<?xml version="1.0" encoding="utf-8" ?> <!DOCTYPE erlref SYSTEM "erlref.dtd"> <erlref> <header> <copyright> <year>2009</year> <year>2016</year> <holder>Ericsson AB, All Rights Reserved</holder> </copyright> <legalnotice> Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. The Initial Developer of the Original Code is Ericsson AB. </legalnotice> <title>binary</title> <prepared>Patrik Nyblom</prepared> <responsible>Kenneth Lundin</responsible> <docno>1</docno> <approved></approved> <checked></checked> <date>2010-05-05</date> <rev>A</rev> <file>binary.xml</file> </header> <module>binary</module> <modulesummary>Library for handling binary data.</modulesummary> <description> <p>This module contains functions for manipulating byte-oriented binaries. Although the majority of functions could be provided using bit-syntax, the functions in this library are highly optimized and are expected to either execute faster or consume less memory, or both, than a counterpart written in pure Erlang.</p> <p>The module is provided according to Erlang Enhancement Proposal (EEP) 31.</p> <note> <p>The library handles byte-oriented data. For bitstrings that are not binaries (does not contain whole octets of bits) a <c>badarg</c> exception is thrown from any of the functions in this module.</p> </note> </description> <datatypes> <datatype> <name name="cp"/> <desc><p>Opaque data type representing a compiled search pattern. Guaranteed to be a <c>tuple()</c> to allow programs to distinguish it from non-precompiled search patterns.</p> </desc> </datatype> <datatype> <name name="part"/> <desc><p>A representaion of a part (or range) in a binary. <c>Start</c> is a zero-based offset into a <c>binary()</c> and <c>Length</c> is the length of that part. As input to functions in this module, a reverse part specification is allowed, constructed with a negative <c>Length</c>, so that the part of the binary begins at <c>Start</c> + <c>Length</c> and is -<c>Length</c> long. This is useful for referencing the last <c>N</c> bytes of a binary as <c>{size(Binary), -N}</c>. The functions in this module always return <c>part()</c>s with positive <c>Length</c>.</p> </desc> </datatype> </datatypes> <funcs> <func> <name name="at" arity="2"/> <fsummary>Return the byte at a specific position in a binary.</fsummary> <desc> <p>Returns the byte at position <c><anno>Pos</anno></c> (zero-based) in binary <c><anno>Subject</anno></c> as an integer. If <c><anno>Pos</anno></c> >= <c>byte_size(<anno>Subject</anno>)</c>, a <c>badarg</c> exception is raised.</p> </desc> </func> <func> <name name="bin_to_list" arity="1"/> <fsummary>Convert a binary to a list of integers.</fsummary> <desc> <p>Same as <c>bin_to_list(<anno>Subject</anno>, {0,byte_size(<anno>Subject</anno>)})</c>.</p> </desc> </func> <func> <name name="bin_to_list" arity="2"/> <fsummary>Convert a binary to a list of integers.</fsummary> <desc> <p>Converts <c><anno>Subject</anno></c> to a list of <c>byte()</c>s, each representing the value of one byte. <c>part()</c> denotes which part of the <c>binary()</c> to convert.</p> <p><em>Example:</em></p> <code> 1> binary:bin_to_list(<<"erlang">>, {1,3}). "rla" %% or [114,108,97] in list notation.</code> <p>If <c><anno>PosLen</anno></c> in any way references outside the binary, a <c>badarg</c> exception is raised.</p> </desc> </func> <func> <name name="bin_to_list" arity="3"/> <fsummary>Convert a binary to a list of integers.</fsummary> <desc> <p>Same as<c> bin_to_list(<anno>Subject</anno>, {<anno>Pos</anno>, <anno>Len</anno>})</c>.</p> </desc> </func> <func> <name name="compile_pattern" arity="1"/> <fsummary>Precompile a binary search pattern.</fsummary> <desc> <p>Builds an internal structure representing a compilation of a search pattern, later to be used in functions <seealso marker="#match-3"><c>match/3</c></seealso>, <seealso marker="#matches-3"><c>matches/3</c></seealso>, <seealso marker="#split-3"><c>split/3</c></seealso>, or <seealso marker="#replace-4"><c>replace/4</c></seealso>. The <c>cp()</c> returned is guaranteed to be a <c>tuple()</c> to allow programs to distinguish it from non-precompiled search patterns.