%% %% %CopyrightBegin% %% %% Copyright Ericsson AB 2001-2010. All Rights Reserved. %% %% The contents of this file are subject to the Erlang Public License, %% Version 1.1, (the "License"); you may not use this file except in %% compliance with the License. You should have received a copy of the %% Erlang Public License along with this software. If not, it can be %% retrieved online at http://www.erlang.org/. %% %% Software distributed under the License is distributed on an "AS IS" %% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See %% the License for the specific language governing rights and limitations %% under the License. %% %% %CopyrightEnd% %% -module(cover). %% %% This module implements the Erlang coverage tool. The module named %% cover_web implements a user interface for the coverage tool to run %% under webtool. %% %% ARCHITECTURE %% The coverage tool consists of one process on each node involved in %% coverage analysis. The process is registered as 'cover_server' %% (?SERVER). All cover_servers in the distributed system are linked %% together. The cover_server on the 'main' node is in charge, and it %% traps exits so it can detect nodedown or process crashes on the %% remote nodes. This process is implemented by the functions %% init_main/1 and main_process_loop/1. The cover_server on the remote %% nodes are implemented by the functions init_remote/2 and %% remote_process_loop/1. %% %% TABLES %% Each nodes has an ets table named 'cover_internal_data_table' %% (?COVER_TABLE). This table contains the coverage data and is %% continously updated when cover compiled code is executed. %% %% The main node owns a table named %% 'cover_collected_remote_data_table' (?COLLECTION_TABLE). This table %% contains data which is collected from remote nodes (either when a %% remote node is stopped with cover:stop/1 or when analysing. When %% analysing, data is even moved from the ?COVER_TABLE on the main %% node to the ?COLLECTION_TABLE. %% %% The main node also has a table named 'cover_binary_code_table' %% (?BINARY_TABLE). This table contains the binary code for each cover %% compiled module. This is necessary so that the code can be loaded %% on remote nodes that are started after the compilation. %% %% External exports -export([start/0, start/1, compile/1, compile/2, compile_module/1, compile_module/2, compile_directory/0, compile_directory/1, compile_directory/2, compile_beam/1, compile_beam_directory/0, compile_beam_directory/1, analyse/1, analyse/2, analyse/3, analyze/1, analyze/2, analyze/3, analyse_to_file/1, analyse_to_file/2, analyse_to_file/3, analyze_to_file/1, analyze_to_file/2, analyze_to_file/3, export/1, export/2, import/1, modules/0, imported/0, imported_modules/0, which_nodes/0, is_compiled/1, reset/1, reset/0, stop/0, stop/1]). -export([remote_start/1]). %-export([bump/5]). -export([transform/4]). % for test purposes -record(main_state, {compiled=[], % [{Module,File}] imported=[], % [{Module,File,ImportFile}] stopper, % undefined | pid() nodes=[]}). % [Node] -record(remote_state, {compiled=[], % [{Module,File}] main_node}). % atom() -record(bump, {module = '_', % atom() function = '_', % atom() arity = '_', % integer() clause = '_', % integer() line = '_' % integer() }). -define(BUMP_REC_NAME,bump). -record(vars, {module, % atom() Module name vsn, % atom() init_info=[], % [{M,F,A,C,L}] function, % atom() arity, % int() clause, % int() lines, % [int()] no_bump_lines, % [int()] depth, % int() is_guard=false % boolean }). -define(COVER_TABLE, 'cover_internal_data_table'). -define(BINARY_TABLE, 'cover_binary_code_table'). -define(COLLECTION_TABLE, 'cover_collected_remote_data_table'). -define(TAG, cover_compiled). -define(SERVER, cover_server). %% Line doesn't matter. -define(BLOCK(Expr), {block,0,[Expr]}). -define(BLOCK1(Expr), if element(1, Expr) =:= block -> Expr; true -> ?BLOCK(Expr) end). -include_lib("stdlib/include/ms_transform.hrl"). %%%---------------------------------------------------------------------- %%% External exports %%%---------------------------------------------------------------------- %% start() -> {ok,Pid} | {error,Reason} %% Pid = pid() %% Reason = {already_started,Pid} | term() start() -> case whereis(?SERVER) of undefined -> Starter = self(), Pid = spawn(fun() -> init_main(Starter) end), Ref = erlang:monitor(process,Pid), Return = receive {?SERVER,started} -> {ok,Pid}; {'DOWN', Ref, _Type, _Object, Info} -> {error,Info} end, erlang:demonitor(Ref), Return; Pid -> {error,{already_started,Pid}} end. %% start(Nodes) -> {ok,StartedNodes} %% Nodes = Node | [Node,...] %% Node = atom() start(Node) when is_atom(Node) -> start([Node]); start(Nodes) -> call({start_nodes,remove_myself(Nodes,[])}). %% compile(ModFile) -> %% compile(ModFile, Options) -> %% compile_module(ModFile) -> Result %% compile_module(ModFile, Options) -> Result %% ModFile = Module | File %% Module = atom() %% File = string() %% Options = [Option] %% Option = {i,Dir} | {d,Macro} | {d,Macro,Value} %% Result = {ok,Module} | {error,File} compile(ModFile) -> compile_module(ModFile, []). compile(ModFile, Options) -> compile_module(ModFile, Options). compile_module(ModFile) when is_atom(ModFile); is_list(ModFile) -> compile_module(ModFile, []). compile_module(Module, Options) when is_atom(Module), is_list(Options) -> compile_module(atom_to_list(Module), Options); compile_module(File, Options) when is_list(File), is_list(Options) -> WithExt = case filename:extension(File) of ".erl" -> File; _ -> File++".erl" end, AbsFile = filename:absname(WithExt), [R] = compile_modules([AbsFile], Options), R. %% compile_directory() -> %% compile_directory(Dir) -> %% compile_directory(Dir, Options) -> [Result] | {error,Reason} %% Dir = string() %% Options - see compile/1 %% Result - see compile/1 %% Reason = eacces | enoent compile_directory() -> case file:get_cwd() of {ok, Dir} -> compile_directory(Dir, []); Error -> Error end. compile_directory(Dir) when is_list(Dir) -> compile_directory(Dir, []). compile_directory(Dir, Options) when is_list(Dir), is_list(Options) -> case file:list_dir(Dir) of {ok, Files} -> %% Filter out all erl files (except cover.erl) ErlFileNames = lists:filter(fun("cover.erl") -> false; (File) -> case filename:extension(File) of ".erl" -> true; _ -> false end end, Files), %% Create a list of .erl file names (incl path) and call %% compile_modules/2 with the list of file names. ErlFiles = lists:map(fun(ErlFileName) -> filename:join(Dir, ErlFileName) end, ErlFileNames), compile_modules(ErlFiles, Options); Error -> Error end. compile_modules(Files,Options) -> Options2 = lists:filter(fun(Option) -> case Option of {i, Dir} when is_list(Dir) -> true; {d, _Macro} -> true; {d, _Macro, _Value} -> true; _ -> false end end, Options), compile_modules(Files,Options2,[]). compile_modules([File|Files], Options, Result) -> R = call({compile, File, Options}), compile_modules(Files,Options,[R|Result]); compile_modules([],_Opts,Result) -> reverse(Result). %% compile_beam(ModFile) -> Result | {error,Reason} %% ModFile - see compile/1 %% Result - see compile/1 %% Reason = non_existing | already_cover_compiled compile_beam(Module) when is_atom(Module) -> case code:which(Module) of non_existing -> {error,non_existing}; ?TAG -> compile_beam(Module,?TAG); File -> compile_beam(Module,File) end; compile_beam(File) when is_list(File) -> {WithExt,WithoutExt} = case filename:rootname(File,".beam") of File -> {File++".beam",File}; Rootname -> {File,Rootname} end, AbsFile = filename:absname(WithExt), Module = list_to_atom(filename:basename(WithoutExt)), compile_beam(Module,AbsFile). compile_beam(Module,File) -> call({compile_beam,Module,File}). %% compile_beam_directory(Dir) -> [Result] | {error,Reason} %% Dir - see compile_directory/1 %% Result - see compile/1 %% Reason = eacces | enoent compile_beam_directory() -> case file:get_cwd() of {ok, Dir} -> compile_beam_directory(Dir); Error -> Error end. compile_beam_directory(Dir) when is_list(Dir) -> case