%% %% %CopyrightBegin% %% %% Copyright Ericsson AB 2000-2009. All Rights Reserved. %% %% The contents of this file are subject to the Erlang Public License, %% Version 1.1, (the "License"); you may not use this file except in %% compliance with the License. You should have received a copy of the %% Erlang Public License along with this software. If not, it can be %% retrieved online at http://www.erlang.org/. %% %% Software distributed under the License is distributed on an "AS IS" %% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See %% the License for the specific language governing rights and limitations %% under the License. %% %% %CopyrightEnd% %% %% We use the dynamic hashing techniques by Per-�ke Larsson as %% described in "The Design and Implementation of Dynamic Hashing for %% Sets and Tables in Icon" by Griswold and Townsend. Much of the %% terminology comes from that paper as well. %% The segments are all of the same fixed size and we just keep %% increasing the size of the top tuple as the table grows. At the %% end of the segments tuple we keep an empty segment which we use %% when we expand the segments. The segments are expanded by doubling %% every time n reaches maxn instead of increasing the tuple one %% element at a time. It is easier and does not seem detrimental to %% speed. The same applies when contracting the segments. %% %% Note that as the order of the keys is undefined we may freely %% reorder keys within in a bucket. -module(sets). %% Standard interface. -export([new/0,is_set/1,size/1,to_list/1,from_list/1]). -export([is_element/2,add_element/2,del_element/2]). -export([union/2,union/1,intersection/2,intersection/1]). -export([is_disjoint/2]). -export([subtract/2,is_subset/2]). -export([fold/3,filter/2]). %% Note: mk_seg/1 must be changed too if seg_size is changed. -define(seg_size, 16). -define(max_seg, 32). -define(expand_load, 5). -define(contract_load, 3). -define(exp_size, ?seg_size * ?expand_load). -define(con_size, ?seg_size * ?contract_load). %%------------------------------------------------------------------------------ -type seg() :: tuple(). -type segs() :: tuple(). %% Define a hash set. The default values are the standard ones. -record(set, {size=0 :: non_neg_integer(), % Number of elements n=?seg_size :: non_neg_integer(), % Number of active slots maxn=?seg_size :: pos_integer(), % Maximum slots bso=?seg_size div 2 :: non_neg_integer(), % Buddy slot offset exp_size=?exp_size :: non_neg_integer(), % Size to expand at con_size=?con_size :: non_neg_integer(), % Size to contract at empty :: seg(), % Empty segment segs :: segs() % Segments }). %% A declaration equivalent to the following one is hard-coded in erl_types. %% That declaration contains hard-coded information about the #set{} %% record and the types of its fields. So, please make sure that any %% changes to its structure are also propagated to erl_types.erl. %% %% -opaque set() :: #set{}. %%------------------------------------------------------------------------------ %% new() -> Set -spec new() -> set(). new() -> Empty = mk_seg(?seg_size), #set{empty = Empty, segs = {Empty}}. %% is_set(Set) -> boolean(). %% Return 'true' if Set is a set of elements, else 'false'. -spec is_set(term()) -> boolean(). is_set(#set{}) -> true; is_set(_) -> false. %% size(Set) -> int(). %% Return the number of elements in Set. -spec size(set()) -> non_neg_integer(). size(S) -> S#set.size. %% to_list(Set) -> [Elem]. %% Return the