</p> <p>When a list of binaries is specified, it denotes a set of alternative binaries to search for. For example, if <c>[<<"functional">>,<<"programming">>]</c> is specified as <c><anno>Pattern</anno></c>, this means either <c><<"functional">></c> or <c><<"programming">></c>". The pattern is a set of alternatives; when only a single binary is specified, the set has only one element. The order of alternatives in a pattern is not significant.</p> <p>The list of binaries used for search alternatives must be flat and proper.</p> <p>If <c><anno>Pattern</anno></c> is not a binary or a flat proper list of binaries with length > 0, a <c>badarg</c> exception is raised.</p> </desc> </func> <func> <name name="copy" arity="1"/> <fsummary>Create a duplicate of a binary.</fsummary> <desc> <p>Same as <c>copy(<anno>Subject</anno>, 1)</c>.</p> </desc> </func> <func> <name name="copy" arity="2"/> <fsummary>Duplicate a binary <c>N</c> times and create a new.</fsummary> <desc> <p>Creates a binary with the content of <c><anno>Subject</anno></c> duplicated <c><anno>N</anno></c> times.</p> <p>This function always creates a new binary, even if <c><anno>N</anno> = 1</c>. By using <seealso marker="#copy/1"><c>copy/1</c></seealso> on a binary referencing a larger binary, one can free up the larger binary for garbage collection.</p> <note> <p>By deliberately copying a single binary to avoid referencing a larger binary, one can, instead of freeing up the larger binary for later garbage collection, create much more binary data than needed. Sharing binary data is usually good. Only in special cases, when small parts reference large binaries and the large binaries are no longer used in any process, deliberate copying can be a good idea.</p> </note> <p>If <c><anno>N</anno></c> < <c>0</c>, a <c>badarg</c> exception is raised.</p> </desc> </func> <func> <name name="decode_unsigned" arity="1"/> <fsummary>Decode a whole binary into an integer of arbitrary size. </fsummary> <desc> <p>Same as <c>decode_unsigned(<anno>Subject</anno>, big)</c>.</p> </desc> </func> <func> <name name="decode_unsigned" arity="2"/> <fsummary>Decode a whole binary into an integer of arbitrary size. </fsummary> <desc> <p>Converts the binary digit representation, in big endian or little endian, of a positive integer in <c><anno>Subject</anno></c> to an Erlang <c>integer()</c>.</p> <p><em>Example:</em></p> <code> 1> binary:decode_unsigned(<<169,138,199>>,big). 11111111</code> </desc> </func> <func> <name name="encode_unsigned" arity="1"/> <fsummary>Encode an unsigned integer into the minimal binary.</fsummary> <desc> <p>Same as <c>encode_unsigned(<anno>Unsigned</anno>, big)</c>.</p> </desc> </func> <func> <name name="encode_unsigned" arity="2"/> <fsummary>Encode an unsigned integer into the minimal binary.</fsummary> <desc> <p>Converts a positive integer to the smallest possible representation in a binary digit representation, either big endian or little endian.</p> <p><em>Example:</em></p> <code> 1> binary:encode_unsigned(11111111, big). <<169,138,199>></code> </desc> </func> <func> <name name="first" arity="1"/> <fsummary>Return the first byte of a binary.</fsummary> <desc> <p>Returns the first byte of binary <c><anno>Subject</anno></c> as an integer. If the size of <c><anno>Subject</anno></c> is zero, a <c>badarg</c> exception is raised.</p> </desc> </func> <func> <name name="last" arity="1"/> <fsummary>Return the last byte of a binary.</fsummary> <desc> <p>Returns the last byte of binary <c><anno>Subject</anno></c> as an integer. If the size of <c><anno>Subject</anno></c> is zero, a <c>badarg</c> exception is raised.</p> </desc> </func> <func> <name name="list_to_bin" arity="1"/> <fsummary>Convert a list of integers and binaries to a binary.</fsummary> <desc> <p>Works exactly as <seealso marker="erts:erlang#list_to_binary/1"><c>erlang:list_to_binary/1</c></seealso>, added for completeness.