%% -*- erlang -*- %% %% %CopyrightBegin% %% %% Copyright Ericsson AB 1996-2013. All Rights Reserved. %% %% The contents of this file are subject to the Erlang Public License, %% Version 1.1, (the "License"); you may not use this file except in %% compliance with the License. You should have received a copy of the %% Erlang Public License along with this software. If not, it can be %% retrieved online at http://www.erlang.org/. %% %% Software distributed under the License is distributed on an "AS IS" %% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See %% the License for the specific language governing rights and limitations %% under the License. %% %% %CopyrightEnd% %% %% Definition of the Erlang grammar. Nonterminals form attribute attr_val function function_clauses function_clause clause_args clause_guard clause_body expr expr_100 expr_150 expr_160 expr_200 expr_300 expr_400 expr_500 expr_600 expr_700 expr_800 expr_max list tail list_comprehension lc_expr lc_exprs binary_comprehension tuple %struct record_expr record_tuple record_field record_fields if_expr if_clause if_clauses case_expr cr_clause cr_clauses receive_expr fun_expr fun_clause fun_clauses atom_or_var integer_or_var try_expr try_catch try_clause try_clauses function_call argument_list exprs guard atomic strings prefix_op mult_op add_op list_op comp_op rule rule_clauses rule_clause rule_body binary bin_elements bin_element bit_expr opt_bit_size_expr bit_size_expr opt_bit_type_list bit_type_list bit_type top_type top_type_100 top_types type typed_expr typed_attr_val type_sig type_sigs type_guard type_guards fun_type fun_type_100 binary_type type_spec spec_fun typed_exprs typed_record_fields field_types field_type bin_base_type bin_unit_type type_200 type_300 type_400 type_500. Terminals char integer float atom string var '(' ')' ',' '->' ':-' '{' '}' '[' ']' '|' '||' '<-' ';' ':' '#' '.' 'after' 'begin' 'case' 'try' 'catch' 'end' 'fun' 'if' 'of' 'receive' 'when' 'andalso' 'orelse' 'bnot' 'not' '*' '/' 'div' 'rem' 'band' 'and' '+' '-' 'bor' 'bxor' 'bsl' 'bsr' 'or' 'xor' '++' '--' '==' '/=' '=<' '<' '>=' '>' '=:=' '=/=' '<=' '<<' '>>' '!' '=' '::' '..' '...' 'spec' 'callback' % helper dot. Expect 2. Rootsymbol form. form -> attribute dot : '$1'. form -> function dot : '$1'. form -> rule dot : '$1'. attribute -> '-' atom attr_val : build_attribute('$2', '$3'). attribute -> '-' atom typed_attr_val : build_typed_attribute('$2','$3'). attribute -> '-' atom '(' typed_attr_val ')' : build_typed_attribute('$2','$4'). attribute -> '-' 'spec' type_spec : build_type_spec('$2', '$3'). attribute -> '-' 'callback' type_spec : build_type_spec('$2', '$3'). type_spec -> spec_fun type_sigs : {'$1', '$2'}. type_spec -> '(' spec_fun type_sigs ')' : {'$2', '$3'}. spec_fun -> atom : '$1'. spec_fun -> atom ':' atom : {'$1', '$3'}. %% The following two are retained only for backwards compatibility; %% they are not part of the EEP syntax and should be removed. spec_fun -> atom '/' integer '::' : {'$1', '$3'}. spec_fun -> atom ':' atom '/' integer '::' : {'$1', '$3', '$5'}. typed_attr_val -> expr ',' typed_record_fields : {typed_record, '$1', '$3'}. typed_attr_val -> expr '::' top_type : {type_def, '$1', '$3'}. typed_record_fields -> '{' typed_exprs '}' : {tuple, ?line('$1'), '$2'}. typed_exprs -> typed_expr : ['$1']. typed_exprs -> typed_expr ',' typed_exprs : ['$1'|'$3']. typed_exprs -> expr ',' typed_exprs : ['$1'|'$3']. typed_exprs -> typed_expr ',' exprs : ['$1'|'$3']. typed_expr -> expr '::' top_type : {typed,'$1','$3'}. type_sigs -> type_sig : ['$1']. type_sigs -> type_sig ';' type_sigs : ['$1'|'$3']. type_sig -> fun_type : '$1'. type_sig -> fun_type 'when' type_guards : {type, ?line('$1'), bounded_fun, ['$1','$3']}. type_guards -> type_guard : ['$1']. type_guards -> type_guard ',' type_guards : ['$1'|'$3']. type_guard -> atom '(' top_types ')' : {type, ?line('$1'), constraint, ['$1', '$3']}. type_guard -> var '::' top_type : build_def('$1', '$3'). top_types -> top_type : ['$1']. top_types -> top_type ',' top_types : ['$1'|'$3']. top_type -> var '::' top_type_100 : {ann_type, ?line('$1'), ['$1','$3']}. top_type -> top_type_100 : '$1'. top_type_100 -> type_200 : '$1'. top_type_100 -> type_200 '|' top_type_100 : lift_unions('$1','$3'). type_200 -> type_300 '..' type_300 : {type, ?line('$1'), range, [skip_paren('$1'), skip_paren('$3')]}. type_200 -> type_300 : '$1'. type_300 -> type_300 add_op type_400 : ?mkop2(skip_paren('$1'), '$2', skip_paren('$3')). type_300 -> type_400 : '$1'. type_400 -> type_400 mult_op type_500 : ?mkop2(skip_paren('$1'), '$2', skip_paren('$3')). type_400 -> type_500 : '$1'. type_500 -> prefix_op type : ?mkop1('$1', skip_paren('$2')). type_500 -> type : '$1'. type -> '(' top_type ')' : {paren_type, ?line('$2'), ['$2']}. type -> var : '$1'. type -> atom : '$1'. type -> atom '(' ')' : build_gen_type('$1'). type -> atom '(' top_types ')' : {type, ?line('$1'), normalise('$1'), '$3'}. type -> atom ':' atom '(' ')' : {remote_type, ?line('$1'), ['$1', '$3', []]}. type -> atom ':' atom '(' top_types ')' : {remote_type, ?line('$1'), ['$1', '$3', '$5']}. type -> '[' ']' : {type, ?line('$1'), nil, []}. type -> '[' top_type ']' : {type, ?line('$1'), list, ['$2']}. type -> '[' top_type ',' '...' ']' : {type, ?line('$1'), nonempty_list, ['$2']}. type -> '{' '}' : {type, ?line('$1'), tuple, []}. type -> '{' top_types '}' : {type, ?line('$1'), tuple, '$2'}. type -> '#' atom '{' '}' : {type, ?line('$1'), record, ['$2']}. type -> '#' atom '{' field_types '}' : {type, ?line('$1'), record, ['$2'|'$4']}. type -> binary_type : '$1'. type -> integer : '$1'. type -> 'fun' '(' ')' : {type, ?line('$1'), 'fun', []}. type -> 'fun' '(' fun_type_100 ')' : '$3'. fun_type_100 -> '(' '...' ')' '->' top_type : {type, ?line('$1'), 'fun', [{type, ?line('$1'), any}, '$5']}. fun_type_100 -> fun_type : '$1'. fun_type -> '(' ')' '->' top_type : {type, ?line('$1'), 'fun', [{type, ?line('$1'), product, []}, '$4']}. fun_type -> '(' top_types ')' '->' top_type : {type, ?line('$1'), 'fun', [{type, ?line('$1'), product, '$2'},'$5']}. field_types -> field_type : ['$1']. field_types -> field_type ',' field_types : ['$1'|'$3']. field_type -> atom '::' top_type : {type, ?line('$1'), field_type, ['$1', '$3']}. binary_type -> '<<' '>>' : {type, ?line('$1'),binary, [abstract(0, ?line('$1')), abstract(0, ?line('$1'))]}. binary_type -> '<<' bin_base_type '>>' : {type, ?line('$1'),binary, ['$2', abstract(0, ?line('$1'))]}. binary_type -> '<<' bin_unit_type '>>' : {type, ?line('$1'),binary, [abstract(0, ?line('$1')), '$2']}. binary_type -> '<<' bin_base_type ',' bin_unit_type '>>' : {type, ?line('$1'), binary, ['$2', '$4']}. bin_base_type -> var ':' type : build_bin_type(['$1'], '$3'). bin_unit_type -> var ':' var '*' type : build_bin_type(['$1', '$3'], '$5'). attr_val -> expr : ['$1']. attr_val -> expr ',' exprs : ['$1' | '$3']. attr_val -> '(' expr ',' exprs ')' : ['$2' | '$4']. function -> function_clauses : build_function('$1'). function_clauses -> function_clause : ['$1']. function_clauses -> function_clause ';' function_clauses : ['$1'|'$3']. function_clause -> atom clause_args clause_guard clause_body : {clause,?line('$1'),element(3, '$1'),'$2','$3','$4'}. clause_args -> argument_list : element(1, '$1'). clause_guard -> 'when' guard : '$2'. clause_guard -> '$empty' : []. clause_body -> '->' exprs: '$2'. expr -> 'catch' expr : {'catch',?line('$1'),'$2'}. expr -> expr_100 : '$1'. expr_100 -> expr_150 '=' expr_100 : {match,?line('$2'),'$1','$3'}. expr_100 -> expr_150 '!' expr_100 : ?mkop2('$1', '$2', '$3'). expr_100 -> expr_150 : '$1'. expr_150 -> expr_160 'orelse' expr_150 : ?mkop2('$1', '$2', '$3'). expr_150 -> expr_160 : '$1'. expr_160 -> expr_200 'andalso' expr_160 : ?mkop2('$1', '$2', '$3'). expr_160 -> expr_200 : '$1'. expr_200 -> expr_300 comp_op expr_300 : ?mkop2('$1', '$2', '$3'). expr_200 -> expr_300 : '$1'. expr_300 -> expr_400 list_op expr_300 : ?mkop2('$1', '$2', '$3'). expr_300 -> expr_400 : '$1'. expr_400 -> expr_400 add_op expr_500 : ?mkop2('$1', '$2', '$3'). expr_400 -> expr_500 : '$1'. expr_500 -> expr_500 mult_op expr_600 : ?mkop2('$1', '$2', '$3'). expr_500 -> expr_600 : '$1'. expr_600 -> prefix_op expr_700 : ?mkop1('$1', '$2'). expr_600 -> expr_700 : '$1'. expr_700 -> function_call : '$1'. expr_700 -> record_expr : '$1'. expr_700 -> expr_800 : '$1'. expr_800 -> expr_max ':' expr_max : {remote,?line('$2'),'$1','$3'}. expr_800 -> expr_max : '$1'. expr_max -> var : '$1'. expr_max -> atomic : '$1'. expr_max -> list : '$1'. expr_max -> binary : '$1'. expr_max -> list_comprehension : '$1'. expr_max -> binary_comprehension : '$1'. expr_max -> tuple : '$1'. %%expr_max -> struct : '$1'. expr_max -> '(' expr ')' : '$2'. expr_max -> 'begin' exprs 'end' : {block,?line('$1'),'$2'}. expr_max -> if_expr : '$1'. expr_max -> case_expr : '$1'. expr_max -> receive_expr : '$1'. expr_max -> fun_expr : '$1'. expr_max -> try_expr : '$1'. list -> '[' ']' : {nil,?line('$1')}. list -> '[' expr tail : {cons,?line('$1'),'$2','$3'}. tail -> ']' : {nil,?line('$1')}. tail -> '|' expr ']' : '$2'. tail -> ',' expr tail : {cons,?line('$2'),'$2','$3'}. binary -> '<<' '>>' : {bin,?line('$1'),[]}. binary -> '<<' bin_elements '>>' : {bin,?line('$1'),'$2'}. bin_elements -> bin_element : ['$1']. bin_elements -> bin_element ',' bin_elements : ['$1'|'$3']. bin_element -> bit_expr opt_bit_size_expr opt_bit_type_list : {bin_element,?line('$1'),'$1','$2','$3'}. bit_expr -> prefix_op expr_max : ?mkop1('$1', '$2'). bit_expr -> expr_max : '$1'. opt_bit_size_expr -> ':' bit_size_expr : '$2'. opt_bit_size_expr -> '$empty' : default. opt_bit_type_list -> '/' bit_type_list : '$2'. opt_bit_type_list -> '$empty' : default. bit_type_list -> bit_type '-' bit_type_list : ['$1' | '$3']. bit_type_list -> bit_type : ['$1']. bit_type -> atom : element(3,'$1'). bit_type -> atom ':' integer : { element(3,'$1'), element(3,'$3') }. bit_size_expr -> expr_max : '$1'. list_comprehension -> '[' expr '||' lc_exprs ']' : {lc,?line('$1'),'$2','$4'}. binary_comprehension -> '<<' binary '||' lc_exprs '>>' : {bc,?line('$1'),'$2','$4'}. lc_exprs -> lc_expr : ['$1']. lc_exprs -> lc_expr ',' lc_exprs : ['$1'|'$3']. lc_expr -> expr : '$1'. lc_expr -> expr '<-' expr : {generate,?line('$2'),'$1','$3'}. lc_expr -> binary '<=' expr : {b_generate,?line('$2'),'$1','$3'}. tuple -> '{' '}' : {tuple,?line('$1'),[]}. tuple -> '{' exprs '}' : {tuple,?line('$1'),'$2'}. %%struct -> atom tuple : %% {struct,?line('$1'),element(3, '$1'),element(3, '$2')}. %% N.B. This is called from expr_700. %% N.B. Field names are returned as the complete object, even if they are %% always atoms for the moment, this might change in the future. record_expr -> '#' atom '.' atom : {record_index,?line('$1'),element(3, '$2'),'$4'}. record_expr -> '#' atom record_tuple : {record,?line('$1'),element(3, '$2'),'$3'}. record_expr -> expr_max '#' atom '.' atom : {record_field,?line('$2'),'$1',element(3, '$3'),'$5'}. record_expr -> expr_max '#' atom record_tuple : {record,?line('$2'),'$1',element(3, '$3'),'$4'}. record_expr -> record_expr '#' atom '.' atom : {record_field,?line('$2'),'$1',element(3, '$3'),'$5'}. record_expr -> record_expr '#' atom record_tuple : {record,?line('$2'),'$1',element(3, '$3'),'$4'}. record_tuple -> '{' '}' : []. record_tuple -> '{' record_fields '}' : '$2'. record_fields -> record_field : ['$1']. record_fields -> record_field ',' record_fields : ['$1' | '$3']. record_field -> var '=' expr : {record_field,?line('$1'),'$1','$3'}. record_field -> atom '=' expr : {record_field,?line('$1'),'$1','$3'}. %% N.B. This is called from expr_700. function_call -> expr_800 argument_list : {call,?line('$1'),'$1',element(1, '$2')}. if_expr -> 'if' if_clauses 'end' : {'if',?line('$1'),'$2'}. if_clauses -> if_clause : ['$1']. if_clauses -> if_clause ';' if_clauses : ['$1' | '$3']. if_clause -> guard clause_body : {clause,?line(hd(hd('$1'))),[],'$1','$2'}. case_expr -> 'case' expr 'of' cr_clauses 'end' : {'case',?line('$1'),'$2','$4'}. cr_clauses -> cr_clause : ['$1']. cr_clauses -> cr_clause ';' cr_clauses : ['$1' | '$3']. cr_clause -> expr clause_guard clause_body : {clause,?line('$1'),['$1'],'$2','$3'}. receive_expr -> 'receive' cr_clauses 'end' : {'receive',?line('$1'),'$2'}. receive_expr -> 'receive' 'after' expr clause_body 'end' : {'receive',?line('$1'),[],'$3','$4'}. receive_expr -> 'receive' cr_clauses 'after' expr clause_body 'end' : {'receive',?line('$1'),'$2','$4','$5'}. fun_expr -> 'fun' atom '/' integer : {'fun',?line('$1'),{function,element(3, '$2'),element(3, '$4')}}. fun_expr -> 'fun' atom_or_var ':' atom_or_var '/' integer_or_var : {'fun',?line('$1'),{function,'$2','$4','$6'}}. fun_expr -> 'fun' fun_clauses 'end' : build_fun(?line('$1'), '$2'). atom_or_var -> atom : '$1'. atom_or_var -> var : '$1'. integer_or_var -> integer : '$1'. integer_or_var -> var : '$1'. fun_clauses -> fun_clause : ['$1']. fun_clauses -> fun_clause ';' fun_clauses : ['$1' | '$3']. fun_clause -> argument_list clause_guard clause_body : {Args,Pos} = '$1', {clause,Pos,'fun',Args,'$2','$3'}. fun_clause -> var argument_list clause_guard clause_body : {clause,element(2, '$1'),element(3, '$1'),element(1, '$2'),'$3','$4'}. try_expr -> 'try' exprs 'of' cr_clauses try_catch : build_try(?line('$1'),'$2','$4','$5'). try_expr -> 'try' exprs try_catch : build_try(?line('$1'),'$2',[],'$3'). try_catch -> 'catch' try_clauses 'end' : {'$2',[]}. try_catch -> 'catch' try_clauses 'after' exprs 'end' : {'$2','$4'}. try_catch -> 'after' exprs 'end' : {[],'$2'}. try_clauses -> try_clause : ['$1']. try_clauses -> try_clause ';' try_clauses : ['$1' | '$3']. try_clause -> expr clause_guard clause_body : L = ?line('$1'), {clause,L,[{tuple,L,[{atom,L,throw},'$1',{var,L,'_'}]}],'$2','$3'}. try_clause -> atom ':' expr clause_guard clause_body : L = ?line('$1'), {clause,L,[{tuple,L,['$1','$3',{var,L,'_'}]}],'$4','$5'}. try_clause -> var ':' expr clause_guard clause_body : L = ?line('$1'), {clause,L,[{tuple,L,['$1','$3',{var,L,'_'}]}],'$4','$5'}. argument_list -> '(' ')' : {[],?line('$1')}. argument_list -> '(' exprs ')' : {'$2',?line('$1')}. exprs -> expr : ['$1']. exprs -> expr ',' exprs : ['$1' | '$3']. guard -> exprs : ['$1']. guard -> exprs ';' guard : ['$1'|'$3']. atomic -> char : '$1'. atomic -> integer : '$1'. atomic -> float : '$1'. atomic -> atom : '$1'. atomic -> strings : '$1'. strings -> string : '$1'. strings -> string strings : {string,?line('$1'),element(3, '$1') ++ element(3, '$2')}. prefix_op -> '+' : '$1'. prefix_op -> '-' : '$1'. prefix_op -> 'bnot' : '$1'. prefix_op -> 'not' : '$1'. mult_op -> '/' : '$1'. mult_op -> '*' : '$1'. mult_op -> 'div' : '$1'. mult_op -> 'rem' : '$1'. mult_op -> 'band' : '$1'. mult_op -> 'and' : '$1'. add_op -> '+' : '$1'. add_op -> '-' : '$1'. add_op -> 'bor' : '$1'. add_op -> 'bxor' : '$1'. add_op -> 'bsl' : '$1'. add_op -> 'bsr' : '$1'. add_op -> 'or' : '$1'. add_op -> 'xor' : '$1'. list_op -> '++' : '$1'. list_op -> '--' : '$1'. comp_op -> '==' : '$1'. comp_op -> '/=' : '$1'. comp_op -> '=<' : '$1'. comp_op -> '<' : '$1'. comp_op -> '>=' : '$1'. comp_op -> '>' : '$1'. comp_op -> '=:=' : '$1'. comp_op -> '=/=' : '$1'. rule -> rule_clauses : build_rule('$1'). rule_clauses -> rule_clause : ['$1']. rule_clauses -> rule_clause ';' rule_clauses : ['$1'|'$3']. rule_clause -> atom clause_args clause_guard rule_body : {clause,?line('$1'),element(3, '$1'),'$2','$3','$4'}. rule_body -> ':-' lc_exprs: '$2'. Erlang code. -export([parse_form/1,parse_exprs/1,parse_term/1]). -export([normalise/1,abstract/1,tokens/1,tokens/2]). -export([abstract/2]). -export([inop_prec/1,preop_prec/1,func_prec/0,max_prec/0]). -export([set_line/2,get_attribute/2,get_attributes/1]). %% The following directive is needed for (significantly) faster compilation %% of the generated .erl file by the HiPE compiler. Please do not remove. -compile([{hipe,[{regalloc,linear_scan}]}]). -export_type([abstract_clause/0, abstract_expr/0, abstract_form/0, error_info/0]). -type abstract_clause() :: term(). -type abstract_expr() :: term(). -type abstract_form() :: term(). -type