<?xml version="1.0" encoding="utf-8" ?> <!DOCTYPE erlref SYSTEM "erlref.dtd"> <erlref> <header> <copyright> <year>2008</year> <year>2015</year> <holder>Ericsson AB, All Rights Reserved</holder> </copyright> <legalnotice> Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. The Initial Developer of the Original Code is Ericsson AB. </legalnotice> <title>public_key</title> <prepared>Ingela Anderton Andin</prepared> <responsible></responsible> <docno></docno> <date></date> <rev></rev> </header> <module>public_key</module> <modulesummary>API module for public-key infrastructure.</modulesummary> <description> <p>This module provides functions to handle public-key infrastructure. It can encode/decode different file formats (PEM, OpenSSH), sign and verify digital signatures, and validate certificate paths and certificate revocation lists. </p> </description> <section> <title>public_key</title> <list type="bulleted"> <item> Public Key requires the Crypto and ASN1 applications, the latter as OTP R16 (hopefully the runtime dependency on ASN1 will be removed again in the future).</item> <item>Supports <url href="http://www.ietf.org/rfc/rfc5280.txt">RFC 5280 </url> - Internet X.509 Public-Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile </item> <item>Supports <url href="http://www.ietf.org/rfc/rfc3447.txt"> PKCS-1 </url> - RSA Cryptography Standard </item> <item>Supports <url href="http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf"> DSS</url> - Digital Signature Standard (DSA - Digital Signature Algorithm)</item> <item>Supports <url href="http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-3-diffie-hellman-key-agreement-standar.htm"> PKCS-3 </url> - Diffie-Hellman Key Agreement Standard </item> <item>Supports <url href="http://www.ietf.org/rfc/rfc2898.txt"> PKCS-5</url> - Password-Based Cryptography Standard </item> <item>Supports <url href="http://www.ietf.org/rfc/rfc5208.txt"> PKCS-8</url> - Private-Key Information Syntax Standard</item> <item>Supports <url href="http://www.ietf.org/rfc/rfc5967.txt"> PKCS-10</url> - Certification Request Syntax Standard</item> </list> </section> <section> <title>DATA TYPES</title> <note><p>All records used in this Reference Manual <!-- except #policy_tree_node{} --> are generated from ASN.1 specifications and are documented in the User's Guide. See <seealso marker="public_key_records">Public-key Records</seealso>. </p></note> <p>Use the following include directive to get access to the records and constant macros described here and in the User's Guide:</p> <code> -include_lib("public_key/include/public_key.hrl").</code> <p>The following data types are used in the functions for <c>public_key</c>:</p> <taglist> <tag><c>oid()</c></tag> <item><p>Object identifier, a tuple of integers as generated by the <c>ASN.1</c> compiler.</p></item> <tag><c>boolean() =</c></tag> <item><p><c>true | false</c></p></item> <tag><c>string() =</c></tag> <item><p><c>[bytes()]</c></p></item> <tag><c>der_encoded() =</c></tag> <item><p><c>binary()</c></p></item> <tag><c>pki_asn1_type() =</c></tag> <item> <p><c>'Certificate'</c></p> <p><c>| 'RSAPrivateKey'</c></p> <p><c>| 'RSAPublicKey'</c></p> <p><c>| 'DSAPrivateKey'</c></p> <p><c>| 'DSAPublicKey'</c></p> <p><c>| 'DHParameter'</c></p> <p><c>| 'SubjectPublicKeyInfo'</c></p> <p><c>| 'PrivateKeyInfo'</c></p> <p><c>| 'CertificationRequest'</c></p> <p><c>| 