file:list_dir(Dir) of {ok, Files} -> %% Filter out all beam files (except cover.beam) BeamFileNames = lists:filter(fun("cover.beam") -> false; (File) -> case filename:extension(File) of ".beam" -> true; _ -> false end end, Files), %% Create a list of .beam file names (incl path) and call %% compile_beam/1 for each such file name BeamFiles = lists:map(fun(BeamFileName) -> filename:join(Dir, BeamFileName) end, BeamFileNames), compile_beams(BeamFiles); Error -> Error end. compile_beams(Files) -> compile_beams(Files,[]). compile_beams([File|Files],Result) -> R = compile_beam(File), compile_beams(Files,[R|Result]); compile_beams([],Result) -> reverse(Result). %% analyse(Module) -> %% analyse(Module, Analysis) -> %% analyse(Module, Level) -> %% analyse(Module, Analysis, Level) -> {ok,Answer} | {error,Error} %% Module = atom() %% Analysis = coverage | calls %% Level = line | clause | function | module %% Answer = {Module,Value} | [{Item,Value}] %% Item = Line | Clause | Function %% Line = {M,N} %% Clause = {M,F,A,C} %% Function = {M,F,A} %% M = F = atom() %% N = A = C = integer() %% Value = {Cov,NotCov} | Calls %% Cov = NotCov = Calls = integer() %% Error = {not_cover_compiled,Module} analyse(Module) -> analyse(Module, coverage). analyse(Module, Analysis) when Analysis=:=coverage; Analysis=:=calls -> analyse(Module, Analysis, function); analyse(Module, Level) when Level=:=line; Level=:=clause; Level=:=function; Level=:=module -> analyse(Module, coverage, Level). analyse(Module, Analysis, Level) when is_atom(Module), Analysis=:=coverage; Analysis=:=calls, Level=:=line; Level=:=clause; Level=:=function; Level=:=module -> call({{analyse, Analysis, Level}, Module}). analyze(Module) -> analyse(Module). analyze(Module, Analysis) -> analyse(Module, Analysis). analyze(Module, Analysis, Level) -> analyse(Module, Analysis, Level). %% analyse_to_file(Module) -> %% analyse_to_file(Module, Options) -> %% analyse_to_file(Module, OutFile) -> %% analyse_to_file(Module, OutFile, Options) -> {ok,OutFile} | {error,Error} %% Module = atom() %% OutFile = string() %% Options = [Option] %% Option = html %% Error = {not_cover_compiled,Module} | no_source_code_found | %% {file,File,Reason} %% File = string() %% Reason = term() analyse_to_file(Module) when is_atom(Module) -> analyse_to_file(Module, outfilename(Module,[]), []). analyse_to_file(Module, []) when is_atom(Module) -> analyse_to_file(Module, outfilename(Module,[]), []); analyse_to_file(Module, Options) when is_atom(Module), is_list(Options), is_atom(hd(Options)) -> analyse_to_file(Module, outfilename(Module,Options), Options); analyse_to_file(Module, OutFile) when is_atom(Module), is_list(OutFile) -> analyse_to_file(Module, OutFile, []). analyse_to_file(Module, OutFile, Options) when is_atom(Module), is_list(OutFile) -> call({{analyse_to_file, OutFile, Options}, Module}). analyze_to_file(Module) -> analyse_to_file(Module). analyze_to_file(Module, OptOrOut) -> analyse_to_file(Module, OptOrOut). analyze_to_file(Module, OutFile, Options) -> analyse_to_file(Module, OutFile, Options). outfilename(Module,Opts) -> case lists:member(html,Opts) of true -> atom_to_list(Module)++".COVER.html"; false -> atom_to_list(Module)++".COVER.out" end. %% export(File) %% export(File,Module) -> ok | {error,Reason} %% File = string(); file to write the exported data to %% Module = atom() export(File) -> export(File, '_'). export(File, Module) -> call({export,File,Module}). %% import(File) -> ok | {error, Reason} %% File = string(); file created with cover:export/1,2 import(File) -> call({import,File}). %% modules() -> [Module] %% Module = atom() modules() -> call(modules). %% imported_modules() -> [Module] %% Module = atom() imported_modules() -> call(imported_modules). %% imported() -> [ImportFile] %% ImportFile = string() imported() -> call(imported). %% which_nodes() -> [Node] %% Node = atom() which_nodes() -> call(which_nodes). %% is_compiled(Module) -> {file,File} | false %% Module = atom() %% File = string() is_compiled(Module) when is_atom(Module) -> call({is_compiled, Module}). %% reset(Module) -> ok | {error,Error} %% reset() -> ok %% Module = atom() %% Error = {not_cover_compiled,Module} reset(Module) when is_atom(Module) -> call({reset, Module}). reset() -> call(reset). %% stop() -> ok stop() -> call(stop). stop(Node) when is_atom(Node) -> stop([Node]); stop(Nodes) -> call({stop,remove_myself(Nodes,[])}). %% bump(Module, Function, Arity, Clause, Line) %% Module = Function = atom() %% Arity = Clause = Line = integer() %% This function is inserted into Cover compiled modules, once for each %% executable line. %bump(Module, Function, Arity, Clause, Line) -> % Key = #bump{module=Module, function=Function, arity=Arity, clause=Clause, % line=Line}, % ets:update_counter(?COVER_TABLE, Key, 1). call(Request) -> Ref = erlang:monitor(process,?SERVER), receive {'DOWN', Ref, _Type, _Object, noproc} -> erlang:demonitor(Ref), start(), call(Request) after 0 -> ?SERVER ! {self(),Request}, Return = receive {'DOWN', Ref, _Type, _Object, Info} -> exit(Info); {?SERVER,Reply} -> Reply end, erlang:demonitor(Ref), Return end. reply(From, Reply) -> From ! {?SERVER,Reply}. is_from(From) -> is_pid(From). remote_call(Node,Request) -> Ref = erlang:monitor(process,{?SERVER,Node}), receive {'DOWN', Ref, _Type, _Object, noproc} -> erlang:demonitor(Ref), {error,node_dead} after 0 -> {?SERVER,Node} ! Request, Return = receive {'DOWN', Ref, _Type, _Object, _Info} -> {error,node_dead}; {?SERVER,Reply} -> Reply end, erlang:demonitor(Ref), Return end. remote_reply(Proc,Reply) when is_pid(Proc) -> Proc ! {?SERVER,Reply}; remote_reply(MainNode,Reply) -> {?SERVER,MainNode} ! {?SERVER,Reply}. %%%---------------------------------------------------------------------- %%% cover_server on main node %%%---------------------------------------------------------------------- init_main(Starter) -> register(?SERVER,self()), ets:new(?COVER_TABLE, [set, public, named_table]), ets:new(?BINARY_TABLE, [set, named_table]), ets:new(?COLLECTION_TABLE, [set, public, named_table]), process_flag(trap_exit,true), Starter ! {?SERVER,started}, main_process_loop(#main_state{}). main_process_loop(State) -> receive {From, {start_nodes,Nodes}} -> ThisNode = node(), StartedNodes = lists:foldl( fun(Node,Acc) -> case rpc:call(Node,cover,remote_start,[ThisNode]) of {ok,RPid} -> link(RPid), [Node|Acc]; Error -> io:format("Could not start cover on ~w: ~p\n", [Node,Error]), Acc end end, [], Nodes), %% In case some of the compiled modules have been unloaded they %% should not be loaded on the new node. {_LoadedModules,Compiled} = get_compiled_still_loaded(State#main_state.nodes, State#main_state.compiled), remote_load_compiled(StartedNodes,Compiled), State1 = State#main_state{nodes = State#main_state.nodes ++ StartedNodes, compiled = Compiled}, reply(From, {ok,StartedNodes}), main_process_loop(State1); {From, {compile, File, Options}} -> case do_compile(File, Options) of {ok, Module} -> remote_load_compiled(State#main_state.nodes,[{Module,File}]), reply(From, {ok, Module}), Compiled = add_compiled(Module, File, State#main_state.compiled), Imported = remove_imported(Module,State#main_state.imported), main_process_loop(State#main_state{compiled = Compiled, imported = Imported}); error -> reply(From, {error, File}), main_process_loop(State) end; {From, {compile_beam, Module, BeamFile0}} -> Compiled0 = State#main_state.compiled, case get_beam_file(Module,BeamFile0,Compiled0) of {ok,BeamFile} -> {Reply,Compiled} = case do_compile_beam(Module,BeamFile) of {ok, Module} -> remote_load_compiled(State#main_state.nodes, [{Module,BeamFile}]), C = add_compiled(Module,BeamFile,Compiled0), {{ok,Module},C}; error -> {{error, BeamFile}, Compiled0}; {error,Reason} -> % no abstract code {{error, {Reason, BeamFile}}, Compiled0} end, reply(From,Reply), Imported = remove_imported(Module,State#main_state.imported), main_process_loop(State#main_state{compiled = Compiled, imported = Imported}); {error,no_beam} -> %% The module