2008 2014 Ericsson AB, All Rights Reserved The contents of this file are subject to the Erlang Public License, Version 1.1, (the "License"); you may not use this file except in compliance with the License. You should have received a copy of the Erlang Public License along with this software. If not, it can be retrieved online at http://www.erlang.org/. Software distributed under the License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License for the specific language governing rights and limitations under the License. The Initial Developer of the Original Code is Ericsson AB. Public-Key Records Ingela Anderton Andin 2008-02-06 A public_key_records.xml

This section briefly describes Erlang records derived from ASN.1 specifications used to handle public and private keys. The scope is to describe the data types of each component, not the semantics. For information on the semantics, refer to the relevant standards and RFCs.

Use the following include directive to get access to the records and constant macros described in the following sections:

-include_lib("public_key/include/public_key.hrl").
Common Data Types

Common non-standard Erlang data types used to describe the record fields in the following sections are defined in the public_key Reference Manual.

The RSA According to PKCS-1 and RFC 3447

RSA as defined by the PKCS-1 standard and RFC 3447 follows:

#'RSAPublicKey'{ modulus, % integer() publicExponent % integer() }. #'RSAPrivateKey'{ version, % two-prime | multi modulus, % integer() publicExponent, % integer() privateExponent, % integer() prime1, % integer() prime2, % integer() exponent1, % integer() exponent2, % integer() coefficient, % integer() otherPrimeInfos % [#OtherPrimeInfo{}] | asn1_NOVALUE }. #'OtherPrimeInfo'{ prime, % integer() exponent, % integer() coefficient % integer() }.
DSA According to DSS

The DSA as defined by the Digital Signature Standard (DSS), NIST FIPS PUB 186-2 follows:

#'DSAPrivateKey',{ version, % integer() p, % integer() q, % integer() g, % integer() y, % integer() x % integer() }. #'Dss-Parms',{ p, % integer() q, % integer() g % integer() }.
ECC According to RFC 5480

The Elliptic Curve (ECC) as defined by RFC 5480 follows:

#'ECPrivateKey'{ version, % integer() privateKey, % binary() parameters, % der_encoded() - {'EcpkParameters', #'ECParameters'{}} | {'EcpkParameters', {namedCurve, oid()}} | {'EcpkParameters', 'NULL'} % Inherited by CA publicKey % bitstring() }. #'ECParameters'{ version, % integer() fieldID, % #'FieldID'{} curve, % #'Curve'{} base, % binary() order, % integer() cofactor % integer() }. #'Curve'{ a, % binary() b, % binary() seed % bitstring() - optional }. #'FieldID'{ fieldType, % oid() parameters % Depending on fieldType }. #'ECPoint'{ point % binary() - the public key }.