%% -*- erlang-indent-level: 4 -*- %% %% %CopyrightBegin% %% %% Copyright Ericsson AB 1996-2013. All Rights Reserved. %% %% The contents of this file are subject to the Erlang Public License, %% Version 1.1, (the "License"); you may not use this file except in %% compliance with the License. You should have received a copy of the %% Erlang Public License along with this software. If not, it can be %% retrieved online at http://www.erlang.org/. %% %% Software distributed under the License is distributed on an "AS IS" %% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See %% the License for the specific language governing rights and limitations %% under the License. %% %% %CopyrightEnd% %% %% Do necessary checking of Erlang code. %% N.B. All the code necessary for checking structs (tagged tuples) is %% here. Just comment out the lines in pattern/2, gexpr/3 and expr/3. -module(erl_lint). -export([module/1,module/2,module/3,format_error/1]). -export([exprs/2,exprs_opt/3,used_vars/2]). % Used from erl_eval.erl. -export([is_pattern_expr/1,is_guard_test/1,is_guard_test/2]). -export([is_guard_expr/1]). -export([bool_option/4,value_option/3,value_option/7]). -export([modify_line/2]). -import(lists, [member/2,map/2,foldl/3,foldr/3,mapfoldl/3,all/2,reverse/1]). %% bool_option(OnOpt, OffOpt, Default, Options) -> boolean(). %% value_option(Flag, Default, Options) -> Value. %% value_option(Flag, Default, OnOpt, OnVal, OffOpt, OffVal, Options) -> %% Value. %% The option handling functions. -spec bool_option(atom(), atom(), boolean(), [compile:option()]) -> boolean(). bool_option(On, Off, Default, Opts) -> foldl(fun (Opt, _Def) when Opt =:= On -> true; (Opt, _Def) when Opt =:= Off -> false; (_Opt, Def) -> Def end, Default, Opts). value_option(Flag, Default, Opts) -> foldl(fun ({Opt,Val}, _Def) when Opt =:= Flag -> Val; (_Opt, Def) -> Def end, Default, Opts). value_option(Flag, Default, On, OnVal, Off, OffVal, Opts) -> foldl(fun ({Opt,Val}, _Def) when Opt =:= Flag -> Val; (Opt, _Def) when Opt =:= On -> OnVal; (Opt, _Def) when Opt =:= Off -> OffVal; (_Opt, Def) -> Def end, Default, Opts). %% The maximum number of arguments allowed for a function. -define(MAX_ARGUMENTS, 255). %% The error and warning info structures, {Line,Module,Descriptor}, %% are kept in their seperate fields in the lint state record together %% with the name of the file (when a new file is entered, marked by %% the 'file' attribute, then the field 'file' of the lint record is %% set). At the end of the run these lists are packed into a list of %% {FileName,ErrorDescList} pairs which are returned. -include_lib("stdlib/include/erl_bits.hrl"). %%-define(DEBUGF(X,Y), io:format(X, Y)). -define(DEBUGF(X,Y), void). -type line() :: erl_scan:line(). % a convenient alias -type fa() :: {atom(), arity()}. % function+arity -type ta() :: {atom(), arity()}. % type+arity %% Usage of records, functions, and imports. The variable table, which %% is passed on as an argument, holds the usage of variables. -record(usage, { calls = dict:new(), %Who calls who imported = [], %Actually imported functions used_records=sets:new() :: set(), %Used record definitions used_types = dict:new() :: dict() %Used type definitions }). %% Define the lint state record. %% 'called' and 'exports' contain {Line, {Function, Arity}}, %% the other function collections contain {Function, Arity}. -record(lint, {state=start :: 'start' | 'attribute' | 'function', module=[], %Module behaviour=[], %Behaviour exports=gb_sets:empty() :: gb_set(), %Exports imports=[], %Imports compile=[], %Compile flags records=dict:new() :: dict(), %Record definitions locals=gb_sets:empty() :: gb_set(), %All defined functions (prescanned) no_auto=gb_sets:empty() :: gb_set(), %Functions explicitly not autoimported defined=gb_sets:empty() :: gb_set(), %Defined fuctions on_load=[] :: [fa()], %On-load function on_load_line=0 :: line(), %Line for on_load clashes=[], %Exported functions named as BIFs not_deprecated=[], %Not considered deprecated func=[], %Current function warn_format=0, %Warn format calls enabled_warnings=[], %All enabled warnings (ordset). errors=[], %Current errors warnings=[], %Current warnings file = "" :: string(), %From last file attribute recdef_top=false :: boolean(), %true in record initialisation %outside any fun or lc xqlc= false :: boolean(), %true if qlc.hrl included new = false :: boolean(), %Has user-defined 'new/N' called= [] :: [{fa(),line()}], %Called functions usage = #usage{} :: #usage{}, specs = dict:new() :: dict(), %Type specifications callbacks = dict:new() :: dict(), %Callback types types = dict:new() :: dict(), %Type definitions exp_types=gb_sets:empty():: gb_set() %Exported types }). -type lint_state() :: #lint{}. -type error_description() :: term(). -type error_info() :: {erl_scan:line(), module(), error_description()}. %% format_error(Error) %% Return a string describing the error. -spec format_error(ErrorDescriptor) -> io_lib:chars() when ErrorDescriptor :: error_description(). format_error(undefined_module) -> "no module definition"; format_error(redefine_module) -> "redefining module"; format_error(pmod_unsupported) -> "parameterized modules are no longer supported"; %% format_error({redefine_mod_import, M, P}) -> %% io_lib:format("module '~s' already imported from package '~s'", [M, P]); format_error(invalid_call) -> "invalid function call"; format_error(invalid_record) -> "invalid record expression"; format_error({attribute,A}) -> io_lib:format("attribute '~w' after function definitions", [A]); format_error({missing_qlc_hrl,A}) -> io_lib:format("qlc:q/~w called, but \"qlc.hrl\" not included", [A]); format_error({redefine_import,{{F,A},M}}) -> io_lib:format("function ~w/~w already imported from ~w", [F,A,M]); format_error({bad_inline,{F,A}}) -> io_lib:format("inlined function ~w/~w undefined", [F,A]); format_error({invalid_deprecated,D}) -> io_lib:format("badly formed deprecated attribute ~w", [D]); format_error({bad_deprecated,{F,A}}) -> io_lib:format("deprecated function ~w/~w undefined or not exported", [F,A]); format_error({bad_nowarn_unused_function,{F,A}}) -> io_lib:format("function ~w/~w undefined", [F,A]); format_error({bad_nowarn_bif_clash,{F,A}}) -> io_lib:format("function ~w/~w undefined", [F,A]); format_error(disallowed_nowarn_bif_clash) -> io_lib:format("compile directive nowarn_bif_clash is no longer allowed,~n" " - use explicit module names or -compile({no_auto_import, [F/A]})", []); format_error({bad_nowarn_deprecated_function,{M,F,A}}) -> io_lib:format("~w:~w/~w is not a deprecated function", [M,F,A]); format_error({bad_on_load,Term}) -> io_lib:format("badly formed on_load attribute: ~w", [Term]); format_error(multiple_on_loads) -> "more than one on_load attribute"; format_error({bad_on_load_arity,{F,A}}) -> io_lib:format("function ~w/~w has wrong arity (must be 0)", [F,A]); format_error({undefined_on_load,{F,A}}) -> io_lib:format("function ~w/~w undefined", [F,A]); format_error(export_all) -> "export_all flag enabled - all functions will be exported"; format_error({duplicated_export, {F,A}}) -> io_lib:format("function ~w/~w already exported", [F,A]); format_error({unused_import,{{F,A},M}}) -> io_lib:format("import ~w:~w/~w is unused", [M,F,A]); format_error({undefined_function,{F,A}}) -> io_lib:format("function ~w/~w undefined", [F,A]); format_error({redefine_function,{F,A}}) -> io_lib:format("function ~w/~w already defined", [F,A]); format_error({define_import,{F,A}}) -> io_lib:format("defining imported function ~w/~w", [F,A]); format_error({unused_function,{F,A}}) -> io_lib:format("function ~w/~w is unused", [F,A]); format_error({call_to_redefined_bif,{F,A}}) -> io_lib:format("ambiguous call of overridden auto-imported BIF ~w/~w~n" " - use erlang:~w/~w or \"-compile({no_auto_import,[~w/~w]}).\" " "to resolve name clash", [F,A,F,A,F,A]); format_error({call_to_redefined_old_bif,{F,A}}) -> io_lib:format("ambiguous call of overridden pre R14 auto-imported BIF ~w/~w~n" " - use erlang:~w/~w or \"-compile({no_auto_import,[~w/~w]}).\" " "to resolve name clash", [F,A,F,A,F,A]); format_error({redefine_old_bif_import,{F,A}}) -> io_lib:format("import directive overrides pre R14 auto-imported BIF ~w/~w~n" " - use \"-compile({no_auto_import,[~w/~w]}).\" " "to resolve name clash", [F,A,F,A]); format_error({redefine_bif_import,{F,A}}) -> io_lib:format("import directive overrides auto-imported BIF ~w/~w~n" " - use \"-compile({no_auto_import,[~w/~w]}).\" to resolve name clash", [F,A,F,A]); format_error({deprecated, MFA, ReplacementMFA, Rel}) -> io_lib:format("~s is deprecated and will be removed in ~s; use ~s", [format_mfa(MFA), Rel, format_mfa(ReplacementMFA)]); format_error({deprecated, {M1, F1, A1}, String}) when is_list(String) -> io_lib:format("~p:~p/~p: ~s", [M1, F1, A1, String]); format_error({removed, MFA, ReplacementMFA, Rel}) -> io_lib:format("call to ~s will fail, since it was removed in ~s; " "use ~s", [format_mfa(MFA), Rel, format_mfa(ReplacementMFA)]); format_error({removed, MFA, String}) when is_list(String) -> io_lib:format("~s: ~s", [format_mfa(MFA), String]); format_error({obsolete_guard, {F, A}}) -> io_lib:format("~p/~p obsolete", [F, A]); format_error({too_many_arguments,Arity}) -> io_lib:format("too many arguments (~w) - " "maximum allowed is ~w", [Arity,?MAX_ARGUMENTS]); %% --- patterns and guards --- format_error(illegal_pattern) -> "illegal pattern"; format_error(illegal_bin_pattern) -> "binary patterns cannot be matched in parallel using '='"; format_error(illegal_expr) -> "illegal expression"; format_error({illegal_guard_local_call, {F,A}}) -> io_lib:format("call to local/imported function ~w/~w is illegal in guard", [F,A]); format_error(illegal_guard_expr) -> "illegal guard expression"; %% --- records --- format_error({undefined_record,T}) -> io_lib:format("record ~w undefined", [T]); format_error({redefine_record,T}) -> io_lib:format("record ~w already defined", [T]); format_error({redefine_field,T,F}) -> io_lib:format("field ~w already defined in record ~w", [F,T]); format_error({undefined_field,T,F}) -> io_lib:format("field ~w undefined in record ~w", [F,T]); format_error(illegal_record_info) -> "illegal record info"; format_error({field_name_is_variable,T,F}) -> io_lib:format("field ~w is not an atom or _ in record ~w", [F,T]); format_error({wildcard_in_update,T}) -> io_lib:format("meaningless use of _ in update of record ~w", [T]); format_error({unused_record,T}) -> io_lib:format("record ~w is unused", [T]); format_error({untyped_record,T}) -> io_lib:format("record ~w has field(s) without type information", [T]); %% --- variables ---- format_error({unbound_var,V}) -> io_lib:format("variable ~w is unbound", [V]); format_error({unsafe_var,V,{What,Where}}) -> io_lib:format("variable ~w unsafe in ~w ~s", [V,What,format_where(Where)]); format_error({exported_var,V,{What,Where}}) -> io_lib:format("variable ~w exported from ~w ~s", [V,What,format_where(Where)]); format_error({shadowed_var,V,In}) -> io_lib:format("variable ~w shadowed in ~w", [V,In]); format_error({unused_var, V}) -> io_lib:format("variable ~w is unused", [V]); format_error({variable_in_record_def,V}) -> io_lib:format("variable ~w in record definition", [V]); %% --- binaries --- format_error({undefined_bittype,Type}) -> io_lib:format("bit type ~w undefined", [Type]); format_error(bittype_unit) -> "a bit unit size must not be specified unless a size is specified too"; format_error(illegal_bitsize) -> "illegal bit size"; format_error(unsized_binary_not_at_end) -> "a binary field without size is only allowed at the end of a binary pattern"; format_error(typed_literal_string) -> "a literal string in a binary pattern must not have a type or a size"; format_error(utf_bittype_size_or_unit) -> "neither size nor unit must be given for segments of type utf8/utf16/utf32"; format_error({bad_bitsize,Type}) -> io_lib:format("bad ~s bit size", [Type]); format_error(unsized_binary_in_bin_gen_pattern) -> "binary fields without size are not allowed in patterns of bit string generators"; %% --- behaviours --- format_error({conflicting_behaviours,{Name,Arity},B,FirstL,FirstB}) -> io_lib:format("conflicting behaviours - callback ~w/~w required by both '~p' " "and '~p' ~s", [Name,Arity,B,FirstB,format_where(FirstL)]); format_error({undefined_behaviour_func, {Func,Arity}, Behaviour}) -> io_lib:format("undefined callback function ~w/~w (behaviour '~w')", [Func,Arity,Behaviour]); format_error({undefined_behaviour,Behaviour}) -> io_lib:format("behaviour ~w undefined", [Behaviour]); format_error({undefined_behaviour_callbacks,Behaviour}) -> io_lib:format("behaviour ~w callback functions are undefined", [Behaviour]); format_error({ill_defined_behaviour_callbacks,Behaviour}) -> io_lib:format("behaviour ~w callback functions erroneously defined", [Behaviour]); format_error({behaviour_info, {_M,F,A}}) -> io_lib:format("cannot define callback attibute for ~w/~w when " "behaviour_info is defined",[F,A]); %% --- types and specs --- format_error({singleton_typevar, Name}) -> io_lib:format("type variable ~w is only used once (is unbound)", [Name]); format_error({bad_export_type, _ETs}) -> io_lib:format("bad export_type declaration", []); format_error({duplicated_export_type, {T, A}}) -> io_lib:format("type ~w/~w already exported", [T, A]); format_error({undefined_type, {TypeName, Arity}}) -> io_lib:format("type ~w~s undefined", [TypeName, gen_type_paren(Arity)]); format_error({unused_type, {TypeName, Arity}}) -> io_lib:format("type ~w~s is unused", [TypeName, gen_type_paren(Arity)]); format_error({new_builtin_type, {TypeName, Arity}}) -> io_lib:format("type ~w~s is a new builtin type; " "its (re)definition is allowed only until the next release", [TypeName, gen_type_paren(Arity)]); format_error({builtin_type, {TypeName, Arity}}) -> io_lib:format("type ~w~s is a builtin type; it cannot be redefined", [TypeName, gen_type_paren(Arity)]); format_error({renamed_type, OldName, NewName}) -> io_lib:format("type ~w() is now called ~w(); " "please use the new name instead", [OldName, NewName]); format_error({redefine_type, {TypeName, Arity}}) -> io_lib:format("type ~w~s already defined", [TypeName, gen_type_paren(Arity)]); format_error({type_syntax, Constr}) -> io_lib:format("bad ~w type", [Constr]); format_error({redefine_spec, {M, F, A}}) -> io_lib:format("spec for ~w:~w/~w already defined", [M, F, A]); format_error({redefine_callback, {M, F, A}}) -> io_lib:format("callback ~w:~w/~w already defined", [M, F, A]); format_error({spec_fun_undefined, {M, F, A}}) -> io_lib:format("spec for undefined function ~w:~w/~w", [M, F, A]); format_error({missing_spec, {F,A}}) -> io_lib:format("missing specification for function ~w/~w", [F, A]); format_error(spec_wrong_arity) -> "spec has the wrong arity"; format_error(callback_wrong_arity) -> "callback has the wrong arity"; format_error({imported_predefined_type, Name}) -> io_lib:format("referring to built-in type ~w as a remote type; " "please take out the module name", [Name]); format_error({not_exported_opaque, {TypeName, Arity}}) -> io_lib:format("opaque type ~w~s is not exported", [TypeName, gen_type_paren(Arity)]); format_error({underspecified_opaque, {TypeName, Arity}}) -> io_lib:format("opaque type ~w~s is underspecified and therefore