%% %% %CopyrightBegin% %% %% Copyright Ericsson AB 2001-2013. All Rights Reserved. %% %% Licensed under the Apache License, Version 2.0 (the "License"); %% you may not use this file except in compliance with the License. %% You may obtain a copy of the License at %% %% http://www.apache.org/licenses/LICENSE-2.0 %% %% Unless required by applicable law or agreed to in writing, software %% distributed under the License is distributed on an "AS IS" BASIS, %% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. %% See the License for the specific language governing permissions and %% limitations under the License. %% %% %CopyrightEnd% %% %% ===================================================================== %% Support functions for property lists %% %% Copyright (C) 2000-2003 Richard Carlsson %% --------------------------------------------------------------------- %% %% @doc Support functions for property lists. %% %%

Property lists are ordinary lists containing entries in the form %% of either tuples, whose first elements are keys used for lookup and %% insertion, or atoms, which work as shorthand for tuples {Atom, %% true}. (Other terms are allowed in the lists, but are ignored %% by this module.) If there is more than one entry in a list for a %% certain key, the first occurrence normally overrides any later %% (irrespective of the arity of the tuples).

%% %%

Property lists are useful for representing inherited properties, %% such as options passed to a function where a user may specify options %% overriding the default settings, object properties, annotations, %% etc.