elements in Set as a list. -spec to_list(set()) -> [term()]. to_list(S) -> fold(fun (Elem, List) -> [Elem|List] end, [], S). %% from_list([Elem]) -> Set. %% Build a set from the elements in List. -spec from_list([term()]) -> set(). from_list(L) -> lists:foldl(fun (E, S) -> add_element(E, S) end, new(), L). %% is_element(Element, Set) -> boolean(). %% Return 'true' if Element is an element of Set, else 'false'. -spec is_element(term(), set()) -> boolean(). is_element(E, S) -> Slot = get_slot(S, E), Bkt = get_bucket(S, Slot), lists:member(E, Bkt). %% add_element(Element, Set) -> Set. %% Return Set with Element inserted in it. -spec add_element(term(), set()) -> set(). add_element(E, S0) -> Slot = get_slot(S0, E), {S1,Ic} = on_bucket(fun (B0) -> add_bkt_el(E, B0, B0) end, S0, Slot), maybe_expand(S1, Ic). -spec add_bkt_el(T, [T], [T]) -> {[T], 0 | 1}. add_bkt_el(E, [E|_], Bkt) -> {Bkt,0}; add_bkt_el(E, [_|B], Bkt) -> add_bkt_el(E, B, Bkt); add_bkt_el(E, [], Bkt) -> {[E|Bkt],1}. %% del_element(Element, Set) -> Set. %% Return Set but with Element removed. -spec del_element(term(), set()) -> set(). del_element(E, S0) -> Slot = get_slot(S0, E), {S1,Dc} = on_bucket(fun (B0) -> del_bkt_el(E, B0) end, S0, Slot), maybe_contract(S1, Dc). -spec del_bkt_el(T, [T]) -> {[T], 0 | 1}. del_bkt_el(E, [E|Bkt]) -> {Bkt,1}; del_bkt_el(E, [Other|Bkt0]) -> {Bkt1,Dc} = del_bkt_el(E, Bkt0), {[Other|Bkt1],Dc}; del_bkt_el(_, []) -> {[],0}. %% union(Set1, Set2) -> Set %% Return the union of Set1 and Set2. -spec union(set(), set()) -> set(). union(S1, S2) when S1#set.size < S2#set.size -> fold(fun (E, S) -> add_element(E, S) end, S2, S1); union(S1, S2) -> fold(fun (E, S) -> add_element(E, S) end, S1, S2). %% union([Set]) -> Set %% Return the union of the list of sets. -spec union([set()]) -> set(). union([S1,S2|Ss]) -> union1(union(S1, S2), Ss); union([S]) -> S; union([]) -> new(). -spec union1(set(), [set()]) -> set(). union1(S1, [S2|Ss]) -> union1(union(S1, S2), Ss); union1(S1, []) -> S1. %% intersection(Set1, Set2) -> Set. %% Return the intersection of Set1 and Set2. -spec intersection(set(), set()) -> set(). intersection(S1, S2) when S1#set.size < S2#set.size -> filter(fun (E) -> is_element(E, S2) end, S1); intersection(S1, S2) -> filter(fun (E) -> is_element(E, S1) end, S2). %% intersection([Set]) -> Set. %% Return the intersection of the list of sets. -spec intersection([set(),...]) -> set(). intersection([S1,S2|Ss]) -> intersection1(intersection(S1, S2), Ss); intersection([S]) -> S. -spec intersection1(set(), [set()]) -> set(). intersection1(S1, [S2|Ss]) -> intersection1(intersection(S1, S2), Ss); intersection1(S1, []) -> S1. %% is_disjoint(Set1, Set2) -> boolean(). %% Check whether Set1 and Set2 are disjoint. -spec is_disjoint(set(), set()) -> boolean(). is_disjoint(S1, S2) when S1#set.size < S2#set.size -> fold(fun (_, false) -> false; (E, true) -> not is_element(E, S2) end, true, S1); is_disjoint(S1, S2) -> fold(fun (_, false) -> false; (E, true) -> not is_element(E, S1) end, true, S2). %% subtract(Set1, Set2) -> Set. %% Return all and only the elements of Set1 which are not also in %% Set2. -spec subtract(set(), set()) -> set(). subtract(S1, S2) -> filter(fun (E) -> not is_element(E, S2) end, S1). %% is_subset(Set1, Set2) -> boolean(). %% Return 'true' when every element of Set1 is also a member of %% Set2, else 'false'. -spec is_subset(set(), set()) -> boolean(). is_subset(S1, S2) -> fold(fun (E, Sub) -> Sub andalso