<?xml version="1.0" encoding="latin1" ?> <!DOCTYPE erlref SYSTEM "erlref.dtd"> <erlref> <header> <copyright> <year>2001</year><year>2012</year> <holder>Ericsson AB. All Rights Reserved.</holder> </copyright> <legalnotice> The contents of this file are subject to the Erlang Public License, Version 1.1, (the "License"); you may not use this file except in compliance with the License. You should have received a copy of the Erlang Public License along with this software. If not, it can be retrieved online at http://www.erlang.org/. Software distributed under the License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License for the specific language governing rights and limitations under the License. </legalnotice> <title>sofs</title> <prepared>Hans Bolinder</prepared> <responsible>nobody</responsible> <docno></docno> <approved>nobody</approved> <checked>no</checked> <date>2001-08-25</date> <rev>PA1</rev> <file>sofs.sgml</file> </header> <module>sofs</module> <modulesummary>Functions for Manipulating Sets of Sets</modulesummary> <description> <p>The <c>sofs</c> module implements operations on finite sets and relations represented as sets. Intuitively, a set is a collection of elements; every element belongs to the set, and the set contains every element.</p> <p>Given a set A and a sentence S(x), where x is a free variable, a new set B whose elements are exactly those elements of A for which S(x) holds can be formed, this is denoted B = {x in A : S(x)}. Sentences are expressed using the logical operators "for some" (or "there exists"), "for all", "and", "or", "not". If the existence of a set containing all the specified elements is known (as will always be the case in this module), we write B = {x : S(x)}. </p> <p>The <em>unordered set</em> containing the elements a, b and c is denoted {a, b, c}. This notation is not to be confused with tuples. The <em>ordered pair</em> of a and b, with first <em>coordinate</em> a and second coordinate b, is denoted (a, b). An ordered pair is an <em>ordered set</em> of two elements. In this module ordered sets can contain one, two or more elements, and parentheses are used to enclose the elements. Unordered sets and ordered sets are orthogonal, again in this module; there is no unordered set equal to any ordered set.</p> <p>The set that contains no elements is called the <em>empty set</em>. If two sets A and B contain the same elements, then A is <marker id="equal"></marker><em>equal</em> to B, denoted A = B. Two ordered sets are equal if they contain the same number of elements and have equal elements at each coordinate. If a set A contains all elements that B contains, then B is a <marker id="subset"></marker><em>subset</em> of A. The <marker id="union"></marker><em>union</em> of two sets A and B is the smallest set that contains all elements of A and all elements of B. The <marker id="intersection"></marker><em>intersection</em> of two sets A and B is the set that contains all elements of A that belong to B. Two sets are <marker id="disjoint"></marker><em>disjoint</em> if their intersection is the empty set. The <marker id="difference"></marker><em>difference</em> of two sets A and B is the set that contains all elements of A that do not belong to B. The <marker id="symmetric_difference"></marker><em>symmetric difference</em> of two sets is the set that contains those element that belong to either of the two sets, but not both. The <marker id="union_n"></marker><em>union</em> of a collection of sets is the smallest set that contains all the elements that belong to at least one set of the collection. The <marker id="intersection_n"></marker><em>intersection</em> of a non-empty collection of sets is the set that contains all elements that belong to every set of the collection.</p> <p>The <marker id="Cartesian_product"></marker><em>Cartesian product</em> of two sets X and Y, denoted X × Y, is the set {a : a = (x, y) for some x in X and for some y in Y}. A <marker id="relation"></marker><em>relation</em> is a subset of X × Y. Let R be a relation. The fact that (x, y) belongs to R is written as x R y. Since relations are sets, the definitions of the last paragraph (subset, union, and so on) apply to relations as well. The <marker id="domain"></marker><em>domain</em> of R is the set {x : x R y for some y in Y}. The <marker id="range"></marker><em>range</em> of R is the set {y : x R y for some x in X}. The <marker id="converse"></marker><em>converse</em> of R is the set {a : a = (y, x) for some (x, y) in R}. If A is a subset of X, then the <marker id="image"></marker><em>image</em> of A under R is the set {y : x R y for some x in A}, and if B is a subset of Y, then the <marker id="inverse_image"></marker><em>inverse image</em> of B is the set {x : x R y for some y in B}. If R is a relation from X to Y and S is a relation from Y to Z, then the <marker id="relative_product"></marker><em>relative product</em> of R and S is the relation T from X to Z defined so that x T z if and only if there exists an element y in Y such that x R y and y S z. The <marker id="restriction"></marker><em>restriction</em> of R to A is the set S defined so that x S y if and only if there exists an element x in A such that x R y. If S is a restriction of R to A, then R is an <marker id="extension"></marker><em>extension</em> of S to X. If X = Y then we call R a relation <em>in</em> X. The <marker id="field"></marker><em>field</em> of a relation R in X is the union of the domain of R and the range of R. If R is a relation in X, and if S is defined so that x S y if x R y and not x = y, then S is the <marker id="strict_relation"></marker><em>strict</em> relation corresponding to R, and vice versa, if S is a relation in X, and if R is defined so that x R y if x S y or x = y, then R is the <marker id="weak_relation"></marker><em>weak</em> relation corresponding to S. A relation R in X is <em>reflexive</em> if x R x for every element x of X; it is <em>symmetric</em> if x R y implies that y R x; and it is <em>transitive</em> if x R y and y R z imply that x R z.</p> <p>A <marker id="function"></marker><em>function</em> F is a relation, a subset of X × Y, such that the domain of F is equal to X and such that for every x in X there is a unique element y in Y with (x, y) in F. The latter condition can be formulated as follows: if x F y and x F z then y = z. In this module, it will not be required that the domain of F be equal to X for a relation to be considered a function. Instead of writing (x, y) in F or x F y, we write F(x) = y when F is a function, and say that F maps x onto y, or that the value of F at x is y. Since functions are relations, the definitions of the last paragraph (domain, range, and so on) apply to functions as well. If the converse of a function F is a function F', then F' is called the <marker id="inverse"></marker><em>inverse</em> of F. The relative product of two functions F1 and F2 is called the <marker id="composite"></marker><em>composite</em> of F1 and F2 if the range of F1 is a subset of the domain of F2. </p> <p>Sometimes, when the range of a function is more important than the function itself, the function is called a <em>family</em>. The domain of a family is called the <em>index set</em>, and the range is called the <em>indexed set</em>. If x is a family from I to X, then x[i] denotes the value of the function at index i. The notation "a family in X" is used for such a family. When the indexed set is a set of subsets of a set X, then we call x a <marker id="family"></marker><em>family of subsets</em> of X. If x is a family of subsets of X, then the union of the range of x is called the <em>union of the family</em> x. If x is non-empty (the index set is non-empty), the <em>intersection of the family</em> x is the intersection of the range of x. In this module, the only families that will be considered are families of subsets of some set X; in the following the word "family" will be used for such families of subsets.