%% %% %CopyrightBegin% %% %% Copyright Ericsson AB 2001-2009. All Rights Reserved. %% %% The contents of this file are subject to the Erlang Public License, %% Version 1.1, (the "License"); you may not use this file except in %% compliance with the License. You should have received a copy of the %% Erlang Public License along with this software. If not, it can be %% retrieved online at http://www.erlang.org/. %% %% Software distributed under the License is distributed on an "AS IS" %% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See %% the License for the specific language governing rights and limitations %% under the License. %% %% %CopyrightEnd% %% %% ===================================================================== %% Ordered Sets implemented as General Balanced Trees %% %% Copyright (C) 1999-2001 Richard Carlsson %% %% An implementation of ordered sets using Prof. Arne Andersson's %% General Balanced Trees. This can be much more efficient than using %% ordered lists, for larger sets, but depends on the application. See %% notes below for details. %% --------------------------------------------------------------------- %% Notes: %% %% The complexity on set operations is bounded by either O(|S|) or O(|T| %% * log(|S|)), where S is the largest given set, depending on which is %% fastest for any particular function call. For operating on sets of %% almost equal size, this implementation is about 3 times slower than %% using ordered-list sets directly. For sets of very different sizes, %% however, this solution can be arbitrarily much faster; in practical %% cases, often between 10 and 100 times. This implementation is %% particularly suited for ackumulating elements a few at a time, %% building up a large set (more than 100-200 elements), and repeatedly %% testing for membership in the current set. %% %% As with normal tree structures, lookup (membership testing), %% insertion and deletion have logarithmic complexity. %% %% Operations: %% %% - empty(): returns empty set. %% %% Alias: new(), for compatibility with `sets'. %% %% - is_empty(S): returns 'true' if S is an empty set, and 'false' %% otherwise. %% %% - size(S): returns the number of nodes in the set as an integer. %% Returns 0 (zero) if the set is empty. %% %% - singleton(X): returns a set containing only the element X. %% %% - is_member(X, S): returns `true' if element X is a member of set S, %% and `false' otherwise. %% %% Alias: is_element(), for compatibility with `sets'. %% %% - insert(X, S): inserts element X into set S; returns the new set. %% *Assumes that the element is not present in S.* %% %% - add(X, S): adds element X to set S; returns the new set. If X is %% already an element in S, nothing is changed. %% %% Alias: add_element(), for compatibility with `sets'. %% %% - delete(X, S): removes element X from set S; returns new set. %% Assumes that the element exists in the set. %% %% - delete_any(X, S): removes key X from set S if the key is present %% in the set, otherwise does nothing; returns new set. %% %% Alias: del_element(), for compatibility with `sets'. %% %% - balance(S): rebalances the tree representation of S. Note that this %% is rarely necessary, but may be motivated when a large number of %% elements have been deleted from the tree without further %% insertions. Rebalancing could then be forced in order to minimise %% lookup times, since deletion only does not rebalance the tree. %% %% - union(S1, S2): returns a new set that contains each element that is %% in either S1 or S2 or both, and no other elements. %% %% - union(Ss): returns a new set that contains each element that is in %% at least one of the sets in the list Ss, and no other elements. %% %% - intersection(S1, S2): returns a new set that contains each element %% that is