%% %% %CopyrightBegin% %% %% Copyright Ericsson AB 2008-2012. All Rights Reserved. %% %% The contents of this file are subject to the Erlang Public License, %% Version 1.1, (the "License"); you may not use this file except in %% compliance with the License. You should have received a copy of the %% Erlang Public License along with this software. If not, it can be %% retrieved online at http://www.erlang.org/. %% %% Software distributed under the License is distributed on an "AS IS" %% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See %% the License for the specific language governing rights and limitations %% under the License. %% %% %CopyrightEnd% %% %% -module(public_key). -include("public_key.hrl"). -export([pem_decode/1, pem_encode/1, der_decode/2, der_encode/2, pem_entry_decode/1, pem_entry_decode/2, pem_entry_encode/2, pem_entry_encode/3, pkix_decode_cert/2, pkix_encode/3, encrypt_private/2, encrypt_private/3, decrypt_private/2, decrypt_private/3, encrypt_public/2, encrypt_public/3, decrypt_public/2, decrypt_public/3, sign/3, verify/4, pkix_sign/2, pkix_verify/2, pkix_is_self_signed/1, pkix_is_fixed_dh_cert/1, pkix_is_issuer/2, pkix_issuer_id/2, pkix_normalize_name/1, pkix_path_validation/3, ssh_decode/2, ssh_encode/2, pkix_crls_validate/3 ]). -type rsa_padding() :: 'rsa_pkcs1_padding' | 'rsa_pkcs1_oaep_padding' | 'rsa_no_padding'. -type public_crypt_options() :: [{rsa_pad, rsa_padding()}]. -type rsa_digest_type() :: 'md5' | 'sha'| 'sha224' | 'sha256' | 'sha384' | 'sha512'. -type dss_digest_type() :: 'none' | 'sha'. %% None is for backwards compatibility -type crl_reason() :: unspecified | keyCompromise | cACompromise | affiliationChanged | superseded | cessationOfOperation | certificateHold | privilegeWithdrawn | aACompromise. -define(UINT32(X), X:32/unsigned-big-integer). -define(DER_NULL, <<5, 0>>). %%==================================================================== %% API %%==================================================================== %%-------------------------------------------------------------------- -spec pem_decode(binary()) -> [pem_entry()]. %% %% Description: Decode PEM binary data and return %% entries as asn1 der encoded entities. %%-------------------------------------------------------------------- pem_decode(PemBin) when is_binary(PemBin) -> pubkey_pem:decode(PemBin). %%-------------------------------------------------------------------- -spec pem_encode([pem_entry()]) -> binary(). %% %% Description: Creates a PEM binary. %%-------------------------------------------------------------------- pem_encode(PemEntries) when is_list(PemEntries) -> iolist_to_binary(pubkey_pem:encode(PemEntries)). %%-------------------------------------------------------------------- -spec pem_entry_decode(pem_entry(), [string()]) -> term(). % %% Description: Decodes a pem entry. pem_decode/1 returns a list of %% pem entries. %%-------------------------------------------------------------------- pem_entry_decode({'SubjectPublicKeyInfo', Der, _}) -> {_, {'AlgorithmIdentifier', AlgId, Params}, {0, Key0}} = der_decode('SubjectPublicKeyInfo', Der), KeyType = pubkey_cert_records:supportedPublicKeyAlgorithms(AlgId), case KeyType of 'RSAPublicKey' -> der_decode(KeyType, Key0); 'DSAPublicKey' -> {params, DssParams} = der_decode('DSAParams', Params), {der_decode(KeyType, Key0), DssParams} end; pem_entry_decode({Asn1Type, Der, not_encrypted}) when is_atom(Asn1Type), is_binary(Der) -> der_decode(Asn1Type, Der). pem_entry_decode({Asn1Type, Der, not_encrypted}, _) when is_atom(Asn1Type), is_binary(Der) -> der_decode(Asn1Type, Der); pem_entry_decode({Asn1Type, CryptDer, {Cipher, #'PBES2-params'{}}} = PemEntry, Password) when is_atom(Asn1Type) andalso