%% Licensed under the Apache License, Version 2.0 (the "License"); %% you may not use this file except in compliance with the License. %% You may obtain a copy of the License at %% %% http://www.apache.org/licenses/LICENSE-2.0 %% %% Unless required by applicable law or agreed to in writing, software %% distributed under the License is distributed on an "AS IS" BASIS, %% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. %% See the License for the specific language governing permissions and %% limitations under the License. %% %% @copyright 2001-2002 Richard Carlsson %% @author Richard Carlsson <carlsson.richard@gmail.com> %% @doc Closure analysis of Core Erlang programs. %% TODO: might need a "top" (`any') element for any-length value lists. -module(cerl_closurean). -export([analyze/1, annotate/1]). %% The following functions are exported from this module since they %% are also used by Dialyzer (file dialyzer/src/dialyzer_dep.erl) -export([is_escape_op/2, is_escape_op/3, is_literal_op/2, is_literal_op/3]). -import(cerl, [ann_c_apply/3, ann_c_fun/3, ann_c_var/2, apply_args/1, apply_op/1, atom_val/1, bitstr_size/1, bitstr_val/1, binary_segments/1, c_letrec/2, c_seq/2, c_tuple/1, c_nil/0, call_args/1, call_module/1, call_name/1, case_arg/1, case_clauses/1, catch_body/1, clause_body/1, clause_guard/1, clause_pats/1, cons_hd/1, cons_tl/1, fun_body/1, fun_vars/1, get_ann/1, is_c_atom/1, let_arg/1, let_body/1, let_vars/1, letrec_body/1, letrec_defs/1, module_defs/1, module_defs/1, module_exports/1, pat_vars/1, primop_args/1, primop_name/1, receive_action/1, receive_clauses/1, receive_timeout/1, seq_arg/1, seq_body/1, set_ann/2, try_arg/1, try_body/1, try_vars/1, try_evars/1, try_handler/1, tuple_es/1, type/1, values_es/1]). -import(cerl_trees, [get_label/1]). %% =========================================================================== -type label() :: integer() | 'top' | 'external' | 'external_call'. -type ordset(X) :: [X]. % XXX: TAKE ME OUT -type labelset() :: ordset(label()). -type outlist() :: [labelset()] | 'none'. -type escapes() :: labelset(). %% =========================================================================== %% annotate(Tree) -> {Tree1, OutList, Outputs, Escapes, Dependencies, Parents} %% %% Tree = cerl:cerl() %% %% Analyzes `Tree' (see `analyze') and appends terms `{callers, %% Labels}' and `{calls, Labels}' to the annotation list of each %% fun-expression node and apply-expression node of `Tree', %% respectively, where `Labels' is an ordered-set list of labels of %% fun-expressions in `Tree', possibly also containing the atom %% `external', corresponding to the dependency information derived %% by the analysis. Any previous such annotations are removed from %% `Tree'. `Tree1' is the modified tree; for details on `OutList', %% `Outputs' , `Dependencies', `Escapes' and `Parents', see %% `analyze'. %% %% Note: `Tree' must be annotated with labels in order to use this %% function; see `analyze' for details. -spec annotate(cerl:cerl()) -> {cerl:cerl(), outlist(), dict:dict(), escapes(), dict:dict(), dict:dict()}. annotate(Tree) -> {Xs, Out, Esc, Deps, Par} = analyze(Tree), F = fun (T) -> case type(T) of 'fun' -> L = get_label(T), X = case dict:find(L, Deps) of {ok, X1} -> X1; error -> set__new() end, set_ann(T, append_ann(callers, set__to_list(X), get_ann(T))); apply -> L = get_label(T), X = case dict:find(L, Deps) of {ok, X1} -> X1; error -> set__new() end, set_ann(T, append_ann(calls, set__to_list(X), get_ann(T))); _ -> %%% set_ann(T, []) % debug T end end, {cerl_trees:map(F, Tree), Xs, Out, Esc, Deps, Par}. append_ann(Tag, Val, [X | Xs]) -> if tuple_size(X) >= 1, element(1, X) =:= Tag -> append_ann(Tag, Val, Xs); true -> [X | append_ann(Tag, Val, Xs)] end; append_ann(Tag, Val, []) -> [{Tag, Val}]. %% ===================================================================== %% analyze(Tree) -> {OutList, Outputs, Escapes, Dependencies, Parents} %% %% Tree = cerl() %% OutList = [LabelSet] | none %% Outputs = dict(Label, OutList) %% Escapes = LabelSet %% Dependencies = dict(Label, LabelSet) %% LabelSet = ordset(Label) %% Label = integer() | top | external | external_call %% Parents = dict(Label, Label) %% %% Analyzes a module or an expression represented by `Tree'. %% %% The returned `OutList' is a list of sets of labels of %% fun-expressions which correspond to the possible closures in the %% value list produced by `Tree' (viewed as an expression; the %% "value" of a module contains its exported functions). The atom %% `none' denotes missing or conflicting information. %% %% The atom `external' in any label set denotes any possible %% function outside `Tree', including those in `Escapes'. The atom %% `top' denotes the top-level expression `Tree'. %% %% `Outputs' is a mapping from the labels of fun-expressions in %% `Tree' to corresponding lists of sets of labels of %% fun-expressions (or the atom `none'), representing the possible %% closures in the value lists returned by the respective %% functions. %% %% `Dependencies' is a similar mapping from the labels of %% fun-expressions and apply-expressions in `Tree' to sets of %% labels of corresponding fun-expressions which may contain call %% sites of the functions or be called from the call sites, %% respectively. Any such label not defined in `Dependencies' %% represents an unreachable function or a dead or faulty %% application. %% %% `Escapes' is the set of labels of fun-expressions in `Tree' such %% that corresponding closures may be accessed from outside `Tree'. %% %% `Parents' is a mapping from labels of fun-expressions in `Tree' %% to the corresponding label of the nearest containing %% fun-expression or top-level expression. This can be used to %% extend the dependency graph, for certain analyses. %% %% Note: `Tree' must be annotated with labels (as done by the %% function `cerl_trees:label/1') in order to use this function. %% The label annotation `{label, L}' (where L should be an integer) %% must be the first element of the annotation list of each node in %% the tree. Instances of variables bound in `Tree' which denote %% the same variable must have the same label; apart from this, %% labels should be unique. Constant literals do not need to be %% labeled. -record(state, {vars, out, dep, work, funs, par}). %% Note: In order to keep our domain simple, we assume that all remote %% calls and primops return a single value, if any. %% We use the terms `closure', `label', `lambda' and `fun-expression' %% interchangeably. The exact meaning in each case can be grasped from %% the context. %% %% Rules: %% 1) The implicit top level lambda escapes. %% 2) A lambda returned by an escaped lambda also escapes. %% 3) An escaped lambda can be passed an external lambda as argument. %% 4) A lambda passed as argument to an external lambda also escapes. %% 5) An argument passed to an unknown operation escapes. %% 6) A call to an unknown operation can return an external lambda. %% %% Escaped lambdas become part of the set of external lambdas, but this %% does not need to be represented explicitly. %% We wrap the given syntax tree T in a fun-expression labeled `top', %% which is initially in the set of escaped labels. `top' will be %% visited at least once. %% %% We create a separate function labeled `external', defined as: %% "'external'/1 = fun (Escape) -> do apply 'external'/1(apply Escape()) %% 