is_element(E, S2) end, true, S1). %% fold(Fun, Accumulator, Set) -> Accumulator. %% Fold function Fun over all elements in Set and return Accumulator. -spec fold(fun((_,_) -> _), T, set()) -> T. fold(F, Acc, D) -> fold_set(F, Acc, D). %% filter(Fun, Set) -> Set. %% Filter Set with Fun. -spec filter(fun((_) -> boolean()), set()) -> set(). filter(F, D) -> filter_set(F, D). %% get_slot(Hashdb, Key) -> Slot. %% Get the slot. First hash on the new range, if we hit a bucket %% which has not been split use the unsplit buddy bucket. -spec get_slot(set(), term()) -> non_neg_integer(). get_slot(T, Key) -> H = erlang:phash(Key, T#set.maxn), if H > T#set.n -> H - T#set.bso; true -> H end. %% get_bucket(Hashdb, Slot) -> Bucket. -spec get_bucket(set(), non_neg_integer()) -> term(). get_bucket(T, Slot) -> get_bucket_s(T#set.segs, Slot). %% on_bucket(Fun, Hashdb, Slot) -> {NewHashDb,Result}. %% Apply Fun to the bucket in Slot and replace the returned bucket. -spec on_bucket(fun((_) -> {[_], 0 | 1}), set(), non_neg_integer()) -> {set(), 0 | 1}. on_bucket(F, T, Slot) -> SegI = ((Slot-1) div ?seg_size) + 1, BktI = ((Slot-1) rem ?seg_size) + 1, Segs = T#set.segs, Seg = element(SegI, Segs), B0 = element(BktI, Seg), {B1, Res} = F(B0), %Op on the bucket. {T#set{segs = setelement(SegI, Segs, setelement(BktI, Seg, B1))},Res}. %% fold_set(Fun, Acc, Dictionary) -> Dictionary. %% filter_set(Fun, Dictionary) -> Dictionary. %% Work functions for fold and filter operations. These traverse the %% hash structure rebuilding as necessary. Note we could have %% implemented map and hash using fold but these should be faster. %% We hope! fold_set(F, Acc, D) when is_function(F, 2) -> Segs = D#set.segs, fold_segs(F, Acc, Segs, tuple_size(Segs)). fold_segs(F, Acc, Segs, I) when I >= 1 -> Seg = element(I, Segs), fold_segs(F, fold_seg(F, Acc, Seg, tuple_size(Seg)), Segs, I-1); fold_segs(_, Acc, _, _) -> Acc. fold_seg(F, Acc, Seg, I) when I >= 1 -> fold_seg(F, fold_bucket(F, Acc, element(I, Seg)), Seg, I-1); fold_seg(_, Acc, _, _) -> Acc. fold_bucket(F, Acc, [E|Bkt]) -> fold_bucket(F, F(E, Acc), Bkt); fold_bucket(_, Acc, []) -> Acc. filter_set(F, D) when is_function(F, 1) -> Segs0 = tuple_to_list(D#set.segs), {Segs1,Fc} = filter_seg_list(F, Segs0, [], 0), maybe_contract(D#set{segs = list_to_tuple(Segs1)}, Fc). filter_seg_list(F, [Seg|Segs], Fss, Fc0) -> Bkts0 = tuple_to_list(Seg), {Bkts1,Fc1} = filter_bkt_list(F, Bkts0, [], Fc0), filter_seg_list(F, Segs, [list_to_tuple(Bkts1)|Fss], Fc1); filter_seg_list(_, [], Fss, Fc) -> {lists:reverse(Fss, []),Fc}. filter_bkt_list(F, [Bkt0|Bkts], Fbs, Fc0) -> {Bkt1,Fc1} = filter_bucket(F, Bkt0, [], Fc0), filter_bkt_list(F, Bkts, [Bkt1|Fbs], Fc1); filter_bkt_list(_, [], Fbs, Fc) -> {lists:reverse(Fbs),Fc}. filter_bucket(F, [E|Bkt], Fb, Fc) -> case F(E) of true -> filter_bucket(F, Bkt, [E|Fb], Fc); false -> filter_bucket(F, Bkt, Fb, Fc+1) end; filter_bucket(_, [], Fb, Fc) -> {Fb,Fc}. %% get_bucket_s(Segments, Slot) -> Bucket. %% put_bucket_s(Segments, Slot, Bucket) -> NewSegments. get_bucket_s(Segs, Slot) -> SegI = ((Slot-1) div ?seg_size) + 1, BktI = ((Slot-1) rem ?seg_size) + 1, element(BktI, element(SegI, Segs)). put_bucket_s(Segs, Slot, Bkt) -> SegI = ((Slot-1) div ?seg_size) + 1, BktI = ((Slot-1) rem ?seg_size) + 1, Seg = setelement(BktI, element(SegI, Segs), Bkt), setelement(SegI, Segs, Seg). -spec maybe_expand(set(), 0 | 1) -> set(). maybe_expand(T0, Ic) when T0#set.size + Ic > T0#set.exp_size -> T = maybe_expand_segs(T0), %Do we need