</p> </desc> </func> <func> <name name="longest_common_prefix" arity="1"/> <fsummary>Return length of longest common prefix for a set of binaries. </fsummary> <desc> <p>Returns the length of the longest common prefix of the binaries in list <c><anno>Binaries</anno></c>.</p> <p><em>Example:</em></p> <code> 1> binary:longest_common_prefix([<<"erlang">>, <<"ergonomy">>]). 2 2> binary:longest_common_prefix([<<"erlang">>, <<"perl">>]). 0</code> <p>If <c><anno>Binaries</anno></c> is not a flat list of binaries, a <c>badarg</c> exception is raised.</p> </desc> </func> <func> <name name="longest_common_suffix" arity="1"/> <fsummary>Return length of longest common suffix for a set of binaries. </fsummary> <desc> <p>Returns the length of the longest common suffix of the binaries in list <c><anno>Binaries</anno></c>.</p> <p><em>Example:</em></p> <code> 1> binary:longest_common_suffix([<<"erlang">>, <<"fang">>]). 3 2> binary:longest_common_suffix([<<"erlang">>, <<"perl">>]). 0</code> <p>If <c>Binaries</c> is not a flat list of binaries, a <c>badarg</c> exception is raised.</p> </desc> </func> <func> <name name="match" arity="2"/> <fsummary>Search for the first match of a pattern in a binary.</fsummary> <desc> <p>Same as <c>match(<anno>Subject</anno>, <anno>Pattern</anno>, [])</c>. </p> </desc> </func> <func> <name name="match" arity="3"/> <fsummary>Search for the first match of a pattern in a binary.</fsummary> <type name="part"/> <desc> <p>Searches for the first occurrence of <c><anno>Pattern</anno></c> in <c><anno>Subject</anno></c> and returns the position and length.</p> <p>The function returns <c>{Pos, Length}</c> for the binary in <c><anno>Pattern</anno></c>, starting at the lowest position in <c><anno>Subject</anno></c>.</p> <p><em>Example:</em></p> <code> 1> binary:match(<<"abcde">>, [<<"bcde">>, <<"cd">>],[]). {1,4}</code> <p>Even though <c><<"cd">></c> ends before <c><<"bcde">></c>, <c><<"bcde">></c> begins first and is therefore the first match. If two overlapping matches begin at the same position, the longest is returned.</p> <p>Summary of the options:</p> <taglist> <tag>{scope, {<anno>Start</anno>, <anno>Length</anno>}}</tag> <item><p>Only the specified part is searched. Return values still have offsets from the beginning of <c><anno>Subject</anno></c>. A negative <c>Length</c> is allowed as described in section Data Types in this manual.</p></item> </taglist> <p>If none of the strings in <c><anno>Pattern</anno></c> is found, the atom <c>nomatch</c> is returned.</p> <p>For a description of <c><anno>Pattern</anno></c>, see function <seealso marker="#compile_pattern-1"><c>compile_pattern/1</c></seealso>. </p> <p>If <c>{scope, {Start,Length}}</c> is specified in the options such that <c>Start</c> > size of <c>Subject</c>, <c>Start</c> + <c>Length</c> < 0 or <c>Start</c> + <c>Length</c> > size of <c>Subject</c>, a <c>badarg</c> exception is raised.</p> </desc> </func> <func> <name name="matches" arity="2"/> <fsummary>Search for all matches of a pattern in a binary.</fsummary> <desc> <p>Same as <c>matches(<anno>Subject</anno>, <anno>Pattern</anno>, [])</c>. </p> </desc> </func> <func> <name name="matches" arity="3"/> <fsummary>Search for all matches of a pattern in a binary.</fsummary> <type name="part"/> <desc> <p>As <seealso marker="#match-2"><c>match/2</c></seealso>, but <c><anno>Subject</anno></c> is searched until exhausted and a list of all non-overlapping parts matching <c><anno>Pattern</anno></c> is returned (in order).</p> <p>The first and longest match is preferred to a shorter, which is illustrated by the following example:</p> <code> 1> binary:matches(<<"abcde">>, [<<"bcde">>,<<"bc">>,<<"de">>],[]). [{1,4}]</code> <p>The result shows that <<"bcde">> is selected instead of the shorter match <<"bc">> (which would have given raise to one more match, <<"de">>). This corresponds to the behavior of POSIX regular expressions (and programs like awk), but is not consistent with alternative matches in <c>re</c> (and Perl), where instead lexical ordering in the search pattern selects which string matches.</p> <p>If none of the strings in a pattern is found, an empty list is returned.