has first been compiled from .erl, and now %% someone tries to compile it from .beam reply(From, {error,{already_cover_compiled,no_beam_found,Module}}), main_process_loop(State) end; {From, {export,OutFile,Module}} -> spawn(fun() -> do_export(Module, OutFile, From, State) end), main_process_loop(State); {From, {import,File}} -> case file:open(File,[read,binary,raw]) of {ok,Fd} -> Imported = do_import_to_table(Fd,File, State#main_state.imported), reply(From, ok), main_process_loop(State#main_state{imported=Imported}); {error,Reason} -> reply(From, {error, {cant_open_file,File,Reason}}), main_process_loop(State) end; {From, modules} -> %% Get all compiled modules which are still loaded {LoadedModules,Compiled} = get_compiled_still_loaded(State#main_state.nodes, State#main_state.compiled), reply(From, LoadedModules), main_process_loop(State#main_state{compiled=Compiled}); {From, imported_modules} -> %% Get all modules with imported data ImportedModules = lists:map(fun({Mod,_File,_ImportFile}) -> Mod end, State#main_state.imported), reply(From, ImportedModules), main_process_loop(State); {From, imported} -> %% List all imported files reply(From, get_all_importfiles(State#main_state.imported,[])), main_process_loop(State); {From, which_nodes} -> %% List all imported files reply(From, State#main_state.nodes), main_process_loop(State); {From, reset} -> lists:foreach( fun({Module,_File}) -> do_reset_main_node(Module,State#main_state.nodes) end, State#main_state.compiled), reply(From, ok), main_process_loop(State#main_state{imported=[]}); {From, {stop,Nodes}} -> remote_collect('_',Nodes,true), reply(From, ok), State1 = State#main_state{nodes=State#main_state.nodes--Nodes}, main_process_loop(State1); {From, stop} -> lists:foreach( fun(Node) -> remote_call(Node,{remote,stop}) end, State#main_state.nodes), reload_originals(State#main_state.compiled), unregister(?SERVER), reply(From, ok); {From, {{analyse, Analysis, Level}, Module}} -> S = try Loaded = is_loaded(Module, State), spawn(fun() -> do_parallel_analysis( Module, Analysis, Level, Loaded, From, State) end), State catch throw:Reason -> reply(From,{error, {not_cover_compiled,Module}}), not_loaded(Module, Reason, State) end, main_process_loop(S); {From, {{analyse_to_file, OutFile, Opts},Module}} -> S = try Loaded = is_loaded(Module, State), spawn(fun() -> do_parallel_analysis_to_file( Module, OutFile, Opts, Loaded, From, State) end), State catch throw:Reason -> reply(From,{error, {not_cover_compiled,Module}}), not_loaded(Module, Reason, State) end, main_process_loop(S); {From, {is_compiled, Module}} -> S = try is_loaded(Module, State) of {loaded, File} -> reply(From,{file, File}), State; {imported,_File,_ImportFiles} -> reply(From,false), State catch throw:Reason -> reply(From,false), not_loaded(Module, Reason, State) end, main_process_loop(S); {From, {reset, Module}} -> S = try Loaded = is_loaded(Module,State), R = case Loaded of {loaded, _File} -> do_reset_main_node( Module, State#main_state.nodes); {imported, _File, _} -> do_reset_collection_table(Module) end, Imported = remove_imported(Module, State#main_state.imported), reply(From, R), State#main_state{imported=Imported} catch throw:Reason -> reply(From,{error, {not_cover_compiled,Module}}), not_loaded(Module, Reason, State) end, main_process_loop(S); {'EXIT',Pid,_Reason} -> %% Exit is trapped on the main node only, so this will only happen %% there. I assume that I'm only linked to cover_servers on remote %% nodes, so this must be one of them crashing. %% Remove node from list! State1 = State#main_state{nodes=State#main_state.nodes--[node(Pid)]}, main_process_loop(State1); get_status -> io:format("~p~n",[State]), main_process_loop(State) end. %%%---------------------------------------------------------------------- %%% cover_server on remote node %%%---------------------------------------------------------------------- init_remote(Starter,MainNode) -> register(?SERVER,self()), ets:new(?COVER_TABLE, [set, public, named_table]), Starter ! {self(),started}, remote_process_loop(#remote_state{main_node=MainNode}). remote_process_loop(State) -> receive {remote,load_compiled,Compiled} -> Compiled1 = load_compiled(Compiled,State#remote_state.compiled), remote_reply(State#remote_state.main_node, ok), remote_process_loop(State#remote_state{compiled=Compiled1}); {remote,unload,UnloadedModules} -> unload(UnloadedModules), Compiled = update_compiled(UnloadedModules, State#remote_state.compiled), remote_reply(State#remote_state.main_node, ok), remote_process_loop(State#remote_state{compiled=Compiled}); {remote,reset,Module} -> do_reset(Module), remote_reply(State#remote_state.main_node, ok), remote_process_loop(State); {remote,collect,Module,CollectorPid} -> self() ! {remote,collect,Module,CollectorPid, ?SERVER}; {remote,collect,Module,CollectorPid,From} -> % spawn(?MODULE, do_remote_collect, [Module, CollectorPid]), MS = case Module of '_' -> ets:fun2ms(fun({M,C}) when is_atom(M) -> C end); _ -> ets:fun2ms(fun({M,C}) when M=:=Module -> C end) end, AllClauses = lists:flatten(ets:select(?COVER_TABLE,MS)), %% Sending clause by clause in order to avoid large lists lists:foreach( fun({M,F,A,C,_L}) -> Pattern = {#bump{module=M, function=F, arity=A, clause=C}, '_'}, Bumps = ets:match_object(?COVER_TABLE, Pattern), %% Reset lists:foreach(fun({Bump,_N}) -> ets:insert(?COVER_TABLE, {Bump,0}) end, Bumps), CollectorPid ! {chunk,Bumps} end, AllClauses), CollectorPid ! done, remote_reply(From, ok), remote_process_loop(State); {remote,stop} -> reload_originals(State#remote_state.compiled), unregister(?SERVER), remote_reply(State#remote_state.main_node, ok); get_status -> io:format("~p~n",[State]), remote_process_loop(State); M -> io:format("WARNING: remote cover_server received\n~p\n",[M]), case M of {From,_} -> case is_from(From) of true -> reply(From,{error,not_main_node}); false -> ok end; _ -> ok end, remote_process_loop(State) end. reload_originals([{Module,_File}|Compiled]) -> do_reload_original(Module), reload_originals(Compiled); reload_originals([]) -> ok. do_reload_original(Module) -> case code:which(Module) of ?TAG -> code:purge(Module), % remove code marked as 'old' code:delete(Module), % mark cover compiled code as 'old' %% Note: original beam code must be loaded before the cover %% compiled code is purged, in order to for references to %% 'fun M:F/A' and %% 'fun F/A' funs to be correct (they %% refer to (M:)F/A in the *latest* version of the module) code:load_file(Module), % load original code code:purge(Module); % remove cover compiled code _ -> ignore end. load_compiled([{Module,File,Binary,InitialTable}|Compiled],Acc) -> %% Make sure the #bump{} records are available *before* the %% module is loaded. insert_initial_data(InitialTable), NewAcc = case code:load_binary(Module, ?TAG, Binary) of {module,Module} -> add_compiled(Module, File, Acc); _ -> do_clear(Module), Acc end, load_compiled(Compiled,NewAcc); load_compiled([],Acc) -> Acc. insert_initial_data([Item|Items]) -> ets:insert(?COVER_TABLE, Item), insert_initial_data(Items); insert_initial_data([]) -> ok. unload([Module|Modules]) -> do_clear(Module), do_reload_original(Module), unload(Modules); unload([]) -> ok. %%%---------------------------------------------------------------------- %%% Internal functions %%%---------------------------------------------------------------------- %%%--Handling of remote nodes-------------------------------------------- %% start the cover_server on a remote node remote_start(MainNode) -> case whereis(?SERVER) of undefined -> Starter = self(), Pid = spawn(fun() -> init_remote(Starter,MainNode) end), Ref = erlang:monitor(process,Pid), Return = receive {Pid,started} -> {ok,Pid}; {'DOWN', Ref, _Type, _Object, Info} -> {error,Info} end, erlang:demonitor(Ref), Return; Pid -> {error,{already_started,Pid}} end. %% Load a set of cover compiled modules on remote nodes, %% We do it ?MAX_MODS modules at a time so that we don't %% run out of memory on the cover_server