meaningless", [TypeName, gen_type_paren(Arity)]); %% --- obsolete? unused? --- format_error({format_error, {Fmt, Args}}) -> io_lib:format(Fmt, Args); format_error({mnemosyne, What}) -> "mnemosyne " ++ What ++ ", missing transformation". gen_type_paren(Arity) when is_integer(Arity), Arity >= 0 -> gen_type_paren_1(Arity, ")"). gen_type_paren_1(0, Acc) -> "(" ++ Acc; gen_type_paren_1(1, Acc) -> "(_" ++ Acc; gen_type_paren_1(N, Acc) -> gen_type_paren_1(N - 1, ",_" ++ Acc). format_mfa({M, F, [_|_]=As}) -> ","++ArityString = lists:append([[$,|integer_to_list(A)] || A <- As]), format_mf(M, F, ArityString); format_mfa({M, F, A}) when is_integer(A) -> format_mf(M, F, integer_to_list(A)). format_mf(M, F, ArityString) when is_atom(M), is_atom(F) -> atom_to_list(M) ++ ":" ++ atom_to_list(F) ++ "/" ++ ArityString. format_where(L) when is_integer(L) -> io_lib:format("(line ~p)", [L]); format_where({L,C}) when is_integer(L), is_integer(C) -> io_lib:format("(line ~p, column ~p)", [L, C]). %% Local functions that are somehow automatically generated. pseudolocals() -> [{module_info,0}, {module_info,1}, {record_info,2}]. %% %% Used by erl_eval.erl to check commands. %% exprs(Exprs, BindingsList) -> exprs_opt(Exprs, BindingsList, []). exprs_opt(Exprs, BindingsList, Opts) -> {St0,Vs} = foldl(fun({{record,_SequenceNumber,_Name},Attr0}, {St1,Vs1}) -> Attr = zip_file_and_line(Attr0, "none"), {attribute_state(Attr, St1),Vs1}; ({V,_}, {St1,Vs1}) -> {St1,[{V,{bound,unused,[]}} | Vs1]} end, {start("nofile",Opts),[]}, BindingsList), Vt = orddict:from_list(Vs), {_Evt,St} = exprs(zip_file_and_line(Exprs, "nofile"), Vt, St0), return_status(St). used_vars(Exprs, BindingsList) -> Vs = foldl(fun({{record,_SequenceNumber,_Name},_Attr}, Vs0) -> Vs0; ({V,_Val}, Vs0) -> [{V,{bound,unused,[]}} | Vs0] end, [], BindingsList), Vt = orddict:from_list(Vs), {Evt,_St} = exprs(zip_file_and_line(Exprs, "nofile"), Vt, start()), {ok, foldl(fun({V,{_,used,_}}, L) -> [V | L]; (_, L) -> L end, [], Evt)}. %% module([Form]) -> %% module([Form], FileName) -> %% module([Form], FileName, [CompileOption]) -> %% {ok,[Warning]} | {error,[Error],[Warning]} %% Start processing a module. Define predefined functions and exports and %% apply_lambda/2 has been called to shut lint up. N.B. these lists are %% really all ordsets! -spec(module(AbsForms) -> {ok, Warnings} | {error, Errors, Warnings} when AbsForms :: [erl_parse:abstract_form()], Warnings :: [{file:filename(),[ErrorInfo]}], Errors :: [{FileName2 :: file:filename(),[ErrorInfo]}], ErrorInfo :: error_info()). module(Forms) -> Opts = compiler_options(Forms), St = forms(Forms, start("nofile", Opts)), return_status(St). -spec(module(AbsForms, FileName) -> {ok, Warnings} | {error, Errors, Warnings} when AbsForms :: [erl_parse:abstract_form()], FileName :: atom() | string(), Warnings :: [{file:filename(),[ErrorInfo]}], Errors :: [{FileName2 :: file:filename(),[ErrorInfo]}], ErrorInfo :: error_info()). module(Forms, FileName) -> Opts = compiler_options(Forms), St = forms(Forms, start(FileName, Opts)), return_status(St). -spec(module(AbsForms, FileName, CompileOptions) -> {ok, Warnings} | {error, Errors, Warnings} when AbsForms :: [erl_parse:abstract_form()], FileName :: atom() | string(), CompileOptions :: [compile:option()], Warnings :: [{file:filename(),[ErrorInfo]}], Errors :: [{FileName2 :: file:filename(),[ErrorInfo]}], ErrorInfo :: error_info()). module(Forms, FileName, Opts0) -> %% We want the options given on the command line to take %% precedence over options in the module. Opts = compiler_options(Forms) ++ Opts0, St = forms(Forms, start(FileName, Opts)), return_status(St). compiler_options(Forms) -> lists:flatten([C || {attribute,_,compile,C} <- Forms]). %% start() -> State %% start(FileName, [Option]) -> State start() -> start("nofile", []). start(File, Opts) -> Enabled0 = [{unused_vars, bool_option(warn_unused_vars, nowarn_unused_vars, true, Opts)}, {export_all, bool_option(warn_export_all, nowarn_export_all, false, Opts)}, {export_vars, bool_option(warn_export_vars, nowarn_export_vars, false, Opts)}, {shadow_vars, bool_option(warn_shadow_vars, nowarn_shadow_vars, true, Opts)}, {unused_import, bool_option(warn_unused_import, nowarn_unused_import, false, Opts)}, {unused_function, bool_option(warn_unused_function, nowarn_unused_function, true, Opts)}, {bif_clash, bool_option(warn_bif_clash, nowarn_bif_clash, true, Opts)}, {unused_record, bool_option(warn_unused_record, nowarn_unused_record, true, Opts)}, {deprecated_function, bool_option(warn_deprecated_function, nowarn_deprecated_function, true, Opts)}, {obsolete_guard, bool_option(warn_obsolete_guard, nowarn_obsolete_guard, true, Opts)}, {untyped_record, bool_option(warn_untyped_record, nowarn_untyped_record, false, Opts)}, {missing_spec, bool_option(warn_missing_spec, nowarn_missing_spec, false, Opts)}, {missing_spec_all, bool_option(warn_missing_spec_all, nowarn_missing_spec_all, false, Opts)} ], Enabled1 = [Category || {Category,true} <- Enabled0], Enabled = ordsets:from_list(Enabled1), Calls = case ordsets:is_element(unused_function, Enabled) of true -> dict:from_list([{{module_info,1},pseudolocals()}]); false -> undefined end, #lint{state = start, exports = gb_sets:from_list([{module_info,0},{module_info,1}]), compile = Opts, %% Internal pseudo-functions must appear as defined/reached. defined = gb_sets:from_list(pseudolocals()), called = [{F,0} || F <- pseudolocals()], usage = #usage{calls=Calls}, warn_format = value_option(warn_format, 1, warn_format, 1, nowarn_format, 0, Opts), enabled_warnings = Enabled, file = File }. %% is_warn_enabled(Category, St) -> boolean(). %% Check whether a warning of category Category is enabled. is_warn_enabled(Type, #lint{enabled_warnings=Enabled}) -> ordsets:is_element(Type, Enabled). %% return_status(State) -> %% {ok,[Warning]} | {error,[Error],[Warning]} %% Pack errors and warnings properly and return ok | error. return_status(St) -> Ws = pack_warnings(St#lint.warnings), case pack_errors(St#lint.errors) of [] -> {ok,Ws}; Es -> {error,Es,Ws} end. %% pack_errors([{File,ErrD}]) -> [{File,[ErrD]}]. %% Sort on (reversed) insertion order. pack_errors(Es) -> {Es1,_} = mapfoldl(fun ({File,E}, I) -> {{File,{I,E}}, I-1} end, -1, Es), map(fun ({File,EIs}) -> {File, map(fun ({_I,E}) -> E end, EIs)} end, pack_warnings(Es1)). %% pack_warnings([{File,ErrD}]) -> [{File,[ErrD]}] %% Sort on line number. pack_warnings(Ws) -> [{File,lists:sort([W || {F,W} <- Ws, F =:= File])} || File <- lists:usort([F || {F,_} <- Ws])]. %% add_error(ErrorDescriptor, State) -> State' %% add_error(Line, Error, State) -> State' %% add_warning(ErrorDescriptor, State) -> State' %% add_warning(Line, Error, State) -> State' add_error(E, St) -> St#lint{errors=[{St#lint.file,E}|St#lint.errors]}. add_error(FileLine, E, St) -> {File,Location} = loc(FileLine), add_error({Location,erl_lint,E}, St#lint{file = File}). add_warning(W, St) -> St#lint{warnings=[{St#lint.file,W}|St#lint.warnings]}. add_warning(FileLine, W, St) -> {File,Location} = loc(FileLine), add_warning({Location,erl_lint,W}, St#lint{file = File}). loc(L) -> case erl_parse:get_attribute(L, location) of {location,{{File,Line},Column}} -> {File,{Line,Column}}; {location,{File,Line}} -> {File,Line} end. %% forms([Form], State) -> State' forms(Forms0, St0) -> Forms = eval_file_attribute(Forms0, St0), Locals = local_functions(Forms), AutoImportSuppressed = auto_import_suppressed(St0#lint.compile), StDeprecated = disallowed_compile_flags(Forms,St0), %% Line numbers are from now on pairs {File,Line}. St1 = includes_qlc_hrl(Forms, StDeprecated#lint{locals = Locals, no_auto = AutoImportSuppressed}), St2 = bif_clashes(Forms, St1), St3 = not_deprecated(Forms, St2), St4 = foldl(fun form/2, pre_scan(Forms, St3), Forms), post_traversal_check(Forms, St4). pre_scan([{function,_L,new,_A,_Cs} | Fs], St) -> pre_scan(Fs, St#lint{new=true}); pre_scan([{attribute,L,compile,C} | Fs], St) -> case is_warn_enabled(export_all, St) andalso member(export_all, lists:flatten([C])) of true -> pre_scan(Fs, add_warning(L, export_all, St)); false -> pre_scan(Fs, St) end; pre_scan([_ | Fs], St) -> pre_scan(Fs, St); pre_scan([], St) -> St. includes_qlc_hrl(Forms, St) -> %% QLC calls erl_lint several times, sometimes with the compile %% attribute removed. The file attribute, however, is left as is. QH = [File || {attribute,_,file,{File,_line}} <- Forms, filename:basename(File) =:= "qlc.hrl"], St#lint{xqlc = QH =/= []}. eval_file_attribute(Forms, St) -> eval_file_attr(Forms, St#lint.file). eval_file_attr([{attribute,_L,file,{File,_Line}}=Form | Forms], _File) -> [Form | eval_file_attr(Forms, File)]; eval_file_attr([Form0 | Forms], File) -> Form = zip_file_and_line(Form0, File), [Form | eval_file_attr(Forms, File)]; eval_file_attr([], _File) -> []. zip_file_and_line(T, File) -> F0 = fun(Line) -> {File,Line} end, F = fun(L) -> erl_parse:set_line(L, F0) end, modify_line(T, F). %% form(Form, State) -> State' %% Check a form returning the updated State. Handle generic cases here. form({error,E}, St) -> add_error(E, St); form({warning,W}, St) -> add_warning(W, St); form({attribute,_L,file,{File,_Line}}, St) -> St#lint{file = File}; form({attribute,_L,compile,_}, St) -> St; form(Form, #lint{state=State}=St) -> case State of start -> start_state(Form, St); attribute -> attribute_state(Form, St); function -> function_state(Form, St) end. %% start_state(Form, State) -> State' start_state({attribute,Line,module,{_,_}}=Form, St0) -> St1 = add_error(Line, pmod_unsupported, St0), attribute_state(Form, St1#lint{state=attribute}); start_state({attribute,_,module,M}, St0) -> St1 = St0#lint{module=M}, St1#lint{state=attribute}; start_state(Form, St) -> St1 = add_error(element(2, Form), undefined_module, St), attribute_state(Form, St1#lint{state=attribute}). %% attribute_state(Form, State) -> %% State' attribute_state({attribute,_L,module,_M}, #lint{module=[]}=St) -> St; attribute_state({attribute,L,module,_M}, St) -> add_error(L, redefine_module, St); attribute_state({attribute,L,export,Es}, St) -> export(L, Es, St); attribute_state({attribute,L,export_type,Es}, St) -> export_type(L, Es, St); attribute_state({attribute,L,import,Is}, St) -> import(L, Is, St); attribute_state({attribute,L,record,{Name,Fields}}, St) -> record_def(L, Name, Fields, St); attribute_state({attribute,La,behaviour,Behaviour}, St) -> St#lint{behaviour=St#lint.behaviour ++ [{La,Behaviour}]}; attribute_state({attribute,La,behavior,Behaviour}, St) -> St#lint{behaviour=St#lint.behaviour ++ [{La,Behaviour}]}; attribute_state({attribute,L,type,{TypeName,TypeDef,Args}}, St) -> type_def(type, L, TypeName, TypeDef, Args, St); attribute_state({attribute,L,opaque,{TypeName,TypeDef,Args}}, St) -> type_def(opaque, L, TypeName, TypeDef, Args, St); attribute_state({attribute,L,spec,{Fun,Types}}, St) -> spec_decl(L, Fun, Types, St); attribute_state({attribute,L,callback,{Fun,Types}}, St) -> callback_decl(L, Fun, Types, St); attribute_state({attribute,L,on_load,Val}, St) -> on_load(L, Val, St); attribute_state({attribute,_L,_Other,_Val}, St) -> % Ignore others St; attribute_state(Form, St) -> function_state(Form, St#lint{state=function}). %% function_state(Form, State) -> %% State' %% Allow for record, type and opaque type definitions and spec %% declarations to be intersperced within function definitions. function_state({attribute,L,record,{Name,Fields}}, St) -> record_def(L, Name, Fields, St); function_state({attribute,L,type,{TypeName,TypeDef,Args}}, St) -> type_def(type, L, TypeName, TypeDef, Args, St); function_state({attribute,L,opaque,{TypeName,TypeDef,Args}}, St) -> type_def(opaque, L, TypeName, TypeDef, Args, St); function_state({attribute,L,spec,{Fun,Types}}, St) -> spec_decl(L, Fun, Types, St); function_state({attribute,La,Attr,_Val}, St) -> add_error(La, {attribute,Attr}, St); function_state({function,L,N,A,Cs}, St) -> function(L, N, A, Cs, St); function_state({rule,L,_N,_A,_Cs}, St) -> add_error(L, {mnemosyne,"rule"}, St); function_state({eof,L}, St) -> eof(L, St). %% eof(LastLine, State) -> %% State' eof(_Line, St0) -> St0. %% bif_clashes(Forms, State0) -> State. bif_clashes(Forms, St) -> Nowarn = nowarn_function(nowarn_bif_clash, St#lint.compile), Clashes0 = [{Name,Arity} || {function,_L,Name,Arity,_Cs} <- Forms, erl_internal:bif(Name, Arity)], Clashes = ordsets:subtract(ordsets:from_list(Clashes0), Nowarn), St#lint{clashes=Clashes}. %% not_deprecated(Forms, State0) -> State not_deprecated(Forms, St0) -> %% There are no line numbers in St0#lint.compile. MFAsL = [{MFA,L} || {attribute, L, compile, Args} <- Forms, {nowarn_deprecated_function, MFAs0} <- lists:flatten([Args]), MFA <- lists:flatten([MFAs0])], Nowarn = [MFA || {MFA,_L} <- MFAsL], Bad = [MFAL || {{M,F,A},_L}=MFAL <- MFAsL, otp_internal:obsolete(M, F, A) =:= no], St1 = func_line_warning(bad_nowarn_deprecated_function, Bad, St0), St1#lint{not_deprecated = ordsets:from_list(Nowarn)}. %% The nowarn_bif_clash directive is not only deprecated, it's actually an error from R14A disallowed_compile_flags(Forms, St0) -> %% There are (still) no line numbers in St0#lint.compile. Errors0 = [ {St0#lint.file,{L,erl_lint,disallowed_nowarn_bif_clash}} || {attribute,[{line,{_,L}}],compile,nowarn_bif_clash} <- Forms ], Errors1 = [ {St0#lint.file,{L,erl_lint,disallowed_nowarn_bif_clash}} || {attribute,[{line,{_,L}}],compile,{nowarn_bif_clash, {_,_}}} <- Forms ], Disabled = (not is_warn_enabled(bif_clash, St0)), Errors = if Disabled andalso Errors0 =:= [] -> [{St0#lint.file,{erl_lint,disallowed_nowarn_bif_clash}} | St0#lint.errors]; Disabled -> Errors0 ++ Errors1 ++ St0#lint.errors; true -> Errors1 ++ St0#lint.errors end, St0#lint{errors=Errors}. %% post_traversal_check(Forms, State0) -> State. %% Do some further checking after the forms have been traversed and %% data about calls etc. have been collected. post_traversal_check(Forms, St0) -> St1 = check_behaviour(St0), St2 = check_deprecated(Forms, St1), St3 = check_imports(Forms, St2), St4 = check_inlines(Forms, St3), St5 = check_undefined_functions(St4), St6 = check_unused_functions(Forms, St5), St7 = check_bif_clashes(Forms, St6), St8 = check_specs_without_function(St7), St9 = check_functions_without_spec(Forms, St8), StA = check_undefined_types(St9), StB = check_unused_types(Forms, StA), StC = check_untyped_records(Forms, StB), StD = check_on_load(StC), StE = check_unused_records(Forms, StD), StF = check_local_opaque_types(StE), check_callback_information(StF). %% check_behaviour(State0) -> State %% Check that the behaviour attribute is valid. check_behaviour(St0) -> behaviour_check(St0#lint.behaviour, St0). %% behaviour_check([{Line,Behaviour}], State) -> State' %% Check behaviours for existence and defined functions. behaviour_check(Bs, St0) -> {AllBfs,St1} = all_behaviour_callbacks(Bs, [], St0), St = behaviour_missing_callbacks(AllBfs, St1), behaviour_conflicting(AllBfs, St). all_behaviour_callbacks([{Line,B}|Bs], Acc, St0) -> {Bfs0,St} = behaviour_callbacks(Line, B, St0), all_behaviour_callbacks(Bs, [{{Line,B},Bfs0}|Acc], St); all_behaviour_callbacks([], Acc, St) -> {reverse(Acc),St}. behaviour_callbacks(Line, B, St0) -> try B:behaviour_info(callbacks) of Funcs when is_list(Funcs) -> All = all(fun({FuncName, Arity}) -> is_atom(FuncName) andalso is_integer(Arity); ({FuncName, Arity, Spec}) -> is_atom(FuncName) andalso is_integer(Arity) andalso