargs=StkArgs}) -> StkArgs. pseudo_tailcall_linkage(#pseudo_tailcall{linkage=Linkage}) -> Linkage. mk_pseudo_tailcall_prepare() -> #pseudo_tailcall_prepare{}. mk_smull(DstLo, DstHi, Src1, Src2) -> #smull{dstlo=DstLo, dsthi=DstHi, src1=Src1, src2=Src2}. mk_store(StOp, Src, Am2) -> #store{stop=StOp, src=Src, am2=Am2}. mk_store(StOp, Src, Base, Offset, Scratch, Rest) when is_integer(Offset) -> {Sign,AbsOffset} = if Offset < 0 -> {'-', -Offset}; true -> {'+', Offset} end, if AbsOffset =< 4095 -> Am2 = #am2{src=Base,sign=Sign,offset=AbsOffset}, [mk_store(StOp, Src, Am2) | Rest]; true -> Index = mk_scratch(Scratch), Am2 = #am2{src=Base,sign=Sign,offset=Index}, mk_li(Index, AbsOffset, [mk_store(StOp, Src, Am2) | Rest]) end. mk_pseudo_blr() -> #pseudo_blr{}. mk_bx(Src) -> #pseudo_bx{src=Src}. mk_mflr(Dst) -> mk_move(Dst, mk_lr()). mk_mtlr(Src) -> mk_move(mk_lr(), Src). mk_lr() -> mk_temp(hipe_arm_registers:lr(), 'untagged'). mk_pc() -> mk_temp(hipe_arm_registers:pc(), 'untagged'). %%% Load an integer constant into a register. mk_li(Dst, Value) -> mk_li(Dst, Value, []). mk_li(Dst, Value, Rest) -> %% XXX: expand to handle 2-instruction sequences case try_aluop_imm('mov', Value) of {NewMovOp,Am1} -> [mk_move(NewMovOp, false, Dst, Am1) | Rest]; [] -> [mk_pseudo_li(Dst, Value) | Rest] end. %%% Add an integer constant. Dst may equal Src, %%% in which case temp2 may be clobbered. mk_addi(Dst, Src, Value, Rest) -> case try_aluop_imm('add', Value) of {NewAluOp,Am1} -> [mk_alu(NewAluOp, Dst, Src, Am1) | Rest]; [] -> Tmp = begin DstReg = temp_reg(Dst), SrcReg = temp_reg(Src), if DstReg =:= SrcReg -> mk_temp(hipe_arm_registers:temp2(), 'untagged'); true -> Dst end end, [mk_pseudo_li(Tmp, Value), mk_alu('add', Dst, Src, Tmp) | Rest] end. try_aluop_imm(AluOp, Imm) -> % -> {NewAluOp,Am1} or [] case imm_to_am1(Imm) of (Am1={_Imm8,_Imm4}) -> {AluOp, Am1}; [] -> case invert_aluop_imm(AluOp, Imm) of {NewAluOp,NewImm} -> case imm_to_am1(NewImm) of (Am1={_Imm8,_Imm4}) -> {NewAluOp, Am1}; [] -> [] end; [] -> [] end end. invert_aluop_imm(AluOp, Imm) -> case AluOp of 'mov' -> {'mvn', bnot Imm}; 'mvn' -> {'mov', bnot Imm}; 'cmp' -> {'cmn', -Imm}; 'cmn' -> {'cmp', -Imm}; 'and' -> {'bic', bnot Imm}; 'bic' -> {'and', bnot Imm}; 'orr' -> {'orn', bnot Imm}; 'orn' -> {'orr', bnot Imm}; 'add' -> {'sub', -Imm}; 'sub' -> {'add', -Imm}; _ -> [] % no inverted form available end. imm_to_am1(Imm) -> imm_to_am1(Imm band 16#FFFFFFFF, 16). imm_to_am1(Imm, RotCnt) -> if Imm >= 0, Imm =< 255 -> {Imm, RotCnt band 15}; true -> NewRotCnt = RotCnt - 1, if NewRotCnt =:= 0 -> []; % full circle, no joy true -> NewImm = (Imm bsr 2) bor ((Imm band 3) bsl 30), imm_to_am1(NewImm, NewRotCnt) end end. mk_defun(MFA, Formals, IsClosure, IsLeaf, Code, Data, VarRange, LabelRange) -> #defun{mfa=MFA, formals=Formals, code=Code, data=Data, isclosure=IsClosure, isleaf=IsLeaf, var_range=VarRange, label_range=LabelRange}. defun_mfa(#defun{mfa=MFA}) -> MFA. defun_formals(#defun{formals=Formals}) -> Formals. defun_is_closure(#defun{isclosure=IsClosure}) -> IsClosure. defun_is_leaf(#defun{isleaf=IsLeaf}) -> IsLeaf. defun_code(#defun{code=Code}) -> Code. defun_data(#defun{data=Data}) -> Data. defun_var_range(#defun{var_range=VarRange}) -> VarRange.