'CertificateList'</c></p> <p><c>| 'ECPrivateKey'</c></p> <p><c>| 'EcpkParameters'</c></p> </item> <tag><c>pem_entry () =</c></tag> <item><p><c>{pki_asn1_type(), binary(), %% DER or encrypted DER</c></p> <p><c> not_encrypted | cipher_info()}</c></p></item> <tag><c>cipher_info() = </c></tag> <item><p><c>{"RC2-CBC" | "DES-CBC" | "DES-EDE3-CBC", crypto:rand_bytes(8)</c></p> <p><c>| {#'PBEParameter{}, digest_type()} | #'PBES2-params'{}}</c></p> </item> <tag><c>public_key() =</c></tag> <item><p><c>rsa_public_key() | dsa_public_key() | ec_public_key()</c></p></item> <tag><c>private_key() =</c></tag> <item><p><c>rsa_private_key() | dsa_private_key() | ec_private_key()</c></p></item> <tag><c>rsa_public_key() =</c></tag> <item><p><c>#'RSAPublicKey'{}</c></p></item> <tag><c>rsa_private_key() =</c></tag> <item><p><c>#'RSAPrivateKey'{}</c></p></item> <tag><c>dsa_public_key() =</c></tag> <item><p><c>{integer(), #'Dss-Parms'{}}</c></p></item> <tag><c>dsa_private_key() =</c></tag> <item><p><c>#'DSAPrivateKey'{}</c></p></item> <tag><c>ec_public_key()</c></tag> <item><p>= <c>{#'ECPoint'{}, #'ECParameters'{} | {namedCurve, oid()}}</c></p></item> <tag><c>ec_private_key() =</c></tag> <item><p><c>#'ECPrivateKey'{}</c></p></item> <tag><c>public_crypt_options() =</c></tag> <item><p><c>[{rsa_pad, rsa_padding()}]</c></p></item> <tag><c>rsa_padding() =</c></tag> <item> <p><c>'rsa_pkcs1_padding'</c></p> <p><c>| 'rsa_pkcs1_oaep_padding'</c></p> <p><c>| 'rsa_no_padding'</c></p> </item> <tag><c>digest_type() = </c></tag> <item><p>Union of <c>rsa_digest_type()</c>, <c>dss_digest_type()</c>, and <c>ecdsa_digest_type()</c>.</p></item> <tag><c>rsa_digest_type() = </c></tag> <item><p><c>'md5' | 'sha' | 'sha224' | 'sha256' | 'sha384' | 'sha512'</c></p></item> <tag><c>dss_digest_type() = </c></tag> <item><p><c>'sha'</c></p></item> <tag><c>ecdsa_digest_type() = </c></tag> <item><p><c>'sha'| 'sha224' | 'sha256' | 'sha384' | 'sha512'</c></p></item> <tag><c>crl_reason() = </c></tag> <item> <p><c>unspecified</c></p> <p><c>| keyCompromise</c></p> <p><c>| cACompromise</c></p> <p><c>| affiliationChanged</c></p> <p><c>| superseded</c></p> <p><c>| cessationOfOperation</c></p> <p><c>| certificateHold</c></p> <p><c>| privilegeWithdrawn</c></p> <p><c>| aACompromise</c></p> </item> <tag><c>issuer_name() =</c></tag> <item><p><c>{rdnSequence,[#'AttributeTypeAndValue'{}]}</c></p> </item> <tag><c>ssh_file() =</c></tag> <item> <p><c>openssh_public_key</c></p> <p><c>| rfc4716_public_key</c></p> <p><c>| known_hosts</c></p> <p><c>| auth_keys</c></p> </item> </taglist> <!-- <p><code>policy_tree() = [Root, Children]</code></p> --> <!-- <p><code>Root = #policy_tree_node{}</code></p> --> <!-- <p><code>Children = [] | policy_tree()</code></p> --> <!-- <p>The <c>policy_tree_node</c> record has the following fields:</p> --> <!-- <taglist> --> <!-- <tag>valid_policy</tag> --> <!-- <item>A single policy OID representing a --> <!-- valid policy for the path of length x.</item> --> <!-- <tag>qualifier_set</tag> --> <!-- <item>A set of policy qualifiers associated --> <!-- with the valid policy in certificate x.</item> --> <!-- <tag>critically_indicator</tag> --> <!-- <item>Indicates whether the --> <!-- certificate policy extension in certificate x was marked as --> <!-- critical.</item> --> <!-- <tag>expected_policy_set</tag> --> <!