%% %% % @type property() = atom() | tuple() -module(proplists). -export([property/1, property/2, unfold/1, compact/1, lookup/2, lookup_all/2, is_defined/2, get_value/2, get_value/3, get_all_values/2, append_values/2, get_bool/2, get_keys/1, delete/2, substitute_aliases/2, substitute_negations/2, expand/2, normalize/2, split/2]). %% --------------------------------------------------------------------- -export_type([property/0, proplist/0]). -type property() :: atom() | tuple(). -type proplist() :: [property()]. %% --------------------------------------------------------------------- %% @doc Creates a normal form (minimal) representation of a property. If %% PropertyIn is {Key, true} where %% Key is an atom, this returns Key, otherwise %% the whole term PropertyIn is returned. %% %% @see property/2 -spec property(PropertyIn) -> PropertyOut when PropertyIn :: property(), PropertyOut :: property(). property({Key, true}) when is_atom(Key) -> Key; property(Property) -> Property. %% @doc Creates a normal form (minimal) representation of a simple %% key/value property. Returns Key if Value is %% true and Key is an atom, otherwise a tuple %% {Key, Value} is returned. %% %% @see property/1 -spec property(Key, Value) -> Property when Key :: term(), Value :: term(), Property :: atom() | {term(), term()}. property(Key, true) when is_atom(Key) -> Key; property(Key, Value) -> {Key, Value}. %% --------------------------------------------------------------------- %% @doc Unfolds all occurences of atoms in ListIn to tuples %% {Atom, true}. %% %% @see compact/1 -spec unfold(ListIn) -> ListOut when ListIn :: [term()], ListOut :: [term()]. unfold([P | Ps]) -> if is_atom(P) -> [{P, true} | unfold(Ps)]; true -> [P | unfold(Ps)] end; unfold([]) -> []. %% @doc Minimizes the representation of all entries in the list. This is %% equivalent to [property(P) || P <- ListIn]. %% %% @see unfold/1 %% @see property/1 -spec compact(ListIn) -> ListOut when ListIn :: [property()], ListOut :: [property()]. compact(ListIn) -> [property(P) || P <- ListIn]. %% --------------------------------------------------------------------- %% @doc Returns the first entry associated with Key in %% List, if one exists, otherwise returns %% none. For an atom A in the list, the tuple %% {A, true} is the entry associated with A. %% %% @see lookup_all/2 %% @see get_value/2 %% @see get_bool/2 -spec lookup(Key, List) -> 'none' | tuple() when Key :: term(), List :: [term()]. lookup(Key, [P | Ps]) -> if is_atom(P), P =:= Key -> {Key, true}; tuple_size(P) >= 1, element(1, P) =:= Key -> %% Note that Key does not have to be an atom in this case. P; true -> lookup(Key, Ps) end; lookup(_Key, []) -> none. %% @doc Returns the list of all entries associated with Key %% in List. If no such entry exists, the result is the %% empty list. %% %% @see lookup/2 -spec lookup_all(Key, List) -> [tuple()] when Key :: term(), List :: [term()]. lookup_all(Key, [P | Ps]) -> if is_atom(P), P =:= Key -> [{Key, true} | lookup_all(Key, Ps)]; tuple_size(P) >= 1, element(1, P) =:= Key -> [P | lookup_all(Key, Ps)]; true -> lookup_all(Key, Ps) end; lookup_all(_Key, []) -> []. %% --------------------------------------------------------------------- %% @doc Returns true if List contains at least %% one entry associated with Key, otherwise %% false is returned. -spec is_defined(Key, List) -> boolean() when Key :: term(), List :: [term()]. is_defined(Key, [P | Ps]) -> if is_atom(P), P =:= Key -> true; tuple_size(P) >= 1, element(1, P) =:= Key -> true; true -> is_defined(Key, Ps) end; is_defined(_Key, []) -> false. %% --------------------------------------------------------------------- %% @equiv get_value(Key, List, undefined) -spec get_value(Key, List) -> term() when Key :: term(), List :: [term()]. get_value(Key, List) -> get_value(Key, List, undefined). %% @doc Returns the value of a simple key/value property in %% List. If lookup(Key, List) would yield %% {Key, Value}, this function returns the corresponding %% Value, otherwise Default is returned. %% %% @see lookup/2 %% @see get_value/2 %% @see get_all_values/2 %% @see get_bool/2 -spec get_value(Key, List, Default) -> term() when Key :: term(), List :: [term()], Default :: term(). get_value(Key, [P | Ps], Default) -> if is_atom(P), P =:= Key -> true; tuple_size(P) >= 1, element(1, P) =:= Key -> case P of {_, Value} -> Value; _ -> %% Dont continue the search! Default end; true -> get_value(Key, Ps, Default) end; get_value(_Key, [], Default) -> Default. %% @doc Similar to get_value/2, but returns the list of %% values for all entries {Key, Value} in %% List. If no such entry exists, the result is the empty %% list. %% %% @see get_value/2 -spec get_all_values(Key, List) -> [term()] when Key :: term(), List :: [term()]. get_all_values(Key, [P | Ps]) -> if is_atom(P), P =:= Key -> [true | get_all_values(Key, Ps)]; tuple_size(P) >= 1, element(1, P) =:= Key -> case P of {_, Value} -> [Value | get_all_values(Key, Ps)]; _ -> get_all_values(Key, Ps) end; true -> get_all_values(Key, Ps) end; get_all_values(_Key, []) -> []. %% @doc Similar to get_all_values/2, but each value is %% wrapped in a list unless it is already itself a list, and the %% resulting list of lists is concatenated. This is often useful for %% "incremental" options; e.g., append_values(a, [{a, [1,2]}, {b, %% 0}, {a, 3}, {c, -1}, {a, [4]}]) will return the list %% [1,2,3,4]. %% %% @see get_all_values/2 -spec append_values(Key, ListIn) -> ListOut when Key :: term(), ListIn :: [term()], ListOut :: [term()]. append_values(Key, [P | Ps]) -> if is_atom(P), P =:= Key -> [true | append_values(Key, Ps)]; tuple_size(P) >= 1, element(1, P) =:= Key -> case P of {_, Value} when is_list(Value) -> Value ++ append_values(Key, Ps); {_, Value} -> [Value | append_values(Key, Ps)]; _ -> append_values(Key, Ps) end; true -> append_values(Key, Ps) end; append_values(_Key, []) -> []. %% --------------------------------------------------------------------- %% @doc Returns the value of a boolean key/value option. If %% lookup(Key, List) would yield {Key, true}, %% this function returns true; otherwise false %% is returned. %% %% @see lookup/2 %% @see get_value/2 -spec get_bool(Key, List) -> boolean() when Key :: term(), List :: [term()]. get_bool(Key, [P | Ps]) -> if is_atom(P), P =:= Key -> true; tuple_size(P) >= 1, element(1, P) =:= Key -> case P of {_, true} -> true; _ -> %% Don't continue the search! false end; true -> get_bool(Key, Ps) end; get_bool(_Key, []) -> false. %% --------------------------------------------------------------------- %% @doc Returns an unordered list of the keys used in List, %% not containing duplicates. -spec get_keys(List) -> [term()] when List :: [term()]. get_keys(Ps) -> sets:to_list(get_keys(Ps, sets:new())). get_keys([P | Ps], Keys) -> if is_atom(P) -> get_keys(Ps, sets:add_element(P, Keys)); tuple_size(P) >= 1 -> get_keys(Ps, sets:add_element(element(1, P), Keys)); true -> get_keys(Ps, Keys) end; get_keys([], Keys) -> Keys. %% --------------------------------------------------------------------- %% @doc Deletes all entries associated with Key from %% List. -spec delete(Key, List) -> List when Key :: term(), List :: [term()]. delete(Key, [P | Ps]) -> if is_atom(P), P =:= Key -> delete(Key, Ps); tuple_size(P) >= 1, element(1, P) =:= Key -> delete(Key, Ps); true -> [P | delete(Key, Ps)] end; delete(_, []) -> []. %% --------------------------------------------------------------------- %% @doc Substitutes keys of properties. For each entry in %% ListIn, if it is associated with some key K1 %% such that {K1, K2} occurs in Aliases, the %% key of the entry is changed to Key2. If the same %% K1 occurs more than once in Aliases, only %% the first occurrence is used. %% %%

Example: substitute_aliases([{color, colour}], L) %% will replace all tuples {color, ...} in L %% with {colour, ...}, and all atoms color %% with colour.

