%% %% %CopyrightBegin% %% %% Copyright Ericsson AB 2007-2013. All Rights Reserved. %% %% The contents of this file are subject to the Erlang Public License, %% Version 1.1, (the "License"); you may not use this file except in %% compliance with the License. You should have received a copy of the %% Erlang Public License along with this software. If not, it can be %% retrieved online at http://www.erlang.org/. %% %% Software distributed under the License is distributed on an "AS IS" %% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See %% the License for the specific language governing rights and limitations %% under the License. %% %% %CopyrightEnd% %% %%---------------------------------------------------------------------- %% Purpose: Help funtions for handling the SSL-handshake protocol %%---------------------------------------------------------------------- -module(tls_handshake). -include("tls_handshake.hrl"). -include("tls_record.hrl"). -include("ssl_cipher.hrl"). -include("ssl_alert.hrl"). -include("ssl_internal.hrl"). -include("ssl_srp.hrl"). -include_lib("public_key/include/public_key.hrl"). -export([master_secret/4, client_hello/8, server_hello/7, hello/4, hello_request/0, certify/7, certificate/4, client_certificate_verify/6, certificate_verify/6, verify_signature/5, certificate_request/4, key_exchange/3, server_key_exchange_hash/2, finished/5, verify_connection/6, get_tls_handshake/3, decode_client_key/3, decode_server_key/3, server_hello_done/0, encode_handshake/2, init_handshake_history/0, update_handshake_history/2, decrypt_premaster_secret/2, prf/5, next_protocol/1, select_hashsign/2, select_cert_hashsign/3, default_hash_signs/0]). -export([dec_hello_extensions/2]). -type tls_handshake() :: #client_hello{} | #server_hello{} | #server_hello_done{} | #certificate{} | #certificate_request{} | #client_key_exchange{} | #finished{} | #certificate_verify{} | #hello_request{} | #next_protocol{}. -define(NAMED_CURVE_TYPE, 3). %%==================================================================== %% Internal application API %%==================================================================== %%-------------------------------------------------------------------- -spec client_hello(host(), inet:port_number(), #connection_states{}, #ssl_options{}, integer(), atom(), boolean(), der_cert()) -> #client_hello{}. %% %% Description: Creates a client hello message. %%-------------------------------------------------------------------- client_hello(Host, Port, ConnectionStates, #ssl_options{versions = Versions, ciphers = UserSuites } = SslOpts, Cache, CacheCb, Renegotiation, OwnCert) -> Version = tls_record:highest_protocol_version(Versions), Pending = tls_record:pending_connection_state(ConnectionStates, read), SecParams = Pending#connection_state.security_parameters, Ciphers = available_suites(UserSuites, Version), SRP = srp_user(SslOpts), {EcPointFormats, EllipticCurves} = default_ecc_extensions(Version), Id = ssl_session:client_id({Host, Port, SslOpts}, Cache, CacheCb, OwnCert), #client_hello{session_id = Id, client_version = Version, cipher_suites = cipher_suites(Ciphers, Renegotiation), compression_methods = tls_record:compressions(), random = SecParams#security_parameters.client_random, renegotiation_info = renegotiation_info(client, ConnectionStates, Renegotiation), srp = SRP, hash_signs = advertised_hash_signs(Version), ec_point_formats = EcPointFormats, elliptic_curves = EllipticCurves, next_protocol_negotiation = encode_client_protocol_negotiation(SslOpts#ssl_options.next_protocol_selector, Renegotiation) }. encode_protocol(Protocol, Acc) -> Len = byte_size(Protocol), <>. encode_protocols_advertised_on_server(undefined) -> undefined; encode_protocols_advertised_on_server(Protocols) -> #next_protocol_negotiation{extension_data = lists:foldl(fun encode_protocol/2, <<>>, Protocols)}. %%-------------------------------------------------------------------- -spec server_hello(session_id(), tls_version(), #connection_states{}, boolean(), [binary()] | undefined, #ec_point_formats{} | undefined, #elliptic_curves{} | undefined) -> #server_hello{}. %% %% Description: Creates a server hello message. %%-------------------------------------------------------------------- server_hello(SessionId, Version, ConnectionStates, Renegotiation, ProtocolsAdvertisedOnServer, EcPointFormats, EllipticCurves) -> Pending = tls_record:pending_connection_state(ConnectionStates, read), SecParams = Pending#connection_state.security_parameters, #server_hello{server_version = Version, cipher_suite = SecParams#security_parameters.cipher_suite, compression_method = SecParams#security_parameters.compression_algorithm, random = SecParams#security_parameters.server_random, session_id = SessionId, renegotiation_info = renegotiation_info(server, ConnectionStates, Renegotiation), ec_point_formats = EcPointFormats, elliptic_curves = EllipticCurves, next_protocol_negotiation = encode_protocols_advertised_on_server(ProtocolsAdvertisedOnServer) }. %%-------------------------------------------------------------------- -spec hello_request() -> #hello_request{}. %% %% Description: Creates a hello request message sent by server to %% trigger renegotiation. %%-------------------------------------------------------------------- hello_request() -> #hello_request{}. %%-------------------------------------------------------------------- -spec hello(#server_hello{} | #client_hello{}, #ssl_options{}, #connection_states{} | {inet:port_number(), #session{}, db_handle(), atom(), #connection_states{}, binary()}, boolean()) -> {tls_version(), session_id(), #connection_states{}, binary() | undefined}| {tls_version(), {resumed | new, #session{}}, #connection_states{}, [binary()] | undefined, [oid()] | undefined, [oid()] | undefined} | #alert{}. %% %% Description: Handles a recieved hello message %%-------------------------------------------------------------------- hello(#server_hello{cipher_suite = CipherSuite, server_version = Version, compression_method = Compression, random = Random, session_id = SessionId, renegotiation_info = Info, hash_signs = _HashSigns} = Hello, #ssl_options{secure_renegotiate = SecureRenegotation, next_protocol_selector = NextProtocolSelector, versions = SupportedVersions}, ConnectionStates0, Renegotiation) -> case tls_record:is_acceptable_version(Version, SupportedVersions) of true -> case handle_renegotiation_info(client, Info, ConnectionStates0, Renegotiation, SecureRenegotation, []) of {ok, ConnectionStates1} -> ConnectionStates = hello_pending_connection_states(client, Version, CipherSuite, Random, Compression, ConnectionStates1), case handle_next_protocol(Hello, NextProtocolSelector, Renegotiation) of #alert{} = Alert -> Alert; Protocol -> {Version, SessionId, ConnectionStates, Protocol} end; #alert{} = Alert -> Alert end; false -> ?ALERT_REC(?FATAL, ?PROTOCOL_VERSION) end; hello(#client_hello{client_version = ClientVersion} = Hello, #ssl_options{versions = Versions} = SslOpts, {Port, Session0, Cache, CacheCb, ConnectionStates0, Cert}, Renegotiation) -> Version = select_version(ClientVersion, Versions), case tls_record:is_acceptable_version(Version, Versions) of true -> %% TODO: need to take supported Curves into Account when selecting the CipherSuite.... %% if whe have an ECDSA cert with an unsupported curve, we need to drop ECDSA ciphers {Type, #session{cipher_suite = CipherSuite} = Session1} = select_session(Hello, Port, Session0, Version, SslOpts, Cache, CacheCb, Cert), case CipherSuite of no_suite -> ?ALERT_REC(?FATAL, ?INSUFFICIENT_SECURITY); _ -> try handle_hello_extensions(Hello, Version, SslOpts, Session1, ConnectionStates0, Renegotiation) of {Session, ConnectionStates, ProtocolsToAdvertise, ECPointFormats, EllipticCurves} -> {Version, {Type, Session}, ConnectionStates, ProtocolsToAdvertise, ECPointFormats, EllipticCurves} catch throw:Alert -> Alert end end; false -> ?ALERT_REC(?FATAL, ?PROTOCOL_VERSION) end. %%-------------------------------------------------------------------- -spec certify(#certificate{}, db_handle(), certdb_ref(), integer() | nolimit, verify_peer | verify_none, {fun(), term}, client | server) -> {der_cert(), public_key_info()} | #alert{}. %% %% Description: Handles a certificate handshake message %%-------------------------------------------------------------------- certify(#certificate{asn1_certificates = ASN1Certs}, CertDbHandle, CertDbRef, MaxPathLen, _Verify, VerifyFunAndState, Role) -> [PeerCert | _] = ASN1Certs, ValidationFunAndState = case VerifyFunAndState of undefined -> {fun(OtpCert, ExtensionOrVerifyResult, SslState) -> ssl_certificate:validate_extension(OtpCert, ExtensionOrVerifyResult, SslState) end, Role}; {Fun, UserState0} -> {fun(OtpCert, {extension, _} = Extension, {SslState, UserState}) -> case ssl_certificate:validate_extension(OtpCert, Extension, SslState) of {valid, NewSslState} -> {valid, {NewSslState, UserState}}; {fail, Reason} -> apply_user_fun(Fun, OtpCert, Reason, UserState, SslState); {unknown, _} -> apply_user_fun(Fun, OtpCert, Extension, UserState, SslState) end; (OtpCert, VerifyResult, {SslState, UserState}) -> apply_user_fun(Fun, OtpCert, VerifyResult, UserState, SslState) end, {Role, UserState0}} end, try {TrustedErlCert, CertPath} = ssl_certificate:trusted_cert_and_path(ASN1Certs, CertDbHandle, CertDbRef), case public_key:pkix_path_validation(TrustedErlCert, CertPath, [{max_path_length, MaxPathLen}, {verify_fun, ValidationFunAndState}]) of {ok, {PublicKeyInfo,_}} -> {PeerCert, PublicKeyInfo}; {error, Reason} -> path_validation_alert(Reason) end catch error:_ -> %% ASN-1 decode of certificate somehow failed ?ALERT_REC(?FATAL, ?CERTIFICATE_UNKNOWN) end. %%-------------------------------------------------------------------- -spec certificate(der_cert(), db_handle(), certdb_ref(), client | server) -> #certificate{} | #alert{}. %% %% Description: Creates a certificate message. %%-------------------------------------------------------------------- certificate(OwnCert, CertDbHandle, CertDbRef, client) -> Chain = case ssl_certificate:certificate_chain(OwnCert, CertDbHandle, CertDbRef) of {ok, CertChain} -> CertChain; {error, _} -> %% If no suitable certificate is available, the client %% SHOULD send a certificate message containing no %% certificates. (chapter 7.4.6. RFC 4346) [] end, #certificate{asn1_certificates = Chain}; certificate(OwnCert, CertDbHandle, CertDbRef, server) -> case ssl_certificate:certificate_chain(OwnCert, CertDbHandle, CertDbRef) of {ok, Chain} -> #certificate{asn1_certificates = Chain}; {error, _} -> ?ALERT_REC(?FATAL, ?INTERNAL_ERROR) end. %%-------------------------------------------------------------------- -spec client_certificate_verify(undefined | der_cert(), binary(), tls_version(), term(), private_key(), tls_handshake_history()) -> #certificate_verify{} | ignore | #alert{}. %% %% Description: Creates a certificate_verify message, called by the client. %%-------------------------------------------------------------------- client_certificate_verify(undefined, _, _, _, _, _) -> ignore; client_certificate_verify(_, _, _, _, undefined, _) -> ignore; client_certificate_verify(OwnCert, MasterSecret, Version, {HashAlgo, _} = HashSign, PrivateKey, {Handshake, _}) -> case public_key:pkix_is_fixed_dh_cert(OwnCert) of true -> ?ALERT_REC(?FATAL, ?UNSUPPORTED_CERTIFICATE); false -> Hashes = calc_certificate_verify(Version, HashAlgo, MasterSecret, Handshake), Signed = digitally_signed(Version, Hashes, HashAlgo, PrivateKey), #certificate_verify{signature = Signed, hashsign_algorithm = HashSign} end. %%-------------------------------------------------------------------- -spec certificate_verify(binary(), public_key_info(), tls_version(), term(), binary(), tls_handshake_history()) -> valid | #alert{}. %% %% Description: Checks that the certificate_verify message is valid. %%-------------------------------------------------------------------- certificate_verify(Signature, PublicKeyInfo, Version, HashSign = {HashAlgo, _}, MasterSecret, {_, Handshake}) -> Hash = calc_certificate_verify(Version, HashAlgo, MasterSecret, Handshake), case verify_signature(Version, Hash, HashSign, Signature, PublicKeyInfo) of true -> valid; _ -> ?ALERT_REC(?FATAL, ?BAD_CERTIFICATE) end. %%-------------------------------------------------------------------- -spec verify_signature(tls_version(), binary(), {term(), term()}, binary(), public_key_info()) -> true | false. %% %% Description: Checks that a public_key signature is valid. %%-------------------------------------------------------------------- verify_signature(_Version, _Hash, {_HashAlgo, anon}, _Signature, _) -> true; verify_signature({3, Minor}, Hash, {HashAlgo, rsa}, Signature, {?rsaEncryption, PubKey, _PubKeyParams}) when Minor >= 3 -> public_key:verify({digest, Hash}, HashAlgo, Signature, PubKey); verify_signature(_Version, Hash, _HashAlgo, Signature, {?rsaEncryption, PubKey, _PubKeyParams}) -> case public_key:decrypt_public(Signature, PubKey, [{rsa_pad, rsa_pkcs1_padding}]) of Hash -> true; _ -> false end; verify_signature(_Version, Hash, {HashAlgo, dsa}, Signature, {?'id-dsa', PublicKey, PublicKeyParams}) -> public_key:verify({digest, Hash}, HashAlgo, Signature, {PublicKey, PublicKeyParams}); verify_signature(_Version, Hash, {HashAlgo, ecdsa}, Signature, {?'id-ecPublicKey', PublicKey, PublicKeyParams}) -> public_key:verify({digest, Hash}, HashAlgo, Signature, {PublicKey, PublicKeyParams}). %%-------------------------------------------------------------------- -spec certificate_request(#connection_states{}, db_handle(), certdb_ref(), tls_version()) -> #certificate_request{}. %% %% Description: Creates a certificate_request message, called by the server. %%-------------------------------------------------------------------- certificate_request(ConnectionStates, CertDbHandle, CertDbRef, Version) -> #connection_state{security_parameters = #security_parameters{cipher_suite = CipherSuite}} = tls_record:pending_connection_state(ConnectionStates, read), Types = certificate_types(CipherSuite), HashSigns = advertised_hash_signs(Version), Authorities = certificate_authorities(CertDbHandle, CertDbRef), #certificate_request{ certificate_types = Types, hashsign_algorithms = HashSigns, certificate_authorities = Authorities }. %%-------------------------------------------------------------------- -spec key_exchange(client | server, tls_version(), {premaster_secret, binary(), public_key_info()} | {dh, binary()} | {dh, {binary(), binary()}, #'DHParameter'{}, {HashAlgo::atom(), SignAlgo::atom()}, binary(), binary(), private_key()} | {ecdh, #'ECPrivateKey'{}} | {psk, binary()} | {dhe_psk, binary(), binary()} | {srp, {binary(), binary()}, #srp_user{}, {HashAlgo::atom(), SignAlgo::atom()}, binary(), binary(), private_key()}) -> #client_key_exchange{} | #server_key_exchange{}. %% %% Description: Creates a keyexchange message. %%-------------------------------------------------------------------- key_exchange(client, _Version, {premaster_secret, Secret, {_, PublicKey, _}}) -> EncPremasterSecret = encrypted_premaster_secret(Secret, PublicKey), #client_key_exchange{exchange_keys = EncPremasterSecret}; key_exchange(client, _Version, {dh, PublicKey}) -> #client_key_exchange{ exchange_keys = #client_diffie_hellman_public{ dh_public = PublicKey} }; key_exchange(client, _Version, {ecdh, #'ECPrivateKey'{publicKey = {0, ECPublicKey}}}) -> #client_key_exchange{ exchange_keys = #client_ec_diffie_hellman_public{ dh_public = ECPublicKey} }; key_exchange(client, _Version, {psk, Identity}) -> #client_key_exchange{ exchange_keys = #client_psk_identity{ identity = Identity} }; key_exchange(client, _Version, {dhe_psk, Identity, PublicKey}) -> #client_key_exchange{ exchange_keys = #client_dhe_psk_identity{ identity = Identity, dh_public = PublicKey} }; key_exchange(client, _Version, {psk_premaster_secret, PskIdentity, Secret, {_, PublicKey, _}}) -> EncPremasterSecret = encrypted_premaster_secret(Secret, PublicKey), #client_key_exchange{ exchange_keys = #client_rsa_psk_identity{ identity = PskIdentity, exchange_keys = EncPremasterSecret}}; key_exchange(client, _Version, {srp, PublicKey}) -> #client_key_exchange{ exchange_keys = #client_srp_public{ srp_a = PublicKey} }; key_exchange(server, Version, {dh, {PublicKey, _}, #'DHParameter'{prime = P, base = G}, HashSign, ClientRandom, ServerRandom, PrivateKey}) -> ServerDHParams = #server_dh_params{dh_p = int_to_bin(P), dh_g = int_to_bin(G), dh_y = PublicKey}, enc_server_key_exchange(Version, ServerDHParams, HashSign, ClientRandom, ServerRandom, PrivateKey); key_exchange(server, Version, {ecdh, #'ECPrivateKey'{publicKey = {0, ECPublicKey}, parameters = ECCurve}, HashSign, ClientRandom, ServerRandom, PrivateKey}) -> ServerECParams = #server_ecdh_params{curve = ECCurve, public = ECPublicKey}, enc_server_key_exchange(Version, ServerECParams, HashSign, ClientRandom, ServerRandom, PrivateKey); key_exchange(server, Version, {psk, PskIdentityHint, HashSign, ClientRandom, ServerRandom, PrivateKey}) -> ServerPSKParams = #server_psk_params{hint = PskIdentityHint}, enc_server_key_exchange(Version, ServerPSKParams, HashSign, ClientRandom, ServerRandom, PrivateKey); key_exchange(server, Version, {dhe_psk, PskIdentityHint, {PublicKey, _}, #'DHParameter'{prime = P, base = G}, HashSign, ClientRandom, ServerRandom, PrivateKey}) -> ServerEDHPSKParams = #server_dhe_psk_params{ hint = PskIdentityHint, dh_params = #server_dh_params{dh_p = int_to_bin(P), dh_g = int_to_bin(G), dh_y = PublicKey} }, enc_server_key_exchange(Version, ServerEDHPSKParams, HashSign, ClientRandom, ServerRandom, PrivateKey); key_exchange(server, Version, {srp, {PublicKey, _}, #srp_user{generator = Generator, prime = Prime, salt = Salt}, HashSign, ClientRandom, ServerRandom, PrivateKey}) -> ServerSRPParams = #server_srp_params{srp_n = Prime, srp_g = Generator, srp_s = Salt, srp_b = PublicKey}, enc_server_key_exchange(Version, ServerSRPParams, HashSign, ClientRandom, ServerRandom, PrivateKey). enc_server_key_exchange(Version, Params, {HashAlgo, SignAlgo}, ClientRandom, ServerRandom, PrivateKey) -> EncParams = enc_server_key(Params), case HashAlgo of null -> #server_key_params{params = Params, params_bin = EncParams, hashsign = {null, anon}, signature = <<>>}; _ -> Hash = server_key_exchange_hash(HashAlgo, <>), Signature = digitally_signed(Version, Hash, HashAlgo, PrivateKey), #server_key_params{params = Params, params_bin = EncParams, hashsign = {HashAlgo, SignAlgo}, signature = Signature} end. %%-------------------------------------------------------------------- -spec master_secret(tls_version(), #session{} | binary(), #connection_states{}, client | server) -> {binary(), #connection_states{}} | #alert{}. %% %% Description: Sets or calculates the master secret and calculate keys, %% updating the pending connection states. The Mastersecret and the update %% connection states are returned or an alert if the calculation fails. %%------------------------------------------------------------------- master_secret(Version, #session{master_secret = Mastersecret}, ConnectionStates, Role) -> ConnectionState = tls_record:pending_connection_state(ConnectionStates, read), SecParams = ConnectionState#connection_state.security_parameters, try master_secret(Version, Mastersecret, SecParams, ConnectionStates, Role) catch exit:Reason -> Report = io_lib:format("Key calculation failed due to ~p", [Reason]), error_logger:error_report(Report), ?ALERT_REC(?FATAL, ?HANDSHAKE_FAILURE) end; master_secret(Version, PremasterSecret, ConnectionStates, Role) -> ConnectionState = tls_record:pending_connection_state(ConnectionStates, read), SecParams = ConnectionState#connection_state.security_parameters, #security_parameters{prf_algorithm = PrfAlgo, client_random = ClientRandom, server_random = ServerRandom} = SecParams, try master_secret(Version, calc_master_secret(Version,PrfAlgo,PremasterSecret, ClientRandom, ServerRandom), SecParams, ConnectionStates, Role) catch exit:Reason -> Report = io_lib:format("Master secret calculation failed" " due to ~p", [Reason]), error_logger:error_report(Report), ?ALERT_REC(?FATAL, ?HANDSHAKE_FAILURE) end. -spec next_protocol(binary()) -> #next_protocol{}. next_protocol(SelectedProtocol) -> #next_protocol{selected_protocol = SelectedProtocol}. %%-------------------------------------------------------------------- -spec finished(tls_version(), client | server, integer(), binary(), tls_handshake_history()) -> #finished{}. %% %% Description: Creates a handshake finished message %%------------------------------------------------------------------- finished(Version, Role, PrfAlgo, MasterSecret, {Handshake, _}) -> % use the current handshake #finished{verify_data = calc_finished(Version, Role, PrfAlgo, MasterSecret, Handshake)}. %%-------------------------------------------------------------------- -spec verify_connection(tls_version(), #finished{}, client | server, integer(), binary(), tls_handshake_history()) -> verified | #alert{}. %% %% Description: Checks the ssl handshake finished message to verify %% the connection. %%------------------------------------------------------------------- verify_connection(Version, #finished{verify_data = Data}, Role, PrfAlgo, MasterSecret, {_, Handshake}) -> %% use the previous hashes case calc_finished(Version, Role, PrfAlgo, MasterSecret, Handshake) of Data -> verified; _ -> ?ALERT_REC(?FATAL, ?DECRYPT_ERROR) end. %%-------------------------------------------------------------------- -spec server_hello_done() -> #server_hello_done{}. %% %% Description: Creates a server hello done message. %%-------------------------------------------------------------------- server_hello_done() -> #server_hello_done{}. %%-------------------------------------------------------------------- -spec encode_handshake(tls_handshake(), tls_version()) -> iolist(). %% %% Description: Encode a handshake packet to binary %%--------------------------------------------------------------------x encode_handshake(Package, Version) -> {MsgType, Bin} = enc_hs(Package, Version), Len = byte_size(Bin), [MsgType, ?uint24(Len), Bin]. %%-------------------------------------------------------------------- -spec get_tls_handshake(tls_version(), binary(), binary() | iolist()) -> {[tls_handshake()], binary()}. %% %% Description: Given buffered and new data from ssl_record, collects %% and returns it as a list of handshake messages, also returns leftover %% data. %%-------------------------------------------------------------------- get_tls_handshake(Version, Data, <<>>) -> get_tls_handshake_aux(Version, Data, []); get_tls_handshake(Version, Data, Buffer) -> get_tls_handshake_aux(Version, list_to_binary([Buffer, Data]), []). %%-------------------------------------------------------------------- -spec decode_client_key(binary(), key_algo(), tls_version()) -> #encrypted_premaster_secret{} | #client_diffie_hellman_public{} | #client_ec_diffie_hellman_public{} | #client_psk_identity{} | #client_dhe_psk_identity{} | #client_rsa_psk_identity{} | #client_srp_public{}. %% %% Description: Decode client_key data and return appropriate type %%-------------------------------------------------------------------- decode_client_key(ClientKey, Type, Version) -> dec_client_key(ClientKey, key_exchange_alg(Type), Version). %%-------------------------------------------------------------------- -spec decode_server_key(binary(), key_algo(), tls_version()) -> #server_key_params{}. %% %% Description: Decode server_key data and return appropriate type %%-------------------------------------------------------------------- decode_server_key(ServerKey, Type, Version) -> dec_server_key(ServerKey, key_exchange_alg(Type), Version). %%-------------------------------------------------------------------- -spec init_handshake_history() -> tls_handshake_history(). %% %% Description: Initialize the empty handshake history buffer. %%-------------------------------------------------------------------- init_handshake_history() -> {[], []}. %%-------------------------------------------------------------------- -spec update_handshake_history(tls_handshake_history(), Data ::term()) -> tls_handshake_history(). %% %% Description: Update the handshake history buffer with Data. %%-------------------------------------------------------------------- update_handshake_history(Handshake, % special-case SSL2 client hello <>) -> update_handshake_history(Handshake, <>); update_handshake_history({Handshake0, _Prev}, Data) -> {[Data|Handshake0], Handshake0}. %%-------------------------------------------------------------------- -spec