-- <item>Contains one or more policy OIDs --> <!-- that would satisfy this policy in the certificate x+1.</item> --> <!-- </taglist> --> </section> <funcs> <func> <name>compute_key(OthersKey, MyKey)-></name> <name>compute_key(OthersKey, MyKey, Params)-></name> <fsummary>Computes shared secret.</fsummary> <type> <v>OthersKey = #'ECPoint'{} | binary(), MyKey = #'ECPrivateKey'{} | binary()</v> <v>Params = #'DHParameter'{}</v> </type> <desc> <p>Computes shared secret.</p> </desc> </func> <func> <name>decrypt_private(CipherText, Key) -> binary()</name> <name>decrypt_private(CipherText, Key, Options) -> binary()</name> <fsummary>Public-key decryption.</fsummary> <type> <v>CipherText = binary()</v> <v>Key = rsa_private_key()</v> <v>Options = public_crypt_options()</v> </type> <desc> <p>Public-key decryption using the private key. See also <seealso marker="crypto:crypto#private_decrypt/4">crypto:private_decrypt/4</seealso></p> </desc> </func> <func> <name>decrypt_public(CipherText, Key) - > binary()</name> <name>decrypt_public(CipherText, Key, Options) - > binary()</name> <fsummary>Public-key decryption.</fsummary> <type> <v>CipherText = binary()</v> <v>Key = rsa_public_key()</v> <v>Options = public_crypt_options()</v> </type> <desc> <p>Public-key decryption using the public key. See also <seealso marker="crypto:crypto#public_decrypt/4">crypto:public_decrypt/4</seealso></p> </desc> </func> <func> <name>der_decode(Asn1type, Der) -> term()</name> <fsummary>Decodes a public-key ASN.1 DER encoded entity.</fsummary> <type> <v>Asn1Type = atom()</v> <d>ASN.1 type present in the Public Key applications ASN.1 specifications.</d> <v>Der = der_encoded()</v> </type> <desc> <p>Decodes a public-key ASN.1 DER encoded entity.</p> </desc> </func> <func> <name>der_encode(Asn1Type, Entity) -> der_encoded()</name> <fsummary>Encodes a public-key entity with ASN.1 DER encoding.</fsummary> <type> <v>Asn1Type = atom()</v> <d>ASN.1 type present in the Public Key applications ASN.1 specifications.</d> <v>Entity = term()</v> <d>Erlang representation of <c>Asn1Type</c></d> </type> <desc> <p>Encodes a public-key entity with ASN.1 DER encoding.</p> </desc> </func> <func> <name>dh_gex_group(MinSize, SuggestedSize, MaxSize, Groups) -> {ok, {Size,Group}} | {error,Error}</name> <fsummary>Selects a group for Diffie-Hellman key exchange</fsummary> <type> <v>MinSize = positive_integer()</v> <v>SuggestedSize = positive_integer()</v> <v>MaxSize = positive_integer()</v> <v>Groups = undefined | [{Size,[{G,P}]}]</v> <v>Size = positive_integer()</v> <v>Group = {G,P}</v> <v>G = positive_integer()</v> <v>P = positive_integer()</v> </type> <desc> <p>Selects a group for Diffie-Hellman key exchange with the key size in the range <c>MinSize...MaxSize</c> and as close to <c>SuggestedSize</c> as possible. If <c>Groups == undefined</c> a default set will be used, otherwise the group is selected from <c>Groups</c>.</p> <p>First a size, as close as possible to SuggestedSize, is selected. Then one group with that key size is randomly selected from the specified set of groups. If no size within the limits of <c>MinSize</c> and <c>MaxSize</c> is available, <c>{error,no_group_found}</c> is returned.