in both S1 and S2, and no other elements. %% %% - intersection(Ss): returns a new set that contains each element that %% is in all of the sets in the list Ss, and no other elements. %% %% - is_disjoint(S1, S2): returns `true' if none of the elements in S1 %% occurs in S2. %% %% - difference(S1, S2): returns a new set that contains each element in %% S1 that is not also in S2, and no other elements. %% %% Alias: subtract(), for compatibility with `sets'. %% %% - is_subset(S1, S2): returns `true' if each element in S1 is also a %% member of S2, and `false' otherwise. %% %% - to_list(S): returns an ordered list of all elements in set S. The %% list never contains duplicates. %% %% - from_list(List): creates a set containing all elements in List, %% where List may be unordered and contain duplicates. %% %% - from_ordset(L): turns an ordered-set list L into a set. The list %% must not contain duplicates. %% %% - smallest(S): returns the smallest element in set S. Assumes that %% the set S is nonempty. %% %% - largest(S): returns the largest element in set S. Assumes that the %% set S is nonempty. %% %% - take_smallest(S): returns {X, S1}, where X is the smallest element %% in set S, and S1 is the set S with element X deleted. Assumes that %% the set S is nonempty. %% %% - take_largest(S): returns {X, S1}, where X is the largest element in %% set S, and S1 is the set S with element X deleted. Assumes that the %% set S is nonempty. %% %% - iterator(S): returns an iterator that can be used for traversing %% the entries of set S; see `next'. The implementation of this is %% very efficient; traversing the whole set using `next' is only %% slightly slower than getting the list of all elements using %% `to_list' and traversing that. The main advantage of the iterator %% approach is that it does not require the complete list of all %% elements to be built in memory at one time. %% %% - next(T): returns {X, T1} where X is the smallest element referred %% to by the iterator T, and T1 is the new iterator to be used for %% traversing the remaining elements, or the atom `none' if no %% elements remain. %% %% - filter(P, S): Filters set S using predicate function P. Included %% for compatibility with `sets'. %% %% - fold(F, A, S): Folds function F over set S with A as the initial %% ackumulator. Included for compatibility with `sets'. %% %% - is_set(S): returns 'true' if S appears to be a set, and 'false' %% otherwise. Not recommended; included for compatibility with `sets'. -module(gb_sets). -export([empty/0, is_empty/1, size/1, singleton/1, is_member/2, insert/2, add/2, delete/2, delete_any/2, balance/1, union/2, union/1, intersection/2, intersection/1, is_disjoint/2, difference/2, is_subset/2, to_list/1, from_list/1, from_ordset/1, smallest/1, largest/1, take_smallest/1, take_largest/1, iterator/1, next/1, filter/2, fold/3, is_set/1]). %% `sets' compatibility aliases: -export([new/0, is_element/2, add_element/2, del_element/2, subtract/2]). %% GB-trees adapted from Sven-Olof Nystr�m's implementation for %% representation of sets. %% %% Data structures: %% - {Size, Tree}, where `Tree' is composed of nodes of the form: %% - {Key, Smaller, Bigger}, and the "empty tree" node: %% - nil. %% %% No attempt is made to balance trees after deletions. Since deletions %% don't increase the height of a tree, this should be OK. %% %% Original balance condition h(T) <= ceil(c * log(|T|)) has been %% changed to the similar (but not quite equivalent) condition 2 ^ h(T) %% <= |T| ^ c. This should also be OK. %% %% Behaviour is logarithmic (as it should be). %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Some macros. -define(p, 2). % It seems that p = 2 is optimal for sorted keys -define(pow(A, _), A * A). % correct with exponent as defined above. -define(div2(X), X bsr 1). -define(mul2(X), X bsl 1). %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Some types. -type gb_set_node() :: 'nil' | {term(), _, _}. %% A declaration equivalent to the following is currently hard-coded %% in erl_types.erl %% %% -opaque gb_set() :: {non_neg_integer(), gb_set_node()}. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -spec empty() -> gb_set(). empty() -> {0, nil}. -spec new() -> gb_set(). new() -> empty(). -spec is_empty(gb_set()) -> boolean(). is_empty({0, nil}) -> true; is_empty(_) -> false. -spec size(gb_set()) -> non_neg_integer(). size({Size, _}) -> Size. -spec singleton(term()) -> gb_set(). singleton(Key) -> {1, {Key, nil, nil}}. -spec is_element(term(), gb_set()) -> boolean(). is_element(Key, S) -> is_member(Key, S). -spec is_member(term(), gb_set()) -> boolean(). is_member(Key, {_, T}) -> is_member_1(Key, T). is_member_1(Key, {Key1, Smaller, _}) when Key < Key1 -> is_member_1(Key, Smaller); is_member_1(Key, {Key1, _, Bigger}) when Key > Key1 -> is_member_1(Key, Bigger); is_member_1(_, {_, _, _}) -> true; is_member_1(_, nil) -> false. -spec insert(term(), gb_set()) -> gb_set(). insert(Key, {S, T}) -> S1 = S + 1, {S1, insert_1(Key, T, ?pow(S1, ?p))}. insert_1(Key, {Key1, Smaller, Bigger}, S) when Key < Key1 -> case insert_1(Key, Smaller, ?div2(S)) of {T1, H1, S1} when is_integer(H1) -> T = {Key1, T1, Bigger}, {H2, S2} = count(Bigger), H = ?mul2(erlang:max(H1, H2)), SS = S1 + S2 + 1, P = ?pow(SS, ?p), if H > P -> balance(T, SS); true -> {T, H, SS} end; T1 -> {Key1, T1, Bigger} end; insert_1(Key, {Key1, Smaller, Bigger}, S) when Key > Key1 -> case insert_1(Key, Bigger, ?div2(S)) of {T1, H1, S1} when is_integer(H1) -> T = {Key1, Smaller, T1}, {H2, S2} = count(Smaller), H = ?mul2(erlang:max(H1, H2)), SS = S1 + S2 + 1, P = ?pow(SS, ?p), if H > P -> balance(T, SS); true -> {T, H, SS} end; T1 -> {Key1, Smaller, T1} end; insert_1(Key, nil, 0) -> {{Key, nil, nil}, 1, 1}; insert_1(Key, nil, _) -> {Key, nil, nil}; insert_1(Key, _, _) -> erlang:error({key_exists, Key}). count({_, nil, nil}) -> {1, 1}; count({_, Sm, Bi}) -> {H1, S1} = count(Sm), {H2, S2} = count(Bi), {?mul2(erlang:max(H1, H2)), S1 + S2 + 1}; count(nil) -> {1, 0}. -spec balance(gb_set()) -> gb_set(). balance({S, T}) -> {S, balance(T, S)}. balance(T, S) -> balance_list(to_list_1(T), S). balance_list(L, S) -> {T, _} = balance_list_1(L, S), T. balance_list_1(L, S) when S > 1 -> Sm = S - 1, S2 = Sm div 2, S1 = Sm - S2, {T1, [K | L1]} = balance_list_1(L, S1), {T2, L2} = balance_list_1(L1, S2), T = {K, T1, T2}, {T, L2}; balance_list_1([Key | L], 1) -> {{Key, nil, nil}, L}; balance_list_1(L, 0) -> {nil, L}. -spec add_element(term(), gb_set()) -> gb_set(). add_element(X, S) -> add(X, S). -spec add(term(), gb_set()) -> gb_set(). add(X, S) -> case is_member(X, S) of true -> S; % we don't have to do anything here false -> insert(X, S) end. -spec from_list([term()]) -> gb_set(). from_list(L) -> from_ordset(ordsets:from_list(L)). -spec from_ordset([term()]) -> gb_set(). from_ordset(L) -> S = length(L), {S, balance_list(L, S)}. -spec del_element(term(), gb_set()) -> gb_set(). del_element(Key, S) -> delete_any(Key, S). -spec delete_any(term(), gb_set()) -> gb_set(). delete_any(Key, S) -> case is_member(Key, S) of true -> delete(Key, S); false -> S end. -spec delete(term(), gb_set()) -> gb_set(). delete(Key, {S, T}) -> {S - 1, delete_1(Key, T)}. delete_1(Key, {Key1, Smaller, Larger}) when Key < Key1 -> Smaller1 = delete_1(Key, Smaller), {Key1, Smaller1, Larger}; delete_1(Key, {Key1, Smaller, Bigger}) when Key > Key1 -> Bigger1 = delete_1(Key, Bigger), {Key1, Smaller, Bigger1}; delete_1(_, {_, Smaller, Larger}) -> merge(Smaller, Larger). merge(Smaller, nil) -> Smaller; merge(nil, Larger) -> Larger; merge(Smaller, Larger) -> {Key, Larger1} = take_smallest1(Larger), {Key, Smaller, Larger1}. -spec