decrypt_premaster_secret(binary(), #'RSAPrivateKey'{}) -> binary(). %% %% Description: Public key decryption using the private key. %%-------------------------------------------------------------------- decrypt_premaster_secret(Secret, RSAPrivateKey) -> try public_key:decrypt_private(Secret, RSAPrivateKey, [{rsa_pad, rsa_pkcs1_padding}]) catch _:_ -> io:format("decrypt_premaster_secret error"), throw(?ALERT_REC(?FATAL, ?DECRYPT_ERROR)) end. %%-------------------------------------------------------------------- -spec server_key_exchange_hash(md5sha | md5 | sha | sha224 |sha256 | sha384 | sha512, binary()) -> binary(). %% %% Description: Calculate server key exchange hash %%-------------------------------------------------------------------- server_key_exchange_hash(md5sha, Value) -> MD5 = crypto:hash(md5, Value), SHA = crypto:hash(sha, Value), <>; server_key_exchange_hash(Hash, Value) -> crypto:hash(Hash, Value). %%-------------------------------------------------------------------- -spec prf(tls_version(), binary(), binary(), [binary()], non_neg_integer()) -> {ok, binary()} | {error, undefined}. %% %% Description: use the TLS PRF to generate key material %%-------------------------------------------------------------------- prf({3,0}, _, _, _, _) -> {error, undefined}; prf({3,1}, Secret, Label, Seed, WantedLength) -> {ok, ssl_tls1:prf(?MD5SHA, Secret, Label, Seed, WantedLength)}; prf({3,_N}, Secret, Label, Seed, WantedLength) -> {ok, ssl_tls1:prf(?SHA256, Secret, Label, Seed, WantedLength)}. %%-------------------------------------------------------------------- -spec select_hashsign(#hash_sign_algos{}| undefined, undefined | term()) -> [{atom(), atom()}] | undefined. %% %% Description: %%-------------------------------------------------------------------- select_hashsign(_, undefined) -> {null, anon}; select_hashsign(undefined, Cert) -> #'OTPCertificate'{tbsCertificate = TBSCert} = public_key:pkix_decode_cert(Cert, otp), #'OTPSubjectPublicKeyInfo'{algorithm = {_,Algo, _}} = TBSCert#'OTPTBSCertificate'.subjectPublicKeyInfo, select_cert_hashsign(undefined, Algo, {undefined, undefined}); select_hashsign(#hash_sign_algos{hash_sign_algos = HashSigns}, Cert) -> #'OTPCertificate'{tbsCertificate = TBSCert} =public_key:pkix_decode_cert(Cert, otp), #'OTPSubjectPublicKeyInfo'{algorithm = {_,Algo, _}} = TBSCert#'OTPTBSCertificate'.subjectPublicKeyInfo, DefaultHashSign = {_, Sign} = select_cert_hashsign(undefined, Algo, {undefined, undefined}), case lists:filter(fun({sha, dsa}) -> true; ({_, dsa}) -> false; ({Hash, S}) when S == Sign -> ssl_cipher:is_acceptable_hash(Hash, proplists:get_value(hashs, crypto:supports())); (_) -> false end, HashSigns) of [] -> DefaultHashSign; [HashSign| _] -> HashSign end. %%-------------------------------------------------------------------- -spec select_cert_hashsign(#hash_sign_algos{}| undefined, oid(), tls_version()) -> [{atom(), atom()}]. %% %% Description: %%-------------------------------------------------------------------- select_cert_hashsign(HashSign, _, {Major, Minor}) when HashSign =/= undefined andalso Major >= 3 andalso Minor >= 3 -> HashSign; select_cert_hashsign(undefined,?'id-ecPublicKey', _) -> {sha, ecdsa}; select_cert_hashsign(undefined, ?rsaEncryption, _) -> {md5sha, rsa}; select_cert_hashsign(undefined, ?'id-dsa', _) -> {sha, dsa}. %%-------------------------------------------------------------------- %%% Internal functions %%-------------------------------------------------------------------- get_tls_handshake_aux(Version, <>, Acc) -> Raw = <>, H = dec_hs(Version, Type, Body), get_tls_handshake_aux(Version, Rest, [{H,Raw} | Acc]); get_tls_handshake_aux(_Version, Data, Acc) -> {lists:reverse(Acc), Data}. path_validation_alert({bad_cert, cert_expired}) -> ?ALERT_REC(?FATAL, ?CERTIFICATE_EXPIRED); path_validation_alert({bad_cert, invalid_issuer}) -> ?ALERT_REC(?FATAL, ?BAD_CERTIFICATE); path_validation_alert({bad_cert, invalid_signature}) -> ?ALERT_REC(?FATAL, ?BAD_CERTIFICATE); path_validation_alert({bad_cert, name_not_permitted}) -> ?ALERT_REC(?FATAL, ?BAD_CERTIFICATE); path_validation_alert({bad_cert, unknown_critical_extension}) -> ?ALERT_REC(?FATAL, ?UNSUPPORTED_CERTIFICATE); path_validation_alert({bad_cert, cert_revoked}) -> ?ALERT_REC(?FATAL, ?CERTIFICATE_REVOKED); path_validation_alert({bad_cert, selfsigned_peer}) -> ?ALERT_REC(?FATAL, ?BAD_CERTIFICATE); path_validation_alert({bad_cert, unknown_ca}) -> ?ALERT_REC(?FATAL, ?UNKNOWN_CA); path_validation_alert(_) -> ?ALERT_REC(?FATAL, ?HANDSHAKE_FAILURE). select_session(Hello, Port, Session, Version, #ssl_options{ciphers = UserSuites} = SslOpts, Cache, CacheCb, Cert) -> SuggestedSessionId = Hello#client_hello.session_id, {SessionId, Resumed} = ssl_session:server_id(Port, SuggestedSessionId, SslOpts, Cert, Cache, CacheCb), Suites = available_suites(Cert, UserSuites, Version), case Resumed of undefined -> CipherSuite = select_cipher_suite(Hello#client_hello.cipher_suites, Suites), Compressions = Hello#client_hello.compression_methods, Compression = select_compression(Compressions), {new, Session#session{session_id = SessionId, cipher_suite = CipherSuite, compression_method = Compression}}; _ -> {resumed, Resumed} end. available_suites(UserSuites, Version) -> case UserSuites of [] -> ssl_cipher:suites(Version); _ -> UserSuites end. available_suites(ServerCert, UserSuites, Version) -> ssl_cipher:filter(ServerCert, available_suites(UserSuites, Version)). cipher_suites(Suites, false) -> [?TLS_EMPTY_RENEGOTIATION_INFO_SCSV | Suites]; cipher_suites(Suites, true) -> Suites. srp_user(#ssl_options{srp_identity = {UserName, _}}) -> #srp{username = UserName}; srp_user(_) -> undefined. renegotiation_info(client, _, false) -> #renegotiation_info{renegotiated_connection = undefined}; renegotiation_info(server, ConnectionStates, false) -> CS = tls_record:current_connection_state(ConnectionStates, read), case CS#connection_state.secure_renegotiation of true -> #renegotiation_info{renegotiated_connection = ?byte(0)}; false -> #renegotiation_info{renegotiated_connection = undefined} end; renegotiation_info(client, ConnectionStates, true) -> CS = tls_record:current_connection_state(ConnectionStates, read), case CS#connection_state.secure_renegotiation of true -> Data = CS#connection_state.client_verify_data, #renegotiation_info{renegotiated_connection = Data}; false -> #renegotiation_info{renegotiated_connection = undefined} end; renegotiation_info(server, ConnectionStates, true) -> CS = tls_record:current_connection_state(ConnectionStates, read), case CS#connection_state.secure_renegotiation of true -> CData = CS#connection_state.client_verify_data, SData =CS#connection_state.server_verify_data, #renegotiation_info{renegotiated_connection = <>}; false -> #renegotiation_info{renegotiated_connection = undefined} end. decode_next_protocols({next_protocol_negotiation, Protocols}) -> decode_next_protocols(Protocols, []). decode_next_protocols(<<>>, Acc) -> lists:reverse(Acc); decode_next_protocols(<>, Acc) -> case Len of 0 -> {error, invalid_next_protocols}; _ -> decode_next_protocols(Rest, [Protocol|Acc]) end; decode_next_protocols(_Bytes, _Acc) -> {error, invalid_next_protocols}. next_protocol_extension_allowed(NextProtocolSelector, Renegotiating) -> NextProtocolSelector =/= undefined andalso not Renegotiating. handle_next_protocol_on_server(#client_hello{next_protocol_negotiation = undefined}, _Renegotiation, _SslOpts) -> undefined; handle_next_protocol_on_server(#client_hello{next_protocol_negotiation = {next_protocol_negotiation, <<>>}}, false, #ssl_options{next_protocols_advertised = Protocols}) -> Protocols; handle_next_protocol_on_server(_Hello, _Renegotiation, _SSLOpts) -> ?ALERT_REC(?FATAL, ?HANDSHAKE_FAILURE). % unexpected next protocol extension handle_next_protocol(#server_hello{next_protocol_negotiation = undefined}, _NextProtocolSelector, _Renegotiating) -> undefined; handle_next_protocol(#server_hello{next_protocol_negotiation = Protocols}, NextProtocolSelector, Renegotiating) -> case next_protocol_extension_allowed(NextProtocolSelector, Renegotiating) of true -> select_next_protocol(decode_next_protocols(Protocols), NextProtocolSelector); false -> ?ALERT_REC(?FATAL, ?HANDSHAKE_FAILURE) % unexpected next protocol extension end. select_next_protocol({error, _Reason}, _NextProtocolSelector) -> ?ALERT_REC(?FATAL, ?HANDSHAKE_FAILURE); select_next_protocol(Protocols, NextProtocolSelector) -> case NextProtocolSelector(Protocols) of ?NO_PROTOCOL -> ?ALERT_REC(?FATAL, ?HANDSHAKE_FAILURE); Protocol when is_binary(Protocol) -> Protocol end. default_ecc_extensions(Version) -> CryptoSupport = proplists:get_value(public_keys, crypto:supports()), case proplists:get_bool(ecdh, CryptoSupport) of true -> EcPointFormats = #ec_point_formats{ec_point_format_list = [?ECPOINT_UNCOMPRESSED]}, EllipticCurves = #elliptic_curves{elliptic_curve_list = ssl_tls1:ecc_curves(Version)}, {EcPointFormats, EllipticCurves}; _ -> {undefined, undefined} end. handle_ecc_extensions(Version, EcPointFormats0, EllipticCurves0) -> CryptoSupport = proplists:get_value(public_keys, crypto:supports()), case proplists:get_bool(ecdh, CryptoSupport) of true -> EcPointFormats1 = handle_ecc_point_fmt_extension(EcPointFormats0), EllipticCurves1 = handle_ecc_curves_extension(Version, EllipticCurves0), {EcPointFormats1, EllipticCurves1}; _ -> {undefined, undefined} end. handle_ecc_point_fmt_extension(undefined) -> undefined; handle_ecc_point_fmt_extension(_) -> #ec_point_formats{ec_point_format_list = [?ECPOINT_UNCOMPRESSED]}. handle_ecc_curves_extension(_Version, undefined) -> undefined; handle_ecc_curves_extension(Version, _) -> #elliptic_curves{elliptic_curve_list = ssl_tls1:ecc_curves(Version)}. handle_renegotiation_info(_, #renegotiation_info{renegotiated_connection = ?byte(0)}, ConnectionStates, false, _, _) -> {ok, tls_record:set_renegotiation_flag(true, ConnectionStates)}; handle_renegotiation_info(server, undefined, ConnectionStates, _, _, CipherSuites) -> case is_member(?TLS_EMPTY_RENEGOTIATION_INFO_SCSV, CipherSuites) of true -> {ok, tls_record:set_renegotiation_flag(true, ConnectionStates)}; false -> {ok, tls_record:set_renegotiation_flag(false, ConnectionStates)} end; handle_renegotiation_info(_, undefined, ConnectionStates, false, _, _) -> {ok, tls_record:set_renegotiation_flag(false, ConnectionStates)}; handle_renegotiation_info(client, #renegotiation_info{renegotiated_connection = ClientServerVerify}, ConnectionStates, true, _, _) -> CS = tls_record:current_connection_state(ConnectionStates, read), CData = CS#connection_state.client_verify_data, SData = CS#connection_state.server_verify_data, case <> == ClientServerVerify of true -> {ok, ConnectionStates}; false -> ?ALERT_REC(?FATAL, ?HANDSHAKE_FAILURE) end; handle_renegotiation_info(server, #renegotiation_info{renegotiated_connection = ClientVerify}, ConnectionStates, true, _, CipherSuites) -> case is_member(?TLS_EMPTY_RENEGOTIATION_INFO_SCSV, CipherSuites) of true -> ?ALERT_REC(?FATAL, ?HANDSHAKE_FAILURE); false -> CS = tls_record:current_connection_state(ConnectionStates, read), Data = CS#connection_state.client_verify_data, case Data == ClientVerify of true -> {ok, ConnectionStates}; false -> ?ALERT_REC(?FATAL, ?HANDSHAKE_FAILURE) end end; handle_renegotiation_info(client, undefined, ConnectionStates, true, SecureRenegotation, _) -> handle_renegotiation_info(ConnectionStates, SecureRenegotation); handle_renegotiation_info(server, undefined, ConnectionStates, true, SecureRenegotation, CipherSuites) -> case is_member(?TLS_EMPTY_RENEGOTIATION_INFO_SCSV, CipherSuites) of true -> ?ALERT_REC(?FATAL, ?HANDSHAKE_FAILURE); false -> handle_renegotiation_info(ConnectionStates, SecureRenegotation) end. handle_renegotiation_info(ConnectionStates, SecureRenegotation) -> CS = tls_record:current_connection_state(ConnectionStates, read), case {SecureRenegotation, CS#connection_state.secure_renegotiation} of {_, true} -> ?ALERT_REC(?FATAL, ?HANDSHAKE_FAILURE); {true, false} -> ?ALERT_REC(?FATAL, ?NO_RENEGOTIATION); {false, false} -> {ok, ConnectionStates} end. %% Update pending connection states with parameters exchanged via %% hello messages %% NOTE : Role is the role of the receiver of the hello message %% currently being processed. hello_pending_connection_states(Role, Version, CipherSuite, Random, Compression, ConnectionStates) -> ReadState = tls_record:pending_connection_state(ConnectionStates, read), WriteState = tls_record:pending_connection_state(ConnectionStates, write), NewReadSecParams = hello_security_parameters(Role, Version, ReadState, CipherSuite, Random, Compression), NewWriteSecParams = hello_security_parameters(Role, Version, WriteState, CipherSuite, Random, Compression), tls_record:update_security_params(NewReadSecParams, NewWriteSecParams, ConnectionStates). hello_security_parameters(client, Version, ConnectionState, CipherSuite, Random, Compression) -> SecParams = ConnectionState#connection_state.security_parameters, NewSecParams = ssl_cipher:security_parameters(Version, CipherSuite, SecParams), NewSecParams#security_parameters{ server_random = Random, compression_algorithm = Compression }; hello_security_parameters(server, Version, ConnectionState, CipherSuite, Random, Compression) -> SecParams = ConnectionState#connection_state.security_parameters, NewSecParams = ssl_cipher:security_parameters(Version, CipherSuite, SecParams), NewSecParams#security_parameters{ client_random = Random, compression_algorithm = Compression }. select_version(ClientVersion, Versions) -> ServerVersion = tls_record:highest_protocol_version(Versions), tls_record:lowest_protocol_version(ClientVersion, ServerVersion). select_cipher_suite([], _) -> no_suite; select_cipher_suite([Suite | ClientSuites], SupportedSuites) -> case is_member(Suite, SupportedSuites) of true -> Suite; false -> select_cipher_suite(ClientSuites, SupportedSuites) end. is_member(Suite, SupportedSuites) -> lists:member(Suite, SupportedSuites). select_compression(_CompressionMetodes) -> ?NULL. master_secret(Version, MasterSecret, #security_parameters{ client_random = ClientRandom, server_random = ServerRandom, hash_size = HashSize, prf_algorithm = PrfAlgo, key_material_length = KML, expanded_key_material_length = EKML, iv_size = IVS}, ConnectionStates, Role) -> {ClientWriteMacSecret, ServerWriteMacSecret, ClientWriteKey, ServerWriteKey, ClientIV, ServerIV} = setup_keys(Version, PrfAlgo, MasterSecret, ServerRandom, ClientRandom, HashSize, KML, EKML, IVS), ConnStates1 = tls_record:set_master_secret(MasterSecret, ConnectionStates), ConnStates2 = tls_record:set_mac_secret(ClientWriteMacSecret, ServerWriteMacSecret, Role, ConnStates1), ClientCipherState = #cipher_state{iv = ClientIV, key = ClientWriteKey}, ServerCipherState = #cipher_state{iv = ServerIV, key = ServerWriteKey}, {MasterSecret, tls_record:set_pending_cipher_state(ConnStates2, ClientCipherState, ServerCipherState, Role)}. dec_hs(_, ?NEXT_PROTOCOL, <>) -> #next_protocol{selected_protocol = SelectedProtocol}; dec_hs(_, ?HELLO_REQUEST, <<>>) -> #hello_request{}; %% Client hello v2. %% The server must be able to receive such messages, from clients that %% are willing to use ssl v3 or higher, but have ssl v2 compatibility. dec_hs(_Version, ?CLIENT_HELLO, <>) -> #client_hello{client_version = {Major, Minor}, random = ssl_ssl2:client_random(ChallengeData, CDLength), session_id = 0, cipher_suites = from_3bytes(CipherSuites), compression_methods = [?NULL], renegotiation_info = undefined }; dec_hs(_Version, ?CLIENT_HELLO, <>) -> DecodedExtensions = dec_hello_extensions(Extensions), RenegotiationInfo = proplists:get_value(renegotiation_info, DecodedExtensions, undefined), SRP = proplists:get_value(srp, DecodedExtensions, undefined), HashSigns = proplists:get_value(hash_signs, DecodedExtensions, undefined), EllipticCurves = proplists:get_value(elliptic_curves, DecodedExtensions, undefined), NextProtocolNegotiation = proplists:get_value(next_protocol_negotiation, DecodedExtensions, undefined), #client_hello{ client_version = {Major,Minor}, random = Random, session_id = Session_ID, cipher_suites = from_2bytes(CipherSuites), compression_methods = Comp_methods, renegotiation_info = RenegotiationInfo, srp = SRP, hash_signs = HashSigns, elliptic_curves = EllipticCurves, next_protocol_negotiation = NextProtocolNegotiation }; dec_hs(_Version, ?SERVER_HELLO, <>) -> #server_hello{ server_version = {Major,Minor}, random = Random, session_id = Session_ID, cipher_suite = Cipher_suite, compression_method = Comp_method, renegotiation_info = undefined, hash_signs = undefined, elliptic_curves = undefined}; dec_hs(_Version, ?SERVER_HELLO, <>) -> HelloExtensions = dec_hello_extensions(Extensions, []), RenegotiationInfo = proplists:get_value(renegotiation_info, HelloExtensions, undefined), HashSigns = proplists:get_value(hash_signs, HelloExtensions, undefined), EllipticCurves = proplists:get_value(elliptic_curves, HelloExtensions, undefined), NextProtocolNegotiation = proplists:get_value(next_protocol_negotiation, HelloExtensions, undefined), #server_hello{ server_version = {Major,Minor}, random = Random, session_id = Session_ID, cipher_suite = Cipher_suite, compression_method = Comp_method, renegotiation_info = RenegotiationInfo, hash_signs = HashSigns, elliptic_curves = EllipticCurves, next_protocol_negotiation = NextProtocolNegotiation}; dec_hs(_Version, ?CERTIFICATE, <>) -> #certificate{asn1_certificates = certs_to_list(ASN1Certs)}; dec_hs(_Version, ?SERVER_KEY_EXCHANGE, Keys) -> #server_key_exchange{exchange_keys = Keys}; dec_hs({Major, Minor}, ?CERTIFICATE_REQUEST, <>) when Major == 3, Minor >= 3 -> HashSignAlgos = [{ssl_cipher:hash_algorithm(Hash), ssl_cipher:sign_algorithm(Sign)} || <> <= HashSigns], #certificate_request{certificate_types = CertTypes, hashsign_algorithms = #hash_sign_algos{hash_sign_algos = HashSignAlgos}, certificate_authorities = CertAuths}; dec_hs(_Version, ?CERTIFICATE_REQUEST, <>) -> #certificate_request{certificate_types = CertTypes, certificate_authorities = CertAuths}; dec_hs(_Version, ?SERVER_HELLO_DONE, <<>>) -> #server_hello_done{}; dec_hs({Major, Minor}, ?CERTIFICATE_VERIFY,<>) when Major == 3, Minor >= 3 -> #certificate_verify{hashsign_algorithm = hashsign_dec(HashSign), signature = Signature}; dec_hs(_Version, ?CERTIFICATE_VERIFY,<>)-> #certificate_verify{signature = Signature}; dec_hs(_Version, ?CLIENT_KEY_EXCHANGE, PKEPMS) -> #client_key_exchange{exchange_keys = PKEPMS}; dec_hs(_Version, ?FINISHED, VerifyData) -> #finished{verify_data = VerifyData}; dec_hs(_, _, _) -> throw(?ALERT_REC(?FATAL, ?HANDSHAKE_FAILURE)). dec_client_key(PKEPMS, ?KEY_EXCHANGE_RSA, {3, 0}) -> #encrypted_premaster_secret{premaster_secret = PKEPMS}; dec_client_key(<>, ?KEY_EXCHANGE_RSA, _) -> #encrypted_premaster_secret{premaster_secret = PKEPMS}; dec_client_key(<<>>, ?KEY_EXCHANGE_DIFFIE_HELLMAN, _) -> throw(?ALERT_REC(?FATAL, ?UNSUPPORTED_CERTIFICATE)); dec_client_key(<>, ?KEY_EXCHANGE_DIFFIE_HELLMAN, _) -> #client_diffie_hellman_public{dh_public = DH_Y}; dec_client_key(<<>>, ?KEY_EXCHANGE_EC_DIFFIE_HELLMAN, _) -> throw(?ALERT_REC(?FATAL, ?UNSUPPORTED_CERTIFICATE)); dec_client_key(<>, ?KEY_EXCHANGE_EC_DIFFIE_HELLMAN, _) -> #client_ec_diffie_hellman_public{dh_public = DH_Y}; dec_client_key(<>, ?KEY_EXCHANGE_PSK, _) -> #client_psk_identity{identity = Id}; dec_client_key(<>, ?KEY_EXCHANGE_DHE_PSK, _) -> #client_dhe_psk_identity{identity = Id, dh_public = DH_Y}; dec_client_key(<>, ?KEY_EXCHANGE_RSA_PSK, {3, 0}) -> #client_rsa_psk_identity{identity = Id, exchange_keys = #encrypted_premaster_secret{premaster_secret = PKEPMS}}; dec_client_key(<>, ?KEY_EXCHANGE_RSA_PSK, _) -> #client_rsa_psk_identity{identity = Id, exchange_keys = #encrypted_premaster_secret{premaster_secret = PKEPMS}}; dec_client_key(<>, ?KEY_EXCHANGE_SRP, _) -> #client_srp_public{srp_a = A}. dec_ske_params(Len, Keys, Version) -> <> = Keys, dec_ske_signature(Params, Signature, Version). dec_ske_signature(Params, <>, {Major, Minor}) when Major >= 3, Minor >= 3 -> HashSign = {ssl_cipher:hash_algorithm(HashAlgo), ssl_cipher:sign_algorithm(SignAlgo)}, {Params, HashSign, <<>>}; dec_ske_signature(Params, <>, {Major, Minor}) when Major >= 3, Minor >= 3 -> HashSign = {ssl_cipher:hash_algorithm(HashAlgo), ssl_cipher:sign_algorithm(SignAlgo)}, {Params, HashSign, Signature}; dec_ske_signature(Params, <<>>, _) -> {Params, {null, anon}, <<>>}; dec_ske_signature(Params, <>, _) -> {Params, {null, anon}, <<>>}; dec_ske_signature(Params, <>, _) -> {Params, undefined, Signature}; dec_ske_signature(_, _, _) -> throw(?ALERT_REC(?FATAL, ?HANDSHAKE_FAILURE)). dec_server_key(<> = KeyStruct, ?KEY_EXCHANGE_DIFFIE_HELLMAN, Version) -> Params = #server_dh_params{dh_p = P, dh_g = G, dh_y = Y}, {BinMsg, HashSign, Signature} = dec_ske_params(PLen + GLen + YLen + 6, KeyStruct, Version), #server_key_params{params = Params, params_bin = BinMsg, hashsign = HashSign, signature = Signature}; %% ECParameters with named_curve %% TODO: explicit curve dec_server_key(<> = KeyStruct, ?KEY_EXCHANGE_EC_DIFFIE_HELLMAN, Version) -> Params = #server_ecdh_params{curve = {namedCurve, ssl_tls1:enum_to_oid(CurveID)}, public = ECPoint}, {BinMsg, HashSign, Signature} = dec_ske_params(PointLen + 4, KeyStruct, Version), #server_key_params{params = Params, params_bin = BinMsg, hashsign = HashSign, signature = Signature}; dec_server_key(<> = KeyStruct, KeyExchange, Version) when KeyExchange == ?KEY_EXCHANGE_PSK; KeyExchange == ?KEY_EXCHANGE_RSA_PSK -> Params = #server_psk_params{ hint = PskIdentityHint}, {BinMsg, HashSign, Signature} = dec_ske_params(Len + 2, KeyStruct, Version), #server_key_params{params = Params, params_bin = BinMsg, hashsign = HashSign, signature = Signature}; dec_server_key(<> = KeyStruct, ?KEY_EXCHANGE_DHE_PSK, Version) -> DHParams = #server_dh_params{dh_p = P, dh_g = G, dh_y = Y}, Params = #server_dhe_psk_params{ hint = IdentityHint, dh_params = DHParams}, {BinMsg, HashSign, Signature} = dec_ske_params(Len + PLen + GLen + YLen + 8, KeyStruct, Version), #server_key_params{params = Params, params_bin = BinMsg, hashsign = HashSign, signature = Signature}; dec_server_key(<> = KeyStruct, ?KEY_EXCHANGE_SRP, Version) -> Params = #server_srp_params{srp_n = N, srp_g = G, srp_s = S, srp_b = B}, {BinMsg, HashSign, Signature} = dec_ske_params(NLen + GLen + SLen + BLen + 7, KeyStruct, Version), #server_key_params{params = Params, params_bin = BinMsg, hashsign = HashSign, signature = Signature}; dec_server_key(_, _, _) -> throw(?ALERT_REC(?FATAL, ?HANDSHAKE_FAILURE)). dec_hello_extensions(<<>>) -> []; dec_hello_extensions(<>) -> dec_hello_extensions(Extensions, []); dec_hello_extensions(_) -> []. dec_hello_extensions(<<>>, Acc) -> Acc; dec_hello_extensions(<>, Acc) -> Prop = {next_protocol_negotiation, #next_protocol_negotiation{extension_data = ExtensionData}}, dec_hello_extensions(Rest, [Prop | Acc]); dec_hello_extensions(<>, Acc) -> RenegotiateInfo = case Len of 1 -> % Initial handshake Info; % should be <<0>> will be matched in handle_renegotiation_info _ -> VerifyLen = Len - 1, <> = Info, VerifyInfo end, dec_hello_extensions(Rest, [{renegotiation_info, #renegotiation_info{renegotiated_connection = RenegotiateInfo}} | Acc]); dec_hello_extensions(<>, Acc) when Len == SRPLen + 2 -> dec_hello_extensions(Rest, [{srp, #srp{username = SRP}} | Acc]); dec_hello_extensions(<>, Acc) -> SignAlgoListLen = Len - 2, <> = ExtData, HashSignAlgos = [{ssl_cipher:hash_algorithm(Hash), ssl_cipher:sign_algorithm(Sign)} || <> <= SignAlgoList], dec_hello_extensions(Rest, [{hash_signs, #hash_sign_algos{hash_sign_algos = HashSignAlgos}} | Acc]); dec_hello_extensions(<>, Acc) -> EllipticCurveListLen = Len - 2, <> = ExtData, EllipticCurves = [ssl_tls1:enum_to_oid(X) || <> <= EllipticCurveList], dec_hello_extensions(Rest, [{elliptic_curves, #elliptic_curves{elliptic_curve_list = EllipticCurves}} | Acc]); dec_hello_extensions(<>, Acc) -> ECPointFormatListLen = Len - 1, <> = ExtData, ECPointFormats = binary_to_list(ECPointFormatList), dec_hello_extensions(Rest, [{ec_point_formats, #ec_point_formats{ec_point_format_list = ECPointFormats}} | Acc]); %% Ignore data following the ClientHello (i.e., %% extensions) if not understood. dec_hello_extensions(<>, Acc) -> dec_hello_extensions(Rest, Acc); %% This theoretically should not happen if the protocol is followed, but if it does it is ignored. dec_hello_extensions(_, Acc) -> Acc. encrypted_premaster_secret(Secret, RSAPublicKey) -> try PreMasterSecret = public_key:encrypt_public(Secret, RSAPublicKey, [{rsa_pad, rsa_pkcs1_padding}]), #encrypted_premaster_secret{premaster_secret = PreMasterSecret} catch _:_-> throw(?ALERT_REC(?FATAL, ?HANDSHAKE_FAILURE)) end. %% encode/decode stream of certificate data to/from list of certificate data certs_to_list(ASN1Certs) -> certs_to_list(ASN1Certs, []). certs_to_list(<>, Acc) -> certs_to_list(Rest, [Cert | Acc]); certs_to_list(<<>>, Acc) -> lists:reverse(Acc, []). certs_from_list(ACList) -> list_to_binary([begin CertLen = byte_size(Cert), <> end || Cert <- ACList]). enc_hs(#next_protocol{selected_protocol = SelectedProtocol}, _Version) -> PaddingLength = 32 - ((byte_size(SelectedProtocol) + 2) rem 32), {?NEXT_PROTOCOL, <>}; enc_hs(#hello_request{}, _Version) -> {?HELLO_REQUEST, <<>>}; enc_hs(#client_hello{client_version = {Major, Minor}, random = Random, session_id = SessionID, cipher_suites = CipherSuites, compression_methods = CompMethods, renegotiation_info = RenegotiationInfo, srp = SRP, hash_signs = HashSigns, ec_point_formats = EcPointFormats, elliptic_curves = EllipticCurves, next_protocol_negotiation = NextProtocolNegotiation}, _Version) -> SIDLength = byte_size(SessionID), BinCompMethods = list_to_binary(CompMethods), CmLength = byte_size(BinCompMethods), BinCipherSuites = list_to_binary(CipherSuites), CsLength = byte_size(BinCipherSuites), Extensions0 = hello_extensions(RenegotiationInfo, SRP, NextProtocolNegotiation) ++ ec_hello_extensions(lists:map(fun ssl_cipher:suite_definition/1, CipherSuites), EcPointFormats) ++ ec_hello_extensions(lists:map(fun ssl_cipher:suite_definition/1, CipherSuites), EllipticCurves), Extensions1 = if Major == 3, Minor >=3 -> Extensions0 ++ hello_extensions(HashSigns); true -> Extensions0 end, ExtensionsBin = enc_hello_extensions(Extensions1), {?CLIENT_HELLO, <>}; enc_hs(#server_hello{server_version = {Major, Minor}, random = Random, session_id = Session_ID, cipher_suite = CipherSuite, compression_method = Comp_method, renegotiation_info = RenegotiationInfo, ec_point_formats = EcPointFormats, elliptic_curves = EllipticCurves, next_protocol_negotiation = NextProtocolNegotiation}, _Version) -> SID_length = byte_size(Session_ID), CipherSuites = [ssl_cipher:suite_definition(CipherSuite)], Extensions = hello_extensions(RenegotiationInfo, NextProtocolNegotiation) ++ ec_hello_extensions(CipherSuites, EcPointFormats) ++ ec_hello_extensions(CipherSuites, EllipticCurves), ExtensionsBin = enc_hello_extensions(Extensions), {?SERVER_HELLO, <>}; enc_hs(#certificate{asn1_certificates = ASN1CertList}, _Version) -> ASN1Certs = certs_from_list(ASN1CertList), ACLen = erlang:iolist_size(ASN1Certs), {?CERTIFICATE, <>}; enc_hs(#server_key_exchange{exchange_keys = Keys}, _Version) -> {?SERVER_KEY_EXCHANGE, Keys}; enc_hs(#server_key_params{params_bin = Keys, hashsign = HashSign, signature = Signature}, Version) -> EncSign = enc_sign(HashSign, Signature, Version), {?SERVER_KEY_EXCHANGE, <>}; enc_hs(#certificate_request{certificate_types = CertTypes, hashsign_algorithms = #hash_sign_algos{hash_sign_algos = HashSignAlgos}, certificate_authorities = CertAuths}, {Major, Minor}) when Major == 3, Minor >= 3 -> HashSigns= << <<(ssl_cipher:hash_algorithm(Hash)):8, (ssl_cipher:sign_algorithm(Sign)):8>> || {Hash, Sign} <- HashSignAlgos >>, CertTypesLen = byte_size(CertTypes), HashSignsLen = byte_size(HashSigns), CertAuthsLen = byte_size(CertAuths), {?CERTIFICATE_REQUEST, <> }; enc_hs(#certificate_request{certificate_types = CertTypes, certificate_authorities = CertAuths}, _Version) -> CertTypesLen = byte_size(CertTypes), CertAuthsLen = byte_size(CertAuths), {?CERTIFICATE_REQUEST, <> }; enc_hs(#server_hello_done{}, _Version) -> {?SERVER_HELLO_DONE, <<>>}; enc_hs(#client_key_exchange{exchange_keys = ExchangeKeys}, Version) -> {?CLIENT_KEY_EXCHANGE, enc_cke(ExchangeKeys, Version)}; enc_hs(#certificate_verify{signature = BinSig, hashsign_algorithm = HashSign}, Version) -> EncSig = enc_sign(HashSign, BinSig, Version), {?CERTIFICATE_VERIFY, EncSig}; enc_hs(#finished{verify_data = VerifyData}, _Version) -> {?FINISHED, VerifyData}. enc_cke(#encrypted_premaster_secret{premaster_secret = PKEPMS},{3, 0}) -> PKEPMS; enc_cke(#encrypted_premaster_secret{premaster_secret = PKEPMS}, _) -> PKEPMSLen = byte_size(PKEPMS), <>; enc_cke(#client_diffie_hellman_public{dh_public = DHPublic}, _) -> Len = byte_size(DHPublic), <>; enc_cke(#client_ec_diffie_hellman_public{dh_public = DHPublic}, _) -> Len = byte_size(DHPublic), <>; enc_cke(#client_psk_identity{identity = undefined}, _) -> Id = <<"psk_identity">>, Len = byte_size(Id), <>; enc_cke(#client_psk_identity{identity = Id}, _) -> Len = byte_size(Id), <>; enc_cke(Identity = #client_dhe_psk_identity{identity = undefined}, Version) -> enc_cke(Identity#client_dhe_psk_identity{identity = <<"psk_identity">>}, Version); enc_cke(#client_dhe_psk_identity{identity = Id, dh_public = DHPublic}, _) -> Len = byte_size(Id), DHLen = byte_size(DHPublic), <>; enc_cke(Identity = #client_rsa_psk_identity{identity = undefined}, Version) -> enc_cke(Identity#client_rsa_psk_identity{identity = <<"psk_identity">>}, Version); enc_cke(#client_rsa_psk_identity{identity = Id, exchange_keys = ExchangeKeys}, Version) -> EncPMS = enc_cke(ExchangeKeys, Version), Len = byte_size(Id), <>; enc_cke(#client_srp_public{srp_a = A}, _) -> Len = byte_size(A), <>. enc_server_key(#server_dh_params{dh_p = P, dh_g = G, dh_y = Y}) -> PLen = byte_size(P), GLen = byte_size(G), YLen = byte_size(Y), <>; enc_server_key(#server_ecdh_params{curve = {namedCurve, ECCurve}, public = ECPubKey}) -> %%TODO: support arbitrary keys KLen = size(ECPubKey), <>; enc_server_key(#server_psk_params{hint = PskIdentityHint}) -> Len = byte_size(PskIdentityHint), <>; enc_server_key(Params = #server_dhe_psk_params{hint = undefined}) -> enc_server_key(Params#server_dhe_psk_params{hint = <<>>}); enc_server_key(#server_dhe_psk_params{ hint = PskIdentityHint, dh_params = #server_dh_params{dh_p = P, dh_g = G, dh_y = Y}}) -> Len = byte_size(PskIdentityHint), PLen = byte_size(P), GLen = byte_size(G), YLen = byte_size(Y), <>; enc_server_key(#server_srp_params{srp_n = N, srp_g = G, srp_s = S, srp_b = B}) -> NLen = byte_size(N), GLen = byte_size(G), SLen = byte_size(S), BLen = byte_size(B), <>. enc_sign({_, anon}, _Sign, _Version) -> <<>>; enc_sign({HashAlg, SignAlg}, Signature, _Version = {Major, Minor}) when Major == 3, Minor >= 3-> SignLen = byte_size(Signature), HashSign = hashsign_enc(HashAlg, SignAlg), <>; enc_sign(_HashSign, Sign, _Version) -> SignLen = byte_size(Sign), <>. ec_hello_extensions(CipherSuites, #elliptic_curves{} = Info) -> case advertises_ec_ciphers(CipherSuites) of true -> [Info]; false -> [] end; ec_hello_extensions(CipherSuites, #ec_point_formats{} = Info) -> case advertises_ec_ciphers(CipherSuites) of true -> [Info]; false -> [] end; ec_hello_extensions(_, undefined) -> []. hello_extensions(RenegotiationInfo, NextProtocolNegotiation) -> hello_extensions(RenegotiationInfo) ++ next_protocol_extension(NextProtocolNegotiation). hello_extensions(RenegotiationInfo, SRP, NextProtocolNegotiation) -> hello_extensions(RenegotiationInfo) ++ hello_extensions(SRP) ++ next_protocol_extension(NextProtocolNegotiation). advertises_ec_ciphers([]) -> false; advertises_ec_ciphers([{ecdh_ecdsa, _,_,_} | _]) -> true; advertises_ec_ciphers([{ecdhe_ecdsa, _,_,_} | _]) -> true; advertises_ec_ciphers([{ecdh_rsa, _,_,_} | _]) -> true; advertises_ec_ciphers([{ecdhe_rsa, _,_,_} | _]) -> true; advertises_ec_ciphers([{ecdh_anon, _,_,_} | _]) -> true; advertises_ec_ciphers([_| Rest]) -> advertises_ec_ciphers(Rest). %% Renegotiation info hello_extensions(#renegotiation_info{renegotiated_connection = undefined}) -> []; hello_extensions(#renegotiation_info{} = Info) -> [Info]; hello_extensions(#srp{} = Info) -> [Info]; hello_extensions(#hash_sign_algos{} = Info) -> [Info]; hello_extensions(undefined) -> []. next_protocol_extension(undefined) -> []; next_protocol_extension(#next_protocol_negotiation{} = Info) -> [Info]. enc_hello_extensions(Extensions) -> enc_hello_extensions(Extensions, <<>>). enc_hello_extensions([], <<>>) -> <<>>; enc_hello_extensions([], Acc) -> Size = byte_size(Acc), <>; enc_hello_extensions([#next_protocol_negotiation{extension_data = ExtensionData} | Rest], Acc) -> Len = byte_size(ExtensionData), enc_hello_extensions(Rest, <>); enc_hello_extensions([#renegotiation_info{renegotiated_connection = ?byte(0) = Info} | Rest], Acc) -> Len = byte_size(Info), enc_hello_extensions(Rest, <>); enc_hello_extensions([#renegotiation_info{renegotiated_connection = Info} | Rest], Acc) -> InfoLen = byte_size(Info), Len = InfoLen +1, enc_hello_extensions(Rest, <>); enc_hello_extensions([#elliptic_curves{elliptic_curve_list = EllipticCurves} | Rest], Acc) -> EllipticCurveList = << <<(ssl_tls1:oid_to_enum(X)):16>> || X <- EllipticCurves>>, ListLen = byte_size(EllipticCurveList), Len = ListLen + 2, enc_hello_extensions(Rest, <>); enc_hello_extensions([#ec_point_formats{ec_point_format_list = ECPointFormats} | Rest], Acc) -> ECPointFormatList = list_to_binary(ECPointFormats), ListLen = byte_size(ECPointFormatList), Len = ListLen + 1, enc_hello_extensions(Rest, <>); enc_hello_extensions([#srp{username = UserName} | Rest], Acc) -> SRPLen = byte_size(UserName), Len = SRPLen + 2, enc_hello_extensions(Rest, <>); enc_hello_extensions([#hash_sign_algos{hash_sign_algos = HashSignAlgos} | Rest], Acc) -> SignAlgoList = << <<(ssl_cipher:hash_algorithm(Hash)):8, (ssl_cipher:sign_algorithm(Sign)):8>> || {Hash, Sign} <- HashSignAlgos >>, ListLen = byte_size(SignAlgoList), Len = ListLen + 2, enc_hello_extensions(Rest, <>). encode_client_protocol_negotiation(undefined, _) -> undefined; encode_client_protocol_negotiation(_, false) -> #next_protocol_negotiation{extension_data = <<>>}; encode_client_protocol_negotiation(_, _) -> undefined. from_3bytes(Bin3) -> from_3bytes(Bin3, []). from_3bytes(<<>>, Acc) -> lists:reverse(Acc); from_3bytes(<>, Acc) -> from_3bytes(Rest, [?uint16(N) | Acc]). from_2bytes(Bin2) -> from_2bytes(Bin2, []). from_2bytes(<<>>, Acc) -> lists:reverse(Acc); from_2bytes(<>, Acc) -> from_2bytes(Rest, [?uint16(N) | Acc]). certificate_types({KeyExchange, _, _, _}) when KeyExchange == rsa; KeyExchange == dhe_dss; KeyExchange == dhe_rsa; KeyExchange == ecdhe_rsa -> <>; certificate_types({KeyExchange, _, _, _}) when KeyExchange == dh_ecdsa; KeyExchange == dhe_ecdsa -> <>; certificate_types(_) -> <>. hashsign_dec(<>) -> {ssl_cipher:hash_algorithm(HashAlgo), ssl_cipher:sign_algorithm(SignAlgo)}. hashsign_enc(HashAlgo, SignAlgo) -> Hash = ssl_cipher:hash_algorithm(HashAlgo), Sign = ssl_cipher:sign_algorithm(SignAlgo), <>. certificate_authorities(CertDbHandle, CertDbRef) -> Authorities = certificate_authorities_from_db(CertDbHandle, CertDbRef), Enc = fun(#'OTPCertificate'{tbsCertificate=TBSCert}) -> OTPSubj = TBSCert#'OTPTBSCertificate'.subject, DNEncodedBin = public_key:pkix_encode('Name', OTPSubj, otp), DNEncodedLen = byte_size(DNEncodedBin), <> end, list_to_binary([Enc(Cert) || {_, Cert} <- Authorities]). certificate_authorities_from_db(CertDbHandle, CertDbRef) -> ConnectionCerts = fun({{Ref, _, _}, Cert}, Acc) when Ref == CertDbRef -> [Cert | Acc]; (_, Acc) -> Acc end, ssl_pkix_db:foldl(ConnectionCerts, [], CertDbHandle). digitally_signed({3, Minor}, Hash, HashAlgo, Key) when Minor >= 3 -> public_key:sign({digest, Hash}, HashAlgo, Key); digitally_signed(_Version, Hash, HashAlgo, #'DSAPrivateKey'{} = Key) -> public_key:sign({digest, Hash}, HashAlgo, Key); digitally_signed(_Version, Hash, _HashAlgo, #'RSAPrivateKey'{} = Key) -> public_key:encrypt_private(Hash, Key, [{rsa_pad, rsa_pkcs1_padding}]); digitally_signed(_Version, Hash, HashAlgo, Key) -> public_key:sign({digest, Hash}, HashAlgo, Key). calc_master_secret({3,0}, _PrfAlgo, PremasterSecret, ClientRandom, ServerRandom) -> ssl_ssl3:master_secret(PremasterSecret, ClientRandom, ServerRandom); calc_master_secret({3,_}, PrfAlgo, PremasterSecret, ClientRandom, ServerRandom) -> ssl_tls1:master_secret(PrfAlgo, PremasterSecret, ClientRandom, ServerRandom). setup_keys({3,0}, _PrfAlgo, MasterSecret, ServerRandom, ClientRandom, HashSize, KML, EKML, IVS) -> ssl_ssl3:setup_keys(MasterSecret, ServerRandom, ClientRandom, HashSize, KML, EKML, IVS); setup_keys({3,N}, PrfAlgo, MasterSecret, ServerRandom, ClientRandom, HashSize, KML, _EKML, IVS) -> ssl_tls1:setup_keys(N, PrfAlgo, MasterSecret, ServerRandom, ClientRandom, HashSize, KML, IVS). calc_finished({3, 0}, Role, _PrfAlgo, MasterSecret, Handshake) -> ssl_ssl3:finished(Role, MasterSecret, lists:reverse(Handshake)); calc_finished({3, N}, Role, PrfAlgo, MasterSecret, Handshake) -> ssl_tls1:finished(Role, N, PrfAlgo, MasterSecret, lists:reverse(Handshake)). calc_certificate_verify({3, 0}, HashAlgo, MasterSecret, Handshake) -> ssl_ssl3:certificate_verify(HashAlgo, MasterSecret, lists:reverse(Handshake)); calc_certificate_verify({3, N}, HashAlgo, _MasterSecret, Handshake) -> ssl_tls1:certificate_verify(HashAlgo, N, lists:reverse(Handshake)). key_exchange_alg(rsa) -> ?KEY_EXCHANGE_RSA; key_exchange_alg(Alg) when Alg == dhe_rsa; Alg == dhe_dss; Alg == dh_dss; Alg == dh_rsa; Alg == dh_anon -> ?KEY_EXCHANGE_DIFFIE_HELLMAN; key_exchange_alg(Alg) when Alg == ecdhe_rsa; Alg == ecdh_rsa; Alg == ecdhe_ecdsa; Alg == ecdh_ecdsa; Alg == ecdh_anon -> ?KEY_EXCHANGE_EC_DIFFIE_HELLMAN; key_exchange_alg(psk) -> ?KEY_EXCHANGE_PSK; key_exchange_alg(dhe_psk) -> ?KEY_EXCHANGE_DHE_PSK; key_exchange_alg(rsa_psk) -> ?KEY_EXCHANGE_RSA_PSK; key_exchange_alg(Alg) when Alg == srp_rsa; Alg == srp_dss; Alg == srp_anon -> ?KEY_EXCHANGE_SRP; key_exchange_alg(_) -> ?NULL. apply_user_fun(Fun, OtpCert, ExtensionOrError, UserState0, SslState) -> case Fun(OtpCert, ExtensionOrError, UserState0) of {valid, UserState} -> {valid, {SslState, UserState}}; {fail, _} = Fail -> Fail; {unknown, UserState} -> {unknown, {SslState, UserState}} end. -define(TLSEXT_SIGALG_RSA(MD), {MD, rsa}). -define(TLSEXT_SIGALG_DSA(MD), {MD, dsa}). -define(TLSEXT_SIGALG_ECDSA(MD), {MD, ecdsa}). -define(TLSEXT_SIGALG(MD), ?TLSEXT_SIGALG_ECDSA(MD), ?TLSEXT_SIGALG_RSA(MD)). default_hash_signs() -> HashSigns = [?TLSEXT_SIGALG(sha512), ?TLSEXT_SIGALG(sha384), ?TLSEXT_SIGALG(sha256), ?TLSEXT_SIGALG(sha224), ?TLSEXT_SIGALG(sha), ?TLSEXT_SIGALG_DSA(sha), ?TLSEXT_SIGALG_RSA(md5)], CryptoSupport = proplists:get_value(public_keys, crypto:supports()), HasECC = proplists:get_bool(ecdsa, CryptoSupport), #hash_sign_algos{hash_sign_algos = lists:filter(fun({_, ecdsa}) -> HasECC; (_) -> true end, HashSigns)}. handle_hello_extensions(#client_hello{random = Random, cipher_suites = CipherSuites, renegotiation_info = Info, srp = SRP, ec_point_formats = EcPointFormats0, elliptic_curves = EllipticCurves0} = Hello, Version, #ssl_options{secure_renegotiate = SecureRenegotation} = Opts, Session0, ConnectionStates0, Renegotiation) -> Session = handle_srp_extension(SRP, Session0), ConnectionStates = handle_renegotiation_extension(Version, Info, Random, Session, ConnectionStates0, Renegotiation, SecureRenegotation, CipherSuites), ProtocolsToAdvertise = handle_next_protocol_extension(Hello, Renegotiation, Opts), {EcPointFormats, EllipticCurves} = handle_ecc_extensions(Version, EcPointFormats0, EllipticCurves0), %%TODO make extensions compund data structure {Session, ConnectionStates, ProtocolsToAdvertise, EcPointFormats, EllipticCurves}. handle_renegotiation_extension(Version, Info, Random, #session{cipher_suite = CipherSuite, compression_method = Compression}, ConnectionStates0, Renegotiation, SecureRenegotation, CipherSuites) -> case handle_renegotiation_info(server, Info, ConnectionStates0, Renegotiation, SecureRenegotation, CipherSuites) of {ok, ConnectionStates1} -> hello_pending_connection_states(server, Version, CipherSuite, Random, Compression, ConnectionStates1); #alert{} = Alert -> throw(Alert) end. handle_next_protocol_extension(Hello, Renegotiation, SslOpts)-> case handle_next_protocol_on_server(Hello, Renegotiation, SslOpts) of #alert{} = Alert -> throw(Alert); ProtocolsToAdvertise -> ProtocolsToAdvertise end. handle_srp_extension(undefined, Session) -> Session; handle_srp_extension(#srp{username = Username}, Session) -> Session#session{srp_username = Username}. int_to_bin(I) -> L = (length(integer_to_list(I, 16)) + 1) div 2, <>. advertised_hash_signs({Major, Minor}) when Major >= 3 andalso Minor >= 3 -> default_hash_signs(); advertised_hash_signs(_) -> undefined.