is_binary(CryptDer) andalso is_list(Cipher) -> do_pem_entry_decode(PemEntry, Password); pem_entry_decode({Asn1Type, CryptDer, {Cipher, Salt}} = PemEntry, Password) when is_atom(Asn1Type) andalso is_binary(CryptDer) andalso is_list(Cipher) andalso is_binary(Salt) andalso erlang:byte_size(Salt) == 8 -> do_pem_entry_decode(PemEntry, Password). %%-------------------------------------------------------------------- -spec pem_entry_encode(pki_asn1_type(), term()) -> pem_entry(). -spec pem_entry_encode(pki_asn1_type(), term(), term()) -> pem_entry(). %% %% Description: Creates a pem entry that can be feed to pem_encode/1. %%-------------------------------------------------------------------- pem_entry_encode('SubjectPublicKeyInfo', Entity=#'RSAPublicKey'{}) -> Der = der_encode('RSAPublicKey', Entity), Spki = {'SubjectPublicKeyInfo', {'AlgorithmIdentifier', ?'rsaEncryption', ?DER_NULL}, {0, Der}}, pem_entry_encode('SubjectPublicKeyInfo', Spki); pem_entry_encode('SubjectPublicKeyInfo', {DsaInt, Params=#'Dss-Parms'{}}) when is_integer(DsaInt) -> KeyDer = der_encode('DSAPublicKey', DsaInt), ParamDer = der_encode('DSAParams', {params, Params}), Spki = {'SubjectPublicKeyInfo', {'AlgorithmIdentifier', ?'id-dsa', ParamDer}, {0, KeyDer}}, pem_entry_encode('SubjectPublicKeyInfo', Spki); pem_entry_encode(Asn1Type, Entity) when is_atom(Asn1Type) -> Der = der_encode(Asn1Type, Entity), {Asn1Type, Der, not_encrypted}. pem_entry_encode(Asn1Type, Entity, {{Cipher, #'PBES2-params'{}} = CipherInfo, Password}) when is_atom(Asn1Type) andalso is_list(Password) andalso is_list(Cipher) -> do_pem_entry_encode(Asn1Type, Entity, CipherInfo, Password); pem_entry_encode(Asn1Type, Entity, {{Cipher, Salt} = CipherInfo, Password}) when is_atom(Asn1Type) andalso is_list(Password) andalso is_list(Cipher) andalso is_binary(Salt) andalso erlang:byte_size(Salt) == 8 -> do_pem_entry_encode(Asn1Type, Entity, CipherInfo, Password). %%-------------------------------------------------------------------- -spec der_decode(asn1_type(), Der::binary()) -> term(). %% %% Description: Decodes a public key asn1 der encoded entity. %%-------------------------------------------------------------------- der_decode(Asn1Type, Der) when (Asn1Type == 'PrivateKeyInfo') or (Asn1Type == 'EncryptedPrivateKeyInfo') andalso is_binary(Der) -> try {ok, Decoded} = 'PKCS-FRAME':decode(Asn1Type, Der), Decoded catch error:{badmatch, {error, _}} = Error -> erlang:error(Error) end; der_decode(Asn1Type, Der) when is_atom(Asn1Type), is_binary(Der) -> try {ok, Decoded} = 'OTP-PUB-KEY':decode(Asn1Type, Der), Decoded catch error:{badmatch, {error, _}} = Error -> erlang:error(Error) end. %%-------------------------------------------------------------------- -spec der_encode(asn1_type(), term()) -> Der::binary(). %% %% Description: Encodes a public key entity with asn1 DER encoding. %%-------------------------------------------------------------------- der_encode(Asn1Type, Entity) when (Asn1Type == 'PrivateKeyInfo') or (Asn1Type == 'EncryptedPrivateKeyInfo') -> try {ok, Encoded} = 'PKCS-FRAME':encode(Asn1Type, Entity), iolist_to_binary(Encoded) catch error:{badmatch, {error, _}} = Error -> erlang:error(Error) end; der_encode(Asn1Type, Entity) when is_atom(Asn1Type) -> try {ok, Encoded} = 'OTP-PUB-KEY':encode(Asn1Type, Entity), iolist_to_binary(Encoded) catch error:{badmatch, {error, _}} = Error -> erlang:error(Error) end. %%-------------------------------------------------------------------- -spec pkix_decode_cert(Cert::binary(), plain | otp) -> #'Certificate'{} | #'OTPCertificate'{}. %% %% Description: Decodes an asn1 der encoded pkix certificate. The otp %% option will use the customized asn1 specification OTP-PKIX.asn1 for %% decoding and also recursively