node. -define(MAX_MODS, 10). remote_load_compiled(Nodes,Compiled) -> remote_load_compiled(Nodes, Compiled, [], 0). remote_load_compiled(_Nodes, [], [], _ModNum) -> ok; remote_load_compiled(Nodes, Compiled, Acc, ModNum) when Compiled == []; ModNum == ?MAX_MODS -> lists:foreach( fun(Node) -> remote_call(Node,{remote,load_compiled,Acc}) end, Nodes), remote_load_compiled(Nodes, Compiled, [], 0); remote_load_compiled(Nodes, [MF | Rest], Acc, ModNum) -> remote_load_compiled( Nodes, Rest, [get_data_for_remote_loading(MF) | Acc], ModNum + 1). %% Read all data needed for loading a cover compiled module on a remote node %% Binary is the beam code for the module and InitialTable is the initial %% data to insert in ?COVER_TABLE. get_data_for_remote_loading({Module,File}) -> [{Module,Binary}] = ets:lookup(?BINARY_TABLE,Module), %%! The InitialTable list will be long if the module is big - what to do?? InitialTable = ets:select(?COVER_TABLE,ms(Module)), {Module,File,Binary,InitialTable}. %% Create a match spec which returns the clause info {Module,InitInfo} and %% all #bump keys for the given module with 0 number of calls. ms(Module) -> ets:fun2ms(fun({Mod,InitInfo}) -> {Mod,InitInfo}; ({Key,_}) when is_record(Key,bump),Key#bump.module=:=Module -> {Key,0} end). %% Unload modules on remote nodes remote_unload(Nodes,UnloadedModules) -> lists:foreach( fun(Node) -> remote_call(Node,{remote,unload,UnloadedModules}) end, Nodes). %% Reset one or all modules on remote nodes remote_reset(Module,Nodes) -> lists:foreach( fun(Node) -> remote_call(Node,{remote,reset,Module}) end, Nodes). %% Collect data from remote nodes - used for analyse or stop(Node) remote_collect(Module,Nodes,Stop) -> Pids = lists:map( fun(Node) -> spawn(fun() -> do_collection(Node, Module, Stop) end) end, Nodes), RefsNPids = [{erlang:monitor(process, Pid),Pid} || Pid <- Pids], lists:foreach(fun({Ref,Pid}) -> receive {'DOWN', Ref, process, Pid, _} -> ok end end,RefsNPids). do_collection(Node, Module, Stop) -> CollectorPid = spawn(fun collector_proc/0), remote_call(Node,{remote,collect,Module,CollectorPid, self()}), if Stop -> remote_call(Node,{remote,stop}); true -> ok end. %% Process which receives chunks of data from remote nodes - either when %% analysing or when stopping cover on the remote nodes. collector_proc() -> receive {chunk,Chunk} -> insert_in_collection_table(Chunk), collector_proc(); done -> ok end. insert_in_collection_table([{Key,Val}|Chunk]) -> insert_in_collection_table(Key,Val), insert_in_collection_table(Chunk); insert_in_collection_table([]) -> ok. insert_in_collection_table(Key,Val) -> case ets:member(?COLLECTION_TABLE,Key) of true -> ets:update_counter(?COLLECTION_TABLE, Key,Val); false -> %% Make sure that there are no race conditions from ets:member case ets:insert_new(?COLLECTION_TABLE,{Key,Val}) of false -> insert_in_collection_table(Key,Val); _ -> ok end end. remove_myself([Node|Nodes],Acc) when Node=:=node() -> remove_myself(Nodes,Acc); remove_myself([Node|Nodes],Acc) -> remove_myself(Nodes,[Node|Acc]); remove_myself([],Acc) -> Acc. %%%--Handling of modules state data-------------------------------------- analyse_info(_Module,[]) -> ok; analyse_info(Module,Imported) -> imported_info("Analysis",Module,Imported). export_info(_Module,[]) -> ok; export_info(Module,Imported) -> imported_info("Export",Module,Imported). export_info([]) -> ok; export_info(Imported) -> AllImportFiles = get_all_importfiles(Imported,[]), io:format("Export includes data from imported files\n~p\n",[AllImportFiles]). get_all_importfiles([{_M,_F,ImportFiles}|Imported],Acc) -> NewAcc = do_get_all_importfiles(ImportFiles,Acc), get_all_importfiles(Imported,NewAcc); get_all_importfiles([],Acc) -> Acc. do_get_all_importfiles([ImportFile|ImportFiles],Acc) -> case lists:member(ImportFile,Acc) of true -> do_get_all_importfiles(ImportFiles,Acc); false -> do_get_all_importfiles(ImportFiles,[ImportFile|Acc]) end; do_get_all_importfiles([],Acc) -> Acc. imported_info(Text,Module,Imported) -> case lists:keysearch(Module,1,Imported) of {value,{Module,_File,ImportFiles}} -> io:format("~s includes data from imported files\n~p\n", [Text,ImportFiles]); false -> ok end. add_imported(Module, File, ImportFile, Imported) -> add_imported(Module, File, filename:absname(ImportFile), Imported, []). add_imported(M, F1, ImportFile, [{M,_F2,ImportFiles}|Imported], Acc) -> case lists:member(ImportFile,ImportFiles) of true -> io:fwrite("WARNING: Module ~w already imported from ~p~n" "Not importing again!~n",[M,ImportFile]), dont_import; false -> NewEntry = {M, F1, [ImportFile | ImportFiles]}, {ok, reverse([NewEntry | Acc]) ++ Imported} end; add_imported(M, F, ImportFile, [H|Imported], Acc) -> add_imported(M, F, ImportFile, Imported, [H|Acc]); add_imported(M, F, ImportFile, [], Acc) -> {ok, reverse([{M, F, [ImportFile]} | Acc])}. %% Removes a module from the list of imported modules and writes a warning %% This is done when a module is compiled. remove_imported(Module,Imported) -> case lists:keysearch(Module,1,Imported) of {value,{Module,_,ImportFiles}} -> io:fwrite("WARNING: Deleting data for module ~w imported from~n" "~p~n",[Module,ImportFiles]), lists:keydelete(Module,1,Imported); false -> Imported end. %% Adds information to the list of compiled modules, preserving time order %% and without adding duplicate entries. add_compiled(Module, File1, [{Module,_File2}|Compiled]) -> [{Module,File1}|Compiled]; add_compiled(Module, File, [H|Compiled]) -> [H|add_compiled(Module, File, Compiled)]; add_compiled(Module, File, []) -> [{Module,File}]. is_loaded(Module, State) -> case get_file(Module, State#main_state.compiled) of {ok, File} -> case code:which(Module) of ?TAG -> {loaded, File}; _ -> throw(unloaded) end; false -> case get_file(Module,State#main_state.imported) of {ok,File,ImportFiles} -> {imported, File, ImportFiles}; false -> throw(not_loaded) end end. get_file(Module, [{Module, File}|_T]) -> {ok, File}; get_file(Module, [{Module, File, ImportFiles}|_T]) -> {ok, File, ImportFiles}; get_file(Module, [_H|T]) -> get_file(Module, T); get_file(_Module, []) -> false. get_beam_file(Module,?TAG,Compiled) -> {value,{Module,File}} = lists:keysearch(Module,1,Compiled), case filename:extension(File) of ".erl" -> {error,no_beam}; ".beam" -> {ok,File} end; get_beam_file(_Module,BeamFile,_Compiled) -> {ok,BeamFile}. get_modules(Compiled) -> lists:map(fun({Module, _File}) -> Module end, Compiled). update_compiled([Module|Modules], [{Module,_File}|Compiled]) -> update_compiled(Modules, Compiled); update_compiled(Modules, [H|Compiled]) -> [H|update_compiled(Modules, Compiled)]; update_compiled(_Modules, []) -> []. %% Get all compiled modules which are still loaded, and possibly an %% updated version of the Compiled list. get_compiled_still_loaded(Nodes,Compiled0) -> %% Find all Cover compiled modules which are still loaded CompiledModules = get_modules(Compiled0), LoadedModules = lists:filter(fun(Module) -> case code:which(Module) of ?TAG -> true; _ -> false end end, CompiledModules), %% If some Cover compiled modules have been unloaded, update the database. UnloadedModules = CompiledModules--LoadedModules, Compiled = case UnloadedModules of [] -> Compiled0; _ -> lists:foreach(fun(Module) -> do_clear(Module) end, UnloadedModules), remote_unload(Nodes,UnloadedModules), update_compiled(UnloadedModules, Compiled0) end, {LoadedModules,Compiled}. %%%--Compilation--------------------------------------------------------- %% do_compile(File, Options) -> {ok,Module} | {error,Error} do_compile(File, UserOptions) -> Options = [debug_info,binary,report_errors,report_warnings] ++ UserOptions, case compile:file(File, Options) of {ok, Module, Binary} -> do_compile_beam(Module,Binary); error -> error end. %% Beam is a binary or a .beam file name do_compile_beam(Module,Beam) -> %% Clear database do_clear(Module), %% Extract the abstract format and insert calls to bump/6 at %% every executable line and, as a side effect, initiate %% the database case