more segments. N = T#set.n + 1, %Next slot to expand into Segs0 = T#set.segs, Slot1 = N - T#set.bso, B = get_bucket_s(Segs0, Slot1), Slot2 = N, {B1,B2} = rehash(B, Slot1, Slot2, T#set.maxn), Segs1 = put_bucket_s(Segs0, Slot1, B1), Segs2 = put_bucket_s(Segs1, Slot2, B2), T#set{size = T#set.size + Ic, n = N, exp_size = N * ?expand_load, con_size = N * ?contract_load, segs = Segs2}; maybe_expand(T, Ic) -> T#set{size = T#set.size + Ic}. -spec maybe_expand_segs(set()) -> set(). maybe_expand_segs(T) when T#set.n =:= T#set.maxn -> T#set{maxn = 2 * T#set.maxn, bso = 2 * T#set.bso, segs = expand_segs(T#set.segs, T#set.empty)}; maybe_expand_segs(T) -> T. -spec maybe_contract(set(), non_neg_integer()) -> set(). maybe_contract(T, Dc) when T#set.size - Dc < T#set.con_size, T#set.n > ?seg_size -> N = T#set.n, Slot1 = N - T#set.bso, Segs0 = T#set.segs, B1 = get_bucket_s(Segs0, Slot1), Slot2 = N, B2 = get_bucket_s(Segs0, Slot2), Segs1 = put_bucket_s(Segs0, Slot1, B1 ++ B2), Segs2 = put_bucket_s(Segs1, Slot2, []), %Clear the upper bucket N1 = N - 1, maybe_contract_segs(T#set{size = T#set.size - Dc, n = N1, exp_size = N1 * ?expand_load, con_size = N1 * ?contract_load, segs = Segs2}); maybe_contract(T, Dc) -> T#set{size = T#set.size - Dc}. -spec maybe_contract_segs(set()) -> set(). maybe_contract_segs(T) when T#set.n =:= T#set.bso -> T#set{maxn = T#set.maxn div 2, bso = T#set.bso div 2, segs = contract_segs(T#set.segs)}; maybe_contract_segs(T) -> T. %% rehash(Bucket, Slot1, Slot2, MaxN) -> {Bucket1,Bucket2}. -spec rehash([T], integer(), pos_integer(), pos_integer()) -> {[T],[T]}. rehash([E|T], Slot1, Slot2, MaxN) -> {L1,L2} = rehash(T, Slot1, Slot2, MaxN), case erlang:phash(E, MaxN) of Slot1 -> {[E|L1],L2}; Slot2 -> {L1,[E|L2]} end; rehash([], _, _, _) -> {[],[]}. %% mk_seg(Size) -> Segment. -spec mk_seg(16) -> seg(). mk_seg(16) -> {[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[]}. %% expand_segs(Segs, EmptySeg) -> NewSegs. %% contract_segs(Segs) -> NewSegs. %% Expand/contract the segment tuple by doubling/halving the number %% of segments. We special case the powers of 2 upto 32, this should %% catch most case. N.B. the last element in the segments tuple is %% an extra element containing a default empty segment. -spec expand_segs(segs(), seg()) -> segs(). expand_segs({B1}, Empty) -> {B1,Empty}; expand_segs({B1,B2}, Empty) -> {B1,B2,Empty,Empty}; expand_segs({B1,B2,B3,B4}, Empty) -> {B1,B2,B3,B4,Empty,Empty,Empty,Empty}; expand_segs({B1,B2,B3,B4,B5,B6,B7,B8}, Empty) -> {B1,B2,B3,B4,B5,B6,B7,B8, Empty,Empty,Empty,Empty,Empty,Empty,Empty,Empty}; expand_segs({B1,B2,B3,B4,B5,B6,B7,B8,B9,B10,B11,B12,B13,B14,B15,B16}, Empty) -> {B1,B2,B3,B4,B5,B6,B7,B8,B9,B10,B11,B12,B13,B14,B15,B16, Empty,Empty,Empty,Empty,Empty,Empty,Empty,Empty, Empty,Empty,Empty,Empty,Empty,Empty,Empty,Empty}; expand_segs(Segs, Empty) -> list_to_tuple(tuple_to_list(Segs) ++ lists:duplicate(tuple_size(Segs), Empty)). -spec contract_segs(segs()) -> segs(). contract_segs({B1,_}) -> {B1}; contract_segs({B1,B2,_,_}) -> {B1,B2}; contract_segs({B1,B2,B3,B4,_,_,_,_}) -> {B1,B2,B3,B4}; contract_segs({B1,B2,B3,B4,B5,B6,B7,B8,_,_,_,_,_,_,_,_}) -> {B1,B2,B3,B4,B5,B6,B7,B8}; contract_segs({B1,B2,B3,B4,B5,B6,B7,B8,B9,B10,B11,B12,B13,B14,B15,B16, _,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_}) -> {B1,B2,B3,B4,B5,B6,B7,B8,B9,B10,B11,B12,B13,B14,B15,B16}; contract_segs(Segs) -> Ss = tuple_size(Segs) div 2, list_to_tuple(lists:sublist(tuple_to_list(Segs), 1, Ss)).