decode most of the standard %% extensions. %% -------------------------------------------------------------------- pkix_decode_cert(DerCert, plain) when is_binary(DerCert) -> der_decode('Certificate', DerCert); pkix_decode_cert(DerCert, otp) when is_binary(DerCert) -> try {ok, #'OTPCertificate'{}= Cert} = pubkey_cert_records:decode_cert(DerCert), Cert catch error:{badmatch, {error, _}} = Error -> erlang:error(Error) end. %%-------------------------------------------------------------------- -spec pkix_encode(asn1_type(), term(), otp | plain) -> Der::binary(). %% %% Description: Der encodes a certificate or part of a certificate. %% This function must be used for encoding certificates or parts of certificates %% that are decoded with the otp format, whereas for the plain format this %% function will only call der_encode/2. %%-------------------------------------------------------------------- pkix_encode(Asn1Type, Term, plain) when is_atom(Asn1Type) -> der_encode(Asn1Type, Term); pkix_encode(Asn1Type, Term0, otp) when is_atom(Asn1Type) -> Term = pubkey_cert_records:transform(Term0, encode), der_encode(Asn1Type, Term). %%-------------------------------------------------------------------- -spec decrypt_private(CipherText :: binary(), rsa_private_key()) -> PlainText :: binary(). -spec decrypt_private(CipherText :: binary(), rsa_private_key(), public_crypt_options()) -> PlainText :: binary(). %% %% Description: Public key decryption using the private key. %%-------------------------------------------------------------------- decrypt_private(CipherText, Key) -> decrypt_private(CipherText, Key, []). decrypt_private(CipherText, #'RSAPrivateKey'{modulus = N, publicExponent = E, privateExponent = D} = Key, Options) when is_binary(CipherText), is_integer(N), is_integer(E), is_integer(D), is_list(Options) -> Padding = proplists:get_value(rsa_pad, Options, rsa_pkcs1_padding), crypto:rsa_private_decrypt(CipherText, format_rsa_private_key(Key), Padding). %%-------------------------------------------------------------------- -spec decrypt_public(CipherText :: binary(), rsa_public_key() | rsa_private_key()) -> PlainText :: binary(). -spec decrypt_public(CipherText :: binary(), rsa_public_key() | rsa_private_key(), public_crypt_options()) -> PlainText :: binary(). %% NOTE: The rsa_private_key() is not part of the documented API it is %% here for testing purposes, in a real situation this is not a relevant %% thing to do. %% %% Description: Public key decryption using the public key. %%-------------------------------------------------------------------- decrypt_public(CipherText, Key) -> decrypt_public(CipherText, Key, []). decrypt_public(CipherText, #'RSAPublicKey'{modulus = N, publicExponent = E}, Options) when is_binary(CipherText), is_list(Options) -> decrypt_public(CipherText, N,E, Options); decrypt_public(CipherText,#'RSAPrivateKey'{modulus = N, publicExponent = E}, Options) when is_binary(CipherText), is_list(Options) -> decrypt_public(CipherText, N,E, Options). %%-------------------------------------------------------------------- -spec encrypt_public(PlainText :: binary(), rsa_public_key() | rsa_private_key()) -> CipherText :: binary(). -spec encrypt_public(PlainText :: binary(), rsa_public_key() | rsa_private_key(), public_crypt_options()) -> CipherText :: binary(). %% NOTE: The rsa_private_key() is not part of the documented API it is %% here for testing purposes, in a real situation this is not a relevant %% thing to do. %% %% Description: Public key encryption using the public key. %%-------------------------------------------------------------------- encrypt_public(PlainText, Key) -> encrypt_public(PlainText, Key, []). encrypt_public(PlainText, #'RSAPublicKey'{modulus=N,publicExponent=E}, Options) when