</p> <p>A <marker id="partition"></marker><em>partition</em> of a set X is a collection S of non-empty subsets of X whose union is X and whose elements are pairwise disjoint. A relation in a set is an <em>equivalence relation</em> if it is reflexive, symmetric and transitive. If R is an equivalence relation in X, and x is an element of X, the <marker id="equivalence_class"></marker><em>equivalence class</em> of x with respect to R is the set of all those elements y of X for which x R y holds. The equivalence classes constitute a partitioning of X. Conversely, if C is a partition of X, then the relation that holds for any two elements of X if they belong to the same equivalence class, is an equivalence relation induced by the partition C. If R is an equivalence relation in X, then the <marker id="canonical_map"></marker><em>canonical map</em> is the function that maps every element of X onto its equivalence class. </p> <p><marker id="binary_relation"></marker>Relations as defined above (as sets of ordered pairs) will from now on be referred to as <em>binary relations</em>. We call a set of ordered sets (x[1], ..., x[n]) an <marker id="n_ary_relation"></marker> <em>(n-ary) relation</em>, and say that the relation is a subset of the <marker id="Cartesian_product_tuple"></marker>Cartesian product X[1] × ... × X[n] where x[i] is an element of X[i], 1 <= i <= n. The <marker id="projection"></marker><em>projection</em> of an n-ary relation R onto coordinate i is the set {x[i] : (x[1], ..., x[i], ..., x[n]) in R for some x[j] in X[j], 1 <= j <= n and not i = j}. The projections of a binary relation R onto the first and second coordinates are the domain and the range of R respectively. The relative product of binary relations can be generalized to n-ary relations as follows. Let TR be an ordered set (R[1], ..., R[n]) of binary relations from X to Y[i] and S a binary relation from (Y[1] × ... × Y[n]) to Z. The <marker id="tuple_relative_product"></marker><em>relative product</em> of TR and S is the binary relation T from X to Z defined so that x T z if and only if there exists an element y[i] in Y[i] for each 1 <= i <= n such that x R[i] y[i] and (y[1], ..., y[n]) S z. Now let TR be a an ordered set (R[1], ..., R[n]) of binary relations from X[i] to Y[i] and S a subset of X[1] × ... × X[n]. The <marker id="multiple_relative_product"></marker><em>multiple relative product</em> of TR and S is defined to be the set {z : z = ((x[1], ..., x[n]), (y[1],...,y[n])) for some (x[1], ..., x[n]) in S and for some (x[i], y[i]) in R[i], 1 <= i <= n}. The <marker id="natural_join"></marker><em>natural join</em> of an n-ary relation R and an m-ary relation S on coordinate i and j is defined to be the set {z : z = (x[1], ..., x[n], y[1], ..., y[j-1], y[j+1], ..., y[m]) for some (x[1], ..., x[n]) in R and for some (y[1], ..., y[m]) in S such that x[i] = y[j]}.</p> <p><marker id="sets_definition"></marker>The sets recognized by this module will be represented by elements of the relation Sets, defined as the smallest set such that:</p> <list type="bulleted"> <item>for every atom T except '_' and for every term X, (T, X) belongs to Sets (<em>atomic sets</em>); </item> <item>(['_'], []) belongs to Sets (the <em>untyped empty set</em>); </item> <item>for every tuple T = {T[1], ..., T[n]} and for every tuple X = {X[1], ..., X[n]}, if (T[i], X[i]) belongs to Sets for every 1 <= i <= n then (T, X) belongs to Sets (<em>ordered sets</em>); </item> <item>for every term T, if X is the empty list or a non-empty sorted list [X[1], ..., X[n]] without duplicates such that (T, X[i]) belongs to Sets for every 1 <= i <= n, then ([T], X) belongs to Sets (<em>typed unordered sets</em>).</item> </list> <p>An <marker id="external_set"></marker><em>external set</em> is an element of the range of Sets. A <marker id="type"></marker><em>type</em> is an element of the domain of Sets. If S is an element (T, X) of Sets, then T is a <marker id="valid_type"></marker><em>valid type</em> of X, T is the type of S, and X is the external set of S. <seealso marker="#from_term">from_term/2</seealso> creates a set from a type and an Erlang term turned into an external set.</p> <p>The actual sets represented by Sets are the elements of the range of the function Set from Sets to Erlang terms and sets of Erlang terms:</p> <list type="bulleted"> <item>Set(T,Term) = Term, where T is an atom;</item> <item>Set({T[1], ..., T[n]}, {X[1], ..., X[n]}) = (Set(T[1], X[1]), ..., Set(T[n], X[n]));</item> <item>Set([T], [X[1], ..., X[n]]) = {Set(T, X[1]), ..., Set(T, X[n])};</item> <item>Set([T], []) = {}.</item> </list> <p>When there is no risk of confusion, elements of Sets will be identified with the sets they represent. For instance, if U is the result of calling <c>union/2</c> with S1 and S2 as arguments, then U is said to be the union of S1 and S2. A more precise formulation would be that Set(U) is the union of Set(S1) and Set(S2).</p> <p>The types are used to implement the various conditions that sets need to fulfill. As an example, consider the relative product of two sets R and S, and recall that the relative product of R and S is defined if R is a binary relation to Y and S is a binary relation from Y. The function that implements the relative product, <seealso marker="#relprod_impl">relative_product/2</seealso>, checks that the arguments represent binary relations by matching [{A,B}] against the type of the first argument (Arg1 say), and [{C,D}] against the type of the second argument (Arg2 say). The fact that [{A,B}] matches the type of Arg1 is to be interpreted as Arg1 representing a binary relation from X to Y, where X is defined as all sets Set(x) for some element x in Sets the type of which is A, and similarly for Y. In the same way Arg2 is interpreted as representing a binary relation from W to Z. Finally it is checked that B matches C, which is sufficient to ensure that W is equal to Y. The untyped empty set is handled separately: its type, ['_'], matches the type of any unordered set.</p> <p>A few functions of this module (<c>drestriction/3</c>, <c>family_projection/2</c>, <c>partition/2</c>, <c>partition_family/2</c>, <c>projection/2</c>, <c>restriction/3</c>, <c>substitution/2</c>) accept an Erlang function as a means to modify each element of a given unordered set. <marker id="set_fun"></marker>Such a function, called SetFun in the following, can be specified as a functional object (fun), a tuple <c>{external, Fun}</c>, or an integer. If SetFun is specified as a fun, the fun is applied to each element of the given set and the return value is assumed to be a set. If SetFun is specified as a tuple <c>{external, Fun}</c>, Fun is applied to the external set of each element of the given set and the return value is assumed to be an external set. Selecting the elements of an unordered set as external sets and assembling a new unordered set from a list of external sets is in the present implementation more efficient than modifying each element as a set. However, this optimization can only be utilized when the elements of the unordered set are atomic or ordered sets. It must also be the case that the type of the elements matches some clause of Fun (the type of the created set is the result of applying Fun to the type of the given set), and that Fun does nothing but selecting, duplicating or rearranging parts of the elements. Specifying a SetFun as an integer I is equivalent to specifying <c>{external, fun(X) -> element(I, X) end}</c>, but is to be preferred since it makes it possible to handle this case even more efficiently. Examples of SetFuns:</p> <pre> fun sofs:union/1 fun(S) -> sofs:partition(1, S) end {external, fun(A) -> A end} {external, fun({A,_,C}) -> {C,A} end} {external, fun({_,{_,C}}) -> C end} {external, fun({_,{_,{_,E}=C}}) -> {E,{E,C}} end} 2</pre> <p>The order in which a SetFun is applied to the elements of an unordered set is not specified, and may change in future versions of sofs.