error_description() :: term(). -type error_info() :: {erl_scan:line(), module(), error_description()}. -type token() :: erl_scan:token(). %% mkop(Op, Arg) -> {op,Line,Op,Arg}. %% mkop(Left, Op, Right) -> {op,Line,Op,Left,Right}. -define(mkop2(L, OpPos, R), begin {Op,Pos} = OpPos, {op,Pos,Op,L,R} end). -define(mkop1(OpPos, A), begin {Op,Pos} = OpPos, {op,Pos,Op,A} end). %% keep track of line info in tokens -define(line(Tup), element(2, Tup)). %% Entry points compatible to old erl_parse. %% These really suck and are only here until Calle gets multiple %% entry points working. -spec parse_form(Tokens) -> {ok, AbsForm} | {error, ErrorInfo} when Tokens :: [token()], AbsForm :: abstract_form(), ErrorInfo :: error_info(). parse_form([{'-',L1},{atom,L2,spec}|Tokens]) -> parse([{'-',L1},{'spec',L2}|Tokens]); parse_form([{'-',L1},{atom,L2,callback}|Tokens]) -> parse([{'-',L1},{'callback',L2}|Tokens]); parse_form(Tokens) -> parse(Tokens). -spec parse_exprs(Tokens) -> {ok, ExprList} | {error, ErrorInfo} when Tokens :: [token()], ExprList :: [abstract_expr()], ErrorInfo :: error_info(). parse_exprs(Tokens) -> case parse([{atom,0,f},{'(',0},{')',0},{'->',0}|Tokens]) of {ok,{function,_Lf,f,0,[{clause,_Lc,[],[],Exprs}]}} -> {ok,Exprs}; {error,_} = Err -> Err end. -spec parse_term(Tokens) -> {ok, Term} | {error, ErrorInfo} when Tokens :: [token()], Term :: term(), ErrorInfo :: error_info(). parse_term(Tokens) -> case parse([{atom,0,f},{'(',0},{')',0},{'->',0}|Tokens]) of {ok,{function,_Lf,f,0,[{clause,_Lc,[],[],[Expr]}]}} -> try normalise(Expr) of Term -> {ok,Term} catch _:_R -> {error,{?line(Expr),?MODULE,"bad term"}} end; {ok,{function,_Lf,f,0,[{clause,_Lc,[],[],[_E1,E2|_Es]}]}} -> {error,{?line(E2),?MODULE,"bad term"}}; {error,_} = Err -> Err end. -type attributes() :: 'export' | 'file' | 'import' | 'module' | 'opaque' | 'record' | 'type'. build_typed_attribute({atom,La,record}, {typed_record, {atom,_Ln,RecordName}, RecTuple}) -> {attribute,La,record,{RecordName,record_tuple(RecTuple)}}; build_typed_attribute({atom,La,Attr}, {type_def, {call,_,{atom,_,TypeName},Args}, Type}) when Attr =:= 'type' ; Attr =:= 'opaque' -> case lists:all(fun({var, _, _}) -> true; (_) -> false end, Args) of true -> {attribute,La,Attr,{TypeName,Type,Args}}; false -> error_bad_decl(La, Attr) end; build_typed_attribute({atom,La,Attr},_) -> case Attr of record -> error_bad_decl(La, record); type -> error_bad_decl(La, type); opaque -> error_bad_decl(La, opaque); _ -> ret_err(La, "bad attribute") end. build_type_spec({Kind,La}, {SpecFun, TypeSpecs}) when (Kind =:= spec) or (Kind =:= callback) -> NewSpecFun = case SpecFun of {atom, _, Fun} -> {Fun, find_arity_from_specs(TypeSpecs)}; {{atom,_, Mod}, {atom,_, Fun}} -> {Mod,Fun,find_arity_from_specs(TypeSpecs)}; {{atom, _, Fun}, {integer, _, Arity}} -> %% Old style spec. Allow this for now. {Fun,Arity}; {{atom,_, Mod}, {atom, _, Fun}, {integer, _, Arity}} -> %% Old style spec. Allow this for now. {Mod,Fun,Arity} end, {attribute,La,Kind,{NewSpecFun, TypeSpecs}}. find_arity_from_specs([Spec|_]) -> %% Use the first spec to find the arity. If all are not the same, %% erl_lint will find this. Fun = case Spec of {type, _, bounded_fun, [F, _]} -> F; {type, _, 'fun', _} = F -> F end, {type, _, 'fun', [{type, _, product, Args},_]} = Fun, length(Args). build_def(LHS, Types) -> IsSubType = {atom, ?line(LHS), is_subtype}, {type, ?line(LHS), constraint, [IsSubType, [LHS, Types]]}. lift_unions(T1, {type, _La, union, List}) -> {type, ?line(T1), union, [T1|List]}; lift_unions(T1, T2) -> {type, ?line(T1), union, [T1, T2]}. skip_paren({paren_type,_L,[Type]}) -> skip_paren(Type); skip_paren(Type) -> Type. build_gen_type({atom, La, tuple}) -> {type, La, tuple, any}; build_gen_type({atom, La, Name}) -> {type, La, Name, []}. build_bin_type([{var, _, '_'}|Left], Int) -> build_bin_type(Left, Int); build_bin_type([], Int) -> skip_paren(Int); build_bin_type([{var, La, _}|_], _) -> ret_err(La, "Bad binary