is_binary(PlainText), is_list(Options) -> encrypt_public(PlainText, N,E, Options); encrypt_public(PlainText, #'RSAPrivateKey'{modulus=N,publicExponent=E}, Options) when is_binary(PlainText), is_list(Options) -> encrypt_public(PlainText, N,E, Options). %%-------------------------------------------------------------------- -spec encrypt_private(PlainText :: binary(), rsa_private_key()) -> CipherText :: binary(). -spec encrypt_private(PlainText :: binary(), rsa_private_key(), public_crypt_options()) -> CipherText :: binary(). %% %% Description: Public key encryption using the private key. %%-------------------------------------------------------------------- encrypt_private(PlainText, Key) -> encrypt_private(PlainText, Key, []). encrypt_private(PlainText, #'RSAPrivateKey'{modulus = N, publicExponent = E, privateExponent = D} = Key, Options) when is_binary(PlainText), is_integer(N), is_integer(E), is_integer(D), is_list(Options) -> Padding = proplists:get_value(rsa_pad, Options, rsa_pkcs1_padding), crypto:rsa_private_encrypt(PlainText, format_rsa_private_key(Key), Padding). format_rsa_private_key(#'RSAPrivateKey'{modulus = N, publicExponent = E, privateExponent = D, prime1 = P1, prime2 = P2, exponent1 = E1, exponent2 = E2, coefficient = C}) when is_integer(P1), is_integer(P2), is_integer(E1), is_integer(E2), is_integer(C) -> [crypto:mpint(K) || K <- [E, N, D, P1, P2, E1, E2, C]]; format_rsa_private_key(#'RSAPrivateKey'{modulus = N, publicExponent = E, privateExponent = D}) -> [crypto:mpint(K) || K <- [E, N, D]]. %%-------------------------------------------------------------------- -spec sign(binary() | {digest, binary()}, rsa_digest_type() | dss_digest_type(), rsa_private_key() | dsa_private_key()) -> Signature :: binary(). %% Description: Create digital signature. %%-------------------------------------------------------------------- sign({digest,_}=Digest, DigestType, Key = #'RSAPrivateKey'{}) -> crypto:rsa_sign(DigestType, Digest, format_rsa_private_key(Key)); sign(PlainText, DigestType, Key = #'RSAPrivateKey'{}) -> crypto:rsa_sign(DigestType, sized_binary(PlainText), format_rsa_private_key(Key)); sign({digest,_}=Digest, sha, #'DSAPrivateKey'{p = P, q = Q, g = G, x = X}) -> crypto:dss_sign(Digest, [crypto:mpint(P), crypto:mpint(Q), crypto:mpint(G), crypto:mpint(X)]); sign(PlainText, sha, #'DSAPrivateKey'{p = P, q = Q, g = G, x = X}) -> crypto:dss_sign(sized_binary(PlainText), [crypto:mpint(P), crypto:mpint(Q), crypto:mpint(G), crypto:mpint(X)]); %% Backwards compatible sign(Digest, none, #'DSAPrivateKey'{} = Key) -> sign({digest,Digest}, sha, Key). %%-------------------------------------------------------------------- -spec verify(binary() | {digest, binary()}, rsa_digest_type() | dss_digest_type(), Signature :: binary(), rsa_public_key() | dsa_public_key()) -> boolean(). %% Description: Verifies a digital signature. %%-------------------------------------------------------------------- verify({digest,_}=Digest, DigestType, Signature, #'RSAPublicKey'{modulus = Mod, publicExponent = Exp}) -> crypto:rsa_verify(DigestType, Digest, sized_binary(Signature), [crypto:mpint(Exp), crypto:mpint(Mod)]); verify(PlainText, DigestType, Signature, #'RSAPublicKey'{modulus = Mod, publicExponent = Exp}) -> crypto:rsa_verify(DigestType, sized_binary(PlainText), sized_binary(Signature), [crypto:mpint(Exp), crypto:mpint(Mod)]); verify({digest,_}=Digest, sha, Signature, {Key, #'Dss-Parms'{p = P, q = Q, g = G}}) when is_integer(Key), is_binary(Signature) -> crypto:dss_verify(Digest, sized_binary(Signature), [crypto:mpint(P), crypto:mpint(Q), crypto:mpint(G), crypto:mpint(Key)]); %% Backwards compatibility verify(Digest, none, Signature, {_, #'Dss-Parms'{}} = Key ) -> verify({digest,Digest}, sha, Signature, Key); verify(PlainText, sha, Signature, {Key, #'Dss-Parms'{p = P, q = Q, g = G}}) when is_integer(Key), is_binary(PlainText), is_binary(Signature) -> crypto:dss_verify(sized_binary(PlainText), sized_binary(Signature), [crypto:mpint(P), crypto:mpint(Q), crypto:mpint(G), crypto:mpint(Key)]). %%-------------------------------------------------------------------- -spec pkix_sign(#'OTPTBSCertificate'{}, rsa_private_key() | dsa_private_key()) -> Der::binary(). %% %% Description: Sign a pkix x.509 certificate. Returns the corresponding %% der encoded 'Certificate'{} %%-------------------------------------------------------------------- pkix_sign(#'OTPTBSCertificate'{signature = #'SignatureAlgorithm'{algorithm = Alg} = SigAlg} = TBSCert, Key) -> Msg = pkix_encode('OTPTBSCertificate', TBSCert, otp), DigestType = pubkey_cert:digest_type(Alg), Signature = sign(Msg, DigestType, Key), Cert = #'OTPCertificate'{tbsCertificate= TBSCert, signatureAlgorithm = SigAlg, signature = {0, Signature} }, pkix_encode('OTPCertificate', Cert, otp). %%-------------------------------------------------------------------- -spec pkix_verify(Cert::binary(), rsa_public_key()| dsa_public_key()) -> boolean(). %% %% Description: Verify pkix x.509 certificate signature. %%-------------------------------------------------------------------- pkix_verify(DerCert, {Key, #'Dss-Parms'{}} = DSAKey) when is_binary(DerCert), is_integer(Key) -> {DigestType, PlainText, Signature} = pubkey_cert:verify_data(DerCert), verify(PlainText, DigestType, Signature, DSAKey); pkix_verify(DerCert, #'RSAPublicKey'{} = RSAKey) when is_binary(DerCert) -> {DigestType, PlainText, Signature} = pubkey_cert:verify_data(DerCert), verify(PlainText, DigestType, Signature, RSAKey). %%-------------------------------------------------------------------- -spec pkix_is_issuer(Cert :: der_encoded()| #'OTPCertificate'{} | #'CertificateList'{}, IssuerCert :: der_encoded()| #'OTPCertificate'{}) -> boolean(). %% %% Description: Checks if <IssuerCert> issued <Cert>. %%-------------------------------------------------------------------- pkix_is_issuer(Cert, IssuerCert) when is_binary(Cert) -> OtpCert = pkix_decode_cert(Cert, otp), pkix_is_issuer(OtpCert, IssuerCert); pkix_is_issuer(Cert, IssuerCert) when is_binary(IssuerCert) -> OtpIssuerCert = pkix_decode_cert(IssuerCert, otp), pkix_is_issuer(Cert, OtpIssuerCert); pkix_is_issuer(#'OTPCertificate'{tbsCertificate = TBSCert}, #'OTPCertificate'{tbsCertificate = Candidate}) -> pubkey_cert:is_issuer(TBSCert#'OTPTBSCertificate'.issuer, Candidate#'OTPTBSCertificate'.subject); pkix_is_issuer(#'CertificateList'{tbsCertList = TBSCRL}, #'OTPCertificate'{tbsCertificate = Candidate}) -> pubkey_cert:is_issuer(Candidate#'OTPTBSCertificate'.subject, pubkey_cert_records:transform(TBSCRL#'TBSCertList'.issuer, decode)). %%-------------------------------------------------------------------- -spec pkix_is_self_signed(Cert::binary()| #'OTPCertificate'{}) -> boolean(). %% %% Description: Checks if a Certificate is self signed. %%-------------------------------------------------------------------- pkix_is_self_signed(#'OTPCertificate'{} = OTPCert) -> pubkey_cert:is_self_signed(OTPCert); pkix_is_self_signed(Cert) when is_binary(Cert) -> OtpCert = pkix_decode_cert(Cert, otp), pkix_is_self_signed(OtpCert). %%-------------------------------------------------------------------- -spec pkix_is_fixed_dh_cert(Cert::binary()| #'OTPCertificate'{}) -> boolean(). %% %% Description: Checks if a Certificate is a fixed Diffie-Hellman Cert. %%-------------------------------------------------------------------- pkix_is_fixed_dh_cert(#'OTPCertificate'{} = OTPCert) -> pubkey_cert:is_fixed_dh_cert(OTPCert); pkix_is_fixed_dh_cert(Cert) when