get_abstract_code(Module, Beam) of no_abstract_code=E -> {error,E}; encrypted_abstract_code=E -> {error,E}; {Vsn,Code} -> Forms0 = epp:interpret_file_attribute(Code), {Forms,Vars} = transform(Vsn, Forms0, Module, Beam), %% Compile and load the result %% It's necessary to check the result of loading since it may %% fail, for example if Module resides in a sticky directory {ok, Module, Binary} = compile:forms(Forms, []), case code:load_binary(Module, ?TAG, Binary) of {module, Module} -> %% Store info about all function clauses in database InitInfo = reverse(Vars#vars.init_info), ets:insert(?COVER_TABLE, {Module, InitInfo}), %% Store binary code so it can be loaded on remote nodes ets:insert(?BINARY_TABLE, {Module, Binary}), {ok, Module}; _Error -> do_clear(Module), error end end. get_abstract_code(Module, Beam) -> case beam_lib:chunks(Beam, [abstract_code]) of {ok, {Module, [{abstract_code, AbstractCode}]}} -> AbstractCode; {error,beam_lib,{key_missing_or_invalid,_,_}} -> encrypted_abstract_code; Error -> Error end. transform(Vsn, Code, Module, Beam) when Vsn=:=abstract_v1; Vsn=:=abstract_v2 -> Vars0 = #vars{module=Module, vsn=Vsn}, MainFile=find_main_filename(Code), {ok, MungedForms,Vars} = transform_2(Code,[],Vars0,MainFile,on), %% Add module and export information to the munged forms %% Information about module_info must be removed as this function %% is added at compilation {ok, {Module, [{exports,Exports1}]}} = beam_lib:chunks(Beam, [exports]), Exports2 = lists:filter(fun(Export) -> case Export of {module_info,_} -> false; _ -> true end end, Exports1), Forms = [{attribute,1,module,Module}, {attribute,2,export,Exports2}]++ MungedForms, {Forms,Vars}; transform(Vsn=raw_abstract_v1, Code, Module, _Beam) -> MainFile=find_main_filename(Code), Vars0 = #vars{module=Module, vsn=Vsn}, {ok,MungedForms,Vars} = transform_2(Code,[],Vars0,MainFile,on), {MungedForms,Vars}. %% Helpfunction which returns the first found file-attribute, which can %% be interpreted as the name of the main erlang source file. find_main_filename([{attribute,_,file,{MainFile,_}}|_]) -> MainFile; find_main_filename([_|Rest]) -> find_main_filename(Rest). transform_2([Form0|Forms],MungedForms,Vars,MainFile,Switch) -> Form = expand(Form0), case munge(Form,Vars,MainFile,Switch) of ignore -> transform_2(Forms,MungedForms,Vars,MainFile,Switch); {MungedForm,Vars2,NewSwitch} -> transform_2(Forms,[MungedForm|MungedForms],Vars2,MainFile,NewSwitch) end; transform_2([],MungedForms,Vars,_,_) -> {ok, reverse(MungedForms), Vars}. %% Expand short-circuit Boolean expressions. expand(Expr) -> AllVars = sets:from_list(ordsets:to_list(vars([], Expr))), {Expr1,_} = expand(Expr, AllVars, 1), Expr1. expand({clause,Line,Pattern,Guards,Body}, Vs, N) -> {ExpandedBody,N2} = expand(Body, Vs, N), {{clause,Line,Pattern,Guards,ExpandedBody},N2}; expand({op,_Line,'andalso',ExprL,ExprR}, Vs, N) -> {ExpandedExprL,N2} = expand(ExprL, Vs, N), {ExpandedExprR,N3} = expand(ExprR, Vs, N2), LineL = element(2, ExpandedExprL), {bool_switch(ExpandedExprL, ExpandedExprR, {atom,LineL,false}, Vs, N3), N3 + 1}; expand({op,_Line,'orelse',ExprL,ExprR}, Vs, N) -> {ExpandedExprL,N2} = expand(ExprL, Vs, N), {ExpandedExprR,N3} = expand(ExprR, Vs, N2), LineL = element(2, ExpandedExprL), {bool_switch(ExpandedExprL, {atom,LineL,true}, ExpandedExprR, Vs, N3), N3 + 1}; expand(T, Vs, N) when is_tuple(T) -> {TL,N2} = expand(tuple_to_list(T), Vs, N), {list_to_tuple(TL),N2}; expand([E|Es], Vs, N) -> {E2,N2} = expand(E, Vs, N), {Es2,N3} = expand(Es, Vs, N2), {[E2|Es2],N3}; expand(T, _Vs, N) -> {T,N}. vars(A, {var,_,V}) when V =/= '_' -> [V|A]; vars(A, T) when is_tuple(T) -> vars(A, tuple_to_list(T)); vars(A, [E|Es]) -> vars(vars(A, E), Es); vars(A, _T) -> A. bool_switch(E, T, F, AllVars, AuxVarN) -> Line = element(2, E), AuxVar = {var,Line,aux_var(AllVars, AuxVarN)}, {'case',Line,E, [{clause,Line,[{atom,Line,true}],[],[T]}, {clause,Line,[{atom,Line,false}],[],[F]}, {clause,Line,[AuxVar],[], [{call,Line, {remote,Line,{atom,Line,erlang},{atom,Line,error}}, [{tuple,Line,[{atom,Line,badarg},AuxVar]}]}]}]}. aux_var(Vars, N) -> Name = list_to_atom(lists:concat(['_', N])), case sets:is_element(Name, Vars) of true -> aux_var(Vars, N + 1); false -> Name end. %% This code traverses the abstract code, stored as the abstract_code %% chunk in the BEAM file, as described in absform(3) for Erlang/OTP R8B %% (Vsn=abstract_v2). %% The abstract format after preprocessing differs slightly from the abstract %% format given eg using epp:parse_form, this has been noted in comments. %% The switch is turned off when we encounter other files then the main file. %% This way we will be able to exclude functions defined in include files. munge({function,0,module_info,_Arity,_Clauses},_Vars,_MainFile,_Switch) -> ignore; % module_info will be added again when the forms are recompiled munge(Form={function,_,'MNEMOSYNE QUERY',_,_},Vars,_MainFile,Switch) -> {Form,Vars,Switch}; % No bumps in Mnemosyne code. munge(Form={function,_,'MNEMOSYNE RULE',_,_},Vars,_MainFile,Switch) -> {Form,Vars,Switch}; munge(Form={function,_,'MNEMOSYNE RECFUNDEF',_,_},Vars,_MainFile,Switch) -> {Form,Vars,Switch}; munge({function,Line,Function,Arity,Clauses},Vars,_MainFile,on) -> Vars2 = Vars#vars{function=Function, arity=Arity, clause=1, lines=[], no_bump_lines=[], depth=1}, {MungedClauses, Vars3} = munge_clauses(Clauses, Vars2), {{function,Line,Function,Arity,MungedClauses},Vars3,on}; munge(Form={attribute,_,file,{MainFile,_}},Vars,MainFile,_Switch) -> {Form,Vars,on}; % Switch on tranformation! munge(Form={attribute,_,file,{_InclFile,_}},Vars,_MainFile,_Switch) -> {Form,Vars,off}; % Switch off transformation! munge({attribute,_,compile,{parse_transform,_}},_Vars,_MainFile,_Switch) -> %% Don't want to run parse transforms more than once. ignore; munge(Form,Vars,_MainFile,Switch) -> % Other attributes and skipped includes. {Form,Vars,Switch}. munge_clauses(Clauses, Vars) -> munge_clauses(Clauses, Vars, Vars#vars.lines, []). munge_clauses([Clause|Clauses], Vars, Lines, MClauses) -> {clause,Line,Pattern,Guards,Body} = Clause, {MungedGuards, _Vars} = munge_exprs(Guards, Vars#vars{is_guard=true},[]), case Vars#vars.depth of 1 -> % function clause {MungedBody, Vars2} = munge_body(Body, Vars#vars{depth=2}), ClauseInfo = {Vars2#vars.module, Vars2#vars.function, Vars2#vars.arity, Vars2#vars.clause, length(Vars2#vars.lines)}, % Not used? InitInfo = [ClauseInfo | Vars2#vars.init_info], Vars3 = Vars2#vars{init_info=InitInfo, clause=(Vars2#vars.clause)+1, lines=[], no_bump_lines=[], depth=1}, NewBumps = Vars2#vars.lines, NewLines = NewBumps ++ Lines, munge_clauses(Clauses, Vars3, NewLines, [{clause,Line,Pattern,MungedGuards,MungedBody}| MClauses]); 2 -> % receive-, case-, if-, or try-clause Lines0 = Vars#vars.lines, {MungedBody, Vars2} = munge_body(Body, Vars), NewBumps = new_bumps(Vars2, Vars), NewLines = NewBumps ++ Lines, munge_clauses(Clauses, Vars2#vars{lines=Lines0}, NewLines, [{clause,Line,Pattern,MungedGuards,MungedBody}| MClauses]) end; munge_clauses([], Vars, Lines, MungedClauses) -> {reverse(MungedClauses), Vars#vars{lines = Lines}}. munge_body(Expr, Vars) -> munge_body(Expr, Vars, [], []). munge_body([Expr|Body], Vars, MungedBody, LastExprBumpLines) -> %% Here is the place to add a call to cover:bump/6! Line = element(2, Expr), Lines = Vars#vars.lines, case lists:member(Line,Lines) of true -> % already a bump at this line {MungedExpr, Vars2} = munge_expr(Expr, Vars), NewBumps = new_bumps(Vars2, Vars), NoBumpLines = [Line|Vars#vars.no_bump_lines], Vars3 = Vars2#vars{no_bump_lines = NoBumpLines}, MungedBody1 = maybe_fix_last_expr(MungedBody, Vars3, LastExprBumpLines), MungedExprs1 = [MungedExpr|MungedBody1], munge_body(Body, Vars3, MungedExprs1, NewBumps); false -> ets:insert(?COVER_TABLE, {#bump{module = Vars#vars.module, function = Vars#vars.function, arity = Vars#vars.arity, clause = Vars#vars.clause, line = Line}, 0}), Bump = bump_call(Vars, Line), % Bump = {call, 0, {remote, 