take_smallest(gb_set()) -> {term(), gb_set()}. take_smallest({S, T}) -> {Key, Larger} = take_smallest1(T), {Key, {S - 1, Larger}}. take_smallest1({Key, nil, Larger}) -> {Key, Larger}; take_smallest1({Key, Smaller, Larger}) -> {Key1, Smaller1} = take_smallest1(Smaller), {Key1, {Key, Smaller1, Larger}}. -spec smallest(gb_set()) -> term(). smallest({_, T}) -> smallest_1(T). smallest_1({Key, nil, _Larger}) -> Key; smallest_1({_Key, Smaller, _Larger}) -> smallest_1(Smaller). -spec take_largest(gb_set()) -> {term(), gb_set()}. take_largest({S, T}) -> {Key, Smaller} = take_largest1(T), {Key, {S - 1, Smaller}}. take_largest1({Key, Smaller, nil}) -> {Key, Smaller}; take_largest1({Key, Smaller, Larger}) -> {Key1, Larger1} = take_largest1(Larger), {Key1, {Key, Smaller, Larger1}}. -spec largest(gb_set()) -> term(). largest({_, T}) -> largest_1(T). largest_1({Key, _Smaller, nil}) -> Key; largest_1({_Key, _Smaller, Larger}) -> largest_1(Larger). -spec to_list(gb_set()) -> [term()]. to_list({_, T}) -> to_list(T, []). to_list_1(T) -> to_list(T, []). to_list({Key, Small, Big}, L) -> to_list(Small, [Key | to_list(Big, L)]); to_list(nil, L) -> L. -spec iterator(gb_set()) -> [term()]. iterator({_, T}) -> iterator(T, []). %% The iterator structure is really just a list corresponding to the %% call stack of an in-order traversal. This is quite fast. iterator({_, nil, _} = T, As) -> [T | As]; iterator({_, L, _} = T, As) -> iterator(L, [T | As]); iterator(nil, As) -> As. -spec next([term()]) -> {term(), [term()]} | 'none'. next([{X, _, T} | As]) -> {X, iterator(T, As)}; next([]) -> none. %% Set operations: %% If |X| < |Y|, then we traverse the elements of X. The cost for %% testing a single random element for membership in a tree S is %% proportional to log(|S|); thus, if |Y| / |X| < c * log(|Y|), for some %% c, it is more efficient to scan the ordered sequence of elements of Y %% while traversing X (under the same ordering) in order to test whether %% elements of X are already in Y. Since the `math' module does not have %% a `log2'-function, we rewrite the condition to |X| < |Y| * c1 * %% ln(|X|), where c1 = c / ln 2. -define(c, 1.46). % 1 / ln 2; this appears to be best %% If the sets are not very different in size, i.e., if |Y| / |X| >= c * %% log(|Y|), then the fastest way to do union (and the other similar set %% operations) is to build the lists of elements, traverse these lists %% in parallel while building a reversed ackumulator list, and finally %% rebuild the tree directly from the ackumulator. Other methods of %% traversing the elements can be devised, but they all have higher %% overhead. -spec union(gb_set(), gb_set()) -> gb_set(). union({N1, T1}, {N2, T2}) when N2 < N1 -> union(to_list_1(T2), N2, T1, N1); union({N1, T1}, {N2, T2}) -> union(to_list_1(T1), N1, T2, N2). %% We avoid the expensive mathematical computations if there is little %% chance at saving at least the same amount of time by making the right %% choice of strategy. Recall that N1 < N2 here. union(L, N1, T2, N2) when N2 < 10 -> %% Break even is about 7 for N1 = 1 and 10 for N1 = 2 union_2(L, to_list_1(T2), N1 + N2); union(L, N1, T2, N2) -> X = N1 * round(?c * math:log(N2)), if N2 < X -> union_2(L, to_list_1(T2), N1 + N2); true -> union_1(L, mk_set(N2, T2)) end. -spec mk_set(non_neg_integer(), gb_set_node()) -> gb_set(). mk_set(N, T) -> {N, T}. %% If the length of the list is in proportion with the size of the %% target set, this version spends too much time doing lookups, compared %% to the below version. union_1([X | Xs], S) -> union_1(Xs, add(X, S)); union_1([], S) -> S. %% If the length of the first list is too small in comparison with the %% size of the target set, this version spends too much time scanning %% the element list of the target set for possible membership, compared %% with the above version. %% Some notes on sequential scanning of ordered lists %% %% 1) We want to put the equality case last, if we can assume that the %% probability for overlapping elements is relatively low on average. %% Doing this also allows us to completely skip the (arithmetic) %% equality test, since the term order is arithmetically total. %% %% 2) We always test for `smaller than' first, i.e., whether the head of %% the left list is smaller than the head of the right list, and if the %% `greater than' test should instead turn out to be true, we switch %% left and right arguments in the recursive call under the assumption %% that the same is likely to apply to the next element also, %% statistically reducing the number of failed tests and automatically %% adapting to cases of lists having very different lengths. This saves %% 10-40% of the traversation time compared to a "fixed" strategy, %% depending on the sizes and contents of the lists. %% %% 3) A tail recursive version using `lists:reverse/2' is about 5-10% %% faster than a plain recursive version using the stack, for lists of %% more than about 20 elements and small stack frames. For very short %% lists, however (length < 10), the stack version can be several times %% faster. As stack frames grow larger, the advantages of using %% `reverse' could get greater. union_2(Xs, Ys, S) -> union_2(Xs, Ys, [], S). % S is the sum of the sizes here union_2([X | Xs1], [Y | _] = Ys, As, S) when X < Y -> union_2(Xs1, Ys, [X | As], S); union_2([X | _] = Xs, [Y | Ys1], As, S) when X > Y -> union_2(Ys1, Xs, [Y | As], S); union_2([X | Xs1], [_ | Ys1], As, S) -> union_2(Xs1, Ys1, [X | As], S - 1); union_2([], Ys, As, S) -> {S, balance_revlist(push(Ys, As), S)}; union_2(Xs, [], As, S) -> {S, balance_revlist(push(Xs, As), S)}. push([X | Xs], As) -> push(Xs, [X | As]); push([], As) -> As. balance_revlist(L, S) -> {T, _} = balance_revlist_1(L, S), T. balance_revlist_1(L, S) when S > 1 -> Sm = S - 1, S2 = Sm div 2, S1 = Sm - S2, {T2, [K | L1]} = balance_revlist_1(L, S1), {T1, L2} = balance_revlist_1(L1, S2), T = {K, T1, T2}, {T, L2}; balance_revlist_1([Key | L], 1) -> {{Key, nil, nil}, L}; balance_revlist_1(L, 0) -> {nil, L}. -spec union([gb_set()]) -> gb_set(). union([S | Ss]) -> union_list(S, Ss); union([]) -> empty(). union_list(S, [S1 | Ss]) -> union_list(union(S, S1), Ss); union_list(S, []) -> S. %% The rest is modelled on the above. -spec intersection(gb_set(), gb_set()) -> gb_set(). intersection({N1, T1}, {N2, T2}) when N2 < N1 -> intersection(to_list_1(T2), N2, T1, N1); intersection({N1, T1}, {N2, T2}) -> intersection(to_list_1(T1), N1, T2, N2). intersection(L, _N1, T2, N2) when N2 < 10 -> intersection_2(L, to_list_1(T2)); intersection(L, N1, T2, N2) -> X = N1 * round(?c * math:log(N2)), if N2 < X -> intersection_2(L, to_list_1(T2)); true -> intersection_1(L, T2) end. %% We collect the intersecting elements in an accumulator list and count %% them at the same time so we can balance the list afterwards. intersection_1(Xs, T) -> intersection_1(Xs, T, [], 0). intersection_1([X | Xs], T, As, N) -> case is_member_1(X, T) of true -> intersection_1(Xs, T, [X | As], N + 1); false -> intersection_1(Xs, T, As, N) end; intersection_1([], _, As, N) -> {N, balance_revlist(As, N)}. intersection_2(Xs, Ys) -> intersection_2(Xs, Ys, [], 0). intersection_2([X | Xs1], [Y | _] = Ys, As, S) when X < Y -> intersection_2(Xs1, Ys, As, S); intersection_2([X | _] = Xs, [Y | Ys1], As, S) when X > Y -> intersection_2(Ys1, Xs, As, S); intersection_2([X | Xs1], [_ | Ys1], As, S) -> intersection_2(Xs1, Ys1, [X | As], S + 1); intersection_2([], _, As, S) -> {S, balance_revlist(As, S)}; intersection_2(_, [], As, S) -> {S, balance_revlist(As, S)}. -spec