</p> <p>The default set of groups is listed in <c>lib/public_key/priv/moduli</c>. This file may be regenerated like this:</p> <pre> $> cd $ERL_TOP/lib/public_key/priv/ $> generate ---- wait until all background jobs has finished. It may take several days ! $> cat moduli-* > moduli $> cd ..; make </pre> </desc> </func> <func> <name>encrypt_private(PlainText, Key) -> binary()</name> <fsummary>Public-key encryption using the private key.</fsummary> <type> <v>PlainText = binary()</v> <v>Key = rsa_private_key()</v> </type> <desc> <p>Public-key encryption using the private key. See also <seealso marker="crypto:crypto#private_encrypt/4">crypto:private_encrypt/4</seealso>.</p> </desc> </func> <func> <name>encrypt_public(PlainText, Key) -> binary()</name> <fsummary>Public-key encryption using the public key.</fsummary> <type> <v>PlainText = binary()</v> <v>Key = rsa_public_key()</v> </type> <desc> <p>Public-key encryption using the public key. See also <seealso marker="crypto:crypto#public_encrypt/4">crypto:public_encrypt/4</seealso>.</p> </desc> </func> <func> <name>generate_key(Params) -> {Public::binary(), Private::binary()} | #'ECPrivateKey'{} </name> <fsummary>Generates a new keypair.</fsummary> <type> <v>Params = #'DHParameter'{} | {namedCurve, oid()} | #'ECParameters'{}</v> </type> <desc> <p>Generates a new keypair.</p> </desc> </func> <func> <name>pem_decode(PemBin) -> [pem_entry()]</name> <fsummary>Decodes PEM binary data and returns entries as ASN.1 DER encoded entities.</fsummary> <type> <v>PemBin = binary()</v> <d>Example {ok, PemBin} = file:read_file("cert.pem").</d> </type> <desc> <p>Decodes PEM binary data and returns entries as ASN.1 DER encoded entities.</p> </desc> </func> <func> <name>pem_encode(PemEntries) -> binary()</name> <fsummary>Creates a PEM binary.</fsummary> <type> <v> PemEntries = [pem_entry()] </v> </type> <desc> <p>Creates a PEM binary.</p> </desc> </func> <func> <name>pem_entry_decode(PemEntry) -> term()</name> <name>pem_entry_decode(PemEntry, Password) -> term()</name> <fsummary>Decodes a PEM entry.</fsummary> <type> <v>PemEntry = pem_entry()</v> <v>Password = string()</v> </type> <desc> <p>Decodes a PEM entry. <c>pem_decode/1</c> returns a list of PEM entries. Notice that if the PEM entry is of type 'SubjectPublickeyInfo', it is further decoded to an <c>rsa_public_key()</c> or <c>dsa_public_key()</c>.</p> </desc> </func> <func> <name>pem_entry_encode(Asn1Type, Entity) -> pem_entry()</name> <name>pem_entry_encode(Asn1Type, Entity, {CipherInfo, Password}) -> pem_entry()</name> <fsummary>Creates a PEM entry that can be fed to <c>pem_encode/1</c>.</fsummary> <type> <v>Asn1Type = pki_asn1_type()</v> <v>Entity = term()</v> <d>Erlang representation of <c>Asn1Type</c>. If <c>Asn1Type</c> is 'SubjectPublicKeyInfo', <c>Entity</c> must be either an <c>rsa_public_key()</c>, <c>dsa_public_key()</c> or an <c>ec_public_key()</c> and this function creates the appropriate 'SubjectPublicKeyInfo' entry. </d> <v>CipherInfo = cipher_info()</v> <v>Password = string()</v> </type> <desc> <p>Creates a PEM entry that can be feed to <c>pem_encode/1</c>.</p> </desc> </func> <func> <name>pkix_decode_cert(Cert, otp|plain) -> #'Certificate'{} | #'OTPCertificate'{}</name> <fsummary>Decodes an ASN.1 DER-encoded PKIX x509 certificate.</fsummary> <type> <v>Cert = der_encoded()</v> </type> <desc> <p>Decodes an ASN.1 DER-encoded PKIX certificate. Option <c>otp</c> uses the customized ASN.1 specification OTP-PKIX.asn1 for decoding and also recursively decode most of the standard parts.