%% %% @see substitute_negations/2 %% @see normalize/2 -spec substitute_aliases(Aliases, ListIn) -> ListOut when Aliases :: [{Key, Key}], Key :: term(), ListIn :: [term()], ListOut :: [term()]. substitute_aliases(As, Props) -> [substitute_aliases_1(As, P) || P <- Props]. substitute_aliases_1([{Key, Key1} | As], P) -> if is_atom(P), P =:= Key -> property(Key1, true); tuple_size(P) >= 1, element(1, P) =:= Key -> property(setelement(1, P, Key1)); true -> substitute_aliases_1(As, P) end; substitute_aliases_1([], P) -> P. %% --------------------------------------------------------------------- %% @doc Substitutes keys of boolean-valued properties and simultaneously %% negates their values. For each entry in ListIn, if it is %% associated with some key K1 such that {K1, %% K2} occurs in Negations, then if the entry was %% {K1, true} it will be replaced with {K2, %% false}, otherwise it will be replaced with {K2, %% true}, thus changing the name of the option and simultaneously %% negating the value given by get_bool(ListIn). If the same %% K1 occurs more than once in Negations, only %% the first occurrence is used. %% %%

Example: substitute_negations([{no_foo, foo}], L) %% will replace any atom no_foo or tuple {no_foo, %% true} in L with {foo, false}, and %% any other tuple {no_foo, ...} with {foo, %% true}.

%% %% @see get_bool/2 %% @see substitute_aliases/2 %% @see normalize/2 -spec substitute_negations(Negations, ListIn) -> ListOut when Negations :: [{Key, Key}], Key :: term(), ListIn :: [term()], ListOut :: [term()]. substitute_negations(As, Props) -> [substitute_negations_1(As, P) || P <- Props]. substitute_negations_1([{Key, Key1} | As], P) -> if is_atom(P), P =:= Key -> property(Key1, false); tuple_size(P) >= 1, element(1, P) =:= Key -> case P of {_, true} -> property(Key1, false); {_, false} -> property(Key1, true); _ -> %% The property is supposed to be a boolean, so any %% other tuple is interpreted as `false', as done in %% `get_bool'. property(Key1, true) end; true -> substitute_negations_1(As, P) end; substitute_negations_1([], P) -> P. %% --------------------------------------------------------------------- %% @doc Expands particular properties to corresponding sets of %% properties (or other terms). For each pair {Property, %% Expansion} in Expansions, if E is %% the first entry in ListIn with the same key as %% Property, and E and Property %% have equivalent normal forms, then E is replaced with %% the terms in Expansion, and any following entries with %% the same key are deleted from ListIn. %% %%

For example, the following expressions all return [fie, bar, %% baz, fum]: %%

%% However, no expansion is done in the following call: %% %% because {foo, false} shadows foo.

%% %%

Note that if the original property term is to be preserved in the %% result when expanded, it must be included in the expansion list. The %% inserted terms are not expanded recursively. If %% Expansions contains more than one property with the same %% key, only the first occurrance is used.