</p> <p>The execution time of the functions of this module is dominated by the time it takes to sort lists. When no sorting is needed, the execution time is in the worst case proportional to the sum of the sizes of the input arguments and the returned value. A few functions execute in constant time: <c>from_external</c>, <c>is_empty_set</c>, <c>is_set</c>, <c>is_sofs_set</c>, <c>to_external</c>, <c>type</c>.</p> <p>The functions of this module exit the process with a <c>badarg</c>, <c>bad_function</c>, or <c>type_mismatch</c> message when given badly formed arguments or sets the types of which are not compatible.</p> <p>When comparing external sets the operator <c>==/2</c> is used.</p> </description> <datatypes> <datatype> <name name="anyset"></name> <desc><p>Any kind of set (also included are the atomic sets).</p></desc> </datatype> <datatype> <name name="binary_relation"></name> <desc><p>A <seealso marker="#binary_relation">binary relation</seealso>.</p></desc> </datatype> <datatype> <name name="external_set"></name> <desc><p>An <seealso marker="#external_set">external set</seealso>.</p></desc> </datatype> <datatype> <name name="family"></name> <desc><p>A <seealso marker="#family">family</seealso> (of subsets).</p> </desc> </datatype> <datatype> <name name="a_function"></name> <desc><p>A <seealso marker="#function">function</seealso>.</p></desc> </datatype> <datatype> <name name="ordset"></name> <desc><p>An <seealso marker="#sets_definition">ordered set</seealso>.</p></desc> </datatype> <datatype> <name name="relation"></name> <desc><p>An <seealso marker="#n_ary_relation">n-ary relation</seealso>. </p></desc> </datatype> <datatype> <name name="a_set"></name> <desc><p>An <seealso marker="#sets_definition">unordered set</seealso>.</p></desc> </datatype> <datatype> <name name="set_of_sets"></name> <desc><p>An <seealso marker="#sets_definition">unordered set</seealso> of unordered sets.</p></desc> </datatype> <datatype> <name name="set_fun"></name> <desc><p>A <seealso marker="#set_fun">SetFun</seealso>.</p></desc> </datatype> <datatype> <name name="spec_fun"></name> </datatype> <datatype> <name name="type"></name> <desc><p>A <seealso marker="#type">type</seealso>.</p></desc> </datatype> <datatype> <!-- Parameterized opaque types are NYI: --> <name><marker id="type-tuple_of">tuple_of(T)</marker></name> <desc><p>A tuple where the elements are of type <c>T</c>.</p></desc> </datatype> </datatypes> <funcs> <func> <name name="a_function" arity="1"/> <name name="a_function" arity="2"/> <fsummary>Create a function.</fsummary> <desc> <p>Creates a <seealso marker="#function">function</seealso>. <c>a_function(F, T)</c> is equivalent to <c>from_term(F, T)</c>, if the result is a function. If no <seealso marker="#type">type</seealso> is explicitly given, <c>[{atom, atom}]</c> is used as type of the function.</p> </desc> </func> <func> <name name="canonical_relation" arity="1"/> <fsummary>Return the canonical map.</fsummary> <desc> <p>Returns the binary relation containing the elements (E, Set) such that Set belongs to <anno>SetOfSets</anno> and E belongs to Set. If SetOfSets is a <seealso marker="#partition">partition</seealso> of a set X and R is the equivalence relation in X induced by SetOfSets, then the returned relation is the <seealso marker="#canonical_map">canonical map</seealso> from X onto the equivalence classes with respect to R.</p> <pre> 1> <input>Ss = sofs:from_term([[a,b],[b,c]]),</input> <input>CR = sofs:canonical_relation(Ss),</input> <input>sofs:to_external(CR).</input> [{a,[a,b]},{b,[a,b]},{b,[b,c]},{c,[b,c]}]</pre> </desc> </func> <func> <name name="composite" arity="2"/> <fsummary>Return the composite of two functions.</fsummary> <desc> <p>Returns the <seealso marker="#composite">composite</seealso> of the functions <anno>Function1</anno> and <anno>Function2</anno>.</p> <pre> 1> <input>F1 = sofs:a_function([{a,1},{b,2},{c,2}]),</input> <input>F2 = sofs:a_function([{1,x},{2,y},{3,z}]),</input> <input>F = sofs:composite(F1, F2),</input> <input>sofs:to_external(F).</input> [{a,x},{b,y},{c,y}]</pre> </desc> </func> <func> <name name="constant_function" arity="2"/> <fsummary>Create the function that maps each element of a set onto another set.</fsummary> <desc> <p>Creates the <seealso marker="#function">function</seealso> that maps each element of the set Set onto AnySet.</p> <pre> 1> <input>S = sofs:set([a,b]),</input> <input>E = sofs:from_term(1),</input> <input>R = sofs:constant_function(S, E),</input> <input>sofs:to_external(R).</input> [{a,1},{b,1}]</pre> </desc> </func> <func> <name name="converse" arity="1"/> <fsummary>Return the converse of a binary relation.</fsummary> <desc> <p>Returns the <seealso marker="#converse">converse</seealso> of the binary relation <anno>BinRel1</anno>.</p> <pre> 1> <input>R1 = sofs:relation([{1,a},{2,b},{3,a}]),</input> <input>R2 = sofs:converse(R1),</input> <input>sofs:to_external(R2).</input> [{a,1},{a,3},{b,2}]</pre> </desc> </func> <func> <name name="difference" arity="2"/> <fsummary>Return the difference of two sets.</fsummary> <desc> <p>Returns the <seealso marker="#difference">difference</seealso> of the sets <anno>Set1</anno> and <anno>Set2</anno>.</p> </desc> </func> <func> <name name="digraph_to_family" arity="1"/> <name name="digraph_to_family" arity="2"/> <fsummary>Create a family from a directed graph.</fsummary> <desc> <p>Creates a <seealso marker="#family">family</seealso> from the directed graph <anno>Graph</anno>. Each vertex a of <anno>Graph</anno> is represented by a pair (a, {b[1], ..., b[n]}) where the b[i]'s are the out-neighbours of a. If no type is explicitly given, [{atom, [atom]}] is used as type of the family. It is assumed that <anno>Type</anno> is a <seealso marker="#valid_type">valid type</seealso> of the external set of the family.</p> <p>If G is a directed graph, it holds that the vertices and edges of G are the same as the vertices and edges of <c>family_to_digraph(digraph_to_family(G))</c>.</p> </desc> </func> <func> <name name="domain" arity="1"/> <fsummary>Return the domain of a binary relation.</fsummary> <desc> <p>Returns the <seealso marker="#domain">domain</seealso> of the binary relation <anno>BinRel</anno>.</p> <pre> 1> <input>R = sofs:relation([{1,a},{1,b},{2,b},{2,c}]),</input> <input>S = sofs:domain(R),</input> <input>sofs:to_external(S).</input> [1,2]</pre> </desc> </func> <func> <name name="drestriction" arity="2"/> <fsummary>Return a restriction of a binary relation.</fsummary> <desc> <p>Returns the difference between the binary relation <anno>BinRel1</anno> and the <seealso marker="#restriction">restriction</seealso> of <anno>BinRel1</anno> to <anno>Set</anno>.</p> <pre> 1> <input>R1 = sofs:relation([{1,a},{2,b},{3,c}]),</input> <input>S = sofs:set([2,4,6]),</input> <input>R2 = sofs:drestriction(R1, S),</input> <input>sofs:to_external(R2).