</p> </desc> </func> <func> <name>pkix_encode(Asn1Type, Entity, otp | plain) -> der_encoded()</name> <fsummary>DER encodes a PKIX x509 certificate or part of such a certificate.</fsummary> <type> <v>Asn1Type = atom()</v> <d>The ASN.1 type can be 'Certificate', 'OTPCertificate' or a subtype of either.</d> <v>Entity = #'Certificate'{} | #'OTPCertificate'{} | a valid subtype</v> </type> <desc> <p>DER encodes a PKIX x509 certificate or part of such a certificate. This function must be used for encoding certificates or parts of certificates that are decoded/created in the <c>otp</c> format, whereas for the plain format this function directly calls <c>der_encode/2</c>.</p> </desc> </func> <func> <name>pkix_is_issuer(Cert, IssuerCert) -> boolean()</name> <fsummary>Checks if <c>IssuerCert</c> issued <c>Cert</c>.</fsummary> <type> <v>Cert = der_encoded() | #'OTPCertificate'{} | #'CertificateList'{}</v> <v>IssuerCert = der_encoded() | #'OTPCertificate'{}</v> </type> <desc> <p>Checks if <c>IssuerCert</c> issued <c>Cert</c>.</p> </desc> </func> <func> <name>pkix_is_fixed_dh_cert(Cert) -> boolean()</name> <fsummary>Checks if a certificate is a fixed Diffie-Hellman certificate.</fsummary> <type> <v>Cert = der_encoded() | #'OTPCertificate'{}</v> </type> <desc> <p>Checks if a certificate is a fixed Diffie-Hellman certificate.</p> </desc> </func> <func> <name>pkix_is_self_signed(Cert) -> boolean()</name> <fsummary>Checks if a certificate is self-signed.</fsummary> <type> <v>Cert = der_encoded() | #'OTPCertificate'{}</v> </type> <desc> <p>Checks if a certificate is self-signed.</p> </desc> </func> <func> <name>pkix_issuer_id(Cert, IssuedBy) -> {ok, IssuerID} | {error, Reason}</name> <fsummary>Returns the issuer id.</fsummary> <type> <v>Cert = der_encoded() | #'OTPCertificate'{}</v> <v>IssuedBy = self | other</v> <v>IssuerID = {integer(), issuer_name()}</v> <d>The issuer id consists of the serial number and the issuers name.</d> <v>Reason = term()</v> </type> <desc> <p>Returns the issuer id.</p> </desc> </func> <func> <name>pkix_normalize_name(Issuer) -> Normalized</name> <fsummary>Normalizes an issuer name so that it can be easily compared to another issuer name.</fsummary> <type> <v>Issuer = issuer_name()</v> <v>Normalized = issuer_name()</v> </type> <desc> <p>Normalizes an issuer name so that it can be easily compared to another issuer name.</p> </desc> </func> <func> <name>pkix_path_validation(TrustedCert, CertChain, Options) -> {ok, {PublicKeyInfo, PolicyTree}} | {error, {bad_cert, Reason}} </name> <fsummary>Performs a basic path validation according to RFC 5280.</fsummary> <type> <v>TrustedCert = #'OTPCertificate'{} | der_encoded() | atom()</v> <d>Normally a trusted certificate, but it can also be a path-validation error that can be discovered while constructing the input to this function and that is to be run through the <c>verify_fun</c>. Examples are <c>unknown_ca</c> and <c>selfsigned_peer.</c> </d> <v>CertChain = [der_encoded()]</v> <d>A list of DER-encoded certificates in trust order ending with the peer certificate.</d> <v>Options = proplists:proplist()</v> <v>PublicKeyInfo = {?'rsaEncryption' | ?'id-dsa', rsa_public_key() | integer(), 'NULL' | 'Dss-Parms'{}}</v> <v>PolicyTree = term()</v> <d>At the moment this is always an empty list as policies are not currently supported.