%% -*- erlang-indent-level: 2 -*- %% %% %CopyrightBegin% %% %% Copyright Ericsson AB 2001-2009. All Rights Reserved. %% %% The contents of this file are subject to the Erlang Public License, %% Version 1.1, (the "License"); you may not use this file except in %% compliance with the License. You should have received a copy of the %% Erlang Public License along with this software. If not, it can be %% retrieved online at http://www.erlang.org/. %% %% Software distributed under the License is distributed on an "AS IS" %% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See %% the License for the specific language governing rights and limitations %% under the License. %% %% %CopyrightEnd% %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Copyright (c) 2001 by Erik Johansson. All Rights Reserved %% ==================================================================== %% Filename : hipe_rtl_mk_switch.erl %% Module : hipe_rtl_mk_switch %% Purpose : Implements switching on Erlang values. %% Notes : Only fixnums are supported well, %% atoms work with table search, %% the inline search of atoms might have some bugs. %% Should be extended to handle bignums and floats. %% %% History : * 2001-02-28 Erik Johansson (happi@it.uu.se): %% Created. %% * 2001-04-01 Erik Trulsson (ertr1013@csd.uu.se): %% Stefan Lindstr�m (stli3993@csd.uu.se): %% Added clustering and inlined binary search trees. %% * 2001-07-30 EJ (happi@it.uu.se): %% Fixed some bugs and started cleanup. %% ==================================================================== %% Exports : %% gen_switch_val(I, VarMap, ConstTab, Options) %% gen_switch_tuple(I, Map, ConstTab, Options) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -module(hipe_rtl_mk_switch). -export([gen_switch_val/4, gen_switch_tuple/4]). %%------------------------------------------------------------------------- -include("../main/hipe.hrl"). %%------------------------------------------------------------------------- -define(MINFORJUMPTABLE,9). % Minimum number of integers needed to use something else than an inline search. -define(MINFORINTSEARCHTREE,65). % Must be at least 3 % Minimum number of integer elements needed to use a non-inline binary search. -define(MININLINEATOMSEARCH,8). % Minimum number of atoms needed to use an inline binary search instead % of a fast linear search. -define(MINFORATOMSEARCHTREE,20). % Must be at least 3 % Minimum number of atoms needed to use a non-inline binary search instead % of a linear search. -define(MAXINLINEATOMSEARCH,64). % Must be at least 3 % The cutoff point between inlined and non-inlined binary search for atoms -define(WORDSIZE, hipe_rtl_arch:word_size()). -define(MINDENSITY, 0.5). % Minimum density required to use a jumptable instead of a binary search. %% The reason why MINFORINTSEARCHTREE and MINFORATOMSEARCHTREE must be %% at least 3 is that the function tab/5 will enter an infinite loop %% and hang when faced with a switch of size 1 or 2. %% Options used by this module: %% %% [no_]use_indexing %% Determines if any indexing be should be done at all. Turned on %% by default at optimization level o2 and higher. %% %% [no_]use_clusters %% Controls whether we attempt to divide sparse integer switches %% into smaller dense clusters for which jumptables are practical. %% Turned off by default since it can increase compilation time %% considerably and most programs will gain little benefit from it. %% %% [no_]use_inline_atom_search %% Controls whether we use an inline binary search for small number %% of atoms. Turned off by default since this is currently only %% supported on SPARC (and not on x86) and probably needs a bit %% more testing before it can be turned on by default. gen_switch_val(I, VarMap, ConstTab, Options) -> case proplists:get_bool(use_indexing, Options) of false -> gen_slow_switch_val(I, VarMap, ConstTab, Options); true -> gen_fast_switch_val(I, VarMap, ConstTab, Options) end. gen_fast_switch_val(I, VarMap, ConstTab, Options) -> {Arg, VarMap0} = hipe_rtl_varmap:icode_var2rtl_var(hipe_icode:switch_val_term(I), VarMap), IcodeFail = hipe_icode:switch_val_fail_label(I), {Fail, VarMap1} = hipe_rtl_varmap:icode_label2rtl_label(IcodeFail, VarMap0), %% Important that the list of cases is sorted when handling integers. UnsortedCases = hipe_icode:switch_val_cases(I), Cases = lists:sort(UnsortedCases), check_duplicates(Cases), %% This check is currently not really necessary. The checking %% happens at an earlier phase of the compilation. {Types, InitCode} = split_types(Cases, Arg), handle_types(Types, InitCode, VarMap1, ConstTab, Arg, {I, Fail, Options}). handle_types([{Type,Lbl,Cases}|Types], Code, VarMap, ConstTab, Arg, Info) -> {Code1,VarMap1,ConstTab1} = gen_fast_switch_on(Type, Cases, VarMap, ConstTab, Arg, Info), handle_types(Types, [Code,Lbl,Code1], VarMap1, ConstTab1, Arg, Info); handle_types([], Code, VarMap, ConstTab, _, _) -> {Code, VarMap, ConstTab}. gen_fast_switch_on(integer, Cases, VarMap, ConstTab, Arg, {I, Fail, Options}) -> {First,_} = hd(Cases), Min = hipe_icode:const_value(First), if length(Cases) < ?MINFORJUMPTABLE -> gen_small_switch_val(Arg,Cases,Fail,VarMap,ConstTab,Options); true -> case proplists:get_bool(use_clusters, Options) of false -> M = list_to_tuple(Cases), D = density(M, 1, tuple_size(M)), if D >= ?MINDENSITY -> gen_jump_table(Arg,Fail,hipe_icode:switch_val_fail_label(I),VarMap,ConstTab,Cases,Min); true -> gen_search_switch_val(Arg, Cases, Fail, VarMap, ConstTab, Options) end; true -> MC = minclusters(Cases), Cl = cluster_split(Cases,MC), CM = cluster_merge(Cl), find_cluster(CM,VarMap,ConstTab,Options,Arg,Fail,hipe_icode:switch_val_fail_label(I)) end end; gen_fast_switch_on(atom, Cases, VarMap, ConstTab, Arg, {_I, Fail, Options}) -> case proplists:get_bool(use_inline_atom_search, Options) of true -> if length(Cases) < ?MININLINEATOMSEARCH -> gen_linear_switch_val(Arg, Cases, Fail, VarMap, ConstTab, Options); length(Cases) > ?MAXINLINEATOMSEARCH -> gen_search_switch_val(Arg, Cases, Fail, VarMap, ConstTab, Options); true -> gen_atom_switch_val(Arg,Cases,Fail,VarMap,ConstTab,Options) end; false -> if length(Cases) < ?MINFORATOMSEARCHTREE -> gen_linear_switch_val(Arg, Cases, Fail, VarMap, ConstTab, Options); true -> gen_search_switch_val(Arg, Cases, Fail, VarMap, ConstTab, Options) end end; gen_fast_switch_on(_, _, VarMap, ConstTab, _, {I,_Fail,Options}) -> %% We can only handle smart indexing of integers and atoms %% TODO: Consider bignum gen_slow_switch_val(I, VarMap, ConstTab, Options). %% Split different types into separate switches. split_types([Case|Cases], Arg) -> Type1 = casetype(Case), Types = split(Cases,Type1,[Case],[]), switch_on_types(Types,[], [], Arg); split_types([],_) -> %% Cant happen. ?EXIT({empty_caselist}). switch_on_types([{Type,Cases}], AccCode, AccCases, _Arg) -> Lbl = hipe_rtl:mk_new_label(), I = hipe_rtl:mk_goto(hipe_rtl:label_name(Lbl)), {[{Type,Lbl,lists:reverse(Cases)} | AccCases], lists:reverse([I|AccCode])}; switch_on_types([{other,Cases} | Rest], AccCode, AccCases, Arg) -> %% Make sure the general case is handled last. switch_on_types(Rest ++ [{other,Cases}], AccCode, AccCases, Arg); switch_on_types([{Type,Cases} | Rest], AccCode, AccCases, Arg) -> TLab = hipe_rtl:mk_new_label(), FLab = hipe_rtl:mk_new_label(), TestCode = case Type of integer -> hipe_tagscheme:test_fixnum(Arg, hipe_rtl:label_name(TLab), hipe_rtl:label_name(FLab), 0.5); atom -> hipe_tagscheme:test_atom(Arg, hipe_rtl:label_name(TLab), hipe_rtl:label_name(FLab), 0.5); bignum -> hipe_tagscheme:test_bignum(Arg, hipe_rtl:label_name(TLab), hipe_rtl:label_name(FLab), 0.5); _ -> ?EXIT({ooops, type_not_handled, Type}) end, switch_on_types(Rest, [[TestCode,FLab] | AccCode], [{Type,TLab,lists:reverse(Cases)} | AccCases], Arg). split([Case|Cases], Type, Current, Rest) -> case casetype(Case) of Type -> split(Cases, Type, [Case|Current],Rest); Other -> split(Cases, Other, [Case], [{Type,Current}|Rest]) end; split([], Type, Current, Rest) -> [{Type, Current} | Rest]. %% Determine what type an entry in the caselist has casetype({Const,_}) -> casetype(hipe_icode:const_value(Const)); casetype(A) -> if is_integer(A) -> case hipe_tagscheme:is_fixnum(A) of true -> integer; false -> bignum end; is_float(A) -> float; is_atom(A) -> atom; true -> other end. %% check that no duplicate values occur in the case list and also %% check that all case values have the same type. check_duplicates([]) -> true; check_duplicates([_]) -> true; check_duplicates([{Const1,_},{Const2,L2}|T]) -> C1 = hipe_icode:const_value(Const1), C2 = hipe_icode:const_value(Const2), %% T1 = casetype(C1), %% T2 = casetype(C2), if C1 =/= C2 -> %% , T1 =:= T2 -> check_duplicates([{Const2,L2}|T]); true -> ?EXIT({bad_values_in_switchval,C1}) end. %% %% Determine the optimal way to divide Cases into clusters such that each %% cluster is dense. %% %% See: %% Producing Good Code for the Case Statement, Robert L. Bernstein %% Software - Practice and Experience vol 15, 1985, no 10, pp 1021--1024 %% And %% Correction to "Producing Good Code for the Case Statement" %% Sampath Kannan and Todd A. Proebsting, %% Software - Practice and Experience vol 24, 1994, no 2, p 233 %% %% (The latter is where the algorithm comes from.) %% This function will return a tuple with the first element being 0 %% The rest of the elements being integers. A value of M at index N %% (where the first element is considered to have index 0) means that %% the first N cases can be divided into M (but no fewer) clusters where %% each cluster is dense. minclusters(Cases) when is_list(Cases) -> minclusters(list_to_tuple(Cases)); minclusters(Cases) when is_tuple(Cases) -> N = tuple_size(Cases), MinClusters = list_to_tuple([0|n_list(N,inf)]), i_loop(1,N,MinClusters,Cases). %% Create a list with N elements initialized to Init n_list(0,_) -> []; n_list(N,Init) -> [Init | n_list(N-1,Init)]. %% Do the dirty work of minclusters i_loop(I,N,MinClusters,_Cases) when I > N -> MinClusters; i_loop(I,N,MinClusters,Cases) when I =< N -> M = j_loop(0, I-1, MinClusters, Cases), i_loop(I+1, N, M, Cases). %% More dirty work j_loop(J,I1,MinClusters,_Cases) when J > I1 -> MinClusters; j_loop(J,I1,MinClusters,Cases) when J =< I1 -> D = density(Cases,J+1,I1+1), A0 = element(J+1,MinClusters), A = if is_number(A0) -> A0+1; true -> A0 end, B = element(I1+2,MinClusters), M = if D >= ?MINDENSITY, A<B -> setelement(I1+2,MinClusters,A); true -> MinClusters end, j_loop(J+1,I1,M,Cases). %% Determine the density of a (subset of a) case list %% A is a tuple with the cases in order from smallest to largest %% I is the index of the first element and J of the last density(A,I,J) -> {AI,_} = element(I,A), {AJ,_} = element(J,A), (J-I+1)/(hipe_icode:const_value(AJ)-hipe_icode:const_value(AI)+1). %% Split a case list into dense clusters %% Returns a list of lists of cases. %% %% Cases is the case list and Clust is a list describing the optimal %% clustering as returned by minclusters %% %% If the value in the last place in minclusters is M then we can %% split the case list into M clusters. We then search for the last %% (== right-most) occurance of the value M-1 in minclusters. That %% indicates the largest number of cases that can be split into M-1 %% clusters. This means that the cases in between constitute one %% cluster. Then we recurse on the remainder of the cases. %% %% The various calls to lists:reverse are just to ensure that the %% cases remain in the correct, sorted