</input> [{1,a},{3,c}]</pre> <p><c>drestriction(R, S)</c> is equivalent to <c>difference(R, restriction(R, S))</c>.</p> </desc> </func> <func> <name name="drestriction" arity="3"/> <fsummary>Return a restriction of a relation.</fsummary> <desc> <p>Returns a subset of <anno>Set1</anno> containing those elements that do not yield an element in <anno>Set2</anno> as the result of applying <anno>SetFun</anno>.</p> <pre> 1> <input>SetFun = {external, fun({_A,B,C}) -> {B,C} end},</input> <input>R1 = sofs:relation([{a,aa,1},{b,bb,2},{c,cc,3}]),</input> <input>R2 = sofs:relation([{bb,2},{cc,3},{dd,4}]),</input> <input>R3 = sofs:drestriction(SetFun, R1, R2),</input> <input>sofs:to_external(R3).</input> [{a,aa,1}]</pre> <p><c>drestriction(F, S1, S2)</c> is equivalent to <c>difference(S1, restriction(F, S1, S2))</c>.</p> </desc> </func> <func> <name name="empty_set" arity="0"/> <fsummary>Return the untyped empty set.</fsummary> <desc> <p>Returns the <seealso marker="#sets_definition">untyped empty set</seealso>. <c>empty_set()</c> is equivalent to <c>from_term([], ['_'])</c>.</p> </desc> </func> <func> <name name="extension" arity="3"/> <fsummary>Extend the domain of a binary relation.</fsummary> <desc> <p>Returns the <seealso marker="#extension">extension</seealso> of <anno>BinRel1</anno> such that for each element E in <anno>Set</anno> that does not belong to the <seealso marker="#domain">domain</seealso> of <anno>BinRel1</anno>, <anno>BinRel2</anno> contains the pair (E, AnySet).</p> <pre> 1> <input>S = sofs:set([b,c]),</input> <input>A = sofs:empty_set(),</input> <input>R = sofs:family([{a,[1,2]},{b,[3]}]),</input> <input>X = sofs:extension(R, S, A),</input> <input>sofs:to_external(X).</input> [{a,[1,2]},{b,[3]},{c,[]}]</pre> </desc> </func> <func> <name name="family" arity="1"/> <name name="family" arity="2"/> <fsummary>Create a family of subsets.</fsummary> <desc> <p>Creates a <seealso marker="#family">family of subsets</seealso>. <c>family(F, T)</c> is equivalent to <c>from_term(F, T)</c>, if the result is a family. If no <seealso marker="#type">type</seealso> is explicitly given, <c>[{atom, [atom]}]</c> is used as type of the family.</p> </desc> </func> <func> <name name="family_difference" arity="2"/> <fsummary>Return the difference of two families.</fsummary> <desc> <p>If <anno>Family1</anno> and <anno>Family2</anno> are <seealso marker="#family">families</seealso>, then <anno>Family3</anno> is the family such that the index set is equal to the index set of <anno>Family1</anno>, and <anno>Family3</anno>[i] is the difference between <anno>Family1</anno>[i] and <anno>Family2</anno>[i] if <anno>Family2</anno> maps i, <anno>Family1</anno>[i] otherwise.</p> <pre> 1> <input>F1 = sofs:family([{a,[1,2]},{b,[3,4]}]),</input> <input>F2 = sofs:family([{b,[4,5]},{c,[6,7]}]),</input> <input>F3 = sofs:family_difference(F1, F2),</input> <input>sofs:to_external(F3).</input> [{a,[1,2]},{b,[3]}]</pre> </desc> </func> <func> <name name="family_domain" arity="1"/> <fsummary>Return a family of domains.</fsummary> <desc> <p>If <anno>Family1</anno> is a <seealso marker="#family">family</seealso> and <anno>Family1</anno>[i] is a binary relation for every i in the index set of <anno>Family1</anno>, then <anno>Family2</anno> is the family with the same index set as <anno>Family1</anno> such that <anno>Family2</anno>[i] is the <seealso marker="#domain">domain</seealso> of <anno>Family1</anno>[i].</p> <pre> 1> <input>FR = sofs:from_term([{a,[{1,a},{2,b},{3,c}]},{b,[]},{c,[{4,d},{5,e}]}]),</input> <input>F = sofs:family_domain(FR),</input> <input>sofs:to_external(F).</input> [{a,[1,2,3]},{b,[]},{c,[4,5]}]</pre> </desc> </func> <func> <name name="family_field" arity="1"/> <fsummary>Return a family of fields.</fsummary> <desc> <p>If <anno>Family1</anno> is a <seealso marker="#family">family</seealso> and <anno>Family1</anno>[i] is a binary relation for every i in the index set of <anno>Family1</anno>, then <anno>Family2</anno> is the family with the same index set as <anno>Family1</anno> such that <anno>Family2</anno>[i] is the <seealso marker="#field">field</seealso> of <anno>Family1</anno>[i].</p> <pre> 1> <input>FR = sofs:from_term([{a,[{1,a},{2,b},{3,c}]},{b,[]},{c,[{4,d},{5,e}]}]),</input> <input>F = sofs:family_field(FR),</input> <input>sofs:to_external(F).</input> [{a,[1,2,3,a,b,c]},{b,[]},{c,[4,5,d,e]}]</pre> <p><c>family_field(Family1)</c> is equivalent to <c>family_union(family_domain(Family1), family_range(Family1))</c>.</p> </desc> </func> <func> <name name="family_intersection" arity="1"/> <fsummary>Return the intersection of a family of sets of sets.</fsummary> <desc> <p>If <anno>Family1</anno> is a <seealso marker="#family">family</seealso> and <anno>Family1</anno>[i] is a set of sets for every i in the index set of <anno>Family1</anno>, then <anno>Family2</anno> is the family with the same index set as <anno>Family1</anno> such that <anno>Family2</anno>[i] is the <seealso marker="#intersection_n">intersection</seealso> of <anno>Family1</anno>[i].</p> <p>If <anno>Family1</anno>[i] is an empty set for some i, then the process exits with a <c>badarg</c> message.</p> <pre> 1> <input>F1 = sofs:from_term([{a,[[1,2,3],[2,3,4]]},{b,[[x,y,z],[x,y]]}]),</input> <input>F2 = sofs:family_intersection(F1),</input> <input>sofs:to_external(F2).</input> [{a,[2,3]},{b,[x,y]}]</pre> </desc> </func> <func> <name name="family_intersection" arity="2"/> <fsummary>Return the intersection of two families.</fsummary> <desc> <p>If <anno>Family1</anno> and <anno>Family2</anno> are <seealso marker="#family">families</seealso>, then <anno>Family3</anno> is the family such that the index set is the intersection of <anno>Family1</anno>'s and <anno>Family2</anno>'s index sets, and <anno>Family3</anno>[i] is the intersection of <anno>Family1</anno>[i] and <anno>Family2</anno>[i].</p> <pre> 1> <input>F1 = sofs:family([{a,[1,2]},{b,[3,4]},{c,[5,6]}]),</input> <input>F2 = sofs:family([{b,[4,5]},{c,[7,8]},{d,[9,10]}]),</input> <input>F3 = sofs:family_intersection(F1, F2),</input> <input>sofs:to_external(F3).</input> [{b,[4]},{c,[]}]</pre> </desc> </func> <func> <name name="family_projection" arity="2"/> <fsummary>Return a family of modified subsets.</fsummary> <desc> <p>If <anno>Family1</anno> is a <seealso marker="#family">family</seealso> then <anno>Family2</anno> is the family with the same index set as <anno>Family1</anno> such that <anno>Family2</anno>[i] is the result of calling <anno>SetFun</anno> with <anno>Family1</anno>[i] as argument.</p> <pre> 1> <input>F1 = sofs:from_term([{a,[[1,2],[2,3]]},{b,[[]]}]),</input> <input>F2 = sofs:family_projection(fun sofs:union/1, F1),</input> <input>sofs:to_external(F2).</input> [{a,[1,2,3]},{b,[]}]</pre> </desc> </func> <func> <name name="family_range" arity="1"/> <fsummary>Return a family of ranges.</fsummary> <desc> <p>If <anno>Family1</anno> is a <seealso marker="#family">family</seealso> and <anno>Family1</anno>[i] is a binary relation for every i in the index set of <anno>Family1</anno>, then <anno>Family2</anno> is the family with the same index set as <anno>Family1</anno> such that <anno>Family2</anno>[i] is the <seealso marker="#range">range</seealso> of <anno>Family1</anno>[i].</p> <pre> 1> <input>FR = sofs:from_term([{a,[{1,a},{2,b},{3,c}]},{b,[]},{c,[{4,d},{5,e}]}]),</input> <input>F = sofs:family_range(FR),</input> <input>sofs:to_external(F).</input> [{a,[a,b,c]},{b,[]},{c,[d,e]}]</pre> </desc> </func> <func> <name name="family_specification" arity="2"/> <fsummary>Select a subset of a family using a predicate.