</d> <v>Reason = cert_expired | invalid_issuer | invalid_signature | name_not_permitted | missing_basic_constraint | invalid_key_usage | {revoked, crl_reason()} | atom() </v> </type> <desc> <p> Performs a basic path validation according to <url href="http://www.ietf.org/rfc/rfc5280.txt">RFC 5280.</url> However, CRL validation is done separately by <seealso marker="#pkix_crls_validate-3">pkix_crls_validate/3 </seealso> and is to be called from the supplied <c>verify_fun</c>. </p> <p>Available options:</p> <taglist> <tag>{verify_fun, fun()}</tag> <item> <p>The fun must be defined as:</p> <code> fun(OtpCert :: #'OTPCertificate'{}, Event :: {bad_cert, Reason :: atom() | {revoked, atom()}} | {extension, #'Extension'{}}, InitialUserState :: term()) -> {valid, UserState :: term()} | {valid_peer, UserState :: term()} | {fail, Reason :: term()} | {unknown, UserState :: term()}. </code> <p>If the verify callback fun returns <c>{fail, Reason}</c>, the verification process is immediately stopped. If the verify callback fun returns <c>{valid, UserState}</c>, the verification process is continued. This can be used to accept specific path validation errors, such as <c>selfsigned_peer</c>, as well as verifying application-specific extensions. If called with an extension unknown to the user application, the return value <c>{unknown, UserState}</c> is to be used.</p> </item> <tag>{max_path_length, integer()}</tag> <item> The <c>max_path_length</c> is the maximum number of non-self-issued intermediate certificates that can follow the peer certificate in a valid certification path. So, if <c>max_path_length</c> is 0, the PEER must be signed by the trusted ROOT-CA directly, if it is 1, the path can be PEER, CA, ROOT-CA, if it is 2, the path can be PEER, CA, CA, ROOT-CA, and so on. </item> </taglist> <p>Possible reasons for a bad certificate: </p> <taglist> <tag>cert_expired</tag> <item><p>Certificate is no longer valid as its expiration date has passed.</p></item> <tag>invalid_issuer</tag> <item><p>Certificate issuer name does not match the name of the issuer certificate in the chain.</p></item> <tag>invalid_signature</tag> <item><p>Certificate was not signed by its issuer certificate in the chain.</p></item> <tag>name_not_permitted</tag> <item><p>Invalid Subject Alternative Name extension.</p></item> <tag>missing_basic_constraint</tag> <item><p>Certificate, required to have the basic constraints extension, does not have a basic constraints extension.</p></item> <tag>invalid_key_usage</tag> <item><p>Certificate key is used in an invalid way according to the key-usage extension.</p></item> <tag>{revoked, crl_reason()}</tag> <item><p>Certificate has been revoked.</p></item> <tag>atom()</tag> <item><p>Application-specific error reason that is to be checked by the <c>verify_fun</c>.</p></item> </taglist> </desc> </func> <func> <name>pkix_crl_issuer(CRL) -> issuer_name()</name> <fsummary>Returns the issuer of the <c>CRL</c>.</fsummary> <type> <v>CRL = der_encoded() | #'CertificateList'{} </v> </type> <desc> <p>Returns the issuer of the <c>CRL</c>.</p> </desc> </func> <func> <name>pkix_crls_validate(OTPCertificate, DPAndCRLs, Options) -> CRLStatus()</name> <fsummary>Performs CRL validation.