is_binary(Cert) -> OtpCert = pkix_decode_cert(Cert, otp), pkix_is_fixed_dh_cert(OtpCert). %%-------------------------------------------------------------------- -spec pkix_issuer_id(Cert::binary()| #'OTPCertificate'{}, IssuedBy :: self | other) -> {ok, {SerialNr :: integer(), Issuer :: {rdnSequence, [#'AttributeTypeAndValue'{}]}}} | {error, Reason :: term()}. % %% Description: Returns the issuer id. %%-------------------------------------------------------------------- pkix_issuer_id(#'OTPCertificate'{} = OtpCert, self) -> pubkey_cert:issuer_id(OtpCert, self); pkix_issuer_id(#'OTPCertificate'{} = OtpCert, other) -> pubkey_cert:issuer_id(OtpCert, other); pkix_issuer_id(Cert, Signed) when is_binary(Cert) -> OtpCert = pkix_decode_cert(Cert, otp), pkix_issuer_id(OtpCert, Signed). %%-------------------------------------------------------------------- -spec pkix_normalize_name({rdnSequence, [#'AttributeTypeAndValue'{}]}) -> {rdnSequence, [#'AttributeTypeAndValue'{}]}. %% %% Description: Normalizes a issuer name so that it can be easily %% compared to another issuer name. %%-------------------------------------------------------------------- pkix_normalize_name(Issuer) -> pubkey_cert:normalize_general_name(Issuer). %%-------------------------------------------------------------------- -spec pkix_path_validation(Cert::binary()| #'OTPCertificate'{} | atom(), CertChain :: [binary()] , Options :: proplists:proplist()) -> {ok, {PublicKeyInfo :: term(), PolicyTree :: term()}} | {error, {bad_cert, Reason :: term()}}. %% Description: Performs a basic path validation according to RFC 5280. %%-------------------------------------------------------------------- pkix_path_validation(PathErr, [Cert | Chain], Options0) when is_atom(PathErr)-> {VerifyFun, Userstat0} = proplists:get_value(verify_fun, Options0, ?DEFAULT_VERIFYFUN), Otpcert = otp_cert(Cert), Reason = {bad_cert, PathErr}, try VerifyFun(Otpcert, Reason, Userstat0) of {valid, Userstate} -> Options = proplists:delete(verify_fun, Options0), pkix_path_validation(Otpcert, Chain, [{verify_fun, {VerifyFun, Userstate}}| Options]); {fail, _} -> {error, Reason} catch _:_ -> {error, Reason} end; pkix_path_validation(TrustedCert, CertChain, Options) when is_binary(TrustedCert) -> OtpCert = pkix_decode_cert(TrustedCert, otp), pkix_path_validation(OtpCert, CertChain, Options); pkix_path_validation(#'OTPCertificate'{} = TrustedCert, CertChain, Options) when is_list(CertChain), is_list(Options) -> MaxPathDefault = length(CertChain), ValidationState = pubkey_cert:init_validation_state(TrustedCert, MaxPathDefault, Options), path_validation(CertChain, ValidationState). %-------------------------------------------------------------------- -spec pkix_crls_validate(#'OTPCertificate'{}, [{DP::#'DistributionPoint'{} ,CRL::#'CertificateList'{}}], Options :: proplists:proplist()) -> valid | {bad_cert, revocation_status_undetermined} | {bad_cert, {revoked, crl_reason()}}. %% Description: Performs a basic path validation according to RFC 5280. %%-------------------------------------------------------------------- pkix_crls_validate(OtpCert, [{_,_,_} |_] = DPAndCRLs, Options) -> pkix_crls_validate(OtpCert, DPAndCRLs, DPAndCRLs, Options, pubkey_crl:init_revokation_state()); pkix_crls_validate(OtpCert, DPAndCRLs0, Options) -> CallBack = proplists:get_value(update_crl, Options, fun(_, CurrCRL) -> CurrCRL end), DPAndCRLs = sort_dp_crls(DPAndCRLs0, CallBack), pkix_crls_validate(OtpCert, DPAndCRLs, DPAndCRLs, Options, pubkey_crl:init_revokation_state()). %%-------------------------------------------------------------------- -spec ssh_decode(binary(), public_key | ssh_file()) -> [{public_key(), Attributes::list()}]. %% %% Description: Decodes a ssh file-binary. In the case of know_hosts %% or auth_keys the binary may include one or more lines of the %% file. Returns a list of public keys and their attributes, possible %% attribute values depends on the file type represented by the %% binary. %%-------------------------------------------------------------------- ssh_decode(SshBin, Type) when is_binary(SshBin), Type == public_key; Type == rfc4716_public_key; Type == openssh_public_key; Type == auth_keys; Type == known_hosts -> pubkey_ssh:decode(SshBin, Type). %%-------------------------------------------------------------------- -spec ssh_encode([{public_key(), Attributes::list()}], ssh_file()) -> binary(). %% Description: Encodes a list of ssh file entries (public keys and %% attributes) to a binary. Possible attributes depends on the file %% type. %%-------------------------------------------------------------------- ssh_encode(Entries, Type) when is_list(Entries), Type == rfc4716_public_key; Type == openssh_public_key; Type == auth_keys; Type == known_hosts -> pubkey_ssh:encode(Entries, Type). %%-------------------------------------------------------------------- %%% Internal functions %%-------------------------------------------------------------------- do_pem_entry_encode(Asn1Type, Entity, CipherInfo, Password) -> Der = der_encode(Asn1Type, Entity), DecryptDer = pubkey_pem:cipher(Der, CipherInfo, Password), {Asn1Type, DecryptDer, CipherInfo}. do_pem_entry_decode({Asn1Type,_, _} = PemEntry, Password) -> Der = pubkey_pem:decipher(PemEntry, Password), der_decode(Asn1Type, Der). encrypt_public(PlainText, N, E, Options)-> Padding = proplists:get_value(rsa_pad, Options, rsa_pkcs1_padding), crypto:rsa_public_encrypt(PlainText, [crypto:mpint(E),crypto:mpint(N)], Padding). decrypt_public(CipherText, N,E, Options) -> Padding = proplists:get_value(rsa_pad, Options, rsa_pkcs1_padding), crypto:rsa_public_decrypt(CipherText,[crypto:mpint(E), crypto:mpint(N)], Padding). path_validation([], #path_validation_state{working_public_key_algorithm = Algorithm, working_public_key = PublicKey, working_public_key_parameters = PublicKeyParams, valid_policy_tree = Tree }) -> {ok, {{Algorithm, PublicKey, PublicKeyParams}, Tree}}; path_validation([DerCert | Rest], ValidationState = #path_validation_state{ max_path_length = Len}) when Len >= 0 -> try validate(DerCert, ValidationState#path_validation_state{last_cert=Rest=:=[]}) of #path_validation_state{} = NewValidationState -> path_validation(Rest, NewValidationState) catch throw:Reason -> {error, Reason} end; path_validation([Cert | _] = Path, #path_validation_state{user_state = UserState0, verify_fun = VerifyFun} = ValidationState) -> Reason = {bad_cert, max_path_length_reached}, OtpCert = otp_cert(Cert), try VerifyFun(OtpCert, Reason, UserState0) of {valid, UserState} -> path_validation(Path, ValidationState#path_validation_state{ max_path_length = 0, user_state = UserState}); {fail, _} -> {error, Reason} catch _:_ -> {error, Reason} end. validate(Cert, #path_validation_state{working_issuer_name = Issuer, working_public_key = Key, working_public_key_parameters = KeyParams, permitted_subtrees = Permit, excluded_subtrees = Exclude, last_cert = Last, user_state = UserState0, verify_fun = VerifyFun} = ValidationState0) -> OtpCert = otp_cert(Cert), {ValidationState1, UserState1} = pubkey_cert:validate_extensions(OtpCert, ValidationState0, UserState0, VerifyFun), %% We want the key_usage extension to be checked before we validate %% other things so that CRL validation errors will comply to standard %% test suite description UserState2 = pubkey_cert:validate_time(OtpCert, UserState1, VerifyFun), UserState3 = pubkey_cert:validate_issuer(OtpCert, Issuer, UserState2, VerifyFun), UserState4 = pubkey_cert:validate_names(OtpCert, Permit, Exclude, Last, UserState3, VerifyFun), UserState5 = pubkey_cert:validate_signature(OtpCert, der_cert(Cert), Key, KeyParams, UserState4, VerifyFun), UserState = case Last of false -> pubkey_cert:verify_fun(OtpCert, valid, UserState5, VerifyFun); true -> pubkey_cert:verify_fun(OtpCert, valid_peer, UserState5, VerifyFun) end, ValidationState = ValidationState1#path_validation_state{user_state = UserState}, pubkey_cert:prepare_for_next_cert(OtpCert, ValidationState). sized_binary(Binary) -> Size = size(Binary), <<?UINT32(Size), Binary/binary>>. otp_cert(Der) when is_binary(Der) -> pkix_decode_cert(Der, otp); otp_cert(#'OTPCertificate'{} =Cert) -> Cert. der_cert(#'OTPCertificate'{} = Cert) -> pkix_encode('OTPCertificate', Cert, otp); der_cert(Der) when is_binary(Der) -> Der. pkix_crls_validate(_, [],_, _, _) -> {bad_cert, revocation_status_undetermined}; pkix_crls_validate(OtpCert, [{DP, CRL, DeltaCRL} | Rest], All, Options, RevokedState0) -> CallBack = proplists:get_value(update_crl, Options, fun(_, CurrCRL) -> CurrCRL end), case pubkey_crl:fresh_crl(DP, CRL, CallBack) of {fresh, CRL} -> do_pkix_crls_validate(OtpCert, [{DP, CRL, DeltaCRL} | Rest], All, Options, RevokedState0); {fresh, NewCRL} -> NewAll = [{DP, NewCRL, DeltaCRL} | All -- [{DP, CRL, DeltaCRL}]], do_pkix_crls_validate(OtpCert, [{DP, NewCRL, DeltaCRL} | Rest], NewAll, Options, RevokedState0); no_fresh_crl -> pkix_crls_validate(OtpCert, Rest, All, Options, RevokedState0) end. do_pkix_crls_validate(OtpCert, [{DP, CRL, DeltaCRL} | Rest], All, Options, RevokedState0) -> OtherDPCRLs = All -- [{DP, CRL, DeltaCRL}], case pubkey_crl:validate(OtpCert, OtherDPCRLs, DP, CRL, DeltaCRL, Options, RevokedState0) of {undetermined, _, _} when Rest == []-> {bad_cert, revocation_status_undetermined}; {undetermined, _, RevokedState} when Rest =/= []-> pkix_crls_validate(OtpCert, Rest, All, Options, RevokedState); {finished, unrevoked} -> valid; {finished, Status} -> {bad_cert, Status} end. sort_dp_crls(DpsAndCrls, FreshCB) -> Sorted = do_sort_dp_crls(DpsAndCrls, dict:new()), sort_crls(Sorted, FreshCB, []). do_sort_dp_crls([], Dict) -> dict:to_list(Dict); do_sort_dp_crls([{DP, CRL} | Rest], Dict0) -> Dict = try dict:fetch(DP, Dict0) of _ -> dict:append(DP, CRL, Dict0) catch _:_ -> dict:store(DP, [CRL], Dict0) end, do_sort_dp_crls(Rest, Dict). sort_crls([], _, Acc) -> Acc; sort_crls([{DP, AllCRLs} | Rest], FreshCB, Acc)-> {DeltaCRLs, CRLs} = do_sort_crls(AllCRLs), DpsAndCRLs = combine(CRLs, DeltaCRLs, DP, FreshCB, []), sort_crls(Rest, FreshCB, DpsAndCRLs ++ Acc). do_sort_crls(CRLs) -> lists:partition(fun({_, CRL}) -> pubkey_crl:is_delta_crl(CRL) end, CRLs). combine([], _,_,_,Acc) -> Acc; combine([{_, CRL} = Entry | CRLs], DeltaCRLs, DP, FreshCB, Acc) -> DeltaCRL = combine(CRL, DeltaCRLs), case pubkey_crl:fresh_crl(DP, DeltaCRL, FreshCB) of no_fresh_crl -> combine(CRLs, DeltaCRLs, DP, FreshCB, [{DP, Entry, {undefined, undefined}} | Acc]); {fresh, NewDeltaCRL} -> combine(CRLs, DeltaCRLs, DP, FreshCB, [{DP, Entry, NewDeltaCRL} | Acc]) end. combine(CRL, DeltaCRLs) -> Deltas = lists:filter(fun({_,DeltaCRL}) -> pubkey_crl:combines(CRL, DeltaCRL) end, DeltaCRLs), case Deltas of [] -> {undefined, undefined}; [Delta] -> Delta; [_,_|_] -> Fun = fun({_, #'CertificateList'{tbsCertList = FirstTBSCRL}} = CRL1, {_, #'CertificateList'{tbsCertList = SecondTBSCRL}} = CRL2) -> Time1 = pubkey_cert:time_str_2_gregorian_sec( FirstTBSCRL#'TBSCertList'.thisUpdate), Time2 = pubkey_cert:time_str_2_gregorian_sec( SecondTBSCRL#'TBSCertList'.thisUpdate), case Time1 > Time2 of true -> CRL1; false -> CRL2 end end, lists:foldl(Fun, hd(Deltas), tl(Deltas)) end.