type"). %% build_attribute(AttrName, AttrValue) -> %% {attribute,Line,module,Module} %% {attribute,Line,export,Exports} %% {attribute,Line,import,Imports} %% {attribute,Line,record,{Name,Inits}} %% {attribute,Line,file,{Name,Line}} %% {attribute,Line,Name,Val} build_attribute({atom,La,module}, Val) -> case Val of [{atom,_Lm,Module}] -> {attribute,La,module,Module}; [{atom,_Lm,Module},ExpList] -> {attribute,La,module,{Module,var_list(ExpList)}}; _Other -> error_bad_decl(La, module) end; build_attribute({atom,La,export}, Val) -> case Val of [ExpList] -> {attribute,La,export,farity_list(ExpList)}; _Other -> error_bad_decl(La, export) end; build_attribute({atom,La,import}, Val) -> case Val of [{atom,_Lm,Mod},ImpList] -> {attribute,La,import,{Mod,farity_list(ImpList)}}; _Other -> error_bad_decl(La, import) end; build_attribute({atom,La,record}, Val) -> case Val of [{atom,_Ln,Record},RecTuple] -> {attribute,La,record,{Record,record_tuple(RecTuple)}}; _Other -> error_bad_decl(La, record) end; build_attribute({atom,La,file}, Val) -> case Val of [{string,_Ln,Name},{integer,_Ll,Line}] -> {attribute,La,file,{Name,Line}}; _Other -> error_bad_decl(La, file) end; build_attribute({atom,La,Attr}, Val) -> case Val of [Expr0] -> Expr = attribute_farity(Expr0), {attribute,La,Attr,term(Expr)}; _Other -> ret_err(La, "bad attribute") end. var_list({cons,_Lc,{var,_,V},Tail}) -> [V|var_list(Tail)]; var_list({nil,_Ln}) -> []; var_list(Other) -> ret_err(?line(Other), "bad variable list"). attribute_farity({cons,L,H,T}) -> {cons,L,attribute_farity(H),attribute_farity(T)}; attribute_farity({tuple,L,Args0}) -> Args = attribute_farity_list(Args0), {tuple,L,Args}; attribute_farity({op,L,'/',{atom,_,_}=Name,{integer,_,_}=Arity}) -> {tuple,L,[Name,Arity]}; attribute_farity(Other) -> Other. attribute_farity_list(Args) -> [attribute_farity(A) || A <- Args]. -spec error_bad_decl(integer(), attributes()) -> no_return(). error_bad_decl(L, S) -> ret_err(L, io_lib:format("bad ~w declaration", [S])). farity_list({cons,_Lc,{op,_Lo,'/',{atom,_La,A},{integer,_Li,I}},Tail}) -> [{A,I}|farity_list(Tail)]; farity_list({nil,_Ln}) -> []; farity_list(Other) -> ret_err(?line(Other), "bad function arity"). record_tuple({tuple,_Lt,Fields}) -> record_fields(Fields); record_tuple(Other) -> ret_err(?line(Other), "bad record declaration"). record_fields([{atom,La,A}|Fields]) -> [{record_field,La,{atom,La,A}}|record_fields(Fields)]; record_fields([{match,_Lm,{atom,La,A},Expr}|Fields]) -> [{record_field,La,{atom,La,A},Expr}|record_fields(Fields)]; record_fields([{typed,Expr,TypeInfo}|Fields]) -> [Field] = record_fields([Expr]), TypeInfo1 = case Expr of {match, _, _, _} -> TypeInfo; %% If we have an initializer. {atom, La, _} -> case has_undefined(TypeInfo) of false -> TypeInfo2 = maybe_add_paren(TypeInfo), lift_unions(abstract(undefined, La), TypeInfo2); true -> TypeInfo end end, [{typed_record_field,Field,TypeInfo1}|record_fields(Fields)]; record_fields([Other|_Fields]) -> ret_err(?line(Other), "bad record field"); record_fields([]) -> []. has_undefined({atom,_,undefined}) -> true; has_undefined({ann_type,_,[_,T]}) -> has_undefined(T); has_undefined({paren_type,_,[T]}) -> has_undefined(T); has_undefined({type,_,union,Ts}) -> lists:any(fun has_undefined/1, Ts); has_undefined(_) -> false. maybe_add_paren({ann_type,L,T}) -> {paren_type,L,[{ann_type,L,T}]}; maybe_add_paren(T) -> T. term(Expr) -> try normalise(Expr) catch _:_R -> ret_err(?line(Expr), "bad attribute") end. %% build_function([Clause]) -> {function,Line,Name,Arity,[Clause]} build_function(Cs) -> Name = element(3, hd(Cs)), Arity = length(element(4, hd(Cs))), {function,?line(hd(Cs)),Name,Arity,check_clauses(Cs, Name, Arity)}. %% build_rule([Clause]) -> {rule,Line,Name,Arity,[Clause]'} build_rule(Cs) -> Name = element(3, hd(Cs)), Arity = length(element(4, hd(Cs))), {rule,?line(hd(Cs)),Name,Arity,check_clauses(Cs, Name, Arity)}. %% build_fun(Line, [Clause]) -> {'fun',Line,{clauses,[Clause]}}. build_fun(Line, Cs) -> Name = element(3, hd(Cs)), Arity = length(element(4, hd(Cs))), CheckedCs = check_clauses(Cs, Name, Arity), case Name of 'fun' -> {'fun',Line,{clauses,CheckedCs}}; Name -> {named_fun,Line,Name,CheckedCs} end. check_clauses(Cs, Name, Arity) -> mapl(fun ({clause,L,N,As,G,B}) when N =:= Name, length(As) =:= Arity -> {clause,L,As,G,B}; ({clause,L,_N,_As,_G,_B}) -> ret_err(L, "head mismatch") end, Cs). build_try(L,Es,Scs,{Ccs,As}) -> {'try',L,Es,Scs,Ccs,As}. -spec ret_err(_, _) -> no_return(). ret_err(L, S) -> {location,Location} = get_attribute(L, location), return_error(Location, S). %% mapl(F,List) %% an alternative map which always maps from left to right %% and makes it possible to interrupt the mapping with throw on %% the first occurence from left as expected. %% can be removed when the jam machine (and all other machines) %% uses the standardized (Erlang 5.0) evaluation order (from left to right) mapl(F, [H|T]) -> V = F(H), [V | mapl(F,T)]; mapl(_, []) -> []. %% Convert between the abstract form of a term and a term. -spec normalise(AbsTerm) -> Data when AbsTerm :: abstract_expr(), Data :: term(). normalise({char,_,C}) -> C; normalise({integer,_,I}) -> I; normalise({float,_,F}) -> F; normalise({atom,_,A}) -> A; normalise({string,_,S}) -> S; normalise({nil,_}) -> []; normalise({bin,_,Fs}) -> {value, B, _} = eval_bits:expr_grp(Fs, [], fun(E, _) -> {value, normalise(E), []} end, [], true), B; normalise({cons,_,Head,Tail}) -> [normalise(Head)|normalise(Tail)]; normalise({tuple,_,Args}) -> list_to_tuple(normalise_list(Args)); %% Special case for unary +/-. normalise({op,_,'+',{char,_,I}}) -> I; normalise({op,_,'+',{integer,_,I}}) -> I; normalise({op,_,'+',{float,_,F}}) -> F; normalise({op,_,'-',{char,_,I}}) -> -I; %Weird, but compatible! normalise({op,_,'-',{integer,_,I}}) -> -I; normalise({op,_,'-',{float,_,F}}) -> -F; normalise(X) -> erlang:error({badarg, X}). normalise_list([H|T]) -> [normalise(H)|normalise_list(T)]; normalise_list([]) -> []. -spec abstract(Data) -> AbsTerm when Data :: term(), AbsTerm :: abstract_expr(). abstract(T) -> abstract(T, 0, epp:default_encoding()). %%% abstract/2 takes line and encoding options -spec abstract(Data, Options) -> AbsTerm when Data :: term(), Options :: Line | [Option], Option :: {line, Line} | {encoding, Encoding}, Encoding :: latin1 | unicode | utf8, Line :: erl_scan:line(), AbsTerm :: abstract_expr(). abstract(T, Line) when is_integer(Line) -> abstract(T, Line, epp:default_encoding()); abstract(T, Options) when is_list(Options) -> Line = proplists:get_value(line, Options, 0), Encoding = proplists:get_value(encoding, Options,epp:default_encoding()), abstract(T, Line, Encoding). -define(UNICODE(C), is_integer(C) andalso (C >= 0 andalso C < 16#D800 orelse C > 16#DFFF andalso C < 16#FFFE orelse C > 16#FFFF andalso C =< 16#10FFFF)). abstract(T, L, _E) when is_integer(T) -> {integer,L,T}; abstract(T, L, _E) when is_float(T) -> {float,L,T}; abstract(T, L, _E) when is_atom(T) -> {atom,L,T}; abstract([], L, _E) -> {nil,L}; abstract(B, L, _E) when is_bitstring(B) -> {bin, L, [abstract_byte(Byte, L) || Byte <- bitstring_to_list(B)]}; abstract([C|T], L, unicode=E) when ?UNICODE(C) -> abstract_unicode_string(T, [C], L, E); abstract([C|T], L, utf8=E) when ?UNICODE(C) -> abstract_unicode_string(T, [C], L, E); abstract([C|T], L, latin1=E) when is_integer(C), 0 =< C, C < 256 -> abstract_string(T, [C], L, E); abstract([H|T], L, E) -> {cons,L,abstract(H, L, E),abstract(T, L, E)}; abstract(Tuple, L, E) when is_tuple(Tuple) -> {tuple,L,abstract_list(tuple_to_list(Tuple), L, E)}. abstract_string([C|T], String, L, E) when is_integer(C), 0 =< C, C < 256 -> abstract_string(T, [C|String], L, E); abstract_string([], String, L, _E) -> {string, L, lists:reverse(String)}; abstract_string(T, String, L, E) -> not_string(String, abstract(T, L, E), L, E). abstract_unicode_string([C|T], String, L, E) when ?UNICODE(C) -> abstract_unicode_string(T, [C|String], L, E); abstract_unicode_string([], String, L, _E) -> {string, L, lists:reverse(String)}; abstract_unicode_string(T, String, L, E) -> not_string(String, abstract(T, L, E), L, E). not_string([C|T], Result, L, E) -> not_string(T, {cons, L, {integer, L, C}, Result}, L, E); not_string([], Result, _L, _E) -> Result. abstract_list([H|T], L, E) -> [abstract(H, L, E)|abstract_list(T, L, E)]; abstract_list([], _L, _E) -> []. abstract_byte(Byte, L) when is_integer(Byte) -> {bin_element, L, {integer, L, Byte}, default, default}; abstract_byte(Bits, L) -> Sz = bit_size(Bits), <<Val:Sz>> = Bits, {bin_element, L, {integer, L, Val}, {integer, L, Sz}, default}. %% Generate a list of tokens representing the abstract term. -spec tokens(AbsTerm) -> Tokens when AbsTerm :: abstract_expr(), Tokens :: [token()]. tokens(Abs) -> tokens(Abs, []). -spec tokens(AbsTerm, MoreTokens) -> Tokens when AbsTerm :: abstract_expr(), MoreTokens :: [token()], Tokens :: [token()]. tokens({char,L,C}, More) -> [{char,L,C}|More]; tokens({integer,L,N}, More) -> [{integer,L,N}|More]; tokens({float,L,F}, More) -> [{float,L,F}|More]; tokens({atom,L,A}, More) -> [{atom,L,A}|More]; tokens({var,L,V}, More) -> [{var,L,V}|More]; tokens({string,L,S}, More) -> [{string,L,S}|More]; tokens({nil,L}, More) -> [{'[',L},{']',L}|More]; tokens({cons,L,Head,Tail}, More) -> [{'[',L}|tokens(Head, tokens_tail(Tail, More))]; tokens({tuple,L,[]}, More) -> [{'{',L},{'}',L}|More]; tokens({tuple,L,[E|Es]}, More) -> [{'{',L}|tokens(E, tokens_tuple(Es, ?line(E), More))]. tokens_tail({cons,L,Head,Tail}, More) -> [{',',L}|tokens(Head, tokens_tail(Tail, More))]; tokens_tail({nil,L}, More) -> [{']',L}|More]; tokens_tail(Other, More) -> L = ?line(Other), [{'|',L}|tokens(Other, [{']',L}|More])]. tokens_tuple([E|Es], Line, More) -> [{',',Line}|tokens(E, tokens_tuple(Es, ?line(E), More))]; tokens_tuple([], Line, More) -> [{'}',Line}|More]. %% Give the relative precedences of operators. inop_prec('=') -> {150,100,100}; inop_prec('!') -> {150,100,100}; inop_prec('orelse') -> {160,150,150}; inop_prec('andalso') -> {200,160,160}; inop_prec('==') -> {300,200,300}; inop_prec('/=') -> {300,200,300}; inop_prec('=<') -> {300,200,300}; inop_prec('<') -> {300,200,300}; inop_prec('>=') -> {300,200,300}; inop_prec('>') -> {300,200,300}; inop_prec('=:=') -> {300,200,300}; inop_prec('=/=') -> {300,200,300}; inop_prec('++') -> {400,300,300}; inop_prec('--') -> {400,300,300}; inop_prec('+') -> {400,400,500}; inop_prec('-') -> {400,400,500}; inop_prec('bor') -> {400,400,500}; inop_prec('bxor') -> {400,400,500}; inop_prec('bsl') -> {400,400,500}; inop_prec('bsr') -> {400,400,500}; inop_prec('or') -> {400,400,500}; inop_prec('xor') -> {400,400,500}; inop_prec('*') -> {500,500,600}; inop_prec('/') -> {500,500,600}; inop_prec('div') -> {500,500,600}; inop_prec('rem') -> {500,500,600}; inop_prec('band') -> {500,500,600}; inop_prec('and') -> {500,500,600}; inop_prec('#') -> {800,700,800}; inop_prec(':') -> {900,800,900}; inop_prec('.') -> {900,900,1000}. -type pre_op() :: 'catch' | '+' | '-' | 'bnot' | 'not' | '#'. -spec preop_prec(pre_op()) -> {0 | 600 | 700, 100 | 700 | 800}. preop_prec('catch') -> {0,100}; preop_prec('+') -> {600,700}; preop_prec('-') -> {600,700}; preop_prec('bnot') -> {600,700}; preop_prec('not') -> {600,700}; preop_prec('#') -> {700,800}. -spec func_prec() -> {800,700}. func_prec() -> {800,700}. -spec max_prec() -> 900. max_prec() -> 900. %%% [Experimental]. The parser just copies the attributes of the %%% scanner tokens to the abstract format. This design decision has %%% been hidden to some extent: use set_line() and get_attribute() to %%% access the second element of (almost all) of the abstract format %%% tuples. A typical use is to negate line numbers to prevent the %%% compiler from emitting warnings and errors. The second element can %%% (of course) be set to any value, but then these functions no %%% longer apply. To get all present attributes as a property list %%% get_attributes() should be used. set_line(L, F) -> erl_scan:set_attribute(line, L, F). get_attribute(L, Name) -> erl_scan:attributes_info(L, Name). get_attributes(L) -> erl_scan:attributes_info(L).