</fsummary> <type> <v>OTPCertificate = #'OTPCertificate'{}</v> <v>DPAndCRLs = [{DP::#'DistributionPoint'{}, {DerCRL::der_encoded(), CRL::#'CertificateList'{}}}] </v> <v>Options = proplists:proplist()</v> <v>CRLStatus() = valid | {bad_cert, revocation_status_undetermined} | {bad_cert, {revoked, crl_reason()}}</v> </type> <desc> <p>Performs CRL validation. It is intended to be called from the verify fun of <seealso marker="#pkix_path_validation-3"> pkix_path_validation/3 </seealso>.</p> <p>Available options:</p> <taglist> <tag>{update_crl, fun()}</tag> <item> <p>The fun has the following type specification:</p> <code> fun(#'DistributionPoint'{}, #'CertificateList'{}) -> #'CertificateList'{}</code> <p>The fun uses the information in the distribution point to access the latest possible version of the CRL. If this fun is not specified, Public Key uses the default implementation: </p> <code> fun(_DP, CRL) -> CRL end</code> </item> <tag>{issuer_fun, fun()}</tag> <item> <p>The fun has the following type specification:</p> <code> fun(#'DistributionPoint'{}, #'CertificateList'{}, {rdnSequence,[#'AttributeTypeAndValue'{}]}, term()) -> {ok, #'OTPCertificate'{}, [der_encoded]}</code> <p>The fun returns the root certificate and certificate chain that has signed the CRL. </p> <code> fun(DP, CRL, Issuer, UserState) -> {ok, RootCert, CertChain}</code> </item> </taglist> </desc> </func> <func> <name>pkix_crl_verify(CRL, Cert) -> boolean()</name> <fsummary> Verify that <c>Cert</c> is the <c> CRL</c> signer. </fsummary> <type> <v>CRL = der_encoded() | #'CertificateList'{} </v> <v>Cert = der_encoded() | #'OTPCertificate'{} </v> </type> <desc> <p>Verify that <c>Cert</c> is the <c>CRL</c> signer.</p> </desc> </func> <func> <name>pkix_dist_point(Cert) -> DistPoint</name> <fsummary>Creates a distribution point for CRLs issued by the same issuer as <c>Cert</c>.</fsummary> <type> <v> Cert = der_encoded() | #'OTPCertificate'{} </v> <v> DistPoint = #'DistributionPoint'{}</v> </type> <desc> <p>Creates a distribution point for CRLs issued by the same issuer as <c>Cert</c>. Can be used as input to <seealso marker="#pkix_crls_validate-3">pkix_crls_validate/3 </seealso> </p> </desc> </func> <func> <name>pkix_dist_points(Cert) -> DistPoints</name> <fsummary> Extracts distribution points from the certificates extensions.</fsummary> <type> <v> Cert = der_encoded() | #'OTPCertificate'{} </v> <v> DistPoints = [#'DistributionPoint'{}]</v> </type> <desc> <p> Extracts distribution points from the certificates extensions.</p> </desc> </func> <func> <name>pkix_match_dist_point(CRL, DistPoint) -> boolean()</name> <fsummary>Checks whether the given distribution point matches the Issuing Distribution Point of the CRL.</fsummary> <type> <v>CRL = der_encoded() | #'CertificateList'{} </v> <v>DistPoint = #'DistributionPoint'{}</v> </type> <desc> <p>Checks whether the given distribution point matches the Issuing Distribution Point of the CRL, as described in RFC 5280. If the CRL doesn't have an Issuing Distribution Point extension, the distribution point always matches.</p> </desc> </func> <func> <name>pkix_sign(#'OTPTBSCertificate'{}, Key) -> der_encoded()</name> <fsummary>Signs certificate.</fsummary> <type> <v>Key = rsa_private_key() | dsa_private_key()</v> </type> <desc> <p>Signs an 'OTPTBSCertificate'. Returns the corresponding DER-encoded certificate.</p> </desc> </func> <func> <name>pkix_sign_types(AlgorithmId) -> {DigestType, SignatureType}</name> <fsummary>Translates signature algorithm OID to Erlang digest and signature algorithm types.