</fsummary> <desc> <p>If <anno>Family1</anno> is a <seealso marker="#family">family</seealso>, then <anno>Family2</anno> is the <seealso marker="#restriction">restriction</seealso> of <anno>Family1</anno> to those elements i of the index set for which <anno>Fun</anno> applied to <anno>Family1</anno>[i] returns <c>true</c>. If <anno>Fun</anno> is a tuple <c>{external, Fun2}</c>, Fun2 is applied to the <seealso marker="#external_set">external set</seealso> of <anno>Family1</anno>[i], otherwise <anno>Fun</anno> is applied to <anno>Family1</anno>[i].</p> <pre> 1> <input>F1 = sofs:family([{a,[1,2,3]},{b,[1,2]},{c,[1]}]),</input> <input>SpecFun = fun(S) -> sofs:no_elements(S) =:= 2 end,</input> <input>F2 = sofs:family_specification(SpecFun, F1),</input> <input>sofs:to_external(F2).</input> [{b,[1,2]}]</pre> </desc> </func> <func> <name name="family_to_digraph" arity="1"/> <name name="family_to_digraph" arity="2"/> <fsummary>Create a directed graph from a family.</fsummary> <desc> <p>Creates a directed graph from the <seealso marker="#family">family</seealso> <anno>Family</anno>. For each pair (a, {b[1], ..., b[n]}) of <anno>Family</anno>, the vertex a as well the edges (a, b[i]) for 1 <= i <= n are added to a newly created directed graph.</p> <p>If no graph type is given <seealso marker="digraph#new/0"> digraph:new/0</seealso> is used for creating the directed graph, otherwise the <anno>GraphType</anno> argument is passed on as second argument to <seealso marker="digraph#new/1">digraph:new/1</seealso>.</p> <p>It F is a family, it holds that F is a subset of <c>digraph_to_family(family_to_digraph(F), type(F))</c>. Equality holds if <c>union_of_family(F)</c> is a subset of <c>domain(F)</c>.</p> <p>Creating a cycle in an acyclic graph exits the process with a <c>cyclic</c> message.</p> </desc> </func> <func> <name name="family_to_relation" arity="1"/> <fsummary>Create a binary relation from a family.</fsummary> <desc> <p>If <anno>Family</anno> is a <seealso marker="#family">family</seealso>, then <anno>BinRel</anno> is the binary relation containing all pairs (i, x) such that i belongs to the index set of <anno>Family</anno> and x belongs to <anno>Family</anno>[i].</p> <pre> 1> <input>F = sofs:family([{a,[]}, {b,[1]}, {c,[2,3]}]),</input> <input>R = sofs:family_to_relation(F),</input> <input>sofs:to_external(R).</input> [{b,1},{c,2},{c,3}]</pre> </desc> </func> <func> <name name="family_union" arity="1"/> <fsummary>Return the union of a family of sets of sets.</fsummary> <desc> <p>If <anno>Family1</anno> is a <seealso marker="#family">family</seealso> and <anno>Family1</anno>[i] is a set of sets for each i in the index set of <anno>Family1</anno>, then <anno>Family2</anno> is the family with the same index set as <anno>Family1</anno> such that <anno>Family2</anno>[i] is the <seealso marker="#union_n">union</seealso> of <anno>Family1</anno>[i].</p> <pre> 1> <input>F1 = sofs:from_term([{a,[[1,2],[2,3]]},{b,[[]]}]),</input> <input>F2 = sofs:family_union(F1),</input> <input>sofs:to_external(F2).</input> [{a,[1,2,3]},{b,[]}]</pre> <p><c>family_union(F)</c> is equivalent to <c>family_projection(fun sofs:union/1, F)</c>.</p> </desc> </func> <func> <name name="family_union" arity="2"/> <fsummary>Return the union of two families.</fsummary> <desc> <p>If <anno>Family1</anno> and <anno>Family2</anno> are <seealso marker="#family">families</seealso>, then <anno>Family3</anno> is the family such that the index set is the union of <anno>Family1</anno>'s and <anno>Family2</anno>'s index sets, and <anno>Family3</anno>[i] is the union of <anno>Family1</anno>[i] and <anno>Family2</anno>[i] if both maps i, <anno>Family1</anno>[i] or <anno>Family2</anno>[i] otherwise.</p> <pre> 1> <input>F1 = sofs:family([{a,[1,2]},{b,[3,4]},{c,[5,6]}]),</input> <input>F2 = sofs:family([{b,[4,5]},{c,[7,8]},{d,[9,10]}]),</input> <input>F3 = sofs:family_union(F1, F2),</input> <input>sofs:to_external(F3).</input> [{a,[1,2]},{b,[3,4,5]},{c,[5,6,7,8]},{d,[9,10]}]</pre> </desc> </func> <func> <name name="field" arity="1"/> <fsummary>Return the field of a binary relation.</fsummary> <desc> <p>Returns the <seealso marker="#field">field</seealso> of the binary relation <anno>BinRel</anno>.</p> <pre> 1> <input>R = sofs:relation([{1,a},{1,b},{2,b},{2,c}]),</input> <input>S = sofs:field(R),</input> <input>sofs:to_external(S).</input> [1,2,a,b,c]</pre> <p><c>field(R)</c> is equivalent to <c>union(domain(R), range(R))</c>.</p> </desc> </func> <func> <name name="from_external" arity="2"/> <fsummary>Create a set.</fsummary> <desc> <p>Creates a set from the <seealso marker="#external_set">external set</seealso> <anno>ExternalSet</anno> and the <seealso marker="#type">type</seealso> <anno>Type</anno>. It is assumed that <anno>Type</anno> is a <seealso marker="#valid_type">valid type</seealso> of <anno>ExternalSet</anno>.</p> </desc> </func> <func> <name name="from_sets" arity="1" clause_i="1"/> <fsummary>Create a set out of a list of sets.</fsummary> <desc> <p>Returns the <seealso marker="#sets_definition">unordered set</seealso> containing the sets of the list <anno>ListOfSets</anno>.</p> <pre> 1> <input>S1 = sofs:relation([{a,1},{b,2}]),</input> <input>S2 = sofs:relation([{x,3},{y,4}]),</input> <input>S = sofs:from_sets([S1,S2]),</input> <input>sofs:to_external(S).</input> [[{a,1},{b,2}],[{x,3},{y,4}]]</pre> </desc> </func> <func> <name name="from_sets" arity="1" clause_i="2"/> <fsummary>Create an ordered set out of a tuple of sets.</fsummary> <desc> <p>Returns the <seealso marker="#sets_definition">ordered set</seealso> containing the sets of the non-empty tuple <anno>TupleOfSets</anno>.</p> </desc> </func> <func> <name name="from_term" arity="1"/> <name name="from_term" arity="2"/> <fsummary>Create a set.</fsummary> <desc> <p><marker id="from_term"></marker>Creates an element of <seealso marker="#sets_definition">Sets</seealso> by traversing the term <anno>Term</anno>, sorting lists, removing duplicates and deriving or verifying a <seealso marker="#valid_type">valid type</seealso> for the so obtained external set. An explicitly given <seealso marker="#type">type</seealso> <anno>Type</anno> can be used to limit the depth of the traversal; an atomic type stops the traversal, as demonstrated by this example where "foo" and {"foo"} are left unmodified:</p> <pre> 1> <input>S = sofs:from_term([{{"foo"},[1,1]},{"foo",[2,2]}], [{atom,[atom]}]),</input> <input>sofs:to_external(S).</input> [{{"foo"},[1]},{"foo",[2]}]</pre> <p><c>from_term</c> can be used for creating atomic or ordered sets. The only purpose of such a set is that of later building unordered sets since all functions in this module that <em>do</em> anything operate on unordered sets. Creating unordered sets from a collection of ordered sets may be the way to go if the ordered sets are big and one does not want to waste heap by rebuilding the elements of the unordered set. An example showing that a set can be built "layer by layer":</p> <pre> 1> <input>A = sofs:from_term(a),</input> <input>S = sofs:set([1,2,3]),</input> <input>P1 = sofs:from_sets({A,S}),</input> <input>P2 = sofs:from_term({b,[6,5,4]}),</input> <input>Ss = sofs:from_sets([P1,P2]),</input> <input>sofs:to_external(Ss).</input> [{a,[1,2,3]},{b,[4,5,6]}]</pre> <p>Other functions that create sets are <c>from_external/2</c> and <c>from_sets/1</c>. Special cases of <c>from_term/2</c> are <c>a_function/1,2</c>, <c>empty_set/0</c>, <c>family/1,2</c>, <c>relation/1,2</c>, and <c>set/1,2</c>.</p> </desc> </func> <func> <name name="image" arity="2"/> <fsummary>Return the image of a set under a binary relation.