'external'/1", which will represent any and all functions outside T, %% and which returns itself, and contains a recursive call; this models %% rules 2 and 4 above. It will be revisited if the set of escaped %% labels changes, or at least once. Its parameter `Escape' is a %% variable labeled `escape', which will hold the set of escaped labels. %% initially it contains `top' and `external'. -spec analyze(cerl:cerl()) -> {outlist(), dict:dict(), escapes(), dict:dict(), dict:dict()}. analyze(Tree) -> %% Note that we use different name spaces for variable labels and %% function/call site labels, so we can reuse some names here. We %% assume that the labeling of Tree only uses integers, not atoms. External = ann_c_var([{label, external}], {external, 1}), Escape = ann_c_var([{label, escape}], 'Escape'), ExtBody = c_seq(ann_c_apply([{label, loop}], External, [ann_c_apply([{label, external_call}], Escape, [])]), External), ExtFun = ann_c_fun([{label, external}], [Escape], ExtBody), %%% io:fwrite("external fun:\n~s.\n", %%% [cerl_prettypr:format(ExtFun, [noann])]), Top = ann_c_var([{label, top}], {top, 0}), TopFun = ann_c_fun([{label, top}], [], Tree), %% The "start fun" just makes the initialisation easier. It will not %% be marked as escaped, and thus cannot be called. StartFun = ann_c_fun([{label, start}], [], c_letrec([{External, ExtFun}, {Top, TopFun}], c_nil())), %%% io:fwrite("start fun:\n~s.\n", %%% [cerl_prettypr:format(StartFun, [noann])]), %% Gather a database of all fun-expressions in Tree and initialise %% all their outputs and parameter variables. Bind all module- and %% letrec-defined variables to their corresponding labels. Funs0 = dict:new(), Vars0 = dict:new(), Out0 = dict:new(), Empty = empty(), F = fun (T, S = {Fs, Vs, Os}) -> case type(T) of 'fun' -> L = get_label(T), As = fun_vars(T), {dict:store(L, T, Fs), bind_vars_single(As, Empty, Vs), dict:store(L, none, Os)}; letrec -> {Fs, bind_defs(letrec_defs(T), Vs), Os}; module -> {Fs, bind_defs(module_defs(T), Vs), Os}; _ -> S end end, {Funs, Vars, Out} = cerl_trees:fold(F, {Funs0, Vars0, Out0}, StartFun), %% Initialise Escape to the minimal set of escaped labels. Vars1 = dict:store(escape, from_label_list([top, external]), Vars), %% Enter the fixpoint iteration at the StartFun. St = loop(StartFun, start, #state{vars = Vars1, out = Out, dep = dict:new(), work = init_work(), funs = Funs, par = dict:new()}), %%% io:fwrite("dependencies: ~p.\n", %%% [[{X, set__to_list(Y)} %%% || {X, Y} <- dict:to_list(St#state.dep)]]), {dict:fetch(top, St#state.out), tidy_dict([start, top, external], St#state.out), dict:fetch(escape, St#state.vars), tidy_dict([loop], St#state.dep), St#state.par}. tidy_dict([X | Xs], D) -> tidy_dict(Xs, dict:erase(X, D)); tidy_dict([], D) -> D. loop(T, L, St0) -> %%% io:fwrite("analyzing: ~w.\n", [L]), %%% io:fwrite("work: ~w.\n", [St0#state.work]), Xs0 = dict:fetch(L, St0#state.out), {Xs, St1} = visit(fun_body(T), L, St0), {W, M} = case equal(Xs0, Xs) of true -> {St1#state.work, St1#state.out}; false -> %%% io:fwrite("out (~w) changed: ~w <- ~w.\n", %%% [L, Xs, Xs0]), M1 = dict:store(L, Xs, St1#state.out), case dict:find(L, St1#state.dep) of {ok, S} -> {add_work(set__to_list(S), St1#state.work), M1}; error -> {St1#state.work, M1} end end, St2 = St1#state{out = M}, case take_work(W) of {ok, L1, W1} -> T1 = dict:fetch(L1, St2#state.funs), loop(T1, L1, St2#state{work = W1}); none -> St2 end. visit(T, L, St) -> case type(T) of literal -> {[empty()], St}; var -> %% If a variable is not already in the store here, we %% initialize it to empty(). L1 = get_label(T), Vars = St#state.vars, case dict:find(L1, Vars) of {ok, X} -> {[X], St}; error -> X = empty(), St1 = St#state{vars = dict:store(L1, X, Vars)}, {[X], St1} end; 'fun' -> %% Must revisit the fun also, because its environment might %% have changed. (We don't keep track of such dependencies.) L1 = get_label(T), St1 = St#state{work = add_work([L1], St#state.work), par = set_parent([L1], L, St#state.par)}, {[singleton(L1)], St1}; values -> visit_list(values_es(T), L, St); cons -> {Xs, St1} = visit_list([cons_hd(T), cons_tl(T)], L, St), {[join_single_list(Xs)], St1}; tuple -> {Xs, St1} = visit_list(tuple_es(T), L, St), {[join_single_list(Xs)], St1}; 'let' -> {Xs, St1} = visit(let_arg(T), L, St), Vars = bind_vars(let_vars(T), Xs, St1#state.vars), visit(let_body(T), L, St1#state{vars = Vars}); seq -> {_, St1} = visit(seq_arg(T), L, St), visit(seq_body(T), L, St1); apply -> {Xs, St1} = visit(apply_op(T), L, St), {As, St2} = visit_list(apply_args(T), L, St1), case Xs of [X] -> %% We store the dependency from the call site to the %% called functions Ls = set__to_list(X), Out = St2#state.out, Xs1 = join_list([dict:fetch(Lx, Out) || Lx <- Ls]), St3 = call_site(Ls, L, As, St2), L1 = get_label(T), D = dict:store(L1, X, St3#state.dep), {Xs1, St3#state{dep = D}}; none -> {none, St2} end; call -> M = call_module(T), F = call_name(T), {_, St1} = visit(M, L, St), {_, St2} = visit(F, L, St1), {Xs, St3} = visit_list(call_args(T), L, St2), remote_call(M, F, Xs, St3); primop -> As = primop_args(T), {Xs, St1} = visit_list(As, L, St), primop_call(atom_val(primop_name(T)), length(Xs), Xs, St1); 'case' -> {Xs, St1} = visit(case_arg(T), L, St), visit_clauses(Xs, case_clauses(T), L, St1); 'receive' -> X = singleton(external), {Xs1, St1} = visit_clauses([X], receive_clauses(T), L, St), {_, St2} = visit(receive_timeout(T), L, St1), {Xs2, St3} = visit(receive_action(T), L, St2), {join(Xs1, Xs2), St3}; 'try' -> {Xs1, St1} = visit(try_arg(T), L, St), X = singleton(external), Vars = bind_vars(try_vars(T), [X], St1#state.vars), {Xs2, St2} = visit(try_body(T), L, St1#state{vars = Vars}), Evars = bind_vars(try_evars(T), [X, X, X], St2#state.vars), {Xs3, St3} = visit(try_handler(T), L, St2#state{vars = Evars}), {join(join(Xs1, Xs2), Xs3), St3}; 'catch' -> {_, St1} = visit(catch_body(T), L, St), {[singleton(external)], St1}; binary -> {_, St1} = visit_list(binary_segments(T), L, St), {[empty()], St1}; bitstr -> %% The other fields are constant literals. {_, St1} = visit(bitstr_val(T), L, St), {_, St2} = visit(bitstr_size(T), L, St1), {none, St2}; letrec -> %% All the bound funs should be revisited, because the %% environment might have changed. Ls = [get_label(F) || {_, F} <- letrec_defs(T)], St1 = St#state{work = add_work(Ls, St#state.work), par = set_parent(Ls, L, St#state.par)}, visit(letrec_body(T), L, St1); module -> %% All the exported functions escape, and can thus be passed %% any external closures as arguments. We regard a module as %% a tuple of function variables in the body of a `letrec'. visit(c_letrec(module_defs(T), c_tuple(module_exports(T))), L, St) end. visit_clause(T, Xs, L, St) -> Vars = bind_pats(clause_pats(T), Xs, St#state.vars), {_, St1} = visit(clause_guard(T), L, St#state{vars = Vars}), visit(clause_body(T), L, St1). %% We assume correct value-list typing. visit_list([T | Ts], L, St) -> {Xs, St1} = visit(T, L, St), {Xs1, St2} = visit_list(Ts, L, St1), X = case Xs of [X1] -> X1; none -> none end, {[X | Xs1], St2}; visit_list([], _L, St) -> {[], St}. visit_clauses(Xs, [T | Ts], L, St) -> {Xs1, St1} = visit_clause(T, Xs, L, St), {Xs2, St2} = visit_clauses(Xs, Ts, L, St1), {join(Xs1, Xs2), St2}; visit_clauses(_, [], _L, St) -> {none, St}. bind_defs([{V, F} | Ds], Vars) -> bind_defs(Ds, dict:store(get_label(V), singleton(get_label(F)), Vars)); bind_defs([], Vars) -> Vars. bind_pats(Ps, none, Vars) -> bind_pats_single(Ps, empty(), Vars); bind_pats(Ps, Xs, Vars) -> if