order. cluster_split(Cases, Clust) -> A = tl(tuple_to_list(Clust)), Max = element(tuple_size(Clust), Clust), L1 = lists:reverse(Cases), L2 = lists:reverse(A), cluster_split(Max, [], [], L1, L2). cluster_split(0, [], Res, Cases, _Clust) -> L = lists:reverse(Cases), {H,_} = hd(L), {T,_} = hd(Cases), [{dense,hipe_icode:const_value(H),hipe_icode:const_value(T),L}|Res]; cluster_split(N, [], Res, Cases, [N|_] = Clust) -> cluster_split(N-1, [], Res, Cases, Clust); cluster_split(N,Sofar,Res,Cases,[N|Clust]) -> {H,_} = hd(Sofar), {T,_} = lists:last(Sofar), cluster_split(N-1,[],[{dense,hipe_icode:const_value(H),hipe_icode:const_value(T),Sofar}|Res],Cases,[N|Clust]); cluster_split(N,Sofar,Res,[C|Cases],[_|Clust]) -> cluster_split(N,[C|Sofar],Res,Cases,Clust). %% %% Merge adjacent small clusters into larger sparse clusters %% cluster_merge([C]) -> [C]; cluster_merge([{dense,Min,Max,C}|T]) when length(C) >= ?MINFORJUMPTABLE -> C2 = cluster_merge(T), [{dense,Min,Max,C}|C2]; cluster_merge([{sparse,Min,_,C},{sparse,_,Max,D}|T]) -> R = {sparse,Min,Max,C ++ D}, cluster_merge([R|T]); cluster_merge([{sparse,Min,_,C},{dense,_,Max,D}|T]) when length(D) < ?MINFORJUMPTABLE -> R = {sparse,Min,Max,C ++ D}, cluster_merge([R|T]); cluster_merge([{dense,Min,_,C},{dense,_,Max,D}|T]) when length(C) < ?MINFORJUMPTABLE, length(D) < ?MINFORJUMPTABLE -> R = {sparse,Min,Max,C ++ D}, cluster_merge([R|T]); cluster_merge([{dense,Min,_,D},{sparse,_,Max,C}|T]) when length(D) < ?MINFORJUMPTABLE -> R = {sparse,Min,Max,C ++ D}, cluster_merge([R|T]); cluster_merge([A,{dense,Min,Max,C}|T]) when length(C) >= ?MINFORJUMPTABLE -> R = cluster_merge([{dense,Min,Max,C}|T]), [A|R]. %% Generate code to search for the correct cluster find_cluster([{sparse,_Min,_Max,C}],VarMap,ConstTab,Options,Arg,Fail,_IcodeFail) -> case length(C) < ?MINFORINTSEARCHTREE of true -> gen_small_switch_val(Arg,C,Fail,VarMap,ConstTab,Options); _ -> gen_search_switch_val(Arg,C,Fail,VarMap,ConstTab,Options) end; find_cluster([{dense,Min,_Max,C}],VarMap,ConstTab,Options,Arg,Fail,IcodeFail) -> case length(C) < ?MINFORJUMPTABLE of true -> gen_small_switch_val(Arg,C,Fail,VarMap,ConstTab,Options); _ -> gen_jump_table(Arg,Fail,IcodeFail,VarMap,ConstTab,C,Min) end; find_cluster([{Density,Min,Max,C}|T],VarMap,ConstTab,Options,Arg,Fail,IcodeFail) -> ClustLab = hipe_rtl:mk_new_label(), NextLab = hipe_rtl:mk_new_label(), {ClustCode,V1,C1} = find_cluster([{Density,Min,Max,C}],VarMap,ConstTab,Options,Arg,Fail,IcodeFail), {Rest,V2,C2} = find_cluster(T,V1,C1,Options,Arg,Fail,IcodeFail), {[ hipe_rtl:mk_branch(Arg, gt, hipe_rtl:mk_imm(hipe_tagscheme:mk_fixnum(Max)), hipe_rtl:label_name(NextLab), hipe_rtl:label_name(ClustLab), 0.50), ClustLab ] ++ ClustCode ++ [NextLab] ++ Rest, V2,C2}. %% Generate efficient code for a linear search through the case list. %% Only works for atoms and integer. gen_linear_switch_val(Arg,Cases,Fail,VarMap,ConstTab,_Options) -> {Values,_Labels} = split_cases(Cases), {LabMap,VarMap1} = lbls_from_cases(Cases,VarMap), Code = fast_linear_search(Arg,Values,LabMap,Fail), {Code,VarMap1,ConstTab}. fast_linear_search(_Arg,[],[],Fail) -> [hipe_rtl:mk_goto(hipe_rtl:label_name(Fail))]; fast_linear_search(Arg,[Case|Cases],[Label|Labels],Fail) -> Reg = hipe_rtl:mk_new_reg_gcsafe(), NextLab = hipe_rtl:mk_new_label(), C2 = fast_linear_search(Arg,Cases,Labels,Fail), C1 = if is_integer(Case) -> TVal = hipe_tagscheme:mk_fixnum(Case), [ hipe_rtl:mk_move(Reg,hipe_rtl:mk_imm(TVal)), hipe_rtl:mk_branch(Arg,eq,Reg, Label, hipe_rtl:label_name(NextLab), 0.5), NextLab ]; is_atom(Case) -> [ hipe_rtl:mk_load_atom(Reg,Case), hipe_rtl:mk_branch(Arg,eq,Reg, Label, hipe_rtl:label_name(NextLab), 0.5), NextLab ]; true -> % This should never happen ! ?EXIT({internal_error_in_switch_val,Case}) end, [C1,C2]. %% Generate code to search through a small cluster of integers using %% binary search gen_small_switch_val(Arg,Cases,Fail,VarMap,ConstTab,_Options) -> {Values,_Labels} = split_cases(Cases), {LabMap,VarMap1} = lbls_from_cases(Cases,VarMap), Keys = [hipe_tagscheme:mk_fixnum(X) % Add tags to the values || X <- Values], Code = inline_search(Keys, LabMap, Arg, Fail), {Code, VarMap1, ConstTab}. %% Generate code to search through a small cluster of atoms gen_atom_switch_val(Arg,Cases,Fail,VarMap,ConstTab,_Options) -> {Values, _Labels} = split_cases(Cases), {LabMap,VarMap1} = lbls_from_cases(Cases,VarMap), LMap = [{label,L} || L <- LabMap], {NewConstTab,Id} = hipe_consttab:insert_sorted_block(ConstTab, Values), {NewConstTab2,LabId} = hipe_consttab:insert_sorted_block(NewConstTab, word, LMap, Values), Code = inline_atom_search(0, length(Cases)-1, Id, LabId, Arg, Fail, LabMap), {Code, VarMap1, NewConstTab2}. %% calculate the middle position of a list (+ 1 because of 1-indexing of lists) get_middle(List) -> N = length(List), N div 2 + 1. %% get element [N1, N2] from a list get_cases(_, 0, 0) -> []; get_cases([H|T], 0, N) -> [H | get_cases(T, 0, N - 1)]; get_cases([_|T], N1, N2) -> get_cases(T, N1 - 1, N2 - 1). %% inline_search/4 creates RTL code for a inlined binary search. %% It requires two sorted tables - one with the keys to search %% through and one with the corresponding labels to jump to. %% %% Input: %% KeyList - A list of keys to search through. %% LableList - A list of labels to jump to. %% KeyReg - A register containing the key to search for. %% Default - A label to jump to if the key is not found. %% inline_search([], _LabelList, _KeyReg, _Default) -> []; inline_search(KeyList, LabelList, KeyReg, Default) -> %% Create some registers and labels that we need. Reg = hipe_rtl:mk_new_reg_gcsafe(), Lab1 = hipe_rtl:mk_new_label(), Lab2 = hipe_rtl:mk_new_label(), Lab3 = hipe_rtl:mk_new_label(), Length = length(KeyList), if Length >= 3 -> %% Get middle element and keys/labels before that and after Middle_pos = get_middle(KeyList), Middle_key = lists:nth(Middle_pos, KeyList), Keys_beginning = get_cases(KeyList, 0, Middle_pos - 1), Labels_beginning = get_cases(LabelList, 0, Middle_pos - 1), Keys_ending = get_cases(KeyList, Middle_pos, Length), Labels_ending = get_cases(LabelList, Middle_pos, Length), %% Create the code. %% Get the label and build it up properly Middle_label = lists:nth(Middle_pos, LabelList), A = [hipe_rtl:mk_move(Reg, hipe_rtl:mk_imm(Middle_key)), hipe_rtl:mk_branch(KeyReg, lt, Reg, hipe_rtl:label_name(Lab2), hipe_rtl:label_name(Lab1), 0.5), Lab1, hipe_rtl:mk_branch(KeyReg, gt, Reg, hipe_rtl:label_name(Lab3), Middle_label , 0.5), Lab2], %% build search tree for keys less than the middle element B = inline_search(Keys_beginning, Labels_beginning, KeyReg, Default), %% ...and for keys bigger than the middle element D = inline_search(Keys_ending, Labels_ending, KeyReg, Default), %% append the code and return it A ++ B ++ [Lab3] ++ D; Length =:= 2 -> %% get the first and second elements and theirs labels Key_first = hd(KeyList), First_label = hd(LabelList), %% Key_second = hipe_tagscheme:mk_fixnum(lists:nth(2, KeyList)), Key_second = lists:nth(2, KeyList), Second_label = lists:nth(2, LabelList), NewLab = hipe_rtl:mk_new_label(), %% compare them A = [hipe_rtl:mk_move(Reg,hipe_rtl:mk_imm(Key_first)), hipe_rtl:mk_branch(KeyReg, eq, Reg, First_label, hipe_rtl:label_name(NewLab) , 0.5), NewLab], B = [hipe_rtl:mk_move(Reg,hipe_rtl:mk_imm(Key_second)), hipe_rtl:mk_branch(KeyReg, eq, Reg, Second_label, hipe_rtl:label_name(Default) , 0.5)], A ++ B; Length =:= 1 -> Key = hd(KeyList), Label = hd(LabelList), [hipe_rtl:mk_move(Reg,hipe_rtl:mk_imm(Key)), hipe_rtl:mk_branch(KeyReg, eq, Reg, Label, hipe_rtl:label_name(Default) , 0.5)] end. inline_atom_search(Start, End, Block, LBlock, KeyReg, Default, Labels) -> Reg = hipe_rtl:mk_new_reg_gcsafe(), Length = (End - Start) + 1, if Length >= 3 -> Lab1 = hipe_rtl:mk_new_label(), Lab2 = hipe_rtl:mk_new_label(), Lab3 = hipe_rtl:mk_new_label(), Lab4 = hipe_rtl:mk_new_label(), Mid = ((End-Start) div 2)+Start, End1 = Mid-1, Start1 = Mid+1, A = [ hipe_rtl:mk_load_word_index(Reg,Block,Mid), hipe_rtl:mk_branch(KeyReg, lt, Reg, hipe_rtl:label_name(Lab2), hipe_rtl:label_name(Lab1), 0.5), Lab1, hipe_rtl:mk_branch(KeyReg, gt, Reg, hipe_rtl:label_name(Lab3), hipe_rtl:label_name(Lab4), 0.5), Lab4, hipe_rtl:mk_goto_index(LBlock, Mid, Labels), Lab2 ], B = [inline_atom_search(Start,End1,Block,LBlock,KeyReg,Default,Labels)], C = [inline_atom_search(Start1,End,Block,LBlock,KeyReg,Default,Labels)], A ++ B ++ [Lab3] ++ C; Length =:= 2 -> L1 = hipe_rtl:mk_new_label(), L2 = hipe_rtl:mk_new_label(), L3 = hipe_rtl:mk_new_label(), [ hipe_rtl:mk_load_word_index(Reg,Block,Start), hipe_rtl:mk_branch(KeyReg,eq,Reg, hipe_rtl:label_name(L1), hipe_rtl:label_name(L2), 0.5), L1, hipe_rtl:mk_goto_index(LBlock,Start,Labels), L2, hipe_rtl:mk_load_word_index(Reg,Block,End), hipe_rtl:mk_branch(KeyReg,eq,Reg, hipe_rtl:label_name(L3), hipe_rtl:label_name(Default), 0.5), L3, hipe_rtl:mk_goto_index(LBlock, End, Labels) ]; Length =:= 1 -> NewLab = hipe_rtl:mk_new_label(), [ hipe_rtl:mk_load_word_index(Reg,Block,Start), hipe_rtl:mk_branch(KeyReg, eq, Reg, hipe_rtl:label_name(NewLab), hipe_rtl:label_name(Default), 0.9), NewLab, hipe_rtl:mk_goto_index(LBlock, Start, Labels) ] end. %% Create a jumptable gen_jump_table(Arg,Fail,IcodeFail,VarMap,ConstTab,Cases,Min) -> %% Map is a rtl mapping of Dense {Max,DenseTbl} = dense_interval(Cases,Min,IcodeFail), {Map,VarMap2} = lbls_from_cases(DenseTbl,VarMap), %% Make some labels and registers that we need. BelowLab = hipe_rtl:mk_new_label(), UntaggedR = hipe_rtl:mk_new_reg_gcsafe(), StartR = hipe_rtl:mk_new_reg_gcsafe(), %% Generate the code to do the switch... {[ %% Untag the index. hipe_tagscheme:untag_fixnum(UntaggedR, Arg)| %% Check that the index is within Min and Max. case Min of 0 -> %% First element is 0 this is simple. [hipe_rtl:mk_branch(UntaggedR, gtu, hipe_rtl:mk_imm(Max), hipe_rtl:label_name(Fail), hipe_rtl:label_name(BelowLab), 0.01), BelowLab, %% StartR contains the index into the jumptable hipe_rtl:mk_switch(UntaggedR, Map)]; _ -> %% First element is not 0 [hipe_rtl:mk_alu(StartR, UntaggedR, sub, hipe_rtl:mk_imm(Min)), hipe_rtl:mk_branch(StartR, gtu, hipe_rtl:mk_imm(Max-Min), hipe_rtl:label_name(Fail), hipe_rtl:label_name(BelowLab), 0.01), BelowLab, %% StartR contains the index into the jumptable hipe_rtl:mk_switch(StartR, Map)] end], VarMap2, ConstTab}. %% Generate the jumptable for Cases while filling in unused positions %% with the fail label dense_interval(Cases, Min, IcodeFail) -> dense_interval(Cases, Min, IcodeFail, 0, 0). dense_interval([Pair = {Const,_}|Rest], Pos, Fail, Range, NoEntries) -> Val = hipe_icode:const_value(Const), if Pos < Val -> {Max, Res} = dense_interval([Pair|Rest], Pos+1, Fail, Range+1, NoEntries), {Max,[{hipe_icode:mk_const(Pos), Fail}|Res]}; true -> {Max, Res} = dense_interval(Rest, Pos+1, Fail, Range+1, NoEntries+1), {Max, [Pair | Res]} end; dense_interval([], Max, _, _, _) -> {Max-1, []}. %%------------------------------------------------------------------------- %% switch_val without jumptable %% gen_slow_switch_val(I, VarMap, ConstTab, Options) -> Is = rewrite_switch_val(I), ?IF_DEBUG_LEVEL(3,?msg("Switch: ~w\n", [Is]), no_debug), hipe_icode2rtl:translate_instrs(Is, VarMap, ConstTab, Options). rewrite_switch_val(I) -> Var = hipe_icode:switch_val_term(I), Fail = hipe_icode:switch_val_fail_label(I), Cases = hipe_icode:switch_val_cases(I), rewrite_switch_val_cases(Cases, Fail, Var). rewrite_switch_val_cases([{C,L}|Cases], Fail, Arg) -> Tmp = hipe_icode:mk_new_var(), NextLab = hipe_icode:mk_new_label(), [hipe_icode:mk_move(Tmp, C), hipe_icode:mk_if(op_exact_eqeq_2, [Arg, Tmp], L, hipe_icode:label_name(NextLab)), NextLab | rewrite_switch_val_cases(Cases, Fail, Arg)]; rewrite_switch_val_cases([], Fail, _Arg) -> [hipe_icode:mk_goto(Fail)]. %%------------------------------------------------------------------------- %% switch_val with binary search jumptable %% gen_search_switch_val(Arg, Cases, Default, VarMap, ConstTab, _Options) -> ValTableR = hipe_rtl:mk_new_reg_gcsafe(), {Values,_Labels} = split_cases(Cases), {NewConstTab,Id} = hipe_consttab:insert_sorted_block(ConstTab, Values), {LabMap,VarMap1} = lbls_from_cases(Cases,VarMap), Code = [hipe_rtl:mk_load_address(ValTableR, Id, constant)| tab(Values,LabMap,Arg,ValTableR,Default)], {Code, VarMap1, NewConstTab}. %%------------------------------------------------------------------------- %% %% tab/5 creates RTL code for a binary search. %% It requires two sorted tables one with the keys to search %% through and one with the corresponding labels to jump to. %% %% The implementation is derived from John Bentlys %% Programming Pearls. %% %% Input: %% KeyList - A list of keys to search through. %% (Just used to calculate the number of elements.) %% LableList - A list of labels to jump to. %% KeyReg - A register containing the key to search for. %% TablePntrReg - A register containing a pointer to the %% tables with keys %% Default - A lable to jump to if the key is not found. %% %% Example: %% KeyTbl: < a, b, d, f, h, i, z > %% Lbls: < 5, 3, 2, 4, 1, 7, 6 > %% Default: 8 %% KeyReg: v37 %% TablePntrReg: r41 %% %% should give code like: %% r41 <- KeyTbl %% r42 <- 0 %% r43 <- [r41+16] %% if (r43 gt v37) then L17 (0.50) else L16 %% L16: %% r42 <- 16 %% goto L17 %% L17: %% r46 <- r42 add 16 %% r45 <- [r41+r46] %% if (r45 gt v37) then L21 (0.50) else L20 %% L20: %% r42 <- r46 %% goto L21 %% L21: %% r48 <- r42 add 8 %% r47 <- [r41+r48] %% if (r47 gt v37) then L23 (0.50) else L22 %% L22: %% r42 <- r48 %% goto L23 %% L23: %% r50 <- r42 add 4 %% r49 <- [r41+r50] %% if (r49 gt v37) then L25 (0.50) else L24 %% L24: %% r42 <- r42 add 4 %% goto L25 %% L25: %% if (r42 gt 28) then L6 (0.50) else L18 %% L18: %% r44 <- [r41+r42] %% if (r44 eq v37) then L19 (0.90) else L8 %% L19: %% r42 <- r42 sra 2 %% switch (r42) <L5, L3, L2, L4, L1, %% L7, L6> %% %% The search is done like a rolled out binary search, %% but instead of starting in the middle we start at %% the power of two closest above the middle. %% %% We let IndexReg point to the lower bound of our %% search, and then we speculatively look at a %% position at IndexReg + I where I is a power of 2. %% %% Example: Looking for 'h' in %% KeyTbl: < a, b, d, f, h, i, z > %% %% We start with IndexReg=0 and I=4 %% < a, b, d, f, h, i, z > %% ^ ^ %% IndexReg + I %% %% 'f' < 'h' so we add I to IndexReg and divide I with 2 %% IndexReg=4 and I=2 %% < a, b, d, f, h, i, z > %% ^ ^ %% IndexReg + I %% %% 'i' > 'h' so we keep IndexReg and divide I with 2 %% IndexReg=4 and I=1 %% < a, b, d, f, h, i, z > %% ^ ^ %% IndexReg+ I %% Now we have found 'h' so we add I to IndexReg -> 5 %% And we can load switch to the label at position 5 in %% the label table. %% %% Now since the wordsize is 4 all numbers above are %% Multiples of 4. tab(KeyList, LabelList, KeyReg, TablePntrReg, Default) -> %% Calculate the size of the table: %% the number of keys * wordsize LastOffset = (length(KeyList)-1)*?WORDSIZE, %% Calculate the power of two closest to the size of the table. Pow2 = 1 bsl trunc(math:log(LastOffset) / math:log(2)), %% Create some registers and lables that we need IndexReg = hipe_rtl:mk_new_reg_gcsafe(), Temp = hipe_rtl:mk_new_reg_gcsafe(), Temp2 = hipe_rtl:mk_new_reg_gcsafe(), Lab1 = hipe_rtl:mk_new_label(), Lab2 = hipe_rtl:mk_new_label(), Lab3 = hipe_rtl:mk_new_label(), Lab4 = hipe_rtl:mk_new_label(), %% Calculate