0, {atom,0,cover}, {atom,0,bump}}, % [{atom, 0, Vars#vars.module}, % {atom, 0, Vars#vars.function}, % {integer, 0, Vars#vars.arity}, % {integer, 0, Vars#vars.clause}, % {integer, 0, Line}]}, Lines2 = [Line|Lines], {MungedExpr, Vars2} = munge_expr(Expr, Vars#vars{lines=Lines2}), NewBumps = new_bumps(Vars2, Vars), NoBumpLines = subtract(Vars2#vars.no_bump_lines, NewBumps), Vars3 = Vars2#vars{no_bump_lines = NoBumpLines}, MungedBody1 = maybe_fix_last_expr(MungedBody, Vars3, LastExprBumpLines), MungedExprs1 = [MungedExpr,Bump|MungedBody1], munge_body(Body, Vars3, MungedExprs1, NewBumps) end; munge_body([], Vars, MungedBody, _LastExprBumpLines) -> {reverse(MungedBody), Vars}. %%% Fix last expression (OTP-8188). A typical example: %%% %%% 3: case X of %%% 4: 1 -> a; % Bump line 5 after "a" has been evaluated! %%% 5: 2 -> b; 3 -> c end, F() %%% %%% Line 5 wasn't bumped just before "F()" since it was already bumped %%% before "b" (and before "c") (one mustn't bump a line more than %%% once in a single "evaluation"). The expression "case X ... end" is %%% now traversed again ("fixed"), this time adding bumps of line 5 %%% where appropriate, in this case when X matches 1. %%% %%% This doesn't solve all problems with expressions on the same line, %%% though. 'case' and 'try' are tricky. An example: %%% %%% 7: case case X of 1 -> foo(); % ? %%% 8: 2 -> bar() end of a -> 1; %%% 9: b -> 2 end. %%% %%% If X matches 1 and foo() evaluates to a then line 8 should be %%% bumped, but not if foo() evaluates to b. In other words, line 8 %%% cannot be bumped after "foo()" on line 7, so one has to bump line %%% 8 before "begin 1 end". But if X matches 2 and bar evaluates to a %%% then line 8 would be bumped twice (there has to be a bump before %%% "bar()". It is like one would have to have two copies of the inner %%% clauses, one for each outer clause. Maybe the munging should be %%% done on some of the compiler's "lower level" format. %%% %%% 'fun' is also problematic since a bump inside the body "shadows" %%% the rest of the line. maybe_fix_last_expr(MungedExprs, Vars, LastExprBumpLines) -> case last_expr_needs_fixing(Vars, LastExprBumpLines) of {yes, Line} -> fix_last_expr(MungedExprs, Line, Vars); no -> MungedExprs end. last_expr_needs_fixing(Vars, LastExprBumpLines) -> case common_elems(Vars#vars.no_bump_lines, LastExprBumpLines) of [Line] -> {yes, Line}; _ -> no end. fix_last_expr([MungedExpr|MungedExprs], Line, Vars) -> %% No need to update ?COVER_TABLE. Bump = bump_call(Vars, Line), [fix_expr(MungedExpr, Line, Bump)|MungedExprs]. fix_expr({'if',L,Clauses}, Line, Bump) -> FixedClauses = fix_clauses(Clauses, Line, Bump), {'if',L,FixedClauses}; fix_expr({'case',L,Expr,Clauses}, Line, Bump) -> FixedExpr = fix_expr(Expr, Line, Bump), FixedClauses = fix_clauses(Clauses, Line, Bump), {'case',L,FixedExpr,FixedClauses}; fix_expr({'receive',L,Clauses}, Line, Bump) -> FixedClauses = fix_clauses(Clauses, Line, Bump), {'receive',L,FixedClauses}; fix_expr({'receive',L,Clauses,Expr,Body}, Line, Bump) -> FixedClauses = fix_clauses(Clauses, Line, Bump), FixedExpr = fix_expr(Expr, Line, Bump), FixedBody = fix_expr(Body, Line, Bump), {'receive',L,FixedClauses,FixedExpr,FixedBody}; fix_expr({'try',L,Exprs,Clauses,CatchClauses,After}, Line, Bump) -> FixedExprs = fix_expr(Exprs, Line, Bump), FixedClauses = fix_clauses(Clauses, Line, Bump), FixedCatchClauses = fix_clauses(CatchClauses, Line, Bump), FixedAfter = fix_expr(After, Line, Bump), {'try',L,FixedExprs,FixedClauses,FixedCatchClauses,FixedAfter}; fix_expr([E | Es], Line, Bump) -> [fix_expr(E, Line, Bump) | fix_expr(Es, Line, Bump)]; fix_expr(T, Line, Bump) when is_tuple(T) -> list_to_tuple(fix_expr(tuple_to_list(T), Line, Bump)); fix_expr(E, _Line, _Bump) -> E. fix_clauses(Cs, Line, Bump) -> case bumps_line(lists:last(Cs), Line) of true -> fix_cls(Cs, Line, Bump); false -> Cs end. fix_cls([], _Line, _Bump) -> []; fix_cls([Cl | Cls], Line, Bump) -> case bumps_line(Cl, Line) of true -> [fix_expr(C, Line, Bump) || C <- [Cl | Cls]]; false -> {clause,CL,P,G,Body} = Cl, UniqueVarName = list_to_atom(lists:concat(["$cover$ ",Line])), V = {var,0,UniqueVarName}, [Last|Rest] = lists:reverse(Body), Body1 = lists:reverse(Rest, [{match,0,V,Last},Bump,V]), [{clause,CL,P,G,Body1} | fix_cls(Cls, Line, Bump)] end. bumps_line(E, L) -> try bumps_line1(E, L) catch true -> true end. bumps_line1({call,0,{remote,0,{atom,0,ets},{atom,0,update_counter}}, [{atom,0,?COVER_TABLE},{tuple,0,[_,_,_,_,_,{integer,0,Line}]},_]}, Line) -> throw(true); bumps_line1([E | Es], Line) -> bumps_line1(E, Line), bumps_line1(Es, Line); bumps_line1(T, Line) when is_tuple(T) -> bumps_line1(tuple_to_list(T), Line); bumps_line1(_, _) -> false. %%% End of fix of last expression. bump_call(Vars, Line) -> {call,0,{remote,0,{atom,0,ets},{atom,0,update_counter}}, [{atom,0,?COVER_TABLE}, {tuple,0,[{atom,0,?BUMP_REC_NAME}, {atom,0,Vars#vars.module}, {atom,0,Vars#vars.function}, {integer,0,Vars#vars.arity}, {integer,0,Vars#vars.clause}, {integer,0,Line}]}, {integer,0,1}]}. munge_expr({match,Line,ExprL,ExprR}, Vars) -> {MungedExprL, Vars2} = munge_expr(ExprL, Vars), {MungedExprR, Vars3} = munge_expr(ExprR, Vars2), {{match,Line,MungedExprL,MungedExprR}, Vars3}; munge_expr({tuple,Line,Exprs}, Vars) -> {MungedExprs, Vars2} = munge_exprs(Exprs, Vars, []), {{tuple,Line,MungedExprs}, Vars2}; munge_expr({record,Line,Expr,Exprs}, Vars) -> %% Only for Vsn=raw_abstract_v1 {MungedExprName, Vars2} = munge_expr(Expr, Vars), {MungedExprFields, Vars3} = munge_exprs(Exprs, Vars2, []), {{record,Line,MungedExprName,MungedExprFields}, Vars3}; munge_expr({record_field,Line,ExprL,ExprR}, Vars) -> %% Only for Vsn=raw_abstract_v1 {MungedExprL, Vars2} = munge_expr(ExprL, Vars), {MungedExprR, Vars3} = munge_expr(ExprR, Vars2), {{record_field,Line,MungedExprL,MungedExprR}, Vars3}; munge_expr({cons,Line,ExprH,ExprT}, Vars) -> {MungedExprH, Vars2} = munge_expr(ExprH, Vars), {MungedExprT, Vars3} = munge_expr(ExprT, Vars2), {{cons,Line,MungedExprH,MungedExprT}, Vars3}; munge_expr({op,Line,Op,ExprL,ExprR}, Vars) -> {MungedExprL, Vars2} = munge_expr(ExprL, Vars), {MungedExprR, Vars3} = munge_expr(ExprR, Vars2), {{op,Line,Op,MungedExprL,MungedExprR}, Vars3}; munge_expr({op,Line,Op,Expr}, Vars) -> {MungedExpr, Vars2} = munge_expr(Expr, Vars), {{op,Line,Op,MungedExpr}, Vars2}; munge_expr({'catch',Line,Expr}, Vars) -> {MungedExpr, Vars2} = munge_expr(Expr, Vars), {{'catch',Line,MungedExpr}, Vars2}; munge_expr({call,Line1,{remote,Line2,ExprM,ExprF},Exprs}, Vars) when Vars#vars.is_guard=:=false-> {MungedExprM, Vars2} = munge_expr(ExprM, Vars), {MungedExprF, Vars3} = munge_expr(ExprF, Vars2), {MungedExprs, Vars4} = munge_exprs(Exprs, Vars3, []), {{call,Line1,{remote,Line2,MungedExprM,MungedExprF},MungedExprs}, Vars4}; munge_expr({call,Line1,{remote,_Line2,_ExprM,ExprF},Exprs}, Vars) when Vars#vars.is_guard=:=true -> %% Difference in abstract format after preprocessing: BIF calls in guards %% are translated to {remote,...