length(Xs) =:= length(Ps) -> bind_pats_list(Ps, Xs, Vars); true -> bind_pats_single(Ps, empty(), Vars) end. bind_pats_list([P | Ps], [X | Xs], Vars) -> bind_pats_list(Ps, Xs, bind_vars_single(pat_vars(P), X, Vars)); bind_pats_list([], [], Vars) -> Vars. bind_pats_single([P | Ps], X, Vars) -> bind_pats_single(Ps, X, bind_vars_single(pat_vars(P), X, Vars)); bind_pats_single([], _X, Vars) -> Vars. bind_vars(Vs, none, Vars) -> bind_vars_single(Vs, empty(), Vars); bind_vars(Vs, Xs, Vars) -> if length(Vs) =:= length(Xs) -> bind_vars_list(Vs, Xs, Vars); true -> bind_vars_single(Vs, empty(), Vars) end. bind_vars_list([V | Vs], [X | Xs], Vars) -> bind_vars_list(Vs, Xs, dict:store(get_label(V), X, Vars)); bind_vars_list([], [], Vars) -> Vars. bind_vars_single([V | Vs], X, Vars) -> bind_vars_single(Vs, X, dict:store(get_label(V), X, Vars)); bind_vars_single([], _X, Vars) -> Vars. %% This handles a call site - adding dependencies and updating parameter %% variables with respect to the actual parameters. The 'external' %% function is handled specially, since it can get an arbitrary number %% of arguments, which must be unified into a single argument. call_site(Ls, L, Xs, St) -> %%% io:fwrite("call site: ~w -> ~w (~w).\n", [L, Ls, Xs]), {D, W, V} = call_site(Ls, L, Xs, St#state.dep, St#state.work, St#state.vars, St#state.funs), St#state{dep = D, work = W, vars = V}. call_site([external | Ls], T, Xs, D, W, V, Fs) -> D1 = add_dep(external, T, D), X = join_single_list(Xs), case bind_arg(escape, X, V) of {V1, true} -> %%% io:fwrite("escape changed: ~w <- ~w + ~w.\n", %%% [dict:fetch(escape, V1), dict:fetch(escape, V), %%% X]), {W1, V2} = update_esc(set__to_list(X), W, V1, Fs), call_site(Ls, T, Xs, D1, add_work([external], W1), V2, Fs); {V1, false} -> call_site(Ls, T, Xs, D1, W, V1, Fs) end; call_site([L | Ls], T, Xs, D, W, V, Fs) -> D1 = add_dep(L, T, D), Vs = fun_vars(dict:fetch(L, Fs)), case bind_args(Vs, Xs, V) of {V1, true} -> call_site(Ls, T, Xs, D1, add_work([L], W), V1, Fs); {V1, false} -> call_site(Ls, T, Xs, D1, W, V1, Fs) end; call_site([], _, _, D, W, V, _) -> {D, W, V}. %% Note that `visit' makes sure all lambdas are visited at least once. %% For every called function, we add a dependency from the *called* %% function to the function containing the call site. add_dep(Source, Target, Deps) -> case dict:find(Source, Deps) of {ok, X} -> case set__is_member(Target, X) of true -> Deps; false -> %%% io:fwrite("new dep: ~w <- ~w.\n", [Target, Source]), dict:store(Source, set__add(Target, X), Deps) end; error -> %%% io:fwrite("new dep: ~w <- ~w.\n", [Target, Source]), dict:store(Source, set__singleton(Target), Deps) end. %% If the arity does not match the call, nothing is done here. bind_args(Vs, Xs, Vars) -> if length(Vs) =:= length(Xs) -> bind_args(Vs, Xs, Vars, false); true -> {Vars, false} end. bind_args([V | Vs], [X | Xs], Vars, Ch) -> L = get_label(V), {Vars1, Ch1} = bind_arg(L, X, Vars, Ch), bind_args(Vs, Xs, Vars1, Ch1); bind_args([], [], Vars, Ch) -> {Vars, Ch}. bind_args_single(Vs, X, Vars) -> bind_args_single(Vs, X, Vars, false). bind_args_single([V | Vs], X, Vars, Ch) -> L = get_label(V), {Vars1, Ch1} = bind_arg(L, X, Vars, Ch), bind_args_single(Vs, X, Vars1, Ch1); bind_args_single([], _, Vars, Ch) -> {Vars, Ch}. bind_arg(L, X, Vars) -> bind_arg(L, X, Vars, false). bind_arg(L, X, Vars, Ch) -> X0 = dict:fetch(L, Vars), X1 = join_single(X, X0), case equal_single(X0, X1) of true -> {Vars, Ch}; false -> %%% io:fwrite("arg (~w) changed: ~w <- ~w + ~w.