%% %% @see normalize/2 -spec expand(Expansions, ListIn) -> ListOut when Expansions :: [{Property :: property(), Expansion :: [term()]}], ListIn :: [term()], ListOut :: [term()]. expand(Es, Ps) when is_list(Ps) -> Es1 = [{property(P), V} || {P, V} <- Es], flatten(expand_0(key_uniq(Es1), Ps)). %% Here, all key properties are normalized and there are no multiple %% entries in the list of expansions for any specific key property. We %% insert the expansions one at a time - this is quadratic, but gives %% the desired behaviour in a simple way. expand_0([{P, L} | Es], Ps) -> expand_0(Es, expand_1(P, L, Ps)); expand_0([], Ps) -> Ps. expand_1(P, L, Ps) -> %% First, we must find out what key to look for. %% P has a minimal representation here. if is_atom(P) -> expand_2(P, P, L, Ps); tuple_size(P) >= 1 -> expand_2(element(1, P), P, L, Ps); true -> Ps % refuse to expand non-property end. expand_2(Key, P1, L, [P | Ps]) -> if is_atom(P), P =:= Key -> expand_3(Key, P1, P, L, Ps); tuple_size(P) >= 1, element(1, P) =:= Key -> expand_3(Key, P1, property(P), L, Ps); true -> %% This case handles non-property entries, and thus %% any already inserted expansions (lists), by simply %% ignoring them. [P | expand_2(Key, P1, L, Ps)] end; expand_2(_, _, _, []) -> []. expand_3(Key, P1, P, L, Ps) -> %% Here, we have found the first entry with a matching key. Both P %% and P1 have minimal representations here. The inserted list will %% be flattened afterwards. If the expansion is done, we drop the %% found entry and alao delete any later entries with the same key. if P1 =:= P -> [L | delete(Key, Ps)]; true -> %% The existing entry does not match - keep it. [P | Ps] end. key_uniq([{K, V} | Ps]) -> [{K, V} | key_uniq_1(K, Ps)]; key_uniq([]) -> []. key_uniq_1(K, [{K1, V} | Ps]) -> if K =:= K1 -> key_uniq_1(K, Ps); true -> [{K1, V} | key_uniq_1(K1, Ps)] end; key_uniq_1(_, []) -> []. %% This does top-level flattening only. flatten([E | Es]) when is_list(E) -> E ++ flatten(Es); flatten([E | Es]) -> [E | flatten(Es)]; flatten([]) -> []. %% --------------------------------------------------------------------- %% @doc Passes List through a sequence of %% substitution/expansion stages. For an aliases operation, %% the function substitute_aliases/2 is applied using the %% given list of aliases; for a negations operation, %% substitute_negations/2 is applied using the given %% negation list; for an expand operation, the function %% expand/2 is applied using the given list of expansions. %% The final result is automatically compacted (cf. %% compact/1). %% %%

Typically you want to substitute negations first, then aliases, %% then perform one or more expansions (sometimes you want to pre-expand %% particular entries before doing the main expansion). You might want %% to substitute negations and/or aliases repeatedly, to allow such %% forms in the right-hand side of aliases and expansion lists.

%% %% @see substitute_aliases/2 %% @see substitute_negations/2 %% @see expand/2 %% @see compact/1 -spec normalize(ListIn, Stages) -> ListOut when ListIn :: [term()], Stages :: [Operation], Operation :: {'aliases', Aliases} | {'negations', Negations} | {'expand', Expansions}, Aliases :: [{Key, Key}], Negations :: [{Key, Key}], Expansions :: [{Property :: property(), Expansion :: [term()]}], ListOut :: [term()]. normalize(L, [{aliases, As} | Xs]) -> normalize(substitute_aliases(As, L), Xs); normalize(L, [{expand, Es} | Xs]) -> normalize(expand(Es, L), Xs); normalize(L, [{negations, Ns} | Xs]) -> normalize(substitute_negations(Ns, L), Xs); normalize(L, []) -> compact(L). %% --------------------------------------------------------------------- %% @doc Partitions List into a list of sublists and a %% remainder. Lists contains one sublist for each key in %% Keys, in the corresponding order. The relative order of %% the elements in each sublist is preserved from the original %% List. Rest contains the elements in %% List that are not associated with any of the given keys, %% also with their original relative order preserved. %% %%

Example:

%% split([{c, 2}, {e, 1}, a, {c, 3, 4}, d, {b, 5}, b], [a, b, c])
%% returns
%% {[[a], [{b, 5}, b],[{c, 2}, {c, 3, 4}]], [{e, 1}, d]}
%%

-spec split(List, Keys) -> {Lists, Rest} when List :: [term()], Keys :: [term()], Lists :: [[term()]], Rest :: [term()]. split(List, Keys) -> {Store, Rest} = split(List, dict:from_list([{K, []} || K <- Keys]), []), {[lists:reverse(dict:fetch(K, Store)) || K <- Keys], lists:reverse(Rest)}. split([P | Ps], Store, Rest) -> if is_atom(P) -> case dict:is_key(P, Store) of true -> split(Ps, dict_prepend(P, P, Store), Rest); false -> split(Ps, Store, [P | Rest]) end; tuple_size(P) >= 1 -> %% Note that Key does not have to be an atom in this case. Key = element(1, P), case dict:is_key(Key, Store) of true -> split(Ps, dict_prepend(Key, P, Store), Rest); false -> split(Ps, Store, [P | Rest]) end; true -> split(Ps, Store, [P | Rest]) end; split([], Store, Rest) -> {Store, Rest}. dict_prepend(Key, Val, Dict) -> dict:store(Key, [Val | dict:fetch(Key, Dict)], Dict).