</fsummary> <desc> <p>Returns the <seealso marker="#image">image</seealso> of the set <anno>Set1</anno> under the binary relation <anno>BinRel</anno>.</p> <pre> 1> <input>R = sofs:relation([{1,a},{2,b},{2,c},{3,d}]),</input> <input>S1 = sofs:set([1,2]),</input> <input>S2 = sofs:image(R, S1),</input> <input>sofs:to_external(S2).</input> [a,b,c]</pre> </desc> </func> <func> <name name="intersection" arity="1"/> <fsummary>Return the intersection of a set of sets.</fsummary> <desc> <p>Returns the <seealso marker="#intersection_n">intersection</seealso> of the set of sets <anno>SetOfSets</anno>.</p> <p>Intersecting an empty set of sets exits the process with a <c>badarg</c> message.</p> </desc> </func> <func> <name name="intersection" arity="2"/> <fsummary>Return the intersection of two sets.</fsummary> <desc> <p>Returns the <seealso marker="#intersection">intersection</seealso> of <anno>Set1</anno> and <anno>Set2</anno>.</p> </desc> </func> <func> <name name="intersection_of_family" arity="1"/> <fsummary>Return the intersection of a family.</fsummary> <desc> <p>Returns the intersection of the <seealso marker="#family">family</seealso> <anno>Family</anno>. </p> <p>Intersecting an empty family exits the process with a <c>badarg</c> message.</p> <pre> 1> <input>F = sofs:family([{a,[0,2,4]},{b,[0,1,2]},{c,[2,3]}]),</input> <input>S = sofs:intersection_of_family(F),</input> <input>sofs:to_external(S).</input> [2]</pre> </desc> </func> <func> <name name="inverse" arity="1"/> <fsummary>Return the inverse of a function.</fsummary> <desc> <p>Returns the <seealso marker="#inverse">inverse</seealso> of the function <anno>Function1</anno>.</p> <pre> 1> <input>R1 = sofs:relation([{1,a},{2,b},{3,c}]),</input> <input>R2 = sofs:inverse(R1),</input> <input>sofs:to_external(R2).</input> [{a,1},{b,2},{c,3}]</pre> </desc> </func> <func> <name name="inverse_image" arity="2"/> <fsummary>Return the inverse image of a set under a binary relation.</fsummary> <desc> <p>Returns the <seealso marker="#inverse_image">inverse image</seealso> of <anno>Set1</anno> under the binary relation <anno>BinRel</anno>.</p> <pre> 1> <input>R = sofs:relation([{1,a},{2,b},{2,c},{3,d}]),</input> <input>S1 = sofs:set([c,d,e]),</input> <input>S2 = sofs:inverse_image(R, S1),</input> <input>sofs:to_external(S2).</input> [2,3]</pre> </desc> </func> <func> <name name="is_a_function" arity="1"/> <fsummary>Test for a function.</fsummary> <desc> <p>Returns <c>true</c> if the binary relation <anno>BinRel</anno> is a <seealso marker="#function">function</seealso> or the untyped empty set, <c>false</c> otherwise.</p> </desc> </func> <func> <name name="is_disjoint" arity="2"/> <fsummary>Test for disjoint sets.</fsummary> <desc> <p>Returns <c>true</c> if <anno>Set1</anno> and <anno>Set2</anno> are <seealso marker="#disjoint">disjoint</seealso>, <c>false</c> otherwise.</p> </desc> </func> <func> <name name="is_empty_set" arity="1"/> <fsummary>Test for an empty set.</fsummary> <desc> <p>Returns <c>true</c> if <anno>AnySet</anno> is an empty unordered set, <c>false</c> otherwise.</p> </desc> </func> <func> <name name="is_equal" arity="2"/> <fsummary>Test two sets for equality.</fsummary> <desc> <p>Returns <c>true</c> if the <anno>AnySet1</anno> and <anno>AnySet2</anno> are <seealso marker="#equal">equal</seealso>, <c>false</c> otherwise. This example shows that <c>==/2</c> is used when comparing sets for equality:</p> <pre> 1> <input>S1 = sofs:set([1.0]),</input> <input>S2 = sofs:set([1]),</input> <input>sofs:is_equal(S1, S2).</input> true</pre> </desc> </func> <func> <name name="is_set" arity="1"/> <fsummary>Test for an unordered set.</fsummary> <desc> <p>Returns <c>true</c> if <anno>AnySet</anno> is an <seealso marker="#sets_definition">unordered set</seealso>, and <c>false</c> if <anno>AnySet</anno> is an ordered set or an atomic set.</p> </desc> </func> <func> <name name="is_sofs_set" arity="1"/> <fsummary>Test for an unordered set.</fsummary> <desc> <p>Returns <c>true</c> if <anno>Term</anno> is an <seealso marker="#sets_definition">unordered set</seealso>, an ordered set or an atomic set, <c>false</c> otherwise.</p> </desc> </func> <func> <name name="is_subset" arity="2"/> <fsummary>Test two sets for subset.</fsummary> <desc> <p>Returns <c>true</c> if <anno>Set1</anno> is a <seealso marker="#subset">subset</seealso> of <anno>Set2</anno>, <c>false</c> otherwise.</p> </desc> </func> <func> <name name="is_type" arity="1"/> <fsummary>Test for a type.</fsummary> <desc> <p>Returns <c>true</c> if the term <anno>Term</anno> is a <seealso marker="#type">type</seealso>.</p> </desc> </func> <func> <name name="join" arity="4"/> <fsummary>Return the join of two relations.</fsummary> <desc> <p>Returns the <seealso marker="#natural_join">natural join</seealso> of the relations <anno>Relation1</anno> and <anno>Relation2</anno> on coordinates <anno>I</anno> and <anno>J</anno>.</p> <pre> 1> <input>R1 = sofs:relation([{a,x,1},{b,y,2}]),</input> <input>R2 = sofs:relation([{1,f,g},{1,h,i},{2,3,4}]),</input> <input>J = sofs:join(R1, 3, R2, 1),</input> <input>sofs:to_external(J).</input> [{a,x,1,f,g},{a,x,1,h,i},{b,y,2,3,4}]</pre> </desc> </func> <func> <name name="multiple_relative_product" arity="2"/> <fsummary>Return the multiple relative product of a tuple of binary relations and a relation.</fsummary> <desc> <p>If <anno>TupleOfBinRels</anno> is a non-empty tuple {R[1], ..., R[n]} of binary relations and <anno>BinRel1</anno> is a binary relation, then <anno>BinRel2</anno> is the <seealso marker="#multiple_relative_product">multiple relative product</seealso> of the ordered set (R[i], ..., R[n]) and <anno>BinRel1</anno>.</p> <pre> 1> <input>Ri = sofs:relation([{a,1},{b,2},{c,3}]),</input> <input>R = sofs:relation([{a,b},{b,c},{c,a}]),</input> <input>MP = sofs:multiple_relative_product({Ri, Ri}, R),</input> <input>sofs:to_external(sofs:range(MP)).</input> [{1,2},{2,3},{3,1}]</pre> </desc> </func> <func> <name name="no_elements" arity="1"/> <fsummary>Return the number of elements of a set.</fsummary> <desc> <p>Returns the number of elements of the ordered or unordered set <anno>ASet</anno>.</p> </desc> </func> <func> <name name="partition" arity="1"/> <fsummary>Return the coarsest partition given a set of sets.</fsummary> <desc> <p>Returns the <seealso marker="#partition">partition</seealso> of the union of the set of sets <anno>SetOfSets</anno> such that two elements are considered equal if they belong to the same elements of <anno>SetOfSets</anno>.</p> <pre> 1> <input>Sets1 = sofs:from_term([[a,b,c],[d,e,f],[g,h,i]]),</input> <input>Sets2 = sofs:from_term([[b,c,d],[e,f,g],[h,i,j]]),</input> <input>P = sofs:partition(sofs:union(Sets1, Sets2)),</input> <input>sofs:to_external(P).</input> [[a],[b,c],[d],[e,f],[g],[h,i],[j]]</pre> </desc> </func> <func> <name name="partition" arity="2"/> <fsummary>Return a partition of a set.</fsummary> <desc> <p>Returns the <seealso marker="#partition">partition</seealso> of <anno>Set</anno> such that two elements are considered equal if the results of applying <anno>SetFun</anno> are equal.</p> <pre> 1> <input>Ss = sofs:from_term([[a],[b],[c,d],[e,f]]),</input> <input>SetFun = fun(S) -> sofs:from_term(sofs:no_elements(S)) end,</input> <input>P = sofs:partition(SetFun, Ss),</input> <input>sofs:to_external(P).</input> [[[a],[b]],[[c,d],[e,f]]]</pre> </desc> </func> <func> <name name="partition" arity="3"/> <fsummary>Return a partition of a set.</fsummary> <desc> <p>Returns a pair of sets that, regarded as constituting a set, forms a <seealso marker="#partition">partition</seealso> of <anno>Set1</anno>. If the result of applying <anno>SetFun</anno> to an element of <anno>Set1</anno> yields an element in <anno>Set2</anno>, the element belongs to <anno>Set3</anno>, otherwise the element belongs to <anno>Set4</anno>.