</p> <p>For a description of <c><anno>Pattern</anno></c>, see <seealso marker="#compile_pattern-1"><c>compile_pattern/1</c></seealso>. For a description of available options, see <seealso marker="#match-3"><c>match/3</c></seealso>.</p> <p>If <c>{scope, {<anno>Start</anno>,<anno>Length</anno>}}</c> is specified in the options such that <c><anno>Start</anno></c> > size of <c><anno>Subject</anno></c>, <c><anno>Start</anno> + <anno>Length</anno></c> < 0 or <c><anno>Start</anno> + <anno>Length</anno></c> is > size of <c><anno>Subject</anno></c>, a <c>badarg</c> exception is raised.</p> </desc> </func> <func> <name name="part" arity="2"/> <fsummary>Extract a part of a binary.</fsummary> <desc> <p>Extracts the part of binary <c><anno>Subject</anno></c> described by <c><anno>PosLen</anno></c>.</p> <p>A negative length can be used to extract bytes at the end of a binary:</p> <code> 1> Bin = <<1,2,3,4,5,6,7,8,9,10>>. 2> binary:part(Bin, {byte_size(Bin), -5}). <<6,7,8,9,10>></code> <note> <p><seealso marker="#part-2">part/2</seealso> and <seealso marker="#part-3">part/3</seealso> are also available in the <seealso marker="erts:erlang"><c>erlang</c></seealso> module under the names <c>binary_part/2</c> and <c>binary_part/3</c>. Those BIFs are allowed in guard tests.</p> </note> <p>If <c><anno>PosLen</anno></c> in any way references outside the binary, a <c>badarg</c> exception is raised.</p> </desc> </func> <func> <name name="part" arity="3"/> <fsummary>Extract a part of a binary.</fsummary> <desc> <p>Same as <c>part(<anno>Subject</anno>, {<anno>Pos</anno>, <anno>Len</anno>})</c>.</p> </desc> </func> <func> <name name="referenced_byte_size" arity="1"/> <fsummary>Determine the size of the binary pointed out by a subbinary. </fsummary> <desc> <p>If a binary references a larger binary (often described as being a subbinary), it can be useful to get the size of the referenced binary. This function can be used in a program to trigger the use of <seealso marker="#copy/1"><c>copy/1</c></seealso>. By copying a binary, one can dereference the original, possibly large, binary that a smaller binary is a reference to.</p> <p><em>Example:</em></p> <code> store(Binary, GBSet) -> NewBin = case binary:referenced_byte_size(Binary) of Large when Large > 2 * byte_size(Binary) -> binary:copy(Binary); _ -> Binary end, gb_sets:insert(NewBin,GBSet).</code> <p>In this example, we chose to copy the binary content before inserting it in <c>gb_sets:set()</c> if it references a binary more than twice the data size we want to keep. Of course, different rules apply when copying to different programs.</p> <p>Binary sharing occurs whenever binaries are taken apart. This is the fundamental reason why binaries are fast, decomposition can always be done with O(1) complexity. In rare circumstances this data sharing is however undesirable, why this function together with <c>copy/1</c> can be useful when optimizing for memory use.</p> <p>Example of binary sharing:</p> <code> 1> A = binary:copy(<<1>>, 100). <<1,1,1,1,1 ... 2> byte_size(A). 100 3> binary:referenced_byte_size(A) 100 4> <<_:10/binary,B:10/binary,_/binary>> = A. <<1,1,1,1,1 ... 5> byte_size(B). 10 6> binary:referenced_byte_size(B) 100</code> <note> <p>Binary data is shared among processes. If another process still references the larger binary, copying the part this process uses only consumes more memory and does not free up the larger binary for garbage collection. Use this kind of intrusive functions with extreme care and only if a real problem is detected.</p> </note> </desc> </func> <func> <name name="replace" arity="3"/> <fsummary>Replace bytes in a binary according to a pattern.</fsummary> <desc> <p>Same as <c>replace(<anno>Subject</anno>, <anno>Pattern</anno>, <anno>Replacement</anno>,[])</c>.</p> </desc> </func> <func> <name name="replace" arity="4"/> <fsummary>Replace bytes in a binary according to a pattern.</fsummary> <type_desc variable="OnePos">An integer() =< byte_size(<anno>Replacement</anno>) </type_desc> <desc> <p>Constructs a new binary by replacing the parts in <c><anno>Subject</anno></c> matching <c><anno>Pattern</anno></c> with the content of <c><anno>Replacement</anno></c>.