\n", %%% [L, X1, X0, X]), {dict:store(L, X1, Vars), true} end. %% This handles escapes from things like primops and remote calls. %% escape(none, St) -> %% St; escape([X], St) -> Vars = St#state.vars, X0 = dict:fetch(escape, Vars), X1 = join_single(X, X0), case equal_single(X0, X1) of true -> St; false -> %%% io:fwrite("escape changed: ~w <- ~w + ~w.\n", [X1, X0, X]), %%% io:fwrite("updating escaping funs: ~w.\n", [set__to_list(X)]), Vars1 = dict:store(escape, X1, Vars), {W, Vars2} = update_esc(set__to_list(set__subtract(X, X0)), St#state.work, Vars1, St#state.funs), St#state{work = add_work([external], W), vars = Vars2} end. %% For all escaping lambdas, since they might be called from outside the %% program, all their arguments may be an external lambda. (Note that we %% only have to include the `external' label once per escaping lambda.) %% If the escape set has changed, we need to revisit the `external' fun. update_esc(Ls, W, V, Fs) -> update_esc(Ls, singleton(external), W, V, Fs). %% The external lambda is skipped here - the Escape variable is known to %% contain `external' from the start. update_esc([external | Ls], X, W, V, Fs) -> update_esc(Ls, X, W, V, Fs); update_esc([L | Ls], X, W, V, Fs) -> Vs = fun_vars(dict:fetch(L, Fs)), case bind_args_single(Vs, X, V) of {V1, true} -> update_esc(Ls, X, add_work([L], W), V1, Fs); {V1, false} -> update_esc(Ls, X, W, V1, Fs) end; update_esc([], _, W, V, _) -> {W, V}. set_parent([L | Ls], L1, D) -> set_parent(Ls, L1, dict:store(L, L1, D)); set_parent([], _L1, D) -> D. %% Handle primop calls: (At present, we assume that all unknown primops %% yield exactly one value. This might have to be changed.) primop_call(F, A, Xs, St0) -> case is_pure_op(F, A) of %% XXX: this case is currently not possible -- commented out. %% true -> %% case is_literal_op(F, A) of %% true -> {[empty()], St0}; %% false -> {[join_single_list(Xs)], St0} %% end; false -> St1 = case is_escape_op(F, A) of true -> escape([join_single_list(Xs)], St0); false -> St0 end, case is_literal_op(F, A) of true -> {none, St1}; false -> {[singleton(external)], St1} end end. %% Handle remote-calls: (At present, we assume that all unknown calls %% yield exactly one value. This might have to be changed.) remote_call(M, F, Xs, St) -> case is_c_atom(M) andalso is_c_atom(F) of true -> remote_call_1(atom_val(M), atom_val(F), length(Xs), Xs, St); false -> %% Unknown function {[singleton(external)], escape([join_single_list(Xs)], St)} end. remote_call_1(M, F, A, Xs, St0) -> case is_pure_op(M, F, A) of true -> case is_literal_op(M, F, A) of true -> {[empty()], St0}; false -> {[join_single_list(Xs)], St0} end; false -> St1 = case is_escape_op(M, F, A) of true -> escape([join_single_list(Xs)], St0); false -> St0 end, case is_literal_op(M, F, A) of true -> {[empty()], St1}; false -> {[singleton(external)], St1} end end. %% Domain: none | [Vs], where Vs = set(integer()). join(none, Xs2) -> Xs2; join(Xs1, none) -> Xs1; join(Xs1, Xs2) -> if length(Xs1) =:= length(Xs2) -> join_1(Xs1, Xs2); true -> none end. join_1([X1 | Xs1], [X2 | Xs2]) -> [join_single(X1, X2) | join_1(Xs1, Xs2)]; join_1([], []) -> []. empty() -> set__new(). singleton(X) -> set__singleton(X). from_label_list(X) -> set__from_list(X). join_single(none, Y) -> Y; join_single(X, none) -> X; join_single(X, Y) -> set__union(X, Y). join_list([Xs | Xss]) -> join(Xs, join_list(Xss)); join_list([]) -> none. join_single_list([X | Xs]) -> join_single(X, join_single_list(Xs)); join_single_list([]) -> empty(). equal(none, none) -> true; equal(none, _) -> false; equal(_, none) -> false; equal(X1, X2) -> equal_1(X1, X2). equal_1([X1 | Xs1], [X2 | Xs2]) -> equal_single(X1, X2) andalso equal_1(Xs1, Xs2); equal_1([], []) -> true; equal_1(_, _) -> false. equal_single(X, Y) -> set__equal(X, Y). %% Set