</p> <pre> 1> <input>R1 = sofs:relation([{1,a},{2,b},{3,c}]),</input> <input>S = sofs:set([2,4,6]),</input> <input>{R2,R3} = sofs:partition(1, R1, S),</input> <input>{sofs:to_external(R2),sofs:to_external(R3)}.</input> {[{2,b}],[{1,a},{3,c}]}</pre> <p><c>partition(F, S1, S2)</c> is equivalent to <c>{restriction(F, S1, S2), drestriction(F, S1, S2)}</c>.</p> </desc> </func> <func> <name name="partition_family" arity="2"/> <fsummary>Return a family indexing a partition.</fsummary> <desc> <p>Returns the <seealso marker="#family">family</seealso> <anno>Family</anno> where the indexed set is a <seealso marker="#partition">partition</seealso> of <anno>Set</anno> such that two elements are considered equal if the results of applying <anno>SetFun</anno> are the same value i. This i is the index that <anno>Family</anno> maps onto the <seealso marker="#equivalence_class">equivalence class</seealso>.</p> <pre> 1> <input>S = sofs:relation([{a,a,a,a},{a,a,b,b},{a,b,b,b}]),</input> <input>SetFun = {external, fun({A,_,C,_}) -> {A,C} end},</input> <input>F = sofs:partition_family(SetFun, S),</input> <input>sofs:to_external(F).</input> [{{a,a},[{a,a,a,a}]},{{a,b},[{a,a,b,b},{a,b,b,b}]}]</pre> </desc> </func> <func> <name name="product" arity="1"/> <fsummary>Return the Cartesian product of a tuple of sets.</fsummary> <desc> <p>Returns the <seealso marker="#Cartesian_product_tuple">Cartesian product</seealso> of the non-empty tuple of sets <anno>TupleOfSets</anno>. If (x[1], ..., x[n]) is an element of the n-ary relation <anno>Relation</anno>, then x[i] is drawn from element i of <anno>TupleOfSets</anno>.</p> <pre> 1> <input>S1 = sofs:set([a,b]),</input> <input>S2 = sofs:set([1,2]),</input> <input>S3 = sofs:set([x,y]),</input> <input>P3 = sofs:product({S1,S2,S3}),</input> <input>sofs:to_external(P3).</input> [{a,1,x},{a,1,y},{a,2,x},{a,2,y},{b,1,x},{b,1,y},{b,2,x},{b,2,y}]</pre> </desc> </func> <func> <name name="product" arity="2"/> <fsummary>Return the Cartesian product of two sets.</fsummary> <desc> <p>Returns the <seealso marker="#Cartesian_product">Cartesian product</seealso> of <anno>Set1</anno> and <anno>Set2</anno>.</p> <pre> 1> <input>S1 = sofs:set([1,2]),</input> <input>S2 = sofs:set([a,b]),</input> <input>R = sofs:product(S1, S2),</input> <input>sofs:to_external(R).</input> [{1,a},{1,b},{2,a},{2,b}]</pre> <p><c>product(S1, S2)</c> is equivalent to <c>product({S1, S2})</c>.</p> </desc> </func> <func> <name name="projection" arity="2"/> <fsummary>Return a set of substituted elements.</fsummary> <desc> <p>Returns the set created by substituting each element of <anno>Set1</anno> by the result of applying <anno>SetFun</anno> to the element.</p> <p>If <anno>SetFun</anno> is a number i >= 1 and <anno>Set1</anno> is a relation, then the returned set is the <seealso marker="#projection">projection</seealso> of <anno>Set1</anno> onto coordinate i.</p> <pre> 1> <input>S1 = sofs:from_term([{1,a},{2,b},{3,a}]),</input> <input>S2 = sofs:projection(2, S1),</input> <input>sofs:to_external(S2).</input> [a,b]</pre> </desc> </func> <func> <name name="range" arity="1"/> <fsummary>Return the range of a binary relation.</fsummary> <desc> <p>Returns the <seealso marker="#range">range</seealso> of the binary relation <anno>BinRel</anno>.</p> <pre> 1> <input>R = sofs:relation([{1,a},{1,b},{2,b},{2,c}]),</input> <input>S = sofs:range(R),</input> <input>sofs:to_external(S).</input> [a,b,c]</pre> </desc> </func> <func> <name name="relation" arity="1"/> <name name="relation" arity="2"/> <fsummary>Create a relation.</fsummary> <desc> <p>Creates a <seealso marker="#relation">relation</seealso>. <c>relation(R, T)</c> is equivalent to <c>from_term(R, T)</c>, if T is a <seealso marker="#type">type</seealso> and the result is a relation. If <anno>Type</anno> is an integer N, then <c>[{atom, ..., atom}])</c>, where the size of the tuple is N, is used as type of the relation. If no type is explicitly given, the size of the first tuple of <anno>Tuples</anno> is used if there is such a tuple. <c>relation([])</c> is equivalent to <c>relation([], 2)</c>.</p> </desc> </func> <func> <name name="relation_to_family" arity="1"/> <fsummary>Create a family from a binary relation.</fsummary> <desc> <p>Returns the <seealso marker="#family">family</seealso> <anno>Family</anno> such that the index set is equal to the <seealso marker="#domain">domain</seealso> of the binary relation <anno>BinRel</anno>, and <anno>Family</anno>[i] is the <seealso marker="#image">image</seealso> of the set of i under <anno>BinRel</anno>.</p> <pre> 1> <input>R = sofs:relation([{b,1},{c,2},{c,3}]),</input> <input>F = sofs:relation_to_family(R),</input> <input>sofs:to_external(F).</input> [{b,[1]},{c,[2,3]}]</pre> </desc> </func> <func> <name name="relative_product" arity="1"/> <name name="relative_product" arity="2" clause_i="1"/> <fsummary>Return the relative product of a list of binary relations and a binary relation.</fsummary> <desc> <p>If <anno>ListOfBinRels</anno> is a non-empty list [R[1], ..., R[n]] of binary relations and <anno>BinRel1</anno> is a binary relation, then <anno>BinRel2</anno> is the <seealso marker="#tuple_relative_product">relative product</seealso> of the ordered set (R[i], ..., R[n]) and <anno>BinRel1</anno>.</p> <p>If <anno>BinRel1</anno> is omitted, the relation of equality between the elements of the <seealso marker="#Cartesian_product_tuple">Cartesian product</seealso> of the ranges of R[i], range R[1] × ... × range R[n], is used instead (intuitively, nothing is "lost").</p> <pre> 1> <input>TR = sofs:relation([{1,a},{1,aa},{2,b}]),</input> <input>R1 = sofs:relation([{1,u},{2,v},{3,c}]),</input> <input>R2 = sofs:relative_product([TR, R1]),</input> <input>sofs:to_external(R2).</input> [{1,{a,u}},{1,{aa,u}},{2,{b,v}}]</pre> <p>Note that <c>relative_product([R1], R2)</c> is different from <c>relative_product(R1, R2)</c>; the list of one element is not identified with the element itself.</p> </desc> </func> <func> <name name="relative_product" arity="2" clause_i="2"/> <fsummary>Return the relative product of two binary relations.</fsummary> <desc> <p><marker id="relprod_impl"></marker>Returns the <seealso marker="#relative_product">relative product</seealso> of the binary relations <anno>BinRel1</anno> and <anno>BinRel2</anno>.</p> </desc> </func> <func> <name name="relative_product1" arity="2"/> <fsummary>Return the relative_product of two binary relations.</fsummary> <desc> <p>Returns the <seealso marker="#relative_product">relative product</seealso> of the <seealso marker="#converse">converse</seealso> of the binary relation <anno>BinRel1</anno> and the binary relation <anno>BinRel2</anno>.</p> <pre> 1> <input>R1 = sofs:relation([{1,a},{1,aa},{2,b}]),</input> <input>R2 = sofs:relation([{1,u},{2,v},{3,c}]),</input> <input>R3 = sofs:relative_product1(R1, R2),</input> <input>sofs:to_external(R3).</input> [{a,u},{aa,u},{b,v}]</pre> <p><c>relative_product1(R1, R2)</c> is equivalent to <c>relative_product(converse(R1), R2)</c>.</p> </desc> </func> <func> <name name="restriction" arity="2"/> <fsummary>Return a restriction of a binary relation.</fsummary> <desc> <p>Returns the <seealso marker="#restriction">restriction</seealso> of the binary relation <anno>BinRel1</anno> to <anno>Set</anno>.</p> <pre> 1> <input>R1 = sofs:relation([{1,a},{2,b},{3,c}]),</input> <input>S = sofs:set([1,2,4]),</input> <input>R2 = sofs:restriction(R1, S),</input> <input>sofs:to_external(R2).