} (which is not allowed as source form) %% NOT NECESSARY FOR Vsn=raw_abstract_v1 munge_expr({call,Line1,ExprF,Exprs}, Vars); munge_expr({call,Line,Expr,Exprs}, Vars) -> {MungedExpr, Vars2} = munge_expr(Expr, Vars), {MungedExprs, Vars3} = munge_exprs(Exprs, Vars2, []), {{call,Line,MungedExpr,MungedExprs}, Vars3}; munge_expr({lc,Line,Expr,Qs}, Vars) -> {MungedExpr, Vars2} = munge_expr(?BLOCK1(Expr), Vars), {MungedQs, Vars3} = munge_qualifiers(Qs, Vars2), {{lc,Line,MungedExpr,MungedQs}, Vars3}; munge_expr({bc,Line,Expr,Qs}, Vars) -> {bin,BLine,[{bin_element,EL,Val,Sz,TSL}|Es]} = Expr, Expr2 = {bin,BLine,[{bin_element,EL,?BLOCK1(Val),Sz,TSL}|Es]}, {MungedExpr,Vars2} = munge_expr(Expr2, Vars), {MungedQs, Vars3} = munge_qualifiers(Qs, Vars2), {{bc,Line,MungedExpr,MungedQs}, Vars3}; munge_expr({block,Line,Body}, Vars) -> {MungedBody, Vars2} = munge_body(Body, Vars), {{block,Line,MungedBody}, Vars2}; munge_expr({'if',Line,Clauses}, Vars) -> {MungedClauses,Vars2} = munge_clauses(Clauses, Vars), {{'if',Line,MungedClauses}, Vars2}; munge_expr({'case',Line,Expr,Clauses}, Vars) -> {MungedExpr,Vars2} = munge_expr(Expr, Vars), {MungedClauses,Vars3} = munge_clauses(Clauses, Vars2), {{'case',Line,MungedExpr,MungedClauses}, Vars3}; munge_expr({'receive',Line,Clauses}, Vars) -> {MungedClauses,Vars2} = munge_clauses(Clauses, Vars), {{'receive',Line,MungedClauses}, Vars2}; munge_expr({'receive',Line,Clauses,Expr,Body}, Vars) -> {MungedExpr, Vars1} = munge_expr(Expr, Vars), {MungedClauses,Vars2} = munge_clauses(Clauses, Vars1), {MungedBody,Vars3} = munge_body(Body, Vars2#vars{lines = Vars1#vars.lines}), Vars4 = Vars3#vars{lines = Vars2#vars.lines ++ new_bumps(Vars3, Vars2)}, {{'receive',Line,MungedClauses,MungedExpr,MungedBody}, Vars4}; munge_expr({'try',Line,Body,Clauses,CatchClauses,After}, Vars) -> {MungedBody, Vars1} = munge_body(Body, Vars), {MungedClauses, Vars2} = munge_clauses(Clauses, Vars1), {MungedCatchClauses, Vars3} = munge_clauses(CatchClauses, Vars2), {MungedAfter, Vars4} = munge_body(After, Vars3), {{'try',Line,MungedBody,MungedClauses,MungedCatchClauses,MungedAfter}, Vars4}; %% Difference in abstract format after preprocessing: Funs get an extra %% element Extra. %% NOT NECESSARY FOR Vsn=raw_abstract_v1 munge_expr({'fun',Line,{function,Name,Arity},_Extra}, Vars) -> {{'fun',Line,{function,Name,Arity}}, Vars}; munge_expr({'fun',Line,{clauses,Clauses},_Extra}, Vars) -> {MungedClauses,Vars2}=munge_clauses(Clauses, Vars), {{'fun',Line,{clauses,MungedClauses}}, Vars2}; munge_expr({'fun',Line,{clauses,Clauses}}, Vars) -> %% Only for Vsn=raw_abstract_v1 {MungedClauses,Vars2}=munge_clauses(Clauses, Vars), {{'fun',Line,{clauses,MungedClauses}}, Vars2}; munge_expr({bin,Line,BinElements}, Vars) -> {MungedBinElements,Vars2} = munge_exprs(BinElements, Vars, []), {{bin,Line,MungedBinElements}, Vars2}; munge_expr({bin_element,Line,Value,Size,TypeSpecifierList}, Vars) -> {MungedValue,Vars2} = munge_expr(Value, Vars), {MungedSize,Vars3} = munge_expr(Size, Vars2), {{bin_element,Line,MungedValue,MungedSize,TypeSpecifierList},Vars3}; munge_expr(Form, Vars) -> % var|char|integer|float|string|atom|nil|eof|default {Form, Vars}. munge_exprs([Expr|Exprs], Vars, MungedExprs) when Vars#vars.is_guard=:=true, is_list(Expr) -> {MungedExpr, _Vars} = munge_exprs(Expr, Vars, []), munge_exprs(Exprs, Vars, [MungedExpr|MungedExprs]); munge_exprs([Expr|Exprs], Vars, MungedExprs) -> {MungedExpr, Vars2} = munge_expr(Expr, Vars), munge_exprs(Exprs, Vars2, [MungedExpr|MungedExprs]); munge_exprs([], Vars, MungedExprs) -> {reverse(MungedExprs), Vars}. %% Every qualifier is decorated with a counter. munge_qualifiers(Qualifiers, Vars) -> munge_qs(Qualifiers, Vars, []). munge_qs([{generate,Line,Pattern,Expr}|Qs], Vars, MQs) -> L = element(2, Expr), {MungedExpr, Vars2} = munge_expr(Expr, Vars), munge_qs1(Qs, L, {generate,Line,Pattern,MungedExpr}, Vars, Vars2, MQs); munge_qs([{b_generate,Line,Pattern,Expr}|Qs], Vars, MQs) -> L = element(2, Expr), {MExpr, Vars2} = munge_expr(Expr, Vars), munge_qs1(Qs, L, {b_generate,Line,Pattern,MExpr}, Vars, Vars2, MQs); munge_qs([Expr|Qs], Vars, MQs) -> L = element(2, Expr), {MungedExpr, Vars2} = munge_expr(Expr, Vars), munge_qs1(Qs, L, MungedExpr, Vars, Vars2, MQs); munge_qs([], Vars, MQs) -> {reverse(MQs), Vars}. munge_qs1(Qs, Line, NQ, Vars, Vars2, MQs) -> case new_bumps(Vars2, Vars) of [_] -> munge_qs(Qs, Vars2, [NQ | MQs]); _ -> {MungedTrue, Vars3} = munge_expr(?BLOCK({atom,Line,true}), Vars2), munge_qs(Qs, Vars3, [NQ, MungedTrue | MQs]) end. new_bumps(#vars{lines = New}, #vars{lines = Old}) -> subtract(New, Old). subtract(L1, L2) -> [E || E <- L1, not lists:member(E, L2)]. common_elems(L1, L2) -> [E || E <- L1, lists:member(E, L2)]. %%%--Analysis------------------------------------------------------------ %% Collect data for all modules collect(Nodes) -> %% local node MS = ets:fun2ms(fun({M,C}) when is_atom(M) -> {M,C} end), AllClauses = ets:select(?COVER_TABLE,MS), move_modules(AllClauses), %% remote nodes remote_collect('_',Nodes,false). %% Collect data for one module collect(Module,Clauses,Nodes) -> %% local node move_modules([{Module,Clauses}]), %% remote nodes remote_collect(Module,Nodes,false). %% When analysing, the data from the local ?COVER_TABLE is moved to the %% ?COLLECTION_TABLE. Resetting data in ?COVER_TABLE move_modules([{Module,Clauses}|AllClauses]) -> ets:insert(?COLLECTION_TABLE,{Module,Clauses}), move_clauses(Clauses), move_modules(AllClauses); move_modules([]) -> ok. move_clauses([{M,F,A,C,_L}|Clauses]) -> Pattern = {#bump{module=M, function=F, arity=A, clause=C}, '_'}, Bumps = ets:match_object(?COVER_TABLE,Pattern), lists:foreach(fun({Key,Val}) -> ets:insert(?COVER_TABLE, {Key,0}), insert_in_collection_table(Key,Val) end, Bumps), move_clauses(Clauses); move_clauses([]) -> ok. %% Given a .beam file, find the .erl file. Look first in same directory as %% the .beam file, then in /../src find_source(File0) -> case filename:rootname(File0,".beam") of File0 -> File0; File -> InSameDir = File++".erl", case filelib:is_file(InSameDir) of true -> InSameDir; false -> Dir = filename:dirname(File), Mod = filename:basename(File), InDotDotSrc = filename:join([Dir,"..","src",Mod++".erl"]), case filelib:is_file(InDotDotSrc) of true -> InDotDotSrc; false -> {beam,File0} end end end. do_parallel_analysis(Module, Analysis, Level, Loaded, From, State) -> analyse_info(Module,State#main_state.imported), C = case Loaded of {loaded, _File} -> [{Module,Clauses}] = ets:lookup(?COVER_TABLE,Module), collect(Module,Clauses,State#main_state.nodes), Clauses; _ -> [{Module,Clauses}] = ets:lookup(?COLLECTION_TABLE,Module), Clauses end, R = do_analyse(Module, Analysis, Level, C), reply(From, R). %% do_analyse(Module, Analysis, Level, Clauses)-> {ok,Answer} | {error,Error} %% Clauses = [{Module,Function,Arity,Clause,Lines}] do_analyse(Module, Analysis, line, _Clauses) -> Pattern = {#bump{module=Module},'_'}, Bumps = ets:match_object(?COLLECTION_TABLE, Pattern), Fun = case Analysis of coverage -> fun({#bump{line=L}, 0}) -> {{Module,L}, {0,1}}; ({#bump{line=L}, _N}) -> {{Module,L}, {1,0}} end; calls -> fun({#bump{line=L}, N}) -> {{Module,L}, N} end end, Answer = lists:keysort(1, lists:map(Fun, Bumps)), {ok, Answer}; do_analyse(_Module, Analysis, clause, Clauses) -> Fun = case Analysis of coverage -> fun({M,F,A,C,Ls}) -> Pattern = {#bump{module=M,function=F,arity=A, clause=C},0}, Bumps = ets:match_object(?COLLECTION_TABLE, Pattern), NotCov = length(Bumps), {{M,F,A,C}, {Ls-NotCov, NotCov}} end; calls -> fun({M,F,A,C,_Ls}) -> Pattern = {#bump{module=M,function=F,arity=A, clause=C},'_'}, Bumps = ets:match_object(?COLLECTION_TABLE, Pattern), {_Bump, Calls} = hd(lists:keysort(1, Bumps)), {{M,F,A,C}, Calls} end end, Answer = lists:map(Fun, Clauses), {ok, Answer}; do_analyse(Module, Analysis, function, Clauses) -> {ok, ClauseResult} = do_analyse(Module, Analysis, clause, Clauses), Result = merge_clauses(ClauseResult, merge_fun(Analysis)), {ok, Result}; do_analyse(Module, Analysis, module, Clauses) -> {ok, FunctionResult} = do_analyse(Module, Analysis, function, Clauses), Result = merge_functions(FunctionResult, merge_fun(Analysis)), {ok, {Module,Result}}. merge_fun(coverage) -> fun({Cov1,NotCov1}, {Cov2,NotCov2}) -> {Cov1+Cov2, NotCov1+NotCov2} end; merge_fun(calls) -> fun(Calls1, Calls2) -> Calls1+Calls2 end. merge_clauses(Clauses, MFun) -> merge_clauses(Clauses, MFun, []). merge_clauses([{{M,F,A,_C1},R1},{{M,F,A,C2},R2}|Clauses], MFun, Result) -> merge_clauses([{{M,F,A,C2},MFun(R1,R2)}|Clauses], MFun, Result); merge_clauses([{{M,F,A,_C},R}|Clauses], MFun, Result) -> merge_clauses(Clauses, MFun, [{{M,F,A},R}|Result]); merge_clauses([], _Fun, Result) -> reverse(Result). merge_functions([{_MFA,R}|Functions], MFun) -> merge_functions(Functions, MFun, R); merge_functions([],_MFun) -> % There are no clauses. {0,0}. % No function can be covered or notcov. merge_functions([{_MFA,R}|Functions], MFun, Result) -> merge_functions(Functions, MFun, MFun(Result, R)); merge_functions([], _MFun, Result) -> Result. do_parallel_analysis_to_file(Module, OutFile, Opts, Loaded, From, State) -> File = case Loaded of {loaded, File0} -> [{Module,Clauses}] = ets:lookup(?COVER_TABLE,Module), collect(Module, Clauses, State#main_state.nodes), File0; {imported, File0, _} -> File0 end, case find_source(File) of {beam,_BeamFile} -> reply(From, {error,no_source_code_found}); ErlFile -> analyse_info(Module,State#main_state.imported), HTML = lists:member(html,Opts), R = do_analyse_to_file(Module,OutFile, ErlFile,HTML), reply(From, R) end. %% do_analyse_to_file(Module,OutFile,ErlFile) -> {ok,OutFile} | {error,Error} %% Module = atom() %% OutFile = ErlFile = string() do_analyse_to_file(Module, OutFile, ErlFile, HTML) -> case file:open(ErlFile, [read]) of {ok, InFd} -> case file:open(OutFile, [write]) of {ok, OutFd} -> if HTML -> io:format(OutFd, "\n" "~s" "\n" "