is_list(Spec); (_Other) -> false end, Funcs), MaybeRemoveSpec = fun({_F,_A}=FA) -> FA; ({F,A,_S}) -> {F,A}; (Other) -> Other end, if All =:= true -> {[MaybeRemoveSpec(F) || F <- Funcs], St0}; true -> St1 = add_warning(Line, {ill_defined_behaviour_callbacks,B}, St0), {[], St1} end; undefined -> St1 = add_warning(Line, {undefined_behaviour_callbacks,B}, St0), {[], St1}; _Other -> St1 = add_warning(Line, {ill_defined_behaviour_callbacks,B}, St0), {[], St1} catch _:_ -> St1 = add_warning(Line, {undefined_behaviour,B}, St0), {[], St1} end. behaviour_missing_callbacks([{{Line,B},Bfs}|T], St0) -> Exports = gb_sets:to_list(exports(St0)), Missing = ordsets:subtract(ordsets:from_list(Bfs), Exports), St = foldl(fun (F, S0) -> add_warning(Line, {undefined_behaviour_func,F,B}, S0) end, St0, Missing), behaviour_missing_callbacks(T, St); behaviour_missing_callbacks([], St) -> St. behaviour_conflicting(AllBfs, St) -> R0 = sofs:relation(AllBfs, [{item,[callback]}]), R1 = sofs:family_to_relation(R0), R2 = sofs:converse(R1), R3 = sofs:relation_to_family(R2), R4 = sofs:family_specification(fun(S) -> sofs:no_elements(S) > 1 end, R3), R = sofs:to_external(R4), behaviour_add_conflicts(R, St). behaviour_add_conflicts([{Cb,[{FirstLoc,FirstB}|Cs]}|T], St0) -> FirstL = element(2, loc(FirstLoc)), St = behaviour_add_conflict(Cs, Cb, FirstL, FirstB, St0), behaviour_add_conflicts(T, St); behaviour_add_conflicts([], St) -> St. behaviour_add_conflict([{Line,B}|Cs], Cb, FirstL, FirstB, St0) -> St = add_warning(Line, {conflicting_behaviours,Cb,B,FirstL,FirstB}, St0), behaviour_add_conflict(Cs, Cb, FirstL, FirstB, St); behaviour_add_conflict([], _, _, _, St) -> St. %% check_deprecated(Forms, State0) -> State check_deprecated(Forms, St0) -> %% Get the correct list of exported functions. Exports = case member(export_all, St0#lint.compile) of true -> St0#lint.defined; false -> St0#lint.exports end, X = gb_sets:to_list(Exports), #lint{module = Mod} = St0, Bad = [{E,L} || {attribute, L, deprecated, Depr} <- Forms, D <- lists:flatten([Depr]), E <- depr_cat(D, X, Mod)], foldl(fun ({E,L}, St1) -> add_error(L, E, St1) end, St0, Bad). depr_cat({F, A, Flg}=D, X, Mod) -> case deprecated_flag(Flg) of false -> [{invalid_deprecated,D}]; true -> depr_fa(F, A, X, Mod) end; depr_cat({F, A}, X, Mod) -> depr_fa(F, A, X, Mod); depr_cat(module, _X, _Mod) -> []; depr_cat(D, _X, _Mod) -> [{invalid_deprecated,D}]. depr_fa('_', '_', _X, _Mod) -> []; depr_fa(F, '_', X, _Mod) when is_atom(F) -> %% Don't use this syntax for built-in functions. case lists:filter(fun({F1,_}) -> F1 =:= F end, X) of [] -> [{bad_deprecated,{F,'_'}}]; _ -> [] end; depr_fa(F, A, X, Mod) when is_atom(F), is_integer(A), A >= 0 -> case lists:member({F,A}, X) of true -> []; false -> case erlang:is_builtin(Mod, F, A) of true -> []; false -> [{bad_deprecated,{F,A}}] end end; depr_fa(F, A, _X, _Mod) -> [{invalid_deprecated,{F,A}}]. deprecated_flag(next_version) -> true; deprecated_flag(next_major_release) -> true; deprecated_flag(eventually) -> true; deprecated_flag(_) -> false. %% check_imports(Forms, State0) -> State check_imports(Forms, St0) -> case is_warn_enabled(unused_import, St0) of false -> St0; true -> Usage = St0#lint.usage, Unused = ordsets:subtract(St0#lint.imports, Usage#usage.imported), Imports = [{{FA,Mod},L} || {attribute,L,import,{Mod,Fs}} <- Forms, FA <- lists:usort(Fs)], Bad = [{FM,L} || FM <- Unused, {FM2,L} <- Imports, FM =:= FM2], func_line_warning(unused_import, Bad, St0) end. %% check_inlines(Forms, State0) -> State check_inlines(Forms, St0) -> check_option_functions(Forms, inline, bad_inline, St0). %% check_unused_functions(Forms, State0) -> State check_unused_functions(Forms, St0) -> St1 = check_option_functions(Forms, nowarn_unused_function, bad_nowarn_unused_function, St0), Opts = St1#lint.compile, case member(export_all, Opts) orelse not is_warn_enabled(unused_function, St1) of true -> St1; false -> Nowarn = nowarn_function(nowarn_unused_function, Opts), Usage = St1#lint.usage, Used = reached_functions(initially_reached(St1), Usage#usage.calls), UsedOrNowarn = ordsets:union(Used, Nowarn), Unused = ordsets:subtract(gb_sets:to_list(St1#lint.defined), UsedOrNowarn), Functions = [{{N,A},L} || {function,L,N,A,_} <- Forms], Bad = [{FA,L} || FA <- Unused, {FA2,L} <- Functions, FA =:= FA2], func_line_warning(unused_function, Bad, St1) end. initially_reached(#lint{exports=Exp,on_load=OnLoad}) -> OnLoad ++ gb_sets:to_list(Exp). %% reached_functions(RootSet, CallRef) -> [ReachedFunc]. %% reached_functions(RootSet, CallRef, [ReachedFunc]) -> [ReachedFunc]. reached_functions(Root, Ref) -> reached_functions(Root, [], Ref, gb_sets:empty()). reached_functions([R|Rs], More0, Ref, Reached0) -> case gb_sets:is_element(R, Reached0) of true -> reached_functions(Rs, More0, Ref, Reached0); false -> Reached = gb_sets:add_element(R, Reached0), %It IS reached case dict:find(R, Ref) of {ok,More} -> reached_functions(Rs, [More|More0], Ref, Reached); error -> reached_functions(Rs, More0, Ref, Reached) end end; reached_functions([], [_|_]=More, Ref, Reached) -> reached_functions(lists:append(More), [], Ref, Reached); reached_functions([], [], _Ref, Reached) -> gb_sets:to_list(Reached). %% check_undefined_functions(State0) -> State check_undefined_functions(#lint{called=Called0,defined=Def0}=St0) -> Called = sofs:relation(Called0, [{func,location}]), Def = sofs:from_external(gb_sets:to_list(Def0), [func]), Undef = sofs:to_external(sofs:drestriction(Called, Def)), foldl(fun ({NA,L}, St) -> add_error(L, {undefined_function,NA}, St) end, St0, Undef). %% check_undefined_types(State0) -> State check_undefined_types(#lint{usage=Usage,types=Def}=St0) -> Used = Usage#usage.used_types, UTAs = dict:fetch_keys(Used), Undef = [{TA,dict:fetch(TA, Used)} || TA <- UTAs, not dict:is_key(TA, Def), not is_default_type(TA)], foldl(fun ({TA,L}, St) -> add_error(L, {undefined_type,TA}, St) end, St0, Undef). %% check_bif_clashes(Forms, State0) -> State check_bif_clashes(Forms, St0) -> %% St0#lint.defined is now complete. check_option_functions(Forms, nowarn_bif_clash, bad_nowarn_bif_clash, St0). check_option_functions(Forms, Tag0, Type, St0) -> %% There are no line numbers in St0#lint.compile. FAsL = [{FA,L} || {attribute, L, compile, Args} <- Forms, {Tag, FAs0} <- lists:flatten([Args]), Tag0 =:= Tag, FA <- lists:flatten([FAs0])], DefFunctions = (gb_sets:to_list(St0#lint.defined) -- pseudolocals()) ++ [{F,A} || {{F,A},_} <- orddict:to_list(St0#lint.imports)], Bad = [{FA,L} || {FA,L} <- FAsL, not member(FA, DefFunctions)], func_line_error(Type, Bad, St0). nowarn_function(Tag, Opts) -> ordsets:from_list([FA || {Tag1,FAs} <- Opts, Tag1 =:= Tag, FA <- lists:flatten([FAs])]). func_line_warning(Type, Fs, St) -> foldl(fun ({F,Line}, St0) -> add_warning(Line, {Type,F}, St0) end, St, Fs). func_line_error(Type, Fs, St) -> foldl(fun ({F,Line}, St0) -> add_error(Line, {Type,F}, St0) end, St, Fs). check_untyped_records(Forms, St0) -> case is_warn_enabled(untyped_record, St0) of true -> %% Use the names of all records *defined* in the module (not used) RecNames = dict:fetch_keys(St0#lint.records), %% these are the records with field(s) containing type info TRecNames = [Name || {attribute,_,type,{{record,Name},Fields,_}} <- Forms, lists:all(fun ({typed_record_field,_,_}) -> true; (_) -> false end, Fields)], foldl(fun (N, St) -> {L, Fields} = dict:fetch(N, St0#lint.records), case Fields of [] -> St; % exclude records with no fields [_|_] -> add_warning(L, {untyped_record, N}, St) end end, St0, RecNames -- TRecNames); false -> St0 end. check_unused_records(Forms, St0) -> AttrFiles = [File || {attribute,_L,file,{File,_Line}} <- Forms], case {is_warn_enabled(unused_record, St0),AttrFiles} of {true,[FirstFile|_]} -> %% The check is a bit imprecise in that uses from unused %% functions count. Usage = St0#lint.usage, UsedRecords = sets:to_list(Usage#usage.used_records), URecs = foldl(fun (Used, Recs) -> dict:erase(Used, Recs) end, St0#lint.records, UsedRecords), Unused = [{Name,FileLine} || {Name,{FileLine,_Fields}} <- dict:to_list(URecs), element(1, loc(FileLine)) =:= FirstFile], foldl(fun ({N,L}, St) -> add_warning(L, {unused_record, N}, St) end, St0, Unused); _ -> St0 end. check_callback_information(#lint{callbacks = Callbacks, defined = Defined} = State) -> case gb_sets:is_member({behaviour_info,1}, Defined) of false -> State; true -> case dict:size(Callbacks) of 0 -> State; _ -> CallbacksList = dict:to_list(Callbacks), FoldL = fun({Fa,Line},St) -> add_error(Line, {behaviour_info, Fa}, St) end, lists:foldl(FoldL, State, CallbacksList) end end. %% For storing the import list we use the orddict module. %% We know an empty set is []. -spec export(line(), [fa()], lint_state()) -> lint_state(). %% Mark functions as exported, also as called from the export line. export(Line, Es, #lint{exports = Es0, called = Called} = St0) -> {Es1,C1,St1} = foldl(fun (NA, {E,C,St2}) -> St = case gb_sets:is_element(NA, E) of true -> Warn = {duplicated_export,NA}, add_warning(Line, Warn, St2); false -> St2 end, {gb_sets:add_element(NA, E), [{NA,Line}|C], St} end, {Es0,Called,St0}, Es), St1#lint{exports = Es1, called = C1}. -spec export_type(line(), [ta()], lint_state()) -> lint_state(). %% Mark types as exported; also mark them as used from the export line. export_type(Line, ETs, #lint{usage = Usage, exp_types = ETs0} = St0) -> UTs0 = Usage#usage.used_types, try foldl(fun ({T,A}=TA, {E,U,St2}) when is_atom(T), is_integer(A) -> St = case gb_sets:is_element(TA, E) of true -> Warn = {duplicated_export_type,TA}, add_warning(Line, Warn, St2); false -> St2 end, {gb_sets:add_element(TA, E), dict:store(TA, Line, U), St} end, {ETs0,UTs0,St0}, ETs) of {ETs1,UTs1,St1} -> St1#lint{usage = Usage#usage{used_types = UTs1}, exp_types = ETs1} catch error:_ -> add_error(Line, {bad_export_type, ETs}, St0) end. -spec exports(lint_state()) -> gb_set(). exports(#lint{compile = Opts, defined = Defs, exports = Es}) -> case lists:member(export_all, Opts) of true -> Defs; false -> Es end. -type import() :: {module(), [fa()]} | module(). -spec import(line(), import(), lint_state()) -> lint_state(). import(Line, {Mod,Fs}, St) -> Mfs = ordsets:from_list(Fs), case check_imports(Line, Mfs, St#lint.imports) of [] -> St#lint{imports=add_imports(Mod, Mfs, St#lint.imports)}; Efs -> {Err, St1} = foldl(fun ({bif,{F,A},_}, {Err,St0}) -> %% BifClash - import directive Warn = is_warn_enabled(bif_clash, St0) andalso (not bif_clash_specifically_disabled(St0,{F,A})), AutoImpSup = is_autoimport_suppressed(St0#lint.no_auto,{F,A}), OldBif = erl_internal:old_bif(F,A), {Err,if Warn and (not AutoImpSup) and OldBif -> add_error (Line, {redefine_old_bif_import, {F,A}}, St0); Warn and (not AutoImpSup) -> add_warning (Line, {redefine_bif_import, {F,A}}, St0); true -> St0 end}; (Ef, {_Err,St0}) -> {true,add_error(Line, {redefine_import,Ef}, St0)} end, {false,St}, Efs), if not Err -> St1#lint{imports=add_imports(Mod, Mfs, St#lint.imports)}; true -> St1 end end. check_imports(_Line, Fs, Is) -> foldl(fun (F, Efs) -> case orddict:find(F, Is) of {ok,Mod} -> [{F,Mod}|Efs]; error -> {N,A} = F, case erl_internal:bif(N, A) of true -> [{bif,F,erlang}|Efs]; false -> Efs end end end, [], Fs). add_imports(Mod, Fs, Is) -> foldl(fun (F, Is0) -> orddict:store(F, Mod, Is0) end, Is, Fs). -spec imported(atom(), arity(), lint_state()) -> {'yes',module()} | 'no'. imported(F, A, St) -> case orddict:find({F,A}, St#lint.imports) of {ok,Mod} -> {yes,Mod}; error -> no end. -spec on_load(line(), fa(), lint_state()) -> lint_state(). %% Check an on_load directive and remember it. on_load(Line, {Name,Arity}=Fa, #lint{on_load=OnLoad0}=St0) when is_atom(Name), is_integer(Arity) -> %% Always add the function name (even if there is a problem), %% to avoid irrelevant warnings for unused functions. St = St0#lint{on_load=[Fa|OnLoad0],on_load_line=Line}, case St of #lint{on_load=[{_,0}]} -> %% This is the first on_load attribute seen in the module %% and it has the correct arity. St; #lint{on_load=[{_,_}]} -> %% Wrong arity. add_error(Line, {bad_on_load_arity,Fa}, St); #lint{on_load=[_,_|_]} -> %% Multiple on_load attributes. add_error(Line, multiple_on_loads, St) end; on_load(Line, Val, St) -> %% Bad syntax. add_error(Line, {bad_on_load,Val}, St). check_on_load(#lint{defined=Defined,on_load=[{_,0}=Fa], on_load_line=Line}=St) -> case gb_sets:is_member(Fa, Defined) of true -> St; false -> add_error(Line, {undefined_on_load,Fa}, St) end; check_on_load(St) -> St. -spec call_function(line(), atom(), arity(), lint_state()) -> lint_state(). %% Add to both called and calls. call_function(Line, F, A, #lint{usage=Usage0,called=Cd,func=Func}=St) -> #usage{calls = Cs} = Usage0, NA = {F,A}, Usage = case Cs of undefined -> Usage0; _ -> Usage0#usage{calls=dict:append(Func, NA, Cs)} end, St#lint{called=[{NA,Line}|Cd], usage=Usage}. %% function(Line, Name, Arity, Clauses, State) -> State. function(Line, Name, Arity, Cs, St0) -> St1 = define_function(Line, Name, Arity, St0#lint{func={Name,Arity}}), clauses(Cs, St1). -spec define_function(line(), atom(), arity(), lint_state()) -> lint_state(). define_function(Line, Name, Arity, St0) -> St1 = keyword_warning(Line, Name, St0), NA = {Name,Arity}, case gb_sets:is_member(NA, St1#lint.defined) of true -> add_error(Line, {redefine_function,NA}, St1); false -> St2 = function_check_max_args(Line, Arity, St1), St3 = St2#lint{defined=gb_sets:add_element(NA, St2#lint.defined)}, case imported(Name, Arity, St3) of {yes,_M} -> add_error(Line, {define_import,NA}, St3); no -> St3 end end. function_check_max_args(Line, Arity, St) when Arity > ?MAX_ARGUMENTS -> add_error(Line, {too_many_arguments,Arity}, St); function_check_max_args(_, _, St) -> St. %% clauses([Clause], State) -> {VarTable, State}. clauses(Cs, St) -> foldl(fun (C, St0) -> {_,St1} = clause(C, St0), St1 end, St, Cs). clause({clause,_Line,H,G,B}, St0) -> Vt0 = [], {Hvt,Binvt,St1} = head(H, Vt0, St0), %% Cannot ignore BinVt since "binsize variables" may have been used. Vt1 = vtupdate(Hvt, vtupdate(Binvt, Vt0)), {Gvt,St2} = guard(G, Vt1, St1), Vt2 = vtupdate(Gvt, Vt1), {Bvt,St3} = exprs(B, Vt2, St2), Upd = vtupdate(Bvt, Vt2), check_unused_vars(Upd, Vt0, St3). %% head([HeadPattern], VarTable, State) -> %% {VarTable,BinVarTable,State} %% Check a patterns in head returning "all" variables. Not updating the %% known variable list will result in multiple error messages/warnings. head(Ps, Vt, St0) -> head(Ps, Vt, Vt, St0). % Old = Vt head([P|Ps], Vt, Old, St0) -> {Pvt,Bvt1,St1} = pattern(P, Vt, Old, [], St0), {Psvt,Bvt2,St2} = head(Ps, Vt, Old, St1), {vtmerge_pat(Pvt, Psvt),vtmerge_pat(Bvt1,Bvt2),St2}; head([], _Vt, _Env, St) -> {[],[],St}. %% pattern(Pattern, VarTable, Old, BinVarTable, State) -> %% {UpdVarTable,BinVarTable,State}. %% Check pattern return variables. Old is the set of variables used for %% deciding whether an occurrence is a binding occurrence or a use, and %% VarTable is the set of variables used for arguments to binary %% patterns. UpdVarTable is updated when same variable in VarTable is %% used in the size part of a bit segment. All other information about %% used variables are recorded in BinVarTable. The caller can then decide %% what to do with it depending on whether variables in the pattern shadow %% variabler or not. This separation is one way of dealing with these: %% A = 