</input> [{1,a},{2,b}]</pre> </desc> </func> <func> <name name="restriction" arity="3"/> <fsummary>Return a restriction of a set.</fsummary> <desc> <p>Returns a subset of <anno>Set1</anno> containing those elements that yield an element in <anno>Set2</anno> as the result of applying <anno>SetFun</anno>.</p> <pre> 1> <input>S1 = sofs:relation([{1,a},{2,b},{3,c}]),</input> <input>S2 = sofs:set([b,c,d]),</input> <input>S3 = sofs:restriction(2, S1, S2),</input> <input>sofs:to_external(S3).</input> [{2,b},{3,c}]</pre> </desc> </func> <func> <name name="set" arity="1"/> <name name="set" arity="2"/> <fsummary>Create a set of atoms or any type of sets.</fsummary> <desc> <p>Creates an <seealso marker="#sets_definition">unordered set</seealso>. <c>set(L, T)</c> is equivalent to <c>from_term(L, T)</c>, if the result is an unordered set. If no <seealso marker="#type">type</seealso> is explicitly given, <c>[atom]</c> is used as type of the set.</p> </desc> </func> <func> <name name="specification" arity="2"/> <fsummary>Select a subset using a predicate.</fsummary> <desc> <p>Returns the set containing every element of <anno>Set1</anno> for which <anno>Fun</anno> returns <c>true</c>. If <anno>Fun</anno> is a tuple <c>{external, Fun2}</c>, Fun2 is applied to the <seealso marker="#external_set">external set</seealso> of each element, otherwise <anno>Fun</anno> is applied to each element.</p> <pre> 1> <input>R1 = sofs:relation([{a,1},{b,2}]),</input> <input>R2 = sofs:relation([{x,1},{x,2},{y,3}]),</input> <input>S1 = sofs:from_sets([R1,R2]),</input> <input>S2 = sofs:specification(fun sofs:is_a_function/1, S1),</input> <input>sofs:to_external(S2).</input> [[{a,1},{b,2}]]</pre> </desc> </func> <func> <name name="strict_relation" arity="1"/> <fsummary>Return the strict relation corresponding to a given relation.</fsummary> <desc> <p>Returns the <seealso marker="#strict_relation">strict relation</seealso> corresponding to the binary relation <anno>BinRel1</anno>.</p> <pre> 1> <input>R1 = sofs:relation([{1,1},{1,2},{2,1},{2,2}]),</input> <input>R2 = sofs:strict_relation(R1),</input> <input>sofs:to_external(R2).</input> [{1,2},{2,1}]</pre> </desc> </func> <func> <name name="substitution" arity="2"/> <fsummary>Return a function with a given set as domain.</fsummary> <desc> <p>Returns a function, the domain of which is <anno>Set1</anno>. The value of an element of the domain is the result of applying <anno>SetFun</anno> to the element.</p> <pre> 1> <input>L = [{a,1},{b,2}].</input> [{a,1},{b,2}] 2> <input>sofs:to_external(sofs:projection(1,sofs:relation(L))).</input> [a,b] 3> <input>sofs:to_external(sofs:substitution(1,sofs:relation(L))).</input> [{{a,1},a},{{b,2},b}] 4> <input>SetFun = {external, fun({A,_}=E) -> {E,A} end},</input> <input>sofs:to_external(sofs:projection(SetFun,sofs:relation(L))).</input> [{{a,1},a},{{b,2},b}]</pre> <p>The relation of equality between the elements of {a,b,c}:</p> <pre> 1> <input>I = sofs:substitution(fun(A) -> A end, sofs:set([a,b,c])),</input> <input>sofs:to_external(I).</input> [{a,a},{b,b},{c,c}]</pre> <p>Let SetOfSets be a set of sets and BinRel a binary relation. The function that maps each element Set of SetOfSets onto the <seealso marker="#image">image</seealso> of Set under BinRel is returned by this function:</p> <pre> images(SetOfSets, BinRel) -> Fun = fun(Set) -> sofs:image(BinRel, Set) end, sofs:substitution(Fun, SetOfSets).</pre> <p>Here might be the place to reveal something that was more or less stated before, namely that external unordered sets are represented as sorted lists. As a consequence, creating the image of a set under a relation R may traverse all elements of R (to that comes the sorting of results, the image). In <c>images/2</c>, BinRel will be traversed once for each element of SetOfSets, which may take too long. The following efficient function could be used instead under the assumption that the image of each element of SetOfSets under BinRel is non-empty:</p> <pre> images2(SetOfSets, BinRel) -> CR = sofs:canonical_relation(SetOfSets), R = sofs:relative_product1(CR, BinRel), sofs:relation_to_family(R).</pre> </desc> </func> <func> <name name="symdiff" arity="2"/> <fsummary>Return the symmetric difference of two sets.</fsummary> <desc> <p>Returns the <seealso marker="#symmetric_difference">symmetric difference</seealso> (or the Boolean sum) of <anno>Set1</anno> and <anno>Set2</anno>.</p> <pre> 1> <input>S1 = sofs:set([1,2,3]),</input> <input>S2 = sofs:set([2,3,4]),</input> <input>P = sofs:symdiff(S1, S2),</input> <input>sofs:to_external(P).</input> [1,4]</pre> </desc> </func> <func> <name name="symmetric_partition" arity="2"/> <fsummary>Return a partition of two sets.</fsummary> <desc> <p>Returns a triple of sets: <anno>Set3</anno> contains the elements of <anno>Set1</anno> that do not belong to <anno>Set2</anno>; <anno>Set4</anno> contains the elements of <anno>Set1</anno> that belong to <anno>Set2</anno>; <anno>Set5</anno> contains the elements of <anno>Set2</anno> that do not belong to <anno>Set1</anno>.</p> </desc> </func> <func> <name name="to_external" arity="1"/> <fsummary>Return the elements of a set.</fsummary> <desc> <p>Returns the <seealso marker="#external_set">external set</seealso> of an atomic, ordered or unordered set.</p> </desc> </func> <func> <name name="to_sets" arity="1"/> <fsummary>Return a list or a tuple of the elements of set.</fsummary> <desc> <p>Returns the elements of the ordered set <anno>ASet</anno> as a tuple of sets, and the elements of the unordered set <anno>ASet</anno> as a sorted list of sets without duplicates.</p> </desc> </func> <func> <name name="type" arity="1"/> <fsummary>Return the type of a set.</fsummary> <desc> <p>Returns the <seealso marker="#type">type</seealso> of an atomic, ordered or unordered set.</p> </desc> </func> <func> <name name="union" arity="1"/> <fsummary>Return the union of a set of sets.</fsummary> <desc> <p>Returns the <seealso marker="#union_n">union</seealso> of the set of sets <anno>SetOfSets</anno>.</p> </desc> </func> <func> <name name="union" arity="2"/> <fsummary>Return the union of two sets.</fsummary> <desc> <p>Returns the <seealso marker="#union">union</seealso> of <anno>Set1</anno> and <anno>Set2</anno>.</p> </desc> </func> <func> <name name="union_of_family" arity="1"/> <fsummary>Return the union of a family.</fsummary> <desc> <p>Returns the union of the <seealso marker="#family">family</seealso> <anno>Family</anno>. </p> <pre> 1> <input>F = sofs:family([{a,[0,2,4]},{b,[0,1,2]},{c,[2,3]}]),</input> <input>S = sofs:union_of_family(F),</input> <input>sofs:to_external(S).</input> [0,1,2,3,4]</pre> </desc> </func> <func> <name name="weak_relation" arity="1"/> <fsummary>Return the weak relation corresponding to a given relation.</fsummary> <desc> <p>Returns a subset S of the <seealso marker="#weak_relation">weak relation</seealso> W corresponding to the binary relation <anno>BinRel1</anno>. Let F be the <seealso marker="#field">field</seealso> of <anno>BinRel1</anno>. The subset S is defined so that x S y if x W y for some x in F and for some y in F.</p> <pre> 1> <input>R1 = sofs:relation([{1,1},{1,2},{3,1}]),</input> <input>R2 = sofs:weak_relation(R1),</input> <input>sofs:to_external(R2).</input> [{1,1},{1,2},{2,2},{3,1},{3,3}]</pre> </desc> </func> </funcs> <section> <title>See Also</title> <p><seealso marker="dict">dict(3)</seealso>, <seealso marker="digraph">digraph(3)</seealso>, <seealso marker="orddict">orddict(3)</seealso>, <seealso marker="ordsets">ordsets(3)</seealso>, <seealso marker="sets">sets(3)</seealso></p> </section> </erlref>