</p> <p>If the matching subpart of <c><anno>Subject</anno></c> giving raise to the replacement is to be inserted in the result, option <c>{insert_replaced, <anno>InsPos</anno>}</c> inserts the matching part into <c><anno>Replacement</anno></c> at the specified position (or positions) before inserting <c><anno>Replacement</anno></c> into <c><anno>Subject</anno></c>.</p> <p><em>Example:</em></p> <code> 1> binary:replace(<<"abcde">>,<<"b">>,<<"[]">>, [{insert_replaced,1}]). <<"a[b]cde">> 2> binary:replace(<<"abcde">>,[<<"b">>,<<"d">>],<<"[]">>,[global,{insert_replaced,1}]). <<"a[b]c[d]e">> 3> binary:replace(<<"abcde">>,[<<"b">>,<<"d">>],<<"[]">>,[global,{insert_replaced,[1,1]}]). <<"a[bb]c[dd]e">> 4> binary:replace(<<"abcde">>,[<<"b">>,<<"d">>],<<"[-]">>,[global,{insert_replaced,[1,2]}]). <<"a[b-b]c[d-d]e">></code> <p>If any position specified in <c><anno>InsPos</anno></c> > size of the replacement binary, a <c>badarg</c> exception is raised.</p> <p>Options <c>global</c> and <c>{scope, part()}</c> work as for <seealso marker="#split-3"><c>split/3</c></seealso>. The return type is always a <c>binary()</c>.</p> <p>For a description of <c><anno>Pattern</anno></c>, see <seealso marker="#compile_pattern-1"><c>compile_pattern/1</c></seealso>. </p> </desc> </func> <func> <name name="split" arity="2"/> <fsummary>Split a binary according to a pattern.</fsummary> <desc> <p>Same as <c>split(<anno>Subject</anno>, <anno>Pattern</anno>, [])</c>.</p> </desc> </func> <func> <name name="split" arity="3"/> <fsummary>Split a binary according to a pattern.</fsummary> <desc> <p>Splits <c><anno>Subject</anno></c> into a list of binaries based on <c><anno>Pattern</anno></c>. If option <c>global</c> is not specified, only the first occurrence of <c><anno>Pattern</anno></c> in <c><anno>Subject</anno></c> gives rise to a split.</p> <p>The parts of <c><anno>Pattern</anno></c> found in <c><anno>Subject</anno></c> are not included in the result.</p> <p><em>Example:</em></p> <code> 1> binary:split(<<1,255,4,0,0,0,2,3>>, [<<0,0,0>>,<<2>>],[]). [<<1,255,4>>, <<2,3>>] 2> binary:split(<<0,1,0,0,4,255,255,9>>, [<<0,0>>, <<255,255>>],[global]). [<<0,1>>,<<4>>,<<9>>]</code> <p>Summary of options:</p> <taglist> <tag>{scope, part()}</tag> <item><p>Works as in <seealso marker="#match-3"><c>match/3</c></seealso> and <seealso marker="#matches-3"><c>matches/3</c></seealso>. Notice that this only defines the scope of the search for matching strings, it does not cut the binary before splitting. The bytes before and after the scope are kept in the result. See the example below.</p></item> <tag>trim</tag> <item><p>Removes trailing empty parts of the result (as does <c>trim</c> in <seealso marker="re#split/3"><c>re:split/3</c></seealso>.</p></item> <tag>trim_all</tag> <item><p>Removes all empty parts of the result.</p></item> <tag>global</tag> <item><p>Repeats the split until <c><anno>Subject</anno></c> is exhausted. Conceptually option <c>global</c> makes split work on the positions returned by <seealso marker="#matches-3"><c>matches/3</c></seealso>, while it normally works on the position returned by <seealso marker="#match-3"><c>match/3</c></seealso>.</p></item> </taglist> <p>Example of the difference between a scope and taking the binary apart before splitting:</p> <code> 1> binary:split(<<"banana">>, [<<"a">>],[{scope,{2,3}}]). [<<"ban">>,<<"na">>] 2> binary:split(binary:part(<<"banana">>,{2,3}), [<<"a">>],[]). [<<"n">>,<<"n">>]</code> <p>The return type is always a list of binaries that are all referencing <c><anno>Subject</anno></c>. This means that the data in <c><anno>Subject</anno></c> is not copied to new binaries, and that <c><anno>Subject</anno></c> cannot be garbage collected until the results of the split are no longer referenced.</p> <p>For a description of <c><anno>Pattern</anno></c>, see <seealso marker="#compile_pattern-1"><c>compile_pattern/1</c></seealso>. </p> </desc> </func> </funcs> </erlref>