abstraction for label sets in the domain. set__new() -> []. set__singleton(X) -> [X]. set__to_list(S) -> S. set__from_list(S) -> ordsets:from_list(S). set__union(X, Y) -> ordsets:union(X, Y). set__add(X, S) -> ordsets:add_element(X, S). set__is_member(X, S) -> ordsets:is_element(X, S). set__subtract(X, Y) -> ordsets:subtract(X, Y). set__equal(X, Y) -> X =:= Y. %% A simple but efficient functional queue. queue__new() -> {[], []}. queue__put(X, {In, Out}) -> {[X | In], Out}. queue__get({In, [X | Out]}) -> {ok, X, {In, Out}}; queue__get({[], _}) -> empty; queue__get({In, _}) -> [X | In1] = lists:reverse(In), {ok, X, {[], In1}}. %% The work list - a queue without repeated elements. init_work() -> {queue__new(), sets:new()}. add_work(Ls, {Q, Set}) -> add_work(Ls, Q, Set). %% Note that the elements are enqueued in order. add_work([L | Ls], Q, Set) -> case sets:is_element(L, Set) of true -> add_work(Ls, Q, Set); false -> add_work(Ls, queue__put(L, Q), sets:add_element(L, Set)) end; add_work([], Q, Set) -> {Q, Set}. take_work({Queue0, Set0}) -> case queue__get(Queue0) of {ok, L, Queue1} -> Set1 = sets:del_element(L, Set0), {ok, L, {Queue1, Set1}}; empty -> none end. %% Escape operators may let their arguments escape. Unless we know %% otherwise, and the function is not pure, we assume this is the case. %% Error-raising functions (fault/match_fail) are not considered as %% escapes (but throw/exit are). Zero-argument functions need not be %% listed. -spec is_escape_op(atom(), arity()) -> boolean(). is_escape_op(match_fail, 1) -> false; is_escape_op(F, A) when is_atom(F), is_integer(A) -> true. -spec is_escape_op(atom(), atom(), arity()) -> boolean(). is_escape_op(erlang, error, 1) -> false; is_escape_op(erlang, error, 2) -> false; is_escape_op(M, F, A) when is_atom(M), is_atom(F), is_integer(A) -> true. %% "Literal" operators will never return functional values even when %% found in their arguments. Unless we know otherwise, we assume this is %% not the case. (More functions can be added to this list, if needed %% for better precision. Note that the result of `term_to_binary' still %% contains an encoding of the closure.) -spec is_literal_op(atom(), arity()) -> boolean(). is_literal_op(match_fail, 1) -> true; is_literal_op(F, A) when is_atom(F), is_integer(A) -> false. -spec is_literal_op(atom(), atom(), arity()) -> boolean(). is_literal_op(erlang, '+', 2) -> true; is_literal_op(erlang, '-', 2) -> true; is_literal_op(erlang, '*', 2) -> true; is_literal_op(erlang, '/', 2) -> true; is_literal_op(erlang, '=:=', 2) -> true; is_literal_op(erlang, '==', 2) -> true; is_literal_op(erlang, '=/=', 2) -> true; is_literal_op(erlang, '/=', 2) -> true; is_literal_op(erlang, '<', 2) -> true; is_literal_op(erlang, '=<', 2) -> true; is_literal_op(erlang, '>', 2) -> true; is_literal_op(erlang, '>=', 2) -> true; is_literal_op(erlang, 'and', 2) -> true; is_literal_op(erlang, 'or', 2) -> true; is_literal_op(erlang, 'not', 1) -> true; is_literal_op(erlang, length, 1) -> true; is_literal_op(erlang, size, 1) -> true; is_literal_op(erlang, fun_info, 1) -> true; is_literal_op(erlang, fun_info, 2) -> true; is_literal_op(erlang, fun_to_list, 1) -> true; is_literal_op(erlang, throw, 1) -> true; is_literal_op(erlang, exit, 1) -> true; is_literal_op(erlang, error, 1) -> true; is_literal_op(erlang, error, 2) -> true; is_literal_op(M, F, A) when is_atom(M), is_atom(F), is_integer(A) -> false. %% Pure functions neither affect the state, nor depend on it. is_pure_op(F, A) when is_atom(F), is_integer(A) -> false. is_pure_op(M, F, A) -> erl_bifs:is_pure(M, F, A). %% =====================================================================