the position to start looking at Init = (LastOffset)-Pow2, %% Create the code [ hipe_rtl:mk_move(IndexReg,hipe_rtl:mk_imm(0)), hipe_rtl:mk_load(Temp,TablePntrReg,hipe_rtl:mk_imm(Init)), hipe_rtl:mk_branch(Temp, geu, KeyReg, hipe_rtl:label_name(Lab2), hipe_rtl:label_name(Lab1), 0.5), Lab1, hipe_rtl:mk_alu(IndexReg, IndexReg, add, hipe_rtl:mk_imm(Init+?WORDSIZE)), hipe_rtl:mk_goto(hipe_rtl:label_name(Lab2)), Lab2] ++ step(Pow2 div 2, TablePntrReg, IndexReg, KeyReg) ++ [hipe_rtl:mk_branch(IndexReg, gt, hipe_rtl:mk_imm(LastOffset), hipe_rtl:label_name(Default), hipe_rtl:label_name(Lab3), 0.5), Lab3, hipe_rtl:mk_load(Temp2,TablePntrReg,IndexReg), hipe_rtl:mk_branch(Temp2, eq, KeyReg, hipe_rtl:label_name(Lab4), hipe_rtl:label_name(Default), 0.9), Lab4, hipe_rtl:mk_alu(IndexReg, IndexReg, sra, hipe_rtl:mk_imm(hipe_rtl_arch:log2_word_size())), hipe_rtl:mk_sorted_switch(IndexReg, LabelList, KeyList) ]. step(I,TablePntrReg,IndexReg,KeyReg) -> Temp = hipe_rtl:mk_new_reg_gcsafe(), TempIndex = hipe_rtl:mk_new_reg_gcsafe(), Lab1 = hipe_rtl:mk_new_label(), Lab2 = hipe_rtl:mk_new_label(), [hipe_rtl:mk_alu(TempIndex, IndexReg, add, hipe_rtl:mk_imm(I)), hipe_rtl:mk_load(Temp,TablePntrReg,TempIndex), hipe_rtl:mk_branch(Temp, gtu, KeyReg, hipe_rtl:label_name(Lab2), hipe_rtl:label_name(Lab1) , 0.5), Lab1] ++ case ?WORDSIZE of I -> %% Recursive base case [hipe_rtl:mk_alu(IndexReg, IndexReg, add, hipe_rtl:mk_imm(I)), hipe_rtl:mk_goto(hipe_rtl:label_name(Lab2)), Lab2 ]; _ -> %% Recursion case [hipe_rtl:mk_move(IndexReg, TempIndex), hipe_rtl:mk_goto(hipe_rtl:label_name(Lab2)), Lab2 | step(I div 2, TablePntrReg, IndexReg, KeyReg) ] end. %%------------------------------------------------------------------------- lbls_from_cases([{_,L}|Rest], VarMap) -> {Map,VarMap1} = lbls_from_cases(Rest, VarMap), {RtlL, VarMap2} = hipe_rtl_varmap:icode_label2rtl_label(L,VarMap1), %% {[{label,hipe_rtl:label_name(RtlL)}|Map],VarMap2}; {[hipe_rtl:label_name(RtlL)|Map],VarMap2}; lbls_from_cases([], VarMap) -> {[], VarMap}. %%------------------------------------------------------------------------- split_cases(L) -> split_cases(L, [], []). split_cases([], Vs, Ls) -> {lists:reverse(Vs),lists:reverse(Ls)}; split_cases([{V,L}|Rest], Vs, Ls) -> split_cases(Rest, [hipe_icode:const_value(V)|Vs], [L|Ls]). %%------------------------------------------------------------------------- %% %% {switch_tuple_arity,X,Fail,N,[{A1,L1},...,{AN,LN}]} %% %% if not boxed(X) goto Fail %% Hdr := *boxed_val(X) %% switch_int(Hdr,Fail,[{H(A1),L1},...,{H(AN),LN}]) %% where H(Ai) = make_arityval(Ai) %% %%------------------------------------------------------------------------- gen_switch_tuple(I, Map, ConstTab, _Options) -> Var = hipe_icode:switch_tuple_arity_term(I), {X, Map1} = hipe_rtl_varmap:icode_var2rtl_var(Var, Map), Fail0 = hipe_icode:switch_tuple_arity_fail_label(I), {Fail1, Map2} = hipe_rtl_varmap:icode_label2rtl_label(Fail0, Map1), FailLab = hipe_rtl:label_name(Fail1), {Cases, Map3} = lists:foldr(fun({A,L}, {Rest,M}) -> {L1,M1} = hipe_rtl_varmap:icode_label2rtl_label(L, M), L2 = hipe_rtl:label_name(L1), A1 = hipe_icode:const_value(A), H1 = hipe_tagscheme:mk_arityval(A1), {[{H1,L2}|Rest], M1} end, {[], Map2}, hipe_icode:switch_tuple_arity_cases(I)), Hdr = hipe_rtl:mk_new_reg_gcsafe(), IsBoxedLab = hipe_rtl:mk_new_label(), {[hipe_tagscheme:test_is_boxed(X, hipe_rtl:label_name(IsBoxedLab), FailLab, 0.9), IsBoxedLab, hipe_tagscheme:get_header(Hdr, X) | gen_switch_int(Hdr, FailLab, Cases)], Map3, ConstTab}. %% %% RTL-level switch-on-int %% gen_switch_int(X, FailLab, [{C,L}|Rest]) -> NextLab = hipe_rtl:mk_new_label(), [hipe_rtl:mk_branch(X, eq, hipe_rtl:mk_imm(C), L, hipe_rtl:label_name(NextLab), 0.5), NextLab | gen_switch_int(X, FailLab, Rest)]; gen_switch_int(_, FailLab, []) -> [hipe_rtl:mk_goto(FailLab)].