4, fun(<>) -> % A #2 unused %% A = 4, fun(<>) -> % A #1 unused pattern(P, Vt, St) -> pattern(P, Vt, Vt, [], St). % Old = Vt pattern({var,_Line,'_'}, _Vt, _Old, _Bvt, St) -> {[],[],St}; %Ignore anonymous variable pattern({var,Line,V}, _Vt, Old, Bvt, St) -> pat_var(V, Line, Old, Bvt, St); pattern({char,_Line,_C}, _Vt, _Old, _Bvt, St) -> {[],[],St}; pattern({integer,_Line,_I}, _Vt, _Old, _Bvt, St) -> {[],[],St}; pattern({float,_Line,_F}, _Vt, _Old, _Bvt, St) -> {[],[],St}; pattern({atom,Line,A}, _Vt, _Old, _Bvt, St) -> {[],[],keyword_warning(Line, A, St)}; pattern({string,_Line,_S}, _Vt, _Old, _Bvt, St) -> {[],[],St}; pattern({nil,_Line}, _Vt, _Old, _Bvt, St) -> {[],[],St}; pattern({cons,_Line,H,T}, Vt, Old, Bvt, St0) -> {Hvt,Bvt1,St1} = pattern(H, Vt, Old, Bvt, St0), {Tvt,Bvt2,St2} = pattern(T, Vt, Old, Bvt, St1), {vtmerge_pat(Hvt, Tvt),vtmerge_pat(Bvt1,Bvt2),St2}; pattern({tuple,_Line,Ps}, Vt, Old, Bvt, St) -> pattern_list(Ps, Vt, Old, Bvt, St); pattern({map,_Line,Ps}, Vt, Old, Bvt, St) -> pattern_list(Ps, Vt, Old, Bvt, St); pattern({map_field,_Line,_,P}, Vt, Old, Bvt0, St0) -> {Pvt,Bvt,St1} = pattern(P, Vt, Old, Bvt0, St0), {Pvt,Bvt,St1}; %%pattern({struct,_Line,_Tag,Ps}, Vt, Old, Bvt, St) -> %% pattern_list(Ps, Vt, Old, Bvt, St); pattern({record_index,Line,Name,Field}, _Vt, _Old, _Bvt, St) -> {Vt1,St1} = check_record(Line, Name, St, fun (Dfs, St1) -> pattern_field(Field, Name, Dfs, St1) end), {Vt1,[],St1}; pattern({record,Line,Name,Pfs}, Vt, Old, Bvt, St) -> case dict:find(Name, St#lint.records) of {ok,{_Line,Fields}} -> St1 = used_record(Name, St), pattern_fields(Pfs, Name, Fields, Vt, Old, Bvt, St1); error -> {[],[],add_error(Line, {undefined_record,Name}, St)} end; pattern({bin,_,Fs}, Vt, Old, Bvt, St) -> pattern_bin(Fs, Vt, Old, Bvt, St); pattern({op,_Line,'++',{nil,_},R}, Vt, Old, Bvt, St) -> pattern(R, Vt, Old, Bvt, St); pattern({op,_Line,'++',{cons,Li,{char,_L2,_C},T},R}, Vt, Old, Bvt, St) -> pattern({op,Li,'++',T,R}, Vt, Old, Bvt, St); %Char unimportant here pattern({op,_Line,'++',{cons,Li,{integer,_L2,_I},T},R}, Vt, Old, Bvt, St) -> pattern({op,Li,'++',T,R}, Vt, Old, Bvt, St); %Weird, but compatible! pattern({op,_Line,'++',{string,_Li,_S},R}, Vt, Old, Bvt, St) -> pattern(R, Vt, Old, Bvt, St); %String unimportant here pattern({match,_Line,Pat1,Pat2}, Vt, Old, Bvt, St0) -> {Lvt,Bvt1,St1} = pattern(Pat1, Vt, Old, Bvt, St0), {Rvt,Bvt2,St2} = pattern(Pat2, Vt, Old, Bvt, St1), St3 = reject_bin_alias(Pat1, Pat2, St2), {vtmerge_pat(Lvt, Rvt),vtmerge_pat(Bvt1,Bvt2),St3}; %% Catch legal constant expressions, including unary +,-. pattern(Pat, _Vt, _Old, _Bvt, St) -> case is_pattern_expr(Pat) of true -> {[],[],St}; false -> {[],[],add_error(element(2, Pat), illegal_pattern, St)} end. pattern_list(Ps, Vt, Old, Bvt0, St) -> foldl(fun (P, {Psvt,Bvt,St0}) -> {Pvt,Bvt1,St1} = pattern(P, Vt, Old, Bvt0, St0), {vtmerge_pat(Pvt, Psvt),vtmerge_pat(Bvt,Bvt1),St1} end, {[],[],St}, Ps). %% reject_bin_alias(Pat, Expr, St) -> St' %% Reject aliases for binary patterns at the top level. reject_bin_alias_expr({bin,_,_}=P, {match,_,P0,E}, St0) -> St = reject_bin_alias(P, P0, St0), reject_bin_alias_expr(P, E, St); reject_bin_alias_expr({match,_,_,_}=P, {match,_,P0,E}, St0) -> St = reject_bin_alias(P, P0, St0), reject_bin_alias_expr(P, E, St); reject_bin_alias_expr(_, _, St) -> St. %% reject_bin_alias(Pat1, Pat2, St) -> St' %% Aliases of binary patterns, such as <> = <> or even %% <> = <>, are not allowed. Traverse the patterns in parallel %% and generate an error if any binary aliases are found. %% We generate an error even if is obvious that the overall pattern can't %% possibly match, for instance, {a,<>,c}={x,<>} WILL generate an %% error. reject_bin_alias({bin,Line,_}, {bin,_,_}, St) -> add_error(Line, illegal_bin_pattern, St); reject_bin_alias({cons,_,H1,T1}, {cons,_,H2,T2}, St0) -> St = reject_bin_alias(H1, H2, St0), reject_bin_alias(T1, T2, St); reject_bin_alias({tuple,_,Es1}, {tuple,_,Es2}, St) -> reject_bin_alias_list(Es1, Es2, St); reject_bin_alias({record,_,Name1,Pfs1}, {record,_,Name2,Pfs2}, #lint{records=Recs}=St) -> case {dict:find(Name1, Recs),dict:find(Name2, Recs)} of {{ok,{_Line1,Fields1}},{ok,{_Line2,Fields2}}} -> reject_bin_alias_rec(Pfs1, Pfs2, Fields1, Fields2, St); {_,_} -> %% One or more non-existing records. (An error messages has %% already been generated, so we are done here.) St end; reject_bin_alias({match,_,P1,P2}, P, St0) -> St = reject_bin_alias(P1, P, St0), reject_bin_alias(P2, P, St); reject_bin_alias(P, {match,_,_,_}=M, St) -> reject_bin_alias(M, P, St); reject_bin_alias(_P1, _P2, St) -> St. reject_bin_alias_list([E1|Es1], [E2|Es2], St0) -> St = reject_bin_alias(E1, E2, St0), reject_bin_alias_list(Es1, Es2, St); reject_bin_alias_list(_, _, St) -> St. reject_bin_alias_rec(PfsA0, PfsB0, FieldsA0, FieldsB0, St) -> %% We treat records as if they have been converted to tuples. PfsA1 = rbia_field_vars(PfsA0), PfsB1 = rbia_field_vars(PfsB0), FieldsA1 = rbia_fields(lists:reverse(FieldsA0), 0, []), FieldsB1 = rbia_fields(lists:reverse(FieldsB0), 0, []), FieldsA = sofs:relation(FieldsA1), PfsA = sofs:relation(PfsA1), A = sofs:join(FieldsA, 1, PfsA, 1), FieldsB = sofs:relation(FieldsB1), PfsB = sofs:relation(PfsB1), B = sofs:join(FieldsB, 1, PfsB, 1), C = sofs:join(A, 2, B, 2), D = sofs:projection({external,fun({_,_,P1,_,P2}) -> {P1,P2} end}, C), E = sofs:to_external(D), {Ps1,Ps2} = lists:unzip(E), reject_bin_alias_list(Ps1, Ps2, St). rbia_field_vars(Fs) -> [{Name,Pat} || {record_field,_,{atom,_,Name},Pat} <- Fs]. rbia_fields([{record_field,_,{atom,_,Name},_}|Fs], I, Acc) -> rbia_fields(Fs, I+1, [{Name,I}|Acc]); rbia_fields([_|Fs], I, Acc) -> rbia_fields(Fs, I+1, Acc); rbia_fields([], _, Acc) -> Acc. %% is_pattern_expr(Expression) -> boolean(). %% Test if a general expression is a valid pattern expression. is_pattern_expr(Expr) -> case is_pattern_expr_1(Expr) of false -> false; true -> %% Expression is syntactically correct - make sure that it %% also can be evaluated. case erl_eval:partial_eval(Expr) of {integer,_,_} -> true; {char,_,_} -> true; {float,_,_} -> true; {atom,_,_} -> true; _ -> false end end. is_pattern_expr_1({char,_Line,_C}) -> true; is_pattern_expr_1({integer,_Line,_I}) -> true; is_pattern_expr_1({float,_Line,_F}) -> true; is_pattern_expr_1({atom,_Line,_A}) -> true; is_pattern_expr_1({tuple,_Line,Es}) -> all(fun is_pattern_expr/1, Es); is_pattern_expr_1({nil,_Line}) -> true; is_pattern_expr_1({cons,_Line,H,T}) -> is_pattern_expr_1(H) andalso is_pattern_expr_1(T); is_pattern_expr_1({op,_Line,Op,A}) -> erl_internal:arith_op(Op, 1) andalso is_pattern_expr_1(A); is_pattern_expr_1({op,_Line,Op,A1,A2}) -> erl_internal:arith_op(Op, 2) andalso all(fun is_pattern_expr/1, [A1,A2]); is_pattern_expr_1(_Other) -> false. %% pattern_bin([Element], VarTable, Old, BinVarTable, State) -> %% {UpdVarTable,UpdBinVarTable,State}. %% Check a pattern group. BinVarTable are used binsize variables. pattern_bin(Es, Vt, Old, Bvt0, St0) -> {_Sz,Esvt,Bvt,St1} = foldl(fun (E, Acc) -> pattern_element(E, Vt, Old, Acc) end, {0,[],Bvt0,St0}, Es), {Esvt,Bvt,St1}. pattern_element({bin_element,Line,{string,_,_},Size,Ts}=Be, Vt, Old, {Sz,Esvt,Bvt,St0}=Acc) -> case good_string_size_type(Size, Ts) of true -> pattern_element_1(Be, Vt, Old, Acc); false -> St = add_error(Line, typed_literal_string, St0), {Sz,Esvt,Bvt,St} end; pattern_element(Be, Vt, Old, Acc) -> pattern_element_1(Be, Vt, Old, Acc). pattern_element_1({bin_element,Line,E,Sz0,Ts}, Vt, Old, {Size0,Esvt,Bvt,St0}) -> {Pevt,Bvt1,St1} = pat_bit_expr(E, Old, Bvt, St0), %% vtmerge or vtmerge_pat doesn't matter here {Sz1,Szvt,Bvt2,St2} = pat_bit_size(Sz0, vtmerge(Vt, Esvt), Bvt, St1), {Sz2,Bt,St3} = bit_type(Line, Sz1, Ts, St2), {Sz3,St4} = bit_size_check(Line, Sz2, Bt, St3), Sz4 = case {E,Sz3} of {{string,_,S},all} -> 8*length(S); {_,_} -> Sz3 end, {Size1,St5} = add_bit_size(Line, Sz4, Size0, false, St4), {Size1,vtmerge(Szvt,vtmerge(Pevt, Esvt)), vtmerge(Bvt2,vtmerge(Bvt, Bvt1)), St5}. good_string_size_type(default, default) -> true; good_string_size_type(default, Ts) -> lists:any(fun(utf8) -> true; (utf16) -> true; (utf32) -> true; (_) -> false end, Ts); good_string_size_type(_, _) -> false. %% pat_bit_expr(Pattern, OldVarTable, BinVarTable,State) -> %% {UpdVarTable,UpdBinVarTable,State}. %% Check pattern bit expression, only allow really valid patterns! pat_bit_expr({var,_,'_'}, _Old, _Bvt, St) -> {[],[],St}; pat_bit_expr({var,Ln,V}, Old, Bvt, St) -> pat_var(V, Ln, Old, Bvt, St); pat_bit_expr({string,_,_}, _Old, _Bvt, St) -> {[],[],St}; pat_bit_expr({bin,L,_}, _Old, _Bvt, St) -> {[],[],add_error(L, illegal_pattern, St)}; pat_bit_expr(P, _Old, _Bvt, St) -> case is_pattern_expr(P) of true -> {[],[],St}; false -> {[],[],add_error(element(2, P), illegal_pattern, St)} end. %% pat_bit_size(Size, VarTable, BinVarTable, State) -> %% {Value,UpdVarTable,UpdBinVarTable,State}. %% Check pattern size expression, only allow really valid sizes! pat_bit_size(default, _Vt, _Bvt, St) -> {default,[],[],St}; pat_bit_size({atom,_Line,all}, _Vt, _Bvt, St) -> {all,[],[],St}; pat_bit_size({var,Lv,V}, Vt0, Bvt0, St0) -> {Vt,Bvt,St1} = pat_binsize_var(V, Lv, Vt0, Bvt0, St0), {unknown,Vt,Bvt,St1}; pat_bit_size(Size, _Vt, _Bvt, St) -> Line = element(2, Size), case is_pattern_expr(Size) of true -> case erl_eval:partial_eval(Size) of {integer,Line,I} -> {I,[],[],St}; _Other -> {unknown,[],[],add_error(Line, illegal_bitsize, St)} end; false -> {unknown,[],[],add_error(Line, illegal_bitsize, St)} end. %% expr_bin(Line, [Element], VarTable, State, CheckFun) -> {UpdVarTable,State}. %% Check an expression group. expr_bin(Es, Vt, St0, Check) -> {_Sz,Esvt,St1} = foldl(fun (E, Acc) -> bin_element(E, Vt, Acc, Check) end, {0,[],St0}, Es), {Esvt,St1}. bin_element({bin_element,Line,E,Sz0,Ts}, Vt, {Size0,Esvt,St0}, Check) -> {Vt1,St1} = Check(E, Vt, St0), {Sz1,Vt2,St2} = bit_size(Sz0, Vt, St1, Check), {Sz2,Bt,St3} = bit_type(Line, Sz1, Ts, St2), {Sz3,St4} = bit_size_check(Line, Sz2, Bt, St3), {Size1,St5} = add_bit_size(Line, Sz3, Size0, true, St4), {Size1,vtmerge([Vt2,Vt1,Esvt]),St5}. bit_size(default, _Vt, St, _Check) -> {default,[],St}; bit_size({atom,_Line,all}, _Vt, St, _Check) -> {all,[],St}; bit_size(Size, Vt, St, Check) -> %% Try to safely evaluate Size if constant to get size, %% otherwise just treat it as an expression. case is_gexpr(Size, St#lint.records) of true -> case erl_eval:partial_eval(Size) of {integer,_ILn,I} -> {I,[],St}; _Other -> {Evt,St1} = Check(Size, Vt, St), {unknown,Evt,St1} end; false -> {Evt,St1} = Check(Size, Vt, St), {unknown,Evt,St1} end. %% bit_type(Line, Size, TypeList, State) -> {Size,#bittype,St}. %% Perform warning check on type and size. bit_type(Line, Size0, Type, St) -> case erl_bits:set_bit_type(Size0, Type) of {ok,Size1,Bt} -> {Size1,Bt,St}; {error,What} -> %% Flag error and generate a default. {ok,Size1,Bt} = erl_bits:set_bit_type(default, []), {Size1,Bt,add_error(Line, What, St)} end. %% bit_size_check(Line, Size, BitType, State) -> {BitSize,State}. %% Do some checking & warnings on types %% float == 32 or 64 bit_size_check(_Line, unknown, _, St) -> {unknown,St}; bit_size_check(_Line, undefined, #bittype{type=Type}, St) -> true = (Type =:= utf8) or (Type =:= utf16) or (Type =:= utf32), %Assertion. {undefined,St}; bit_size_check(Line, all, #bittype{type=Type}, St) -> case Type of binary -> {all,St}; _ -> {unknown,add_error(Line, illegal_bitsize, St)} end; bit_size_check(Line, Size, #bittype{type=Type,unit=Unit}, St) -> Sz = Unit * Size, %Total number of bits! St2 = elemtype_check(Line, Type, Sz, St), {Sz,St2}. elemtype_check(_Line, float, 32, St) -> St; elemtype_check(_Line, float, 64, St) -> St; elemtype_check(Line, float, _Size, St) -> add_warning(Line, {bad_bitsize,"float"}, St); elemtype_check(_Line, _Type, _Size, St) -> St. %% add_bit_size(Line, ElementSize, BinSize, Build, State) -> {Size,State}. %% Add bits to group size. add_bit_size(Line, _Sz1, all, false, St) -> {all,add_error(Line, unsized_binary_not_at_end, St)}; add_bit_size(_Line, _Sz1, all, true, St) -> {all,St}; add_bit_size(_Line, all, _Sz2, _B, St) -> {all,St}; add_bit_size(_Line, undefined, _Sz2, _B, St) -> {undefined,St}; add_bit_size(_Line, unknown, _Sz2, _B, St) -> {unknown,St}; add_bit_size(_Line, _Sz1, undefined, _B, St) -> {unknown,St}; add_bit_size(_Line, _Sz1, unknown, _B, St) -> {unknown,St}; add_bit_size(_Line, Sz1, Sz2, _B, St) -> {Sz1 + Sz2,St}. %% guard([GuardTest], VarTable, State) -> %% {UsedVarTable,State} %% Check a guard, return all variables. %% Disjunction of guard conjunctions guard([L|R], Vt, St0) when is_list(L) -> {Gvt, St1} = guard_tests(L, Vt, St0), {Gsvt, St2} = guard(R, vtupdate(Gvt, Vt), St1), {vtupdate(Gvt, Gsvt),St2}; guard(L, Vt, St0) -> guard_tests(L, Vt, St0). %% guard conjunction guard_tests([G|Gs], Vt, St0) -> {Gvt,St1} = guard_test(G, Vt, St0), {Gsvt,St2} = guard_tests(Gs, vtupdate(Gvt, Vt), St1), {vtupdate(Gvt, Gsvt),St2}; guard_tests([], _Vt, St) -> {[],St}. %% guard_test(Test, VarTable, State) -> %% {UsedVarTable,State'} %% Check one guard test, returns NewVariables. We now allow more %% expressions in guards including the new is_XXX type tests, but %% only allow the old type tests at the top level. guard_test(G, Vt, St0) -> St1 = obsolete_guard(G, St0), guard_test2(G, Vt, St1). %% Specially handle record type test here. guard_test2({call,Line,{atom,Lr,record},[E,A]}, Vt, St0) -> gexpr({call,Line,{atom,Lr,is_record},[E,A]}, Vt, St0); guard_test2({call,Line,{atom,_La,F},As}=G, Vt, St0) -> {Asvt,St1} = gexpr_list(As, Vt, St0), %Always check this. A = length(As), case erl_internal:type_test(F, A) of true when F =/= is_record, A =/= 2 -> case no_guard_bif_clash(St1, {F,A}) of false -> {Asvt,add_error(Line, {illegal_guard_local_call,{F,A}}, St1)}; true -> {Asvt,St1} end; _ -> gexpr(G, Vt, St0) end; guard_test2(G, Vt, St) -> %% Everything else is a guard expression. gexpr(G, Vt, St). %% gexpr(GuardExpression, VarTable, State) -> %% {UsedVarTable,State'} %% Check a guard expression, returns NewVariables. gexpr({var,Line,V}, Vt, St) -> expr_var(V, Line, Vt, St); gexpr({char,_Line,_C}, _Vt, St) -> {[],St}; gexpr({integer,_Line,_I}, _Vt, St) -> {[],St}; gexpr({float,_Line,_F}, _Vt, St) -> {[],St}; gexpr({atom,Line,A}, _Vt, St) -> {[],keyword_warning(Line, A, St)}; gexpr({string,_Line,_S}, _Vt, St) -> {[],St}; gexpr({nil,_Line}, _Vt, St) -> {[],St}; gexpr({cons,_Line,H,T}, Vt, St) -> gexpr_list([H,T], Vt, St); gexpr({tuple,_Line,Es}, Vt, St) -> gexpr_list(Es, Vt, St); gexpr({map,_Line,Es}, Vt, St) -> gexpr_list(Es, Vt, St); gexpr({map,_Line,Src,Es}, Vt, St) -> gexpr_list([Src|Es], Vt, St); gexpr({map_field,_Line,K,V}, Vt, St) -> gexpr_list([K,V], Vt, St); gexpr({record_index,Line,Name,Field}, _Vt, St) -> check_record(Line, Name, St, fun (Dfs, St1) -> record_field(Field, Name, Dfs, St1) end ); gexpr({record_field,Line,Rec,Name,Field}, Vt, St0) -> {Rvt,St1} = gexpr(Rec, Vt, St0), {Fvt,St2} = check_record(Line, Name, St1, fun (Dfs, St) -> record_field(Field, Name, Dfs, St) end), {vtmerge(Rvt, Fvt),St2}; gexpr({record,Line,Name,Inits}, Vt, St) -> check_record(Line, Name, St, fun (Dfs, St1) -> ginit_fields(Inits, Line, Name, Dfs, Vt, St1) end); gexpr({bin,_Line,Fs}, Vt,St) -> expr_bin(Fs, Vt, St, fun