</fsummary> <type> <v>AlgorithmId = oid()</v> <d>Signature OID from a certificate or a certificate revocation list.</d> <v>DigestType = rsa_digest_type() | dss_digest_type()</v> <v>SignatureType = rsa | dsa | ecdsa</v> </type> <desc> <p>Translates signature algorithm OID to Erlang digest and signature types. </p> </desc> </func> <func> <name>pkix_verify(Cert, Key) -> boolean()</name> <fsummary>Verifies PKIX x.509 certificate signature.</fsummary> <type> <v>Cert = der_encoded()</v> <v>Key = rsa_public_key() | dsa_public_key() | ec_public_key()</v> </type> <desc> <p>Verifies PKIX x.509 certificate signature.</p> </desc> </func> <func> <name>sign(Msg, DigestType, Key) -> binary()</name> <fsummary>Creates a digital signature.</fsummary> <type> <v>Msg = binary() | {digest,binary()}</v> <d>The <c>Msg</c> is either the binary "plain text" data to be signed or it is the hashed value of "plain text", that is, the digest.</d> <v>DigestType = rsa_digest_type() | dss_digest_type() | ecdsa_digest_type()</v> <v>Key = rsa_private_key() | dsa_private_key() | ec_private_key()</v> </type> <desc> <p>Creates a digital signature.</p> </desc> </func> <func> <name>ssh_decode(SshBin, Type) -> [{public_key(), Attributes::list()}]</name> <fsummary>Decodes an SSH file-binary.</fsummary> <type> <v>SshBin = binary()</v> <d>Example <c>{ok, SshBin} = file:read_file("known_hosts")</c>.</d> <v>Type = public_key | ssh_file()</v> <d>If <c>Type</c> is <c>public_key</c> the binary can be either an RFC4716 public key or an OpenSSH public key.</d> </type> <desc> <p>Decodes an SSH file-binary. In the case of <c>known_hosts</c> or <c>auth_keys</c>, the binary can include one or more lines of the file. Returns a list of public keys and their attributes, possible attribute values depends on the file type represented by the binary. </p> <taglist> <tag>RFC4716 attributes - see RFC 4716.</tag> <item><p>{headers, [{string(), utf8_string()}]}</p></item> <tag>auth_key attributes - see manual page for sshd.</tag> <item>{comment, string()}</item> <item>{options, [string()]}</item> <item><p>{bits, integer()} - In SSH version 1 files.</p></item> <tag>known_host attributes - see manual page for sshd.</tag> <item>{hostnames, [string()]}</item> <item>{comment, string()}</item> <item><p>{bits, integer()} - In SSH version 1 files.</p></item> </taglist> </desc> </func> <func> <name>ssh_encode([{Key, Attributes}], Type) -> binary()</name> <fsummary>Encodes a list of SSH file entries to a binary.</fsummary> <type> <v>Key = public_key()</v> <v>Attributes = list()</v> <v>Type = ssh_file()</v> </type> <desc> <p>Encodes a list of SSH file entries (public keys and attributes) to a binary. Possible attributes depend on the file type, see <seealso marker="#ssh_decode-2"> ssh_decode/2 </seealso>.</p> </desc> </func> <func> <name>verify(Msg, DigestType, Signature, Key) -> boolean()</name> <fsummary>Verifies a digital signature.</fsummary> <type> <v>Msg = binary() | {digest,binary()}</v> <d>The <c>Msg</c> is either the binary "plain text" data or it is the hashed value of "plain text", that is, the digest.</d> <v>DigestType = rsa_digest_type() | dss_digest_type() | ecdsa_digest_type()</v> <v>Signature = binary()</v> <v>Key = rsa_public_key() | dsa_public_key() | ec_public_key()</v> </type> <desc> <p>Verifies a digital signature.</p> </desc> </func> </funcs> </erlref>