\n",
				      [OutFile]);
		       true -> ok
		    end,
		    
		    %% Write some initial information to the output file
		    {{Y,Mo,D},{H,Mi,S}} = calendar:local_time(),
		    io:format(OutFd, "File generated from ~s by COVER "
			             "~p-~s-~s at ~s:~s:~s~n",
			      [ErlFile,
			       Y,
			       string:right(integer_to_list(Mo), 2, $0),
			       string:right(integer_to_list(D),  2, $0),
			       string:right(integer_to_list(H),  2, $0),
			       string:right(integer_to_list(Mi), 2, $0),
			       string:right(integer_to_list(S),  2, $0)]),
		    io:format(OutFd, "~n"
			             "**************************************"
			             "**************************************"
			             "~n~n", []),

		    print_lines(Module, InFd, OutFd, 1, HTML),
		    
		    if HTML -> io:format(OutFd,"
\n\n\n",[]); true -> ok end, file:close(OutFd), file:close(InFd), {ok, OutFile}; {error, Reason} -> {error, {file, OutFile, Reason}} end; {error, Reason} -> {error, {file, ErlFile, Reason}} end. print_lines(Module, InFd, OutFd, L, HTML) -> case io:get_line(InFd, '') of eof -> ignore; "%"++_=Line -> %Comment line - not executed. io:put_chars(OutFd, [tab(),escape_lt_and_gt(Line, HTML)]), print_lines(Module, InFd, OutFd, L+1, HTML); RawLine -> Line = escape_lt_and_gt(RawLine,HTML), Pattern = {#bump{module=Module,line=L},'$1'}, case ets:match(?COLLECTION_TABLE, Pattern) of [] -> io:put_chars(OutFd, [tab(),Line]); Ns -> N = lists:foldl(fun([Ni], Nacc) -> Nacc+Ni end, 0, Ns), if N=:=0, HTML=:=true -> LineNoNL = Line -- "\n", Str = " 0", %%Str = string:right("0", 6, 32), RedLine = ["",Str,fill1(), LineNoNL,"\n"], io:put_chars(OutFd, RedLine); N<1000000 -> Str = string:right(integer_to_list(N), 6, 32), io:put_chars(OutFd, [Str,fill1(),Line]); N<10000000 -> Str = integer_to_list(N), io:put_chars(OutFd, [Str,fill2(),Line]); true -> Str = integer_to_list(N), io:put_chars(OutFd, [Str,fill3(),Line]) end end, print_lines(Module, InFd, OutFd, L+1, HTML) end. tab() -> " | ". fill1() -> "..| ". fill2() -> ".| ". fill3() -> "| ". %%%--Export-------------------------------------------------------------- do_export(Module, OutFile, From, State) -> case file:open(OutFile,[write,binary,raw]) of {ok,Fd} -> Reply = case Module of '_' -> export_info(State#main_state.imported), collect(State#main_state.nodes), do_export_table(State#main_state.compiled, State#main_state.imported, Fd); _ -> export_info(Module,State#main_state.imported), try is_loaded(Module, State) of {loaded, File} -> [{Module,Clauses}] = ets:lookup(?COVER_TABLE,Module), collect(Module, Clauses, State#main_state.nodes), do_export_table([{Module,File}],[],Fd); {imported, File, ImportFiles} -> %% don't know if I should allow this - %% export a module which is only imported Imported = [{Module,File,ImportFiles}], do_export_table([],Imported,Fd) catch throw:_ -> {error,{not_cover_compiled,Module}} end end, file:close(Fd), reply(From, Reply); {error,Reason} -> reply(From, {error, {cant_open_file,OutFile,Reason}}) end. do_export_table(Compiled, Imported, Fd) -> ModList = merge(Imported,Compiled), write_module_data(ModList,Fd). merge([{Module,File,_ImportFiles}|Imported],ModuleList) -> case lists:keymember(Module,1,ModuleList) of true -> merge(Imported,ModuleList); false -> merge(Imported,[{Module,File}|ModuleList]) end; merge([],ModuleList) -> ModuleList. write_module_data([{Module,File}|ModList],Fd) -> write({file,Module,File},Fd), [Clauses] = ets:lookup(?COLLECTION_TABLE,Module), write(Clauses,Fd), ModuleData = ets:match_object(?COLLECTION_TABLE,{#bump{module=Module},'_'}), do_write_module_data(ModuleData,Fd), write_module_data(ModList,Fd); write_module_data([],_Fd) -> ok. do_write_module_data([H|T],Fd) -> write(H,Fd), do_write_module_data(T,Fd); do_write_module_data([],_Fd) -> ok. write(Element,Fd) -> Bin = term_to_binary(Element,[compressed]), case byte_size(Bin) of Size when Size > 255 -> SizeBin = term_to_binary({'$size',Size}), file:write(Fd, <<(byte_size(SizeBin)):8,SizeBin/binary,Bin/binary>>); Size -> file:write(Fd,<>) end, ok. %%%--Import-------------------------------------------------------------- do_import_to_table(Fd,ImportFile,Imported) -> do_import_to_table(Fd,ImportFile,Imported,[]). do_import_to_table(Fd,ImportFile,Imported,DontImport) -> case get_term(Fd) of {file,Module,File} -> case add_imported(Module, File, ImportFile, Imported) of {ok,NewImported} -> do_import_to_table(Fd,ImportFile,NewImported,DontImport); dont_import -> do_import_to_table(Fd,ImportFile,Imported, [Module|DontImport]) end; {Key=#bump{module=Module},Val} -> case lists:member(Module,DontImport) of false -> insert_in_collection_table(Key,Val); true -> ok end, do_import_to_table(Fd,ImportFile,Imported,DontImport); {Module,Clauses} -> case lists:member(Module,DontImport) of false -> ets:insert(?COLLECTION_TABLE,{Module,Clauses}); true -> ok end, do_import_to_table(Fd,ImportFile,Imported,DontImport); eof -> Imported end. get_term(Fd) -> case file:read(Fd,1) of {ok,<>} -> {ok,Bin1} = file:read(Fd,Size1), case binary_to_term(Bin1) of {'$size',Size2} -> {ok,Bin2} = file:read(Fd,Size2), binary_to_term(Bin2); Term -> Term end; eof -> eof end. %%%--Reset--------------------------------------------------------------- %% Reset main node and all remote nodes do_reset_main_node(Module,Nodes) -> do_reset(Module), do_reset_collection_table(Module), remote_reset(Module,Nodes). do_reset_collection_table(Module) -> ets:delete(?COLLECTION_TABLE,Module), ets:match_delete(?COLLECTION_TABLE, {#bump{module=Module},'_'}). %% do_reset(Module) -> ok %% The reset is done on a per-clause basis to avoid building %% long lists in the case of very large modules do_reset(Module) -> [{Module,Clauses}] = ets:lookup(?COVER_TABLE, Module), do_reset2(Clauses). do_reset2([{M,F,A,C,_L}|Clauses]) -> Pattern = {#bump{module=M, function=F, arity=A, clause=C}, '_'}, Bumps = ets:match_object(?COVER_TABLE, Pattern), lists:foreach(fun({Bump,_N}) -> ets:insert(?COVER_TABLE, {Bump,0}) end, Bumps), do_reset2(Clauses); do_reset2([]) -> ok. do_clear(Module) -> ets:match_delete(?COVER_TABLE, {Module,'_'}), ets:match_delete(?COVER_TABLE, {#bump{module=Module},'_'}), ets:match_delete(?COLLECTION_TABLE, {#bump{module=Module},'_'}). not_loaded(Module, unloaded, State) -> do_clear(Module), remote_unload(State#main_state.nodes,[Module]), Compiled = update_compiled([Module], State#main_state.compiled), State#main_state{ compiled = Compiled }; not_loaded(_Module,_Else, State) -> State. %%%--Div----------------------------------------------------------------- reverse(List) -> reverse(List,[]). reverse([H|T],Acc) -> reverse(T,[H|Acc]); reverse([],Acc) -> Acc. escape_lt_and_gt(Rawline,HTML) when HTML =/= true -> Rawline; escape_lt_and_gt(Rawline,_HTML) -> escape_lt_and_gt1(Rawline,[]). escape_lt_and_gt1([$<|T],Acc) -> escape_lt_and_gt1(T,[$;,$t,$l,$&|Acc]); escape_lt_and_gt1([$>|T],Acc) -> escape_lt_and_gt1(T,[$;,$t,$g,$&|Acc]); escape_lt_and_gt1([$&|T],Acc) -> escape_lt_and_gt1(T,[$;,$p,$m,$a,$&|Acc]); escape_lt_and_gt1([],Acc) -> lists:reverse(Acc); escape_lt_and_gt1([H|T],Acc) -> escape_lt_and_gt1(T,[H|Acc]).