gexpr/3); gexpr({call,_Line,{atom,_Lr,is_record},[E,{atom,Ln,Name}]}, Vt, St0) -> {Rvt,St1} = gexpr(E, Vt, St0), {Rvt,exist_record(Ln, Name, St1)}; gexpr({call,Line,{atom,_Lr,is_record},[E,R]}, Vt, St0) -> {Asvt,St1} = gexpr_list([E,R], Vt, St0), {Asvt,add_error(Line, illegal_guard_expr, St1)}; gexpr({call,Line,{remote,_Lr,{atom,_Lm,erlang},{atom,Lf,is_record}},[E,A]}, Vt, St0) -> gexpr({call,Line,{atom,Lf,is_record},[E,A]}, Vt, St0); gexpr({call,Line,{atom,_Lr,is_record},[E0,{atom,_,_Name},{integer,_,_}]}, Vt, St0) -> {E,St1} = gexpr(E0, Vt, St0), case no_guard_bif_clash(St0, {is_record,3}) of true -> {E,St1}; false -> {E,add_error(Line, {illegal_guard_local_call,{is_record,3}}, St1)} end; gexpr({call,Line,{atom,_Lr,is_record},[_,_,_]=Asvt0}, Vt, St0) -> {Asvt,St1} = gexpr_list(Asvt0, Vt, St0), {Asvt,add_error(Line, illegal_guard_expr, St1)}; gexpr({call,Line,{remote,_,{atom,_,erlang},{atom,_,is_record}=Isr},[_,_,_]=Args}, Vt, St0) -> gexpr({call,Line,Isr,Args}, Vt, St0); gexpr({call,Line,{atom,_La,F},As}, Vt, St0) -> {Asvt,St1} = gexpr_list(As, Vt, St0), A = length(As), %% BifClash - Function called in guard case erl_internal:guard_bif(F, A) andalso no_guard_bif_clash(St1,{F,A}) of true -> %% Assert that it is auto-imported. true = erl_internal:bif(F, A), {Asvt,St1}; false -> case is_local_function(St1#lint.locals,{F,A}) orelse is_imported_function(St1#lint.imports,{F,A}) of true -> {Asvt,add_error(Line, {illegal_guard_local_call,{F,A}}, St1)}; _ -> {Asvt,add_error(Line, illegal_guard_expr, St1)} end end; gexpr({call,Line,{remote,_Lr,{atom,_Lm,erlang},{atom,_Lf,F}},As}, Vt, St0) -> {Asvt,St1} = gexpr_list(As, Vt, St0), A = length(As), case erl_internal:guard_bif(F, A) orelse is_gexpr_op(F, A) of true -> {Asvt,St1}; false -> {Asvt,add_error(Line, illegal_guard_expr, St1)} end; gexpr({op,Line,Op,A}, Vt, St0) -> {Avt,St1} = gexpr(A, Vt, St0), case is_gexpr_op(Op, 1) of true -> {Avt,St1}; false -> {Avt,add_error(Line, illegal_guard_expr, St1)} end; gexpr({op,Line,Op,L,R}, Vt, St0) -> {Avt,St1} = gexpr_list([L,R], Vt, St0), case is_gexpr_op(Op, 2) of true -> {Avt,St1}; false -> {Avt,add_error(Line, illegal_guard_expr, St1)} end; %% Everything else is illegal! You could put explicit tests here to %% better error diagnostics. gexpr(E, _Vt, St) -> {[],add_error(element(2, E), illegal_guard_expr, St)}. %% gexpr_list(Expressions, VarTable, State) -> %% {UsedVarTable,State'} gexpr_list(Es, Vt, St) -> foldl(fun (E, {Esvt,St0}) -> {Evt,St1} = gexpr(E, Vt, St0), {vtmerge(Evt, Esvt),St1} end, {[],St}, Es). %% is_guard_test(Expression) -> boolean(). %% Test if a general expression is a guard test. -spec is_guard_test(Expr) -> boolean() when Expr :: erl_parse:abstract_expr(). is_guard_test(E) -> is_guard_test2(E, dict:new()). %% is_guard_test(Expression, Forms) -> boolean(). is_guard_test(Expression, Forms) -> RecordAttributes = [A || A = {attribute, _, record, _D} <- Forms], St0 = foldl(fun(Attr0, St1) -> Attr = zip_file_and_line(Attr0, "none"), attribute_state(Attr, St1) end, start(), RecordAttributes), is_guard_test2(zip_file_and_line(Expression, "nofile"), St0#lint.records). %% is_guard_test2(Expression, RecordDefs :: dict()) -> boolean(). is_guard_test2({call,Line,{atom,Lr,record},[E,A]}, RDs) -> is_gexpr({call,Line,{atom,Lr,is_record},[E,A]}, RDs); is_guard_test2({call,_Line,{atom,_La,Test},As}=Call, RDs) -> case erl_internal:type_test(Test, length(As)) of true -> is_gexpr_list(As, RDs); false -> is_gexpr(Call, RDs) end; is_guard_test2(G, RDs) -> %%Everything else is a guard expression. is_gexpr(G, RDs). %% is_guard_expr(Expression) -> boolean(). %% Test if an expression is a guard expression. is_guard_expr(E) -> is_gexpr(E, []). is_gexpr({var,_L,_V}, _RDs) -> true; is_gexpr({char,_L,_C}, _RDs) -> true; is_gexpr({integer,_L,_I}, _RDs) -> true; is_gexpr({float,_L,_F}, _RDs) -> true; is_gexpr({atom,_L,_A}, _RDs) -> true; is_gexpr({string,_L,_S}, _RDs) -> true; is_gexpr({nil,_L}, _RDs) -> true; is_gexpr({cons,_L,H,T}, RDs) -> is_gexpr_list([H,T], RDs); is_gexpr({tuple,_L,Es}, RDs) -> is_gexpr_list(Es, RDs); %%is_gexpr({struct,_L,_Tag,Es}, RDs) -> %% is_gexpr_list(Es, RDs); is_gexpr({record_index,_L,_Name,Field}, RDs) -> is_gexpr(Field, RDs); is_gexpr({record_field,_L,Rec,_Name,Field}, RDs) -> is_gexpr_list([Rec,Field], RDs); is_gexpr({record,L,Name,Inits}, RDs) -> is_gexpr_fields(Inits, L, Name, RDs); is_gexpr({bin,_L,Fs}, RDs) -> all(fun ({bin_element,_Line,E,Sz,_Ts}) -> is_gexpr(E, RDs) and (Sz =:= default orelse is_gexpr(Sz, RDs)) end, Fs); is_gexpr({call,_L,{atom,_Lf,F},As}, RDs) -> A = length(As), erl_internal:guard_bif(F, A) andalso is_gexpr_list(As, RDs); is_gexpr({call,_L,{remote,_Lr,{atom,_Lm,erlang},{atom,_Lf,F}},As}, RDs) -> A = length(As), (erl_internal:guard_bif(F, A) orelse is_gexpr_op(F, A)) andalso is_gexpr_list(As, RDs); is_gexpr({call,L,{tuple,Lt,[{atom,Lm,erlang},{atom,Lf,F}]},As}, RDs) -> is_gexpr({call,L,{remote,Lt,{atom,Lm,erlang},{atom,Lf,F}},As}, RDs); is_gexpr({op,_L,Op,A}, RDs) -> is_gexpr_op(Op, 1) andalso is_gexpr(A, RDs); is_gexpr({op,_L,Op,A1,A2}, RDs) -> is_gexpr_op(Op, 2) andalso is_gexpr_list([A1,A2], RDs); is_gexpr(_Other, _RDs) -> false. is_gexpr_op('andalso', 2) -> true; is_gexpr_op('orelse', 2) -> true; is_gexpr_op(Op, A) -> try erl_internal:op_type(Op, A) of arith -> true; bool -> true; comp -> true; list -> false; send -> false catch _:_ -> false end. is_gexpr_list(Es, RDs) -> all(fun (E) -> is_gexpr(E, RDs) end, Es). is_gexpr_fields(Fs, L, Name, RDs) -> IFs = case dict:find(Name, RDs) of {ok,{_Line,Fields}} -> Fs ++ init_fields(Fs, L, Fields); error -> Fs end, all(fun ({record_field,_Lf,_Name,V}) -> is_gexpr(V, RDs); (_Other) -> false end, IFs). %% exprs(Sequence, VarTable, State) -> %% {UsedVarTable,State'} %% Check a sequence of expressions, return all variables. exprs([E|Es], Vt, St0) -> {Evt,St1} = expr(E, Vt, St0), {Esvt,St2} = exprs(Es, vtupdate(Evt, Vt), St1), {vtupdate(Evt, Esvt),St2}; exprs([], _Vt, St) -> {[],St}. %% expr(Expression, VarTable, State) -> %% {UsedVarTable,State'} %% Check an expression, returns NewVariables. Assume naive users and %% mark illegally exported variables, e.g. from catch, as unsafe to better %% show why unbound. expr({var,Line,V}, Vt, St) -> expr_var(V, Line, Vt, St); expr({char,_Line,_C}, _Vt, St) -> {[],St}; expr({integer,_Line,_I}, _Vt, St) -> {[],St}; expr({float,_Line,_F}, _Vt, St) -> {[],St}; expr({atom,Line,A}, _Vt, St) -> {[],keyword_warning(Line, A, St)}; expr({string,_Line,_S}, _Vt, St) -> {[],St}; expr({nil,_Line}, _Vt, St) -> {[],St}; expr({cons,_Line,H,T}, Vt, St) -> expr_list([H,T], Vt, St); expr({lc,_Line,E,Qs}, Vt, St) -> handle_comprehension(E, Qs, Vt, St); expr({bc,_Line,E,Qs}, Vt, St) -> handle_comprehension(E, Qs, Vt, St); expr({tuple,_Line,Es}, Vt, St) -> expr_list(Es, Vt, St); expr({map,_Line,Es}, Vt, St) -> expr_list(Es, Vt, St); expr({map,_Line,Src,Es}, Vt, St) -> expr_list([Src|Es], Vt, St); expr({map_field,_Line,K,V}, Vt, St) -> expr_list([K,V], Vt, St); expr({record_index,Line,Name,Field}, _Vt, St) -> check_record(Line, Name, St, fun (Dfs, St1) -> record_field(Field, Name, Dfs, St1) end); expr({record,Line,Name,Inits}, Vt, St) -> check_record(Line, Name, St, fun (Dfs, St1) -> init_fields(Inits, Line, Name, Dfs, Vt, St1) end); expr({record_field,Line,Rec,Name,Field}, Vt, St0) -> {Rvt,St1} = record_expr(Line, Rec, Vt, St0), {Fvt,St2} = check_record(Line, Name, St1, fun (Dfs, St) -> record_field(Field, Name, Dfs, St) end), {vtmerge(Rvt, Fvt),St2}; expr({record,Line,Rec,Name,Upds}, Vt, St0) -> {Rvt,St1} = record_expr(Line, Rec, Vt, St0), {Usvt,St2} = check_record(Line, Name, St1, fun (Dfs, St) -> update_fields(Upds, Name, Dfs, Vt, St) end ), case has_wildcard_field(Upds) of true -> {[],add_error(Line, {wildcard_in_update,Name}, St2)}; false -> {vtmerge(Rvt, Usvt),St2} end; expr({bin,_Line,Fs}, Vt, St) -> expr_bin(Fs, Vt, St, fun expr/3); expr({block,_Line,Es}, Vt, St) -> %% Unfold block into a sequence. exprs(Es, Vt, St); expr({'if',Line,Cs}, Vt, St) -> icrt_clauses(Cs, {'if',Line}, Vt, St); expr({'case',Line,E,Cs}, Vt, St0) -> {Evt,St1} = expr(E, Vt, St0), {Cvt,St2} = icrt_clauses(Cs, {'case',Line}, vtupdate(Evt, Vt), St1), {vtmerge(Evt, Cvt),St2}; expr({'receive',Line,Cs}, Vt, St) -> icrt_clauses(Cs, {'receive',Line}, Vt, St); expr({'receive',Line,Cs,To,ToEs}, Vt, St0) -> %% Are variables from the timeout expression visible in the clauses? NO! {Tvt,St1} = expr(To, Vt, St0), {Tevt,St2} = exprs(ToEs, Vt, St1), {Cvt,St3} = icrt_clauses(Cs, Vt, St2), %% Csvts = [vtnew(Tevt, Vt)|Cvt], %This is just NEW variables! Csvts = [Tevt|Cvt], {Rvt,St4} = icrt_export(Csvts, Vt, {'receive',Line}, St3), {vtmerge([Tvt,Tevt,Rvt]),St4}; expr({'fun',Line,Body}, Vt, St) -> %%No one can think funs export! case Body of {clauses,Cs} -> fun_clauses(Cs, Vt, St); {function,F,A} -> %% BifClash - Fun expression %% N.B. Only allows BIFs here as well, NO IMPORTS!! case ((not is_local_function(St#lint.locals,{F,A})) andalso (erl_internal:bif(F, A) andalso (not is_autoimport_suppressed(St#lint.no_auto,{F,A})))) of true -> {[],St}; false -> {[],call_function(Line, F, A, St)} end; {function,M,F,A} when is_atom(M), is_atom(F), is_integer(A) -> %% Compatibility with pre-R15 abstract format. {[],St}; {function,M,F,A} -> %% New in R15. {Bvt, St1} = expr_list([M,F,A], Vt, St), {vtupdate(Bvt, Vt),St1} end; expr({named_fun,_,'_',Cs}, Vt, St) -> fun_clauses(Cs, Vt, St); expr({named_fun,Line,Name,Cs}, Vt, St0) -> Nvt0 = [{Name,{bound,unused,[Line]}}], St1 = shadow_vars(Nvt0, Vt, 'named fun', St0), Nvt1 = vtupdate(vtsubtract(Vt, Nvt0), Nvt0), {Csvt,St2} = fun_clauses(Cs, Nvt1, St1), {_,St3} = check_unused_vars(vtupdate(Csvt, Nvt0), [], St2), {vtold(Csvt, Vt),St3}; expr({call,_Line,{atom,_Lr,is_record},[E,{atom,Ln,Name}]}, Vt, St0) -> {Rvt,St1} = expr(E, Vt, St0), {Rvt,exist_record(Ln, Name, St1)}; expr({call,Line,{remote,_Lr,{atom,_Lm,erlang},{atom,Lf,is_record}},[E,A]}, Vt, St0) -> expr({call,Line,{atom,Lf,is_record},[E,A]}, Vt, St0); expr({call,L,{tuple,Lt,[{atom,Lm,erlang},{atom,Lf,is_record}]},As}, Vt, St) -> expr({call,L,{remote,Lt,{atom,Lm,erlang},{atom,Lf,is_record}},As}, Vt, St); expr({call,Line,{remote,_Lr,{atom,_Lm,M},{atom,Lf,F}},As}, Vt, St0) -> St1 = keyword_warning(Lf, F, St0), St2 = check_remote_function(Line, M, F, As, St1), expr_list(As, Vt, St2); expr({call,Line,{remote,_Lr,M,F},As}, Vt, St0) -> St1 = keyword_warning(Line, M, St0), St2 = keyword_warning(Line, F, St1), expr_list([M,F|As], Vt, St2); expr({call,Line,{atom,La,F},As}, Vt, St0) -> St1 = keyword_warning(La, F, St0), {Asvt,St2} = expr_list(As, Vt, St1), A = length(As), IsLocal = is_local_function(St2#lint.locals,{F,A}), IsAutoBif = erl_internal:bif(F, A), AutoSuppressed = is_autoimport_suppressed(St2#lint.no_auto,{F,A}), Warn = is_warn_enabled(bif_clash, St2) and (not bif_clash_specifically_disabled(St2,{F,A})), Imported = imported(F, A, St2), case ((not IsLocal) andalso (Imported =:= no) andalso IsAutoBif andalso (not AutoSuppressed)) of true -> St3 = deprecated_function(Line, erlang, F, As, St2), {Asvt,St3}; false -> {Asvt,case Imported of {yes,M} -> St3 = check_remote_function(Line, M, F, As, St2), U0 = St3#lint.usage, Imp = ordsets:add_element({{F,A},M},U0#usage.imported), St3#lint{usage=U0#usage{imported = Imp}}; no -> case {F,A} of {record_info,2} -> check_record_info_call(Line,La,As,St2); N -> %% BifClash - function call %% Issue these warnings/errors even if it's a recursive call St3 = if (not AutoSuppressed) andalso IsAutoBif andalso Warn -> case erl_internal:old_bif(F,A) of true -> add_error (Line, {call_to_redefined_old_bif, {F,A}}, St2); false -> add_warning (Line, {call_to_redefined_bif, {F,A}}, St2) end; true -> St2 end, %% ...but don't lint recursive calls if N =:= St3#lint.func -> St3; true -> call_function(Line, F, A, St3) end end end} end; expr({call,Line,F,As}, Vt, St0) -> St = warn_invalid_call(Line,F,St0), expr_list([F|As], Vt, St); %They see the same variables expr({'try',Line,Es,Scs,Ccs,As}, Vt, St0) -> %% Currently, we don't allow any exports because later %% passes cannot handle exports in combination with 'after'. {Evt0,St1} = exprs(Es, Vt, St0), TryLine = {'try',Line}, Uvt = vtunsafe(vtnames(vtnew(Evt0, Vt)), TryLine, []), Evt1 = vtupdate(Uvt, vtsubtract(Evt0, Uvt)), {Sccs,St2} = icrt_clauses(Scs++Ccs, TryLine, vtupdate(Evt1, Vt), St1), Rvt0 = Sccs, Rvt1 = vtupdate(vtunsafe(vtnames(vtnew(Rvt0, Vt)), TryLine, []), Rvt0), Evt2 = vtmerge(Evt1, Rvt1), {Avt0,St} = exprs(As, vtupdate(Evt2, Vt), St2), Avt1 = vtupdate(vtunsafe(vtnames(vtnew(Avt0, Vt)), TryLine, []), Avt0), Avt = vtmerge(Evt2, Avt1), {Avt,St}; expr({'catch',Line,E}, Vt, St0) -> %% No new variables added, flag new variables as unsafe. {Evt,St1} = expr(E, Vt, St0), Uvt = vtunsafe(vtnames(vtnew(Evt, Vt)), {'catch',Line}, []), {vtupdate(Uvt,vtupdate(Evt, Vt)),St1}; expr({match,_Line,P,E}, Vt, St0) -> {Evt,St1} = expr(E, Vt, St0), {Pvt,Bvt,St2} = pattern(P, vtupdate(Evt, Vt), St1), St = reject_bin_alias_expr(P, E, St2), {vtupdate(Bvt, vtmerge(Evt, Pvt)),St}; %% No comparison or boolean operators yet. expr({op,_Line,_Op,A}, Vt, St) -> expr(A, Vt, St); expr({op,Line,Op,L,R}, Vt, St0) when Op =:= 'orelse'; Op =:= 'andalso' -> {Evt1,St1} = expr(L, Vt, St0), Vt1 = vtupdate(Evt1, Vt), {Evt2,St2} = expr(R, Vt1, St1), Vt2 = vtmerge(Evt2, Vt1), {Vt3,St3} = icrt_export([Vt1,Vt2], Vt1, {Op,Line}, St2), {vtmerge(Evt1, Vt3),St3}; expr({op,_Line,_Op,L,R}, Vt, St) -> expr_list([L,R], Vt, St); %They see the same variables %% The following are not allowed to occur anywhere! expr({remote,Line,_M,_F}, _Vt, St) -> {[],add_error(Line, illegal_expr, St)}. %% expr_list(Expressions, Variables, State) -> %% {UsedVarTable,State} expr_list(Es, Vt, St) -> {Vt1,St1} = foldl(fun (E, {Esvt,St0}) -> {Evt,St1} = expr(E, Vt, St0), {vtmerge_pat(Evt, Esvt),St1} end, {[],St}, Es), {vtmerge(vtnew(Vt1, Vt), vtold(Vt1, Vt)),St1}. record_expr(Line, Rec, Vt, St0) -> St1 = warn_invalid_record(Line, Rec, St0), expr(Rec, Vt, St1). %% warn_invalid_record(Line, Record, State0) -> State %% Adds warning if the record is invalid. warn_invalid_record(Line, R, St) -> case is_valid_record(R) of true -> St; false -> add_warning(Line, invalid_record, St) end. %% is_valid_record(Record) -> boolean(). is_valid_record(Rec) -> case Rec of {char, _, _} -> false; {integer, _, _} -> false; {float, _, _} -> false; {atom, _, _} -> false; {string, _, _} -> false; {cons, _, _, _} -> false; {nil, _} -> false; {lc, _, _, _} -> false; {record_index, _, _, _} -> false; {'fun', _, _} -> false; {named_fun, _, _, _} -> false; _ -> true end. %% warn_invalid_call(Line, Call, State0) -> State %% Adds warning if the call is invalid. warn_invalid_call(Line, F, St) -> case is_valid_call(F) of true -> St; false -> add_warning(Line, invalid_call, St) end. %% is_valid_call(Call) -> boolean(). is_valid_call(Call) -> case Call of {char, _, _} -> false; {integer, _, _} -> false; {float, _, _} -> false; {string, _, _} -> false; {cons, _, _, _} -> false; {nil, _} -> false; {lc, _, _, _} -> false; {record_index, _, _, _} -> false; {tuple, _, Exprs} when length(Exprs) =/= 2 -> false; _ -> true end. %% record_def(Line, RecordName, [RecField], State) -> State. %% Add a record definition if it does not already exist. Normalise %% so that all fields have explicit initial value. record_def(Line, Name, Fs0, St0) -> case dict:is_key(Name, St0#lint.records) of true -> add_error(Line, {redefine_record,Name}, St0); false -> {Fs1,St1} = def_fields(normalise_fields(Fs0), Name, St0), St1#lint{records=dict:store(Name, {Line,Fs1}, St1#lint.records)} end. %% def_fields([RecDef], RecordName, State) -> {[DefField],State}. %% Check (normalised) fields for duplicates. Return unduplicated %% record and set State. def_fields(Fs0, Name, St0) -> foldl(fun ({record_field,Lf,{atom,La,F},V}, {Fs,St}) -> case exist_field(F, Fs) of true -> {Fs,add_error(Lf, {redefine_field,Name,F}, St)}; false -> St1 = St#lint{recdef_top = true}, {_,St2} = expr(V, [], St1), %% Warnings and errors found are kept, but %% updated calls, records, etc. are discarded. St3 = St1#lint{warnings = St2#lint.warnings, errors = St2#lint.errors, called = St2#lint.called, recdef_top = false}, %% This is one way of avoiding a loop for %% "recursive" definitions. NV = case St2#lint.errors =:= St1#lint.errors of true -> V; false -> {atom,La,undefined} end, {[{record_field,Lf,{atom,La,F},NV}|Fs],St3} end end, {[],St0}, Fs0). %% normalise_fields([RecDef]) -> [Field]. %% Normalise the field definitions to always have a default value. If %% none has been given then use 'undefined'. %% Also, strip type information from typed record fields. normalise_fields(Fs) -> map(fun ({record_field,Lf,Field}) -> {record_field,Lf,Field,{atom,Lf,undefined}}; ({typed_record_field,{record_field,Lf,Field},_Type}) -> {record_field,Lf,Field,{atom,Lf,undefined}}; ({typed_record_field,Field,_Type}) -> Field; (F) -> F end, Fs). %% exist_record(Line, RecordName, State) -> State. %% Check if a record exists. Set State. exist_record(Line, Name, St) -> case dict:is_key(Name, St#lint.records) of true -> used_record(Name, St); false -> add_error(Line, {undefined_record,Name}, St) end. %% check_record(Line, RecordName, State, CheckFun) -> %% {UpdVarTable, State}. %% The generic record checking function, first checks that the record %% exists then calls the specific check function. N.B. the check %% function can safely assume that the record exists. %% %% The check function is called: %% CheckFun(RecordDefFields, State) %% and must return %% {UpdatedVarTable,State} check_record(Line, Name, St, CheckFun) -> case dict:find(Name, St#lint.records) of {ok,{_Line,Fields}} -> CheckFun(Fields, used_record(Name, St)); error -> {[],add_error(Line, {undefined_record,Name}, St)} end. used_record(Name, #lint{usage=Usage}=St) -> UsedRecs = sets:add_element(Name, Usage#usage.used_records), St#lint{usage = Usage#usage{used_records=UsedRecs}}. %%% Record check functions. %% check_fields([ChkField], RecordName, [RecDefField], VarTable, State, CheckFun) -> %% {UpdVarTable,State}. check_fields(Fs, Name, Fields, Vt, St0, CheckFun) -> {_SeenFields,Uvt,St1} = foldl(fun (Field, {Sfsa,Vta,Sta}) -> {Sfsb,{Vtb,Stb}} = check_field(Field, Name, Fields, Vt, Sta, Sfsa, CheckFun), {Sfsb,vtmerge_pat(Vta, Vtb),Stb} end, {[],[],St0}, Fs), {Uvt,St1}. check_field({record_field,Lf,{atom,La,F},Val}, Name, Fields, Vt, St, Sfs, CheckFun) -> case member(F, Sfs) of true -> {Sfs,{[],add_error(Lf, {redefine_field,Name,F}, St)}}; false -> {[F|Sfs], case find_field(F, Fields) of {ok,_I} -> CheckFun(Val, Vt, St); error -> {[],add_error(La, {undefined_field,Name,F}, St)} end} end; check_field({record_field,_Lf,{var,_La,'_'},Val}, _Name, _Fields, Vt, St, Sfs, CheckFun) -> {Sfs,CheckFun(Val, Vt, St)}; check_field({record_field,_Lf,{var,La,V},_Val}, Name, _Fields, Vt, St, Sfs, _CheckFun) -> {Sfs,{Vt,add_error(La, {field_name_is_variable,Name,V}, St)}}. %% pattern_field(Field, RecordName, [RecDefField], State) -> %% {UpdVarTable,State}. %% Test if record RecordName has field Field. Set State. pattern_field({atom,La,F}, Name, Fields, St) -> case find_field(F, Fields) of {ok,_I} -> {[],St}; error -> {[],add_error(La, {undefined_field,Name,F}, St)} end. %% pattern_fields([PatField],RecordName,[RecDefField], %% VarTable,Old,Bvt,State) -> %% {UpdVarTable,UpdBinVarTable,State}. pattern_fields(Fs, Name, Fields, Vt0, Old, Bvt, St0) -> CheckFun = fun (Val, Vt, St) -> pattern(Val, Vt, Old, Bvt, St) end, {_SeenFields,Uvt,Bvt1,St1} = foldl(fun (Field, {Sfsa,Vta,Bvt1,Sta}) -> case check_field(Field, Name, Fields, Vt0, Sta, Sfsa, CheckFun) of {Sfsb,{Vtb,Stb}} -> {Sfsb,vtmerge_pat(Vta, Vtb),[],Stb}; {Sfsb,{Vtb,Bvt2,Stb}} -> {Sfsb,vtmerge_pat(Vta, Vtb), vtmerge_pat(Bvt1,Bvt2),Stb} end end, {[],[],[],St0}, Fs), {Uvt,Bvt1,St1}. %% record_field(Field, RecordName, [RecDefField], State) -> %% {UpdVarTable,State}. %% Test if record RecordName has field Field. Set State. record_field({atom,La,F}, Name, Fields, St) -> case find_field(F, Fields) of {ok,_I} -> {[],St}; error -> {[],add_error(La, {undefined_field,Name,F}, St)} end. %% init_fields([InitField], InitLine, RecordName, [DefField], VarTable, State) -> %% {UpdVarTable,State}. %% ginit_fields([InitField], InitLine, RecordName, [DefField], VarTable, State) -> %% {UpdVarTable,State}. %% Check record initialisation. Explicit initialisations are checked %% as is, while default values are checked only if there are no %% explicit inititialisations of the fields. Be careful not to %% duplicate warnings (and possibly errors, but def_fields %% substitutes 'undefined' for bogus inititialisations) from when the %% record definitions were checked. Usage of records, imports, and %% functions is collected. init_fields(Ifs, Line, Name, Dfs, Vt0, St0) -> {Vt1,St1} = check_fields(Ifs, Name, Dfs, Vt0, St0, fun expr/3), Defs = init_fields(Ifs, Line, Dfs), {_,St2} = check_fields(Defs, Name, Dfs, Vt1, St1, fun expr/3), {Vt1,St1#lint{usage = St2#lint.usage}}. ginit_fields(Ifs, Line, Name, Dfs, Vt0, St0) -> {Vt1,St1} = check_fields(Ifs, Name, Dfs, Vt0, St0, fun gexpr/3), Defs = init_fields(Ifs, Line, Dfs), St2 = St1#lint{errors = []}, {_,St3} = check_fields(Defs, Name, Dfs, Vt1, St2, fun gexpr/3), #lint{usage = Usage, errors = Errors} = St3, IllErrs = [E || {_File,{_Line,erl_lint,illegal_guard_expr}}=E <- Errors], St4 = St1#lint{usage = Usage, errors = IllErrs ++ St1#lint.errors}, {Vt1,St4}. %% Default initializations to be carried out init_fields(Ifs, Line, Dfs) -> [ {record_field,Lf,{atom,La,F},copy_expr(Di, Line)} || {record_field,Lf,{atom,La,F},Di} <- Dfs, not exist_field(F, Ifs) ]. %% update_fields(UpdFields, RecordName, RecDefFields, VarTable, State) -> %% {UpdVarTable,State} update_fields(Ufs, Name, Dfs, Vt, St) -> check_fields(Ufs, Name, Dfs, Vt, St, fun expr/3). %% exist_field(FieldName, [Field]) -> boolean(). %% Find a record field in a field list. exist_field(F, [{record_field,_Lf,{atom,_La,F},_Val}|_Fs]) -> true; exist_field(F, [_|Fs]) -> exist_field(F, Fs); exist_field(_F, []) -> false. %% find_field(FieldName, [Field]) -> {ok,Val} | error. %% Find a record field in a field list. find_field(_F, [{record_field,_Lf,{atom,_La,_F},Val}|_Fs]) -> {ok,Val}; find_field(F, [_|Fs]) -> find_field(F, Fs); find_field(_F, []) -> error. %% type_def(Attr, Line, TypeName, PatField, Args, State) -> State. %% Attr :: 'type' | 'opaque' %% Checks that a type definition is valid. -record(typeinfo, {attr, line}). type_def(_Attr, _Line, {record, _RecName}, Fields, [], St0) -> %% The record field names and such are checked in the record format. %% We only need to check the types. Types = [T || {typed_record_field, _, T} <- Fields], check_type({type, -1, product, Types}, St0); type_def(Attr, Line, TypeName, ProtoType, Args, St0) -> TypeDefs = St0#lint.types, Arity = length(Args), TypePair = {TypeName, Arity}, Info = #typeinfo{attr = Attr, line = Line}, StoreType = fun(St) -> NewDefs = dict:store(TypePair, Info, TypeDefs), CheckType = {type, -1, product, [ProtoType|Args]}, check_type(CheckType, St#lint{types=NewDefs}) end, case (dict:is_key(TypePair, TypeDefs) orelse is_var_arity_type(TypeName)) of true -> case is_default_type(TypePair) of true -> case is_newly_introduced_builtin_type(TypePair) of %% allow some types just for bootstrapping true -> Warn = {new_builtin_type, TypePair}, St1 = add_warning(Line, Warn, St0), StoreType(St1); false -> add_error(Line, {builtin_type, TypePair}, St0) end; false -> add_error(Line, {redefine_type, TypePair}, St0) end; false -> St1 = case Attr =:= opaque andalso is_underspecified(ProtoType, Arity) of true -> Warn = {underspecified_opaque, TypePair}, add_warning(Line, Warn, St0); false -> St0 end, StoreType(St1) end. is_underspecified({type,_,term,[]}, 0) -> true; is_underspecified({type,_,any,[]}, 0) -> true; is_underspecified(_ProtType, _Arity) -> false. check_type(Types, St) -> {SeenVars, St1} = check_type(Types, dict:new(), St), dict:fold(fun(Var, {seen_once, Line}, AccSt) -> case atom_to_list(Var) of "_"++_ -> AccSt; _ -> add_error(Line, {singleton_typevar, Var}, AccSt) end; (_Var, seen_multiple, AccSt) -> AccSt end, St1, SeenVars). check_type({ann_type, _L, [_Var, Type]}, SeenVars, St) -> check_type(Type, SeenVars, St); check_type({paren_type, _L, [Type]}, SeenVars, St) -> check_type(Type, SeenVars, St); check_type({remote_type, L, [{atom, _, Mod}, {atom, _, Name}, Args]}, SeenVars, #lint{module=CurrentMod} = St) -> St1 = case is_default_type({Name, length(Args)}) orelse is_var_arity_type(Name) of true -> add_error(L, {imported_predefined_type, Name}, St); false -> St end, case Mod =:= CurrentMod of true -> check_type({type, L, Name, Args}, SeenVars, St1); false -> lists:foldl(fun(T, {AccSeenVars, AccSt}) -> check_type(T, AccSeenVars, AccSt) end, {SeenVars, St1}, Args) end; check_type({integer, _L, _}, SeenVars, St) -> {SeenVars, St}; check_type({atom, _L, _}, SeenVars, St) -> {SeenVars, St}; check_type({var, _L, '_'}, SeenVars, St) -> {SeenVars, St}; check_type({var, L, Name}, SeenVars, St) -> NewSeenVars = case dict:find(Name, SeenVars) of {ok, {seen_once, _}} -> dict:store(Name, seen_multiple, SeenVars); {ok, seen_multiple} -> SeenVars; error -> dict:store(Name, {seen_once, L}, SeenVars) end, {NewSeenVars, St}; check_type({type, L, bool, []}, SeenVars, St) -> {SeenVars, add_warning(L, {renamed_type, bool, boolean}, St)}; check_type({type, L, 'fun', [Dom, Range]}, SeenVars, St) -> St1 = case Dom of {type, _, product, _} -> St; {type, _, any} -> St; _ -> add_error(L, {type_syntax, 'fun'}, St) end, check_type({type, -1, product, [Dom, Range]}, SeenVars, St1); check_type({type, L, range, [From, To]}, SeenVars, St) -> St1 = case {erl_eval:partial_eval(From), erl_eval:partial_eval(To)} of {{integer, _, X}, {integer, _, Y}} when X < Y -> St; _ -> add_error(L, {type_syntax, range}, St) end, {SeenVars, St1}; check_type({type, _L, tuple, any}, SeenVars, St) -> {SeenVars, St}; check_type({type, _L, any}, SeenVars, St) -> {SeenVars, St}; check_type({type, L, binary, [Base, Unit]}, SeenVars, St) -> St1 = case {erl_eval:partial_eval(Base), erl_eval:partial_eval(Unit)} of {{integer, _, BaseVal}, {integer, _, UnitVal}} when BaseVal >= 0, UnitVal >= 0 -> St; _ -> add_error(L, {type_syntax, binary}, St) end, {SeenVars, St1}; check_type({type, L, record, [Name|Fields]}, SeenVars, St) -> case Name of {atom, _, Atom} -> St1 = used_record(Atom, St), check_record_types(L, Atom, Fields, SeenVars, St1); _ -> {SeenVars, add_error(L, {type_syntax, record}, St)} end; check_type({type, _L, product, Args}, SeenVars, St) -> lists:foldl(fun(T, {AccSeenVars, AccSt}) -> check_type(T, AccSeenVars, AccSt) end, {SeenVars, St}, Args); check_type({type, La, TypeName, Args}, SeenVars, #lint{usage=Usage} = St) -> Arity = length(Args), St1 = case is_var_arity_type(TypeName) of true -> St; false -> OldUsed = Usage#usage.used_types, UsedTypes = dict:store({TypeName, Arity}, La, OldUsed), St#lint{usage=Usage#usage{used_types=UsedTypes}} end, check_type({type, -1, product, Args}, SeenVars, St1); check_type(I, SeenVars, St) -> case erl_eval:partial_eval(I) of {integer,_ILn,_Integer} -> {SeenVars, St}; _Other -> {SeenVars, add_error(element(2, I), {type_syntax, integer}, St)} end. check_record_types(Line, Name, Fields, SeenVars, St) -> case dict:find(Name, St#lint.records) of {ok,{_L,DefFields}} -> case lists:all(fun({type, _, field_type, _}) -> true; (_) -> false end, Fields) of true -> check_record_types(Fields, Name, DefFields, SeenVars, St, []); false -> {SeenVars, add_error(Line, {type_syntax, record}, St)} end; error -> {SeenVars, add_error(Line, {undefined_record, Name}, St)} end. check_record_types([{type, _, field_type, [{atom, AL, FName}, Type]}|Left], Name, DefFields, SeenVars, St, SeenFields) -> %% Check that the field name is valid St1 = case exist_field(FName, DefFields) of true -> St; false -> add_error(AL, {undefined_field, Name, FName}, St) end, %% Check for duplicates St2 = case ordsets:is_element(FName, SeenFields) of true -> add_error(AL, {redefine_field, Name, FName}, St1); false -> St1 end, %% Check Type {NewSeenVars, St3} = check_type(Type, SeenVars, St2), NewSeenFields = ordsets:add_element(FName, SeenFields), check_record_types(Left, Name, DefFields, NewSeenVars, St3, NewSeenFields); check_record_types([], _Name, _DefFields, SeenVars, St, _SeenFields) -> {SeenVars, St}. is_var_arity_type(tuple) -> true; is_var_arity_type(product) -> true; is_var_arity_type(union) -> true; is_var_arity_type(record) -> true; is_var_arity_type(_) -> false. is_default_type({any, 0}) -> true; is_default_type({arity, 0}) -> true; is_default_type({array, 0}) -> true; is_default_type({atom, 0}) -> true; is_default_type({atom, 1}) -> true; is_default_type({binary, 0}) -> true; is_default_type({binary, 2}) -> true; is_default_type({bitstring, 0}) -> true; is_default_type({bool, 0}) -> true; is_default_type({boolean, 0}) -> true; is_default_type({byte, 0}) -> true; is_default_type({char, 0}) -> true; is_default_type({dict, 0}) -> true; is_default_type({digraph, 0}) -> true; is_default_type({float, 0}) -> true; is_default_type({'fun', 0}) -> true; is_default_type({'fun', 2}) -> true; is_default_type({function, 0}) -> true; is_default_type({gb_set, 0}) -> true; is_default_type({gb_tree, 0}) -> true; is_default_type({identifier, 0}) -> true; is_default_type({integer, 0}) -> true; is_default_type({integer, 1}) -> true; is_default_type({iodata, 0}) -> true; is_default_type({iolist, 0}) -> true; is_default_type({list, 0}) -> true; is_default_type({list, 1}) -> true; is_default_type({maybe_improper_list, 0}) -> true; is_default_type({maybe_improper_list, 2}) -> true; is_default_type({mfa, 0}) -> true; is_default_type({module, 0}) -> true; is_default_type({neg_integer, 0}) -> true; is_default_type({nil, 0}) -> true; is_default_type({no_return, 0}) -> true; is_default_type({node, 0}) -> true; is_default_type({non_neg_integer, 0}) -> true; is_default_type({none, 0}) -> true; is_default_type({nonempty_list, 0}) -> true; is_default_type({nonempty_list, 1}) -> true; is_default_type({nonempty_improper_list, 2}) -> true; is_default_type({nonempty_maybe_improper_list, 0}) -> true; is_default_type({nonempty_maybe_improper_list, 2}) -> true; is_default_type({nonempty_string, 0}) -> true; is_default_type({number, 0}) -> true; is_default_type({pid, 0}) -> true; is_default_type({port, 0}) -> true; is_default_type({pos_integer, 0}) -> true; is_default_type({queue, 0}) -> true; is_default_type({range, 2}) -> true; is_default_type({reference, 0}) -> true; is_default_type({set, 0}) -> true; is_default_type({string, 0}) -> true; is_default_type({term, 0}) -> true; is_default_type({timeout, 0}) -> true; is_default_type({var, 1}) -> true; is_default_type(_) -> false. %% R13 