intersection([gb_set(),...]) -> gb_set(). intersection([S | Ss]) -> intersection_list(S, Ss). intersection_list(S, [S1 | Ss]) -> intersection_list(intersection(S, S1), Ss); intersection_list(S, []) -> S. -spec is_disjoint(gb_set(), gb_set()) -> boolean(). is_disjoint({N1, T1}, {N2, T2}) when N1 < N2 -> is_disjoint_1(T1, T2); is_disjoint({_, T1}, {_, T2}) -> is_disjoint_1(T2, T1). is_disjoint_1({K1, Smaller1, Bigger}, {K2, Smaller2, _}=Tree) when K1 < K2 -> not is_member_1(K1, Smaller2) andalso is_disjoint_1(Smaller1, Smaller2) andalso is_disjoint_1(Bigger, Tree); is_disjoint_1({K1, Smaller, Bigger1}, {K2, _, Bigger2}=Tree) when K1 > K2 -> not is_member_1(K1, Bigger2) andalso is_disjoint_1(Bigger1, Bigger2) andalso is_disjoint_1(Smaller, Tree); is_disjoint_1({_K1, _, _}, {_K2, _, _}) -> %K1 == K2 false; is_disjoint_1(nil, _) -> true; is_disjoint_1(_, nil) -> true. %% Note that difference is not symmetric. We don't use `delete' here, %% since the GB-trees implementation does not rebalance after deletion %% and so we could end up with very unbalanced trees indeed depending on %% the sets. Therefore, we always build a new tree, and thus we need to %% traverse the whole element list of the left operand. -spec subtract(gb_set(), gb_set()) -> gb_set(). subtract(S1, S2) -> difference(S1, S2). -spec difference(gb_set(), gb_set()) -> gb_set(). difference({N1, T1}, {N2, T2}) -> difference(to_list_1(T1), N1, T2, N2). difference(L, N1, T2, N2) when N2 < 10 -> difference_2(L, to_list_1(T2), N1); difference(L, N1, T2, N2) -> X = N1 * round(?c * math:log(N2)), if N2 < X -> difference_2(L, to_list_1(T2), N1); true -> difference_1(L, T2) end. difference_1(Xs, T) -> difference_1(Xs, T, [], 0). difference_1([X | Xs], T, As, N) -> case is_member_1(X, T) of true -> difference_1(Xs, T, As, N); false -> difference_1(Xs, T, [X | As], N + 1) end; difference_1([], _, As, N) -> {N, balance_revlist(As, N)}. difference_2(Xs, Ys, S) -> difference_2(Xs, Ys, [], S). % S is the size of the left set difference_2([X | Xs1], [Y | _] = Ys, As, S) when X < Y -> difference_2(Xs1, Ys, [X | As], S); difference_2([X | _] = Xs, [Y | Ys1], As, S) when X > Y -> difference_2(Xs, Ys1, As, S); difference_2([_X | Xs1], [_Y | Ys1], As, S) -> difference_2(Xs1, Ys1, As, S - 1); difference_2([], _Ys, As, S) -> {S, balance_revlist(As, S)}; difference_2(Xs, [], As, S) -> {S, balance_revlist(push(Xs, As), S)}. %% Subset testing is much the same thing as set difference, but %% without the construction of a new set. -spec is_subset(gb_set(), gb_set()) -> boolean(). is_subset({N1, T1}, {N2, T2}) -> is_subset(to_list_1(T1), N1, T2, N2). is_subset(L, _N1, T2, N2) when N2 < 10 -> is_subset_2(L, to_list_1(T2)); is_subset(L, N1, T2, N2) -> X = N1 * round(?c * math:log(N2)), if N2 < X -> is_subset_2(L, to_list_1(T2)); true -> is_subset_1(L, T2) end. is_subset_1([X | Xs], T) -> case is_member_1(X, T) of true -> is_subset_1(Xs, T); false -> false end; is_subset_1([], _) -> true. is_subset_2([X | _], [Y | _]) when X < Y -> false; is_subset_2([X | _] = Xs, [Y | Ys1]) when X > Y -> is_subset_2(Xs, Ys1); is_subset_2([_ | Xs1], [_ | Ys1]) -> is_subset_2(Xs1, Ys1); is_subset_2([], _) -> true; is_subset_2(_, []) -> false. %% For compatibility with `sets': -spec is_set(term()) -> boolean(). is_set({0, nil}) -> true; is_set({N, {_, _, _}}) when is_integer(N), N >= 0 -> true; is_set(_) -> false. -spec filter(fun((term()) -> boolean()), gb_set()) -> gb_set(). filter(F, S) -> from_ordset([X || X <- to_list(S), F(X)]). -spec fold(fun((term(), term()) -> term()), term(), gb_set()) -> term(). fold(F, A, {_, T}) when is_function(F, 2) -> fold_1(F, A, T). fold_1(F, Acc0, {Key, Small, Big}) -> Acc1 = fold_1(F, Acc0, Small), Acc = F(Key, Acc1), fold_1(F, Acc, Big); fold_1(_, Acc, _) -> Acc.