is_newly_introduced_builtin_type({arity, 0}) -> true; is_newly_introduced_builtin_type({array, 0}) -> true; % opaque is_newly_introduced_builtin_type({bitstring, 0}) -> true; is_newly_introduced_builtin_type({dict, 0}) -> true; % opaque is_newly_introduced_builtin_type({digraph, 0}) -> true; % opaque is_newly_introduced_builtin_type({gb_set, 0}) -> true; % opaque is_newly_introduced_builtin_type({gb_tree, 0}) -> true; % opaque is_newly_introduced_builtin_type({iodata, 0}) -> true; is_newly_introduced_builtin_type({queue, 0}) -> true; % opaque is_newly_introduced_builtin_type({set, 0}) -> true; % opaque %% R13B01 is_newly_introduced_builtin_type({boolean, 0}) -> true; is_newly_introduced_builtin_type({Name, _}) when is_atom(Name) -> false. %% spec_decl(Line, Fun, Types, State) -> State. spec_decl(Line, MFA0, TypeSpecs, St0 = #lint{specs = Specs, module = Mod}) -> MFA = case MFA0 of {F, Arity} -> {Mod, F, Arity}; {_M, _F, Arity} -> MFA0 end, St1 = St0#lint{specs = dict:store(MFA, Line, Specs)}, case dict:is_key(MFA, Specs) of true -> add_error(Line, {redefine_spec, MFA}, St1); false -> check_specs(TypeSpecs, Arity, St1) end. %% callback_decl(Line, Fun, Types, State) -> State. callback_decl(Line, MFA0, TypeSpecs, St0 = #lint{callbacks = Callbacks, module = Mod}) -> MFA = case MFA0 of {F, Arity} -> {Mod, F, Arity}; {_M, _F, Arity} -> MFA0 end, St1 = St0#lint{callbacks = dict:store(MFA, Line, Callbacks)}, case dict:is_key(MFA, Callbacks) of true -> add_error(Line, {redefine_callback, MFA}, St1); false -> check_specs(TypeSpecs, Arity, St1) end. check_specs([FunType|Left], Arity, St0) -> {FunType1, CTypes} = case FunType of {type, _, bounded_fun, [FT = {type, _, 'fun', _}, Cs]} -> Types0 = [T || {type, _, constraint, [_, T]} <- Cs], {FT, lists:append(Types0)}; {type, _, 'fun', _} = FT -> {FT, []} end, SpecArity = case FunType1 of {type, L, 'fun', [any, _]} -> any; {type, L, 'fun', [{type, _, product, D}, _]} -> length(D) end, St1 = case Arity =:= SpecArity of true -> St0; false -> add_error(L, spec_wrong_arity, St0) end, St2 = check_type({type, -1, product, [FunType1|CTypes]}, St1), check_specs(Left, Arity, St2); check_specs([], _Arity, St) -> St. check_specs_without_function(#lint{module=Mod,defined=Funcs,specs=Specs}=St) -> Fun = fun({M, F, A} = MFA, Line, AccSt) when M =:= Mod -> case gb_sets:is_element({F, A}, Funcs) of true -> AccSt; false -> add_error(Line, {spec_fun_undefined, MFA}, AccSt) end; ({_M, _F, _A}, _Line, AccSt) -> AccSt end, dict:fold(Fun, St, Specs). %% This generates warnings for functions without specs; if the user has %% specified both options, we do not generate the same warnings twice. check_functions_without_spec(Forms, St0) -> case is_warn_enabled(missing_spec_all, St0) of true -> add_missing_spec_warnings(Forms, St0, all); false -> case is_warn_enabled(missing_spec, St0) of true -> add_missing_spec_warnings(Forms, St0, exported); false -> St0 end end. add_missing_spec_warnings(Forms, St0, Type) -> Specs = [{F,A} || {_M,F,A} <- dict:fetch_keys(St0#lint.specs)], Warns = %% functions + line numbers for which we should warn case Type of all -> [{FA,L} || {function,L,F,A,_} <- Forms, not lists:member(FA = {F,A}, Specs)]; exported -> Exps = gb_sets:to_list(St0#lint.exports) -- pseudolocals(), [{FA,L} || {function,L,F,A,_} <- Forms, member(FA = {F,A}, Exps -- Specs)] end, foldl(fun ({FA,L}, St) -> add_warning(L, {missing_spec,FA}, St) end, St0, Warns). check_unused_types(Forms, #lint{usage=Usage, types=Ts, exp_types=ExpTs}=St) -> case [File || {attribute,_L,file,{File,_Line}} <- Forms] of [FirstFile|_] -> D = Usage#usage.used_types, L = gb_sets:to_list(ExpTs) ++ dict:fetch_keys(D), UsedTypes = gb_sets:from_list(L), FoldFun = fun(Type, #typeinfo{line = FileLine}, AccSt) -> case loc(FileLine) of {FirstFile, _} -> case gb_sets:is_member(Type, UsedTypes) of true -> AccSt; false -> Warn = {unused_type,Type}, add_warning(FileLine, Warn, AccSt) end; _ -> %% No warns about unused types in include files AccSt end end, dict:fold(FoldFun, St, Ts); [] -> St end. check_local_opaque_types(St) -> #lint{types=Ts, exp_types=ExpTs} = St, FoldFun = fun(_Type, #typeinfo{attr = type}, AccSt) -> AccSt; (Type, #typeinfo{attr = opaque, line = FileLine}, AccSt) -> case gb_sets:is_element(Type, ExpTs) of true -> AccSt; false -> Warn = {not_exported_opaque,Type}, add_warning(FileLine, Warn, AccSt) end end, dict:fold(FoldFun, St, Ts). %% icrt_clauses(Clauses, In, ImportVarTable, State) -> %% {NewVts,State}. icrt_clauses(Cs, In, Vt, St0) -> {Csvt,St1} = icrt_clauses(Cs, Vt, St0), icrt_export(Csvt, Vt, In, St1). %% icrt_clauses(Clauses, ImportVarTable, State) -> %% {NewVts,State}. icrt_clauses(Cs, Vt, St) -> mapfoldl(fun (C, St0) -> icrt_clause(C, Vt, St0) end, St, Cs). icrt_clause({clause,_Line,H,G,B}, Vt0, St0) -> {Hvt,Binvt,St1} = head(H, Vt0, St0), Vt1 = vtupdate(Hvt, vtupdate(Binvt, Vt0)), {Gvt,St2} = guard(G, Vt1, St1), Vt2 = vtupdate(Gvt, Vt1), {Bvt,St3} = exprs(B, Vt2, St2), {vtupdate(Bvt, Vt2),St3}. icrt_export(Csvt, Vt, In, St) -> Vt1 = vtmerge(Csvt), All = ordsets:subtract(vintersection(Csvt), vtnames(Vt)), Some = ordsets:subtract(vtnames(Vt1), vtnames(Vt)), Xvt = vtexport(All, In, []), Evt = vtunsafe(ordsets:subtract(Some, All), In, Xvt), Unused = vtmerge([unused_vars(Vt0, Vt, St) || Vt0 <- Csvt]), %% Exported and unsafe variables may be unused: Uvt = vtmerge(Evt, Unused), %% Make exported and unsafe unused variables unused in subsequent code: Vt2 = vtmerge(Uvt, vtsubtract(Vt1, Uvt)), %% Forget about old variables which were not used: Vt3 = vtmerge(vtnew(Vt2, Vt), vt_no_unused(vtold(Vt2, Vt))), {Vt3,St}. handle_comprehension(E, Qs, Vt0, St0) -> {Vt1, Uvt, St1} = lc_quals(Qs, Vt0, St0), {Evt,St2} = expr(E, Vt1, St1), Vt2 = vtupdate(Evt, Vt1), %% Shadowed global variables. {_,St3} = check_old_unused_vars(Vt2, Uvt, St2), %% There may be local variables in Uvt that are not global. {_,St4} = check_unused_vars(Uvt, Vt0, St3), %% Local variables that have not been shadowed. {_,St} = check_unused_vars(Vt2, Vt0, St4), Vt3 = vtmerge(vtsubtract(Vt2, Uvt), Uvt), %% Don't export local variables. Vt4 = vtold(Vt3, Vt0), %% Forget about old variables which were not used. Vt5 = vt_no_unused(Vt4), {Vt5,St}. %% lc_quals(Qualifiers, ImportVarTable, State) -> %% {VarTable,ShadowedVarTable,State} %% Test list comprehension qualifiers, return all variables. Allow %% filters to be both guard tests and general expressions, but the errors %% will be for expressions. Return the complete updated vartable including %% local variables and all updates. ShadowVarTable contains the state of %% each shadowed variable. All variable states of variables in ImportVarTable %% that have been shadowed are included in ShadowVarTable. In addition, all %% shadowed variables that are not included in ImportVarTable are included %% in ShadowVarTable (these are local variables that are not global variables). lc_quals(Qs, Vt0, St0) -> OldRecDef = St0#lint.recdef_top, {Vt,Uvt,St} = lc_quals(Qs, Vt0, [], St0#lint{recdef_top = false}), {Vt,Uvt,St#lint{recdef_top = OldRecDef}}. lc_quals([{generate,_Line,P,E} | Qs], Vt0, Uvt0, St0) -> {Vt,Uvt,St} = handle_generator(P,E,Vt0,Uvt0,St0), lc_quals(Qs, Vt, Uvt, St); lc_quals([{b_generate,_Line,P,E} | Qs], Vt0, Uvt0, St0) -> St1 = handle_bitstring_gen_pat(P,St0), {Vt,Uvt,St} = handle_generator(P,E,Vt0,Uvt0,St1), lc_quals(Qs, Vt, Uvt, St); lc_quals([F|Qs], Vt, Uvt, St0) -> {Fvt,St1} = case is_guard_test2(F, St0#lint.records) of true -> guard_test(F, Vt, St0); false -> expr(F, Vt, St0) end, lc_quals(Qs, vtupdate(Fvt, Vt), Uvt, St1); lc_quals([], Vt, Uvt, St) -> {Vt, Uvt, St}. handle_generator(P,E,Vt,Uvt,St0) -> {Evt,St1} = expr(E, Vt, St0), %% Forget variables local to E immediately. Vt1 = vtupdate(vtold(Evt, Vt), Vt), {_, St2} = check_unused_vars(Evt, Vt, St1), {Pvt,Binvt,St3} = pattern(P, Vt1, [], [], St2), %% Have to keep fresh variables separated from used variables somehow %% in order to handle for example X = foo(), [X || <> <- bar()]. %% 1 2 2 1 Vt2 = vtupdate(Pvt, Vt1), St4 = shadow_vars(Binvt, Vt1, generate, St3), Svt = vtold(Vt2, Binvt), {_, St5} = check_old_unused_vars(Svt, Uvt, St4), NUvt = vtupdate(vtnew(Svt, Uvt), Uvt), Vt3 = vtupdate(vtsubtract(Vt2, Binvt), Binvt), {Vt3,NUvt,St5}. handle_bitstring_gen_pat({bin,_,Segments=[_|_]},St) -> case lists:last(Segments) of {bin_element,Line,{var,_,_},default,Flags} when is_list(Flags) -> case member(binary, Flags) orelse member(bits, Flags) orelse member(bitstring, Flags) of true -> add_error(Line, unsized_binary_in_bin_gen_pattern, St); false -> St end; _ -> St end; handle_bitstring_gen_pat(_,St) -> St. %% fun_clauses(Clauses, ImportVarTable, State) -> %% {UsedVars, State}. %% Fun's cannot export any variables. %% It is an error if variable is bound inside a record definition %% unless it was introduced in a fun or an lc. Only if pat_var finds %% such variables can the correct line number be given. fun_clauses(Cs, Vt, St) -> OldRecDef = St#lint.recdef_top, {Bvt,St2} = foldl(fun (C, {Bvt0, St0}) -> {Cvt,St1} = fun_clause(C, Vt, St0), {vtmerge(Cvt, Bvt0),St1} end, {[],St#lint{recdef_top = false}}, Cs), {vt_no_unused(vtold(Bvt, Vt)),St2#lint{recdef_top = OldRecDef}}. fun_clause({clause,_Line,H,G,B}, Vt0, St0) -> {Hvt,Binvt,St1} = head(H, Vt0, [], St0), % No imported pattern variables Vt1 = vtupdate(Hvt, Vt0), St2 = shadow_vars(Binvt, Vt0, 'fun', St1), Vt2 = vtupdate(vtsubtract(Vt1, Binvt), Binvt), {Gvt,St3} = guard(G, Vt2, St2), Vt3 = vtupdate(Gvt, Vt2), {Bvt,St4} = exprs(B, Vt3, St3), Cvt = vtupdate(Bvt, Vt3), %% Check new local variables. {_, St5} = check_unused_vars(Cvt, Vt0, St4), %% Check all shadowing variables. Svt = vtold(Vt1, Binvt), {_, St6} = check_old_unused_vars(Cvt, Svt, St5), Vt4 = vtmerge(Svt, vtsubtract(Cvt, Svt)), {vtold(Vt4, Vt0),St6}. %% In the variable table we store information about variables. The %% information is a tuple {State,Usage,Lines}, the variables state and %% usage. A variable can be in the following states: %% %% bound everything is normal %% {export,From} variable has been exported %% {unsafe,In} variable is unsafe %% %% The usage information has the following form: %% %% used variable has been used %% unused variable has been bound but not used %% %% Lines is a list of line numbers where the variable was bound. %% %% Report variable errors/warnings as soon as possible and then change %% the state to ok. This simplifies the code and reports errors only %% once. Having the usage information like this makes it easy too when %% merging states. %% For keeping track of which variables are bound, ordsets are used. %% In order to be able to give warnings about unused variables, a %% possible value is {bound, unused, [Line]}. The usual value when a %% variable is used is {bound, used, [Line]}. An exception occurs for %% variables in the size position in a bin element in a pattern. %% Currently, such a variable is never matched out, always used, and %% therefore it makes no sense to warn for "variable imported in %% match". %% For storing the variable table we use the orddict module. %% We know an empty set is []. %% pat_var(Variable, LineNo, VarTable, State) -> {UpdVarTable,State} %% A pattern variable has been found. Handle errors and warnings. Return %% all variables as bound so errors and warnings are only reported once. %% Bvt "shadows" Vt here, which is necessary in order to separate uses of %% shadowed and shadowing variables. See also pat_binsize_var. pat_var(V, Line, Vt, Bvt, St) -> case orddict:find(V, Bvt) of {ok, {bound,_Usage,Ls}} -> {[],[{V,{bound,used,Ls}}],St}; error -> case orddict:find(V, Vt) of {ok,{bound,_Usage,Ls}} -> {[{V,{bound,used,Ls}}],[],St}; {ok,{{unsafe,In},_Usage,Ls}} -> {[{V,{bound,used,Ls}}],[], add_error(Line, {unsafe_var,V,In}, St)}; {ok,{{export,From},_Usage,Ls}} -> {[{V,{bound,used,Ls}}],[], %% As this is matching, exported vars are risky. add_warning(Line, {exported_var,V,From}, St)}; error when St#lint.recdef_top -> {[],[{V,{bound,unused,[Line]}}], add_error(Line, {variable_in_record_def,V}, St)}; error -> {[],[{V,{bound,unused,[Line]}}],St} end end. %% pat_binsize_var(Variable, LineNo, VarTable, BinVarTable, State) -> %% {UpdVarTable,UpdBinVarTable,State'} %% A pattern variable has been found. Handle errors and warnings. Return %% all variables as bound so errors and warnings are only reported once. pat_binsize_var(V, Line, Vt, Bvt, St) -> case orddict:find(V, Bvt) of {ok,{bound,_Used,Ls}} -> {[],[{V,{bound,used,Ls}}],St}; error -> case orddict:find(V, Vt) of {ok,{bound,_Used,Ls}} -> {[{V,{bound,used,Ls}}],[],St}; {ok,{{unsafe,In},_Used,Ls}} -> {[{V,{bound,used,Ls}}],[], add_error(Line, {unsafe_var,V,In}, St)}; {ok,{{export,From},_Used,Ls}} -> {[{V,{bound,used,Ls}}],[], %% As this is not matching, exported vars are %% probably safe. exported_var(Line, V, From, St)}; error -> {[{V,{bound,used,[Line]}}],[], add_error(Line, {unbound_var,V}, St)} end end. %% expr_var(Variable, LineNo, VarTable, State) -> %% {UpdVarTable,State} %% Check if a variable is defined, or if there is an error or warning %% connected to its usage. Return all variables as bound so errors %% and warnings are only reported once. As this is not matching %% exported vars are probably safe, warn only if warn_export_vars is %% set. expr_var(V, Line, Vt, St0) -> case orddict:find(V, Vt) of {ok,{bound,_Usage,Ls}} -> {[{V,{bound,used,Ls}}],St0}; {ok,{{unsafe,In},_Usage,Ls}} -> {[{V,{bound,used,Ls}}], add_error(Line, {unsafe_var,V,In}, St0)}; {ok,{{export,From},_Usage,Ls}} -> {[{V,{bound,used,Ls}}], exported_var(Line, V, From, St0)}; error -> {[{V,{bound,used,[Line]}}], add_error(Line, {unbound_var,V}, St0)} end. exported_var(Line, V, From, St) -> case is_warn_enabled(export_vars, St) of true -> add_warning(Line, {exported_var,V,From}, St); false -> St end. shadow_vars(Vt, Vt0, In, St0) -> case is_warn_enabled(shadow_vars, St0) of true -> foldl(fun ({V,{_,_,[L | _]}}, St) -> add_warning(L, {shadowed_var,V,In}, St); (_, St) -> St end, St0, vtold(Vt, vt_no_unsafe(Vt0))); false -> St0 end. check_unused_vars(Vt, Vt0, St0) -> U = unused_vars(Vt, Vt0, St0), warn_unused_vars(U, Vt, St0). check_old_unused_vars(Vt, Vt0, St0) -> U = unused_vars(vtold(Vt, Vt0), [], St0), warn_unused_vars(U, Vt, St0). unused_vars(Vt, Vt0, _St0) -> U0 = orddict:filter(fun (V, {_State,unused,_Ls}) -> case atom_to_list(V) of "_"++_ -> false; _ -> true end; (_V, _How) -> false end, Vt), vtnew(U0, Vt0). % Only new variables. warn_unused_vars([], Vt, St0) -> {Vt,St0}; warn_unused_vars(U, Vt, St0) -> St1 = case is_warn_enabled(unused_vars, St0) of false -> St0; true -> foldl(fun ({V,{_,unused,Ls}}, St) -> foldl(fun (L, St2) -> add_warning(L, {unused_var,V}, St2) end, St, Ls) end, St0, U) end, %% Return all variables as bound so warnings are only reported once. UVt = map(fun ({V,{State,_,Ls}}) -> {V,{State,used,Ls}} end, U), {vtmerge(Vt, UVt), St1}. %% vtupdate(UpdVarTable, VarTable) -> VarTable. %% Add the variables in the updated vartable to VarTable. The variables %% will be updated with their property in UpdVarTable. The state of %% the variables in UpdVarTable will be returned. vtupdate(Uvt, Vt0) -> orddict:merge(fun (_V, {S,U1,L1}, {_S,U2,L2}) -> {S, merge_used(U1, U2), merge_lines(L1, L2)} end, Uvt, Vt0). %% vtexport([Variable], From, VarTable) -> VarTable. %% vtunsafe([Variable], From, VarTable) -> VarTable. %% Add the variables to VarTable either as exported from From or as unsafe. vtexport(Vs, {InTag,FileLine}, Vt0) -> {_File,Line} = loc(FileLine), vtupdate([{V,{{export,{InTag,Line}},unused,[]}} || V <- Vs], Vt0). vtunsafe(Vs, {InTag,FileLine}, Vt0) -> {_File,Line} = loc(FileLine), vtupdate([{V,{{unsafe,{InTag,Line}},unused,[]}} || V <- Vs], Vt0). %% vtmerge(VarTable, VarTable) -> VarTable. %% Merge two variables tables generating a new vartable. Give priority to %% errors then warnings. vtmerge(Vt1, Vt2) -> orddict:merge(fun (_V, {S1,U1,L1}, {S2,U2,L2}) -> {merge_state(S1, S2), merge_used(U1, U2), merge_lines(L1, L2)} end, Vt1, Vt2). vtmerge(Vts) -> foldl(fun (Vt, Mvts) -> vtmerge(Vt, Mvts) end, [], Vts). vtmerge_pat(Vt1, Vt2) -> orddict:merge(fun (_V, {S1,_Usage1,L1}, {S2,_Usage2,L2}) -> {merge_state(S1, S2),used, merge_lines(L1, L2)} end, Vt1, Vt2). merge_lines(Ls1, Ls2) -> ordsets:union(Ls1,Ls2). merge_state({unsafe,_F1}=S1, _S2) -> S1; %Take the error case merge_state(_S1, {unsafe,_F2}=S2) -> S2; merge_state(bound, S2) -> S2; %Take the warning merge_state(S1, bound) -> S1; merge_state({export,F1},{export,_F2}) -> %Sanity check %% We want to report the outermost construct {export,F1}. merge_used(used, _Usage2) -> used; merge_used(_Usage1, used) -> used; merge_used(unused, unused) -> unused. %% vtnew(NewVarTable, OldVarTable) -> NewVarTable. %% Return all the truly new variables in NewVarTable. vtnew(New, Old) -> orddict:filter(fun (V, _How) -> not orddict:is_key(V, Old) end, New). %% vtsubtract(VarTable1, VarTable2) -> NewVarTable. %% Return all the variables in VarTable1 which don't occur in VarTable2. %% Same thing as vtnew, but a more intuitive name for some uses. vtsubtract(New, Old) -> vtnew(New, Old). %% vtold(NewVarTable, OldVarTable) -> OldVarTable. %% Return all the truly old variables in NewVarTable. vtold(New, Old) -> orddict:filter(fun (V, _How) -> orddict:is_key(V, Old) end, New). vtnames(Vt) -> [ V || {V,_How} <- Vt ]. vt_no_unsafe(Vt) -> [V || {_,{S,_U,_L}}=V <- Vt, case S of {unsafe,_} -> false; _ -> true end]. vt_no_unused(Vt) -> [V || {_,{_,U,_L}}=V <- Vt, U =/= unused]. %% vunion(VarTable1, VarTable2) -> [VarName]. %% vunion([VarTable]) -> [VarName]. %% vintersection(VarTable1, VarTable2) -> [VarName]. %% vintersection([VarTable]) -> [VarName]. %% Union/intersection of names of vars in VarTable. -ifdef(NOTUSED). vunion(Vs1, Vs2) -> ordsets:union(vtnames(Vs1), vtnames(Vs2)). vunion(Vss) -> foldl(fun (Vs, Uvs) -> ordsets:union(vtnames(Vs), Uvs) end, [], Vss). vintersection(Vs1, Vs2) -> ordsets:intersection(vtnames(Vs1), vtnames(Vs2)). -endif. vintersection([Vs]) -> vtnames(Vs); %Boundary conditions!!! vintersection([Vs|Vss]) -> ordsets:intersection(vtnames(Vs), vintersection(Vss)); vintersection([]) -> []. %% copy_expr(Expr, Line) -> Expr. %% Make a copy of Expr converting all line numbers to Line. copy_expr(Expr, Line) -> modify_line(Expr, fun(_L) -> Line end). %% modify_line(Form, Fun) -> Form %% modify_line(Expression, Fun) -> Expression %% Applies Fun to each line number occurrence. modify_line(T, F0) -> modify_line1(T, F0). %% Forms. modify_line1({function,F,A}, _Mf) -> {function,F,A}; modify_line1({function,M,F,A}, Mf) -> {function,modify_line1(M, Mf),modify_line1(F, Mf),modify_line1(A, Mf)}; modify_line1({attribute,L,record,{Name,Fields}}, Mf) -> {attribute,Mf(L),record,{Name,modify_line1(Fields, Mf)}}; modify_line1({attribute,L,spec,{Fun,Types}}, Mf) -> {attribute,Mf(L),spec,{Fun,modify_line1(Types, Mf)}}; modify_line1({attribute,L,callback,{Fun,Types}}, Mf) -> {attribute,Mf(L),callback,{Fun,modify_line1(Types, Mf)}}; modify_line1({attribute,L,type,{TypeName,TypeDef,Args}}, Mf) -> {attribute,Mf(L),type,{TypeName,modify_line1(TypeDef, Mf), modify_line1(Args, Mf)}}; modify_line1({attribute,L,opaque,{TypeName,TypeDef,Args}}, Mf) -> {attribute,Mf(L),opaque,{TypeName,modify_line1(TypeDef, Mf), modify_line1(Args, Mf)}}; modify_line1({attribute,L,Attr,Val}, Mf) -> {attribute,Mf(L),Attr,Val}; modify_line1({warning,W}, _Mf) -> {warning,W}; modify_line1({error,W}, _Mf) -> {error,W}; %% Expressions. modify_line1({clauses,Cs}, Mf) -> {clauses,modify_line1(Cs, Mf)}; modify_line1({typed_record_field,Field,Type}, Mf) -> {typed_record_field,modify_line1(Field, Mf),modify_line1(Type, Mf)}; modify_line1({Tag,L}, Mf) -> {Tag,Mf(L)}; modify_line1({Tag,L,E1}, Mf) -> {Tag,Mf(L),modify_line1(E1, Mf)}; modify_line1({Tag,L,E1,E2}, Mf) -> {Tag,Mf(L),modify_line1(E1, Mf),modify_line1(E2, Mf)}; modify_line1({bin_element,L,E1,E2,TSL}, Mf) -> {bin_element,Mf(L),modify_line1(E1, Mf),modify_line1(E2, Mf), TSL}; modify_line1({Tag,L,E1,E2,E3}, Mf) -> {Tag,Mf(L),modify_line1(E1, Mf),modify_line1(E2, Mf),modify_line1(E3, Mf)}; modify_line1({Tag,L,E1,E2,E3,E4}, Mf) -> {Tag,Mf(L), modify_line1(E1, Mf), modify_line1(E2, Mf), modify_line1(E3, Mf), modify_line1(E4, Mf)}; modify_line1([H|T], Mf) -> [modify_line1(H, Mf)|modify_line1(T, Mf)]; modify_line1([], _Mf) -> []; modify_line1(E, _Mf) when not is_tuple(E), not is_list(E) -> E. %% Check a record_info call. We have already checked that it is not %% shadowed by an import. check_record_info_call(_Line,La,[{atom,Li,Info},{atom,_Ln,Name}],St) -> case member(Info, [fields,size]) of true -> exist_record(La, Name, St); false -> add_error(Li, illegal_record_info, St) end; check_record_info_call(Line,_La,_As,St) -> add_error(Line, illegal_record_info, St). has_wildcard_field([{record_field,_Lf,{var,_La,'_'},_Val}|_Fs]) -> true; has_wildcard_field([_|Fs]) -> has_wildcard_field(Fs); has_wildcard_field([]) -> false. %% check_remote_function(Line, ModuleName, FuncName, [Arg], State) -> State. %% Perform checks on known remote calls. check_remote_function(Line, M, F, As, St0) -> St1 = deprecated_function(Line, M, F, As, St0), St2 = check_qlc_hrl(Line, M, F, As, St1), format_function(Line, M, F, As, St2). %% check_qlc_hrl(Line, ModName, FuncName, [Arg], State) -> State %% Add warning if qlc:q/1,2 has been called but qlc.hrl has not %% been included. check_qlc_hrl(Line, M, F, As, St) -> Arity = length(As), case As of [{lc,_L,_E,_Qs}|_] when M =:= qlc, F =:= q, Arity < 3, not St#lint.xqlc -> add_warning(Line, {missing_qlc_hrl, Arity}, St); _ -> St end. %% deprecated_function(Line, ModName, FuncName, [Arg], State) -> State. %% Add warning for calls to deprecated functions. deprecated_function(Line, M, F, As, St) -> Arity = length(As), MFA = {M, F, Arity}, case otp_internal:obsolete(M, F, Arity) of {deprecated, String} when is_list(String) -> case not is_warn_enabled(deprecated_function, St) orelse ordsets:is_element(MFA, St#lint.not_deprecated) of true -> St; false -> add_warning(Line, {deprecated, MFA, String}, St) end; {deprecated, Replacement, Rel} -> case not is_warn_enabled(deprecated_function, St) orelse ordsets:is_element(MFA, St#lint.not_deprecated) of true -> St; false -> add_warning(Line, {deprecated, MFA, Replacement, Rel}, St) end; {removed, String} when is_list(String) -> add_warning(Line, {removed, MFA, String}, St); {removed, Replacement, Rel} -> add_warning(Line, {removed, MFA, Replacement, Rel}, St); no -> St end. obsolete_guard({call,Line,{atom,Lr,F},As}, St0) -> Arity = length(As), case erl_internal:old_type_test(F, Arity) of false -> deprecated_function(Line, erlang, F, As, St0); true -> case is_warn_enabled(obsolete_guard, St0) of true -> add_warning(Lr,{obsolete_guard, {F, Arity}}, St0); false -> St0 end end; obsolete_guard(_G, St) -> St. %% keyword_warning(Line, Atom, State) -> State. %% Add warning for atoms that will be reserved keywords in the future. %% (Currently, no such keywords to warn for.) keyword_warning(_Line, _A, St) -> St. %% format_function(Line, ModName, FuncName, [Arg], State) -> State. %% Add warning for bad calls to io:fwrite/format functions. format_function(Line, M, F, As, St) -> case is_format_function(M, F) of true -> case St#lint.warn_format of Lev when Lev > 0 -> case check_format_1(As) of {warn,Level,Fmt,Fas} when Level =< Lev -> add_warning(Line, {format_error,{Fmt,Fas}}, St); _ -> St end; _Lev -> St end; false -> St end. is_format_function(io, fwrite) -> true; is_format_function(io, format) -> true; is_format_function(io_lib, fwrite) -> true; is_format_function(io_lib, format) -> true; is_format_function(M, F) when is_atom(M), is_atom(F) -> false. %% check_format_1([Arg]) -> ok | {warn,Level,Format,[Arg]}. check_format_1([Fmt]) -> check_format_1([Fmt,{nil,0}]); check_format_1([Fmt,As]) -> check_format_2(Fmt, canonicalize_string(As)); check_format_1([_Dev,Fmt,As]) -> check_format_1([Fmt,As]); check_format_1(_As) -> {warn,1,"format call with wrong number of arguments",[]}. canonicalize_string({string,Line,Cs}) -> foldr(fun (C, T) -> {cons,Line,{integer,Line,C},T} end, {nil,Line}, Cs); canonicalize_string(Term) -> Term. %% check_format_2([Arg]) -> ok | {warn,Level,Format,[Arg]}. check_format_2(Fmt, As) -> case Fmt of {string,_L,S} -> check_format_2a(S, As); {atom,_L,A} -> check_format_2a(atom_to_list(A), As); _ -> {warn,2,"format string not a textual constant",[]} end. check_format_2a(Fmt, As) -> case args_list(As) of true -> check_format_3(Fmt, As); false -> {warn,1,"format arguments not a list",[]}; maybe -> {warn,2,"format arguments perhaps not a list",[]} end. %% check_format_3(FormatString, [Arg]) -> ok | {warn,Level,Format,[Arg]}. check_format_3(Fmt, As) -> case check_format_string(Fmt) of {ok,Need} -> case args_length(As) of Len when length(Need) =:= Len -> ok; _Len -> {warn,1,"wrong number of arguments in format call",[]} end; {error,S} -> {warn,1,"format string invalid (~ts)",[S]} end. args_list({cons,_L,_H,T}) -> args_list(T); %% Strange case: user has written something like [a | "bcd"]; pretend %% we don't know: args_list({string,_L,_Cs}) -> maybe; args_list({nil,_L}) -> true; args_list({atom,_,_}) -> false; args_list({integer,_,_}) -> false; args_list({float,_,_}) -> false; args_list(_Other) -> maybe. args_length({cons,_L,_H,T}) -> 1 + args_length(T); args_length({nil,_L}) -> 0. check_format_string(Fmt) -> extract_sequences(Fmt, []). extract_sequences(Fmt, Need0) -> case string:chr(Fmt, $~) of 0 -> {ok,lists:reverse(Need0)}; %That's it Pos -> Fmt1 = string:substr(Fmt, Pos+1), %Skip ~ case extract_sequence(1, Fmt1, Need0) of {ok,Need1,Rest} -> extract_sequences(Rest, Need1); Error -> Error end end. extract_sequence(1, [$-,C|Fmt], Need) when C >= $0, C =< $9 -> extract_sequence_digits(1, Fmt, Need); extract_sequence(1, [C|Fmt], Need) when C >= $0, C =< $9 -> extract_sequence_digits(1, Fmt, Need); extract_sequence(1, [$-,$*|Fmt], Need) -> extract_sequence(2, Fmt, [int|Need]); extract_sequence(1, [$*|Fmt], Need) -> extract_sequence(2, Fmt, [int|Need]); extract_sequence(1, Fmt, Need) -> extract_sequence(2, Fmt, Need); extract_sequence(2, [$.,C|Fmt], Need) when C >= $0, C =< $9 -> extract_sequence_digits(2, Fmt, Need); extract_sequence(2, [$.,$*|Fmt], Need) -> extract_sequence(3, Fmt, [int|Need]); extract_sequence(2, [$.|Fmt], Need) -> extract_sequence(3, Fmt, Need); extract_sequence(2, Fmt, Need) -> extract_sequence(4, Fmt, Need); extract_sequence(3, [$.,$*|Fmt], Need) -> extract_sequence(4, Fmt, [int|Need]); extract_sequence(3, [$.,_|Fmt], Need) -> extract_sequence(4, Fmt, Need); extract_sequence(3, Fmt, Need) -> extract_sequence(4, Fmt, Need); extract_sequence(4, [$t, $c | Fmt], Need) -> extract_sequence(5, [$c|Fmt], Need); extract_sequence(4, [$t, $s | Fmt], Need) -> extract_sequence(5, [$s|Fmt], Need); extract_sequence(4, [$t, $p | Fmt], Need) -> extract_sequence(5, [$p|Fmt], Need); extract_sequence(4, [$t, $P | Fmt], Need) -> extract_sequence(5, [$P|Fmt], Need); extract_sequence(4, [$t, C | _Fmt], _Need) -> {error,"invalid control ~t" ++ [C]}; extract_sequence(4, [$l, $p | Fmt], Need) -> extract_sequence(5, [$p|Fmt], Need); extract_sequence(4, [$l, $P | Fmt], Need) -> extract_sequence(5, [$P|Fmt], Need); extract_sequence(4, [$l, C | _Fmt], _Need) -> {error,"invalid control ~l" ++ [C]}; extract_sequence(4, Fmt, Need) -> extract_sequence(5, Fmt, Need); extract_sequence(5, [C|Fmt], Need0) -> case control_type(C, Need0) of error -> {error,"invalid control ~" ++ [C]}; Need1 -> {ok,Need1,Fmt} end; extract_sequence(_, [], _Need) -> {error,"truncated"}. extract_sequence_digits(Fld, [C|Fmt], Need) when C >= $0, C =< $9 -> extract_sequence_digits(Fld, Fmt, Need); extract_sequence_digits(Fld, Fmt, Need) -> extract_sequence(Fld+1, Fmt, Need). control_type($~, Need) -> Need; control_type($c, Need) -> [int|Need]; control_type($f, Need) -> [float|Need]; control_type($e, Need) -> [float|Need]; control_type($g, Need) -> [float|Need]; control_type($s, Need) -> [string|Need]; control_type($w, Need) -> [term|Need]; control_type($p, Need) -> [term|Need]; control_type($W, Need) -> [int,term|Need]; %% Note: reversed control_type($P, Need) -> [int,term|Need]; %% Note: reversed control_type($b, Need) -> [term|Need]; control_type($B, Need) -> [term|Need]; control_type($x, Need) -> [string,term|Need]; %% Note: reversed control_type($X, Need) -> [string,term|Need]; %% Note: reversed control_type($+, Need) -> [term|Need]; control_type($#, Need) -> [term|Need]; control_type($n, Need) -> Need; control_type($i, Need) -> [term|Need]; control_type(_C, _Need) -> error. %% Prebuild set of local functions (to override auto-import) local_functions(Forms) -> gb_sets:from_list([ {Func,Arity} || {function,_,Func,Arity,_} <- Forms ]). %% Predicate to find out if the function is locally defined is_local_function(LocalSet,{Func,Arity}) -> gb_sets:is_element({Func,Arity},LocalSet). %% Predicate to see if a function is explicitly imported is_imported_function(ImportSet,{Func,Arity}) -> case orddict:find({Func,Arity}, ImportSet) of {ok,_Mod} -> true; error -> false end. %% Predicate to see if a function is explicitly imported from the erlang module is_imported_from_erlang(ImportSet,{Func,Arity}) -> case orddict:find({Func,Arity}, ImportSet) of {ok,erlang} -> true; _ -> false end. %% Build set of functions where auto-import is explicitly supressed auto_import_suppressed(CompileFlags) -> L0 = [ X || {no_auto_import,X} <- CompileFlags ], L1 = [ {Y,Z} || {Y,Z} <- lists:flatten(L0), is_atom(Y), is_integer(Z) ], gb_sets:from_list(L1). %% Predicate to find out if autoimport is explicitly supressed for a function is_autoimport_suppressed(NoAutoSet,{Func,Arity}) -> gb_sets:is_element({Func,Arity},NoAutoSet). %% Predicate to find out if a function specific bif-clash supression (old deprecated) is present bif_clash_specifically_disabled(St,{F,A}) -> Nowarn = nowarn_function(nowarn_bif_clash, St#lint.compile), lists:member({F,A},Nowarn). %% Predicate to find out if an autoimported guard_bif is not overriden in some way %% Guard Bif without module name is disallowed if %% * It is overridden by local function %% * It is overridden by -import and that import is not of itself (i.e. from module erlang) %% * The autoimport is suppressed or it's not reimported by -import directive %% Otherwise it's OK (given that it's actually a guard bif and actually is autoimported) no_guard_bif_clash(St,{F,A}) -> ( (not is_local_function(St#lint.locals,{F,A})) andalso ( (not is_imported_function(St#lint.imports,{F,A})) orelse is_imported_from_erlang(St#lint.imports,{F,A}) ) andalso ( (not is_autoimport_suppressed